



[image: ]






[image: illustration]







Contents


Introduction


The Human World


Danger


Elections


Conformity


DNA Testing


Cheating


War


Financial Meltdown


Romance


The Natural World


Predators and Prey


Ancestry


The Giant’s Causeway


Emergent Behaviour


The Penguins’ Huddle


The Sea


Earthquakes


The Distance to the Stars


Technology


The Internet


Picking a Safe Password


SPAM and Scams


Bitcoin


Compressing Files


Scanning in Books


Computers (a Timeline)


Thinking Computers


Sport


Baseball


Spin


Tennis


How to Hit a Hole-in-One


Potting Pool Balls


The 18-foot Pole Vault


Winter Sports


Entertainment


Old-school Computer Games


Monopoly


Escaping the Minotaur’s Maze


Game Shows


The Movies


Literature


Music


The Alhambra


Getting Around


Maps


The Self-driving Car


Car Crashes


Traffic Jams


The Hyperloop


Space Travel


Flying


The Everyday


Architecture


Luck and Superstition


Prejudice


Winning the Lottery


Tying Knots


Birthdays


Waiting in Line


Exams


Rollercoasters


Daylight


The Weather Forecast


 


Acknowledgements


Picture Credits







How to Use This Ebook


Select one of the chapters from the main contents list and you will be taken straight to that chapter.





Look out for linked text (which is blue) throughout the ebook that you can select to help you navigate between related sections.





You can double tap images and tables to increase their size. To return to the original view, just tap the cross in the top left-hand corner of the screen.





Introduction


This book is an answer to the question “When would you ever use mathematics in real life?” Mathematics is an unreasonably effective tool for understanding the Universe – whether you are looking on an enormous scale and trying to understand space, looking on a tiny scale and trying to understand subatomic particles, or looking around you on a human scale and trying to understand why buses come in threes or how the supermarket judges the correct number of cabbages to stock.


 


Applied mathematics is not about the mathematics you probably think of as mathematics – long division does not show up anywhere in this book, and you are not expected to do any algebra. Instead, it is about taking elements of the real world and modelling them using mathematics – which could be anything from counting, to algebra, to differential equations, to Inter-Universal Teichmüller theory (which is currently understood by literally one person). It is about distilling the messy, noisy world into something that can be solved by a human or a computer. It is about (to paraphrase Einstein) making everything as simple as possible, but no simpler.


You are probably wondering: what level of mathematical knowledge do I need to read this book? The answer is: none. It is not as if there is a test. More seriously, the point of the book is not to make you feel stupid for not knowing something. It is to show you interesting applications of mathematics you can enjoy either as a spectator or as an active participant. Whether you prefer to read it and nod along saying “I’d never thought of that!” or get your pen and paper out to dig deeper into the theory is entirely up to you. Both are perfectly valid ways of enjoying the book.


The Maths Behind takes a look at just some of the situations that can be better understood using mathematics, and the book is split into seven very broad sections.


We start in The Human World with some examples of how mathematics can be applied in the interpersonal and political arenas, such as finding your ideal partner, why elections are inherently flawed and (putting ethical dilemmas to one side) whether and when you should break the rules.
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From physics to football to fluttering to flying, mathematics plays a fundamental role in many aspects of life, culture and science.


Mathematics doesn’t just apply to humans: in The Natural World, we learn about some of the zoological, geological and astronomical phenomena that yield to mathematical thought, including the life cycles of predators and their prey, how to measure earthquakes and why hexagons are everywhere from beehives to the Giant’s Causeway.


Mathematics also underpins computers, in obvious and not-so-obvious ways. In Technology, we assess how the history of computing intertwines with the history of mathematics, how advanced algebra keeps your credit card information safe and how filters keep at least some of the spam out of your inbox.


While I am pretty sure Novak Djokovic is not solving differential equations (at least not rigorously) when he decides where to aim his first serve, tennis is just one of the Sports that has plenty of mathematics in it. Why do balls swerve when you spin them? How do you perform a perfect ski jump? And how did mathematics revolutionize the game of baseball?


Even in the Entertainment world, there is plenty to analyze: from the most efficient way to play Monopoly, to making decisions on game shows, to the patterns of the Alhambra Palace in Granada, Spain.


More obviously, there is mathematics to be found any time you try to get from A to B. In Getting Around, we can barely scrape the surface of the mathematics behind maps and self-driving cars, the mysterious “jamiton” effect that makes traffic back up without any obvious cause, and the navigational challenges of getting to Jupiter.


Finally, we come to the maths of the Everyday – or at least, some days. How do you pick your lottery tickets to maximize your chances of winning? Why don’t you fall off the rollercoaster? How and why does the length of the day change throughout the year? And what do they mean when they say there is a 30% chance of rain?


There is only enough room in a book this size to cover a tiny fraction of the real-life topics where mathematical thinking either makes a thing possible, or allows it to be understood in a different way. If you would like to suggest themes to explore in the future, please feel free to get in touch!
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Danger


Even the most risk-averse person in the world takes risks. Their ethically sourced spinach in a green smoothie has a risk of containing salmonella. Their Prius is just as likely to wreck as any other car.


 


Pretty much everything you do, from climbing the stairs to bed, to crossing the road, to jumping on your motorbike, to doing a parachute jump, carries some degree of risk. Some of these things are clearly riskier than others – but the rewards for each of them vary as well. There is usually a trade-off between risk and reward.


So it makes sense to ask: what risks are worth taking? How can you assess risk? And, if all of your friends jumped off a bridge, would you?


SHOULD YOU DRIVE OR FLY?


In the aftermath of the 9/11 attacks, people turned to their cars in droves. Air travel was, perfectly understandably, seen as extremely risky, and it was a risk fewer wanted to take.


While it was an understandable human reaction, it was also a very poor mathematical one. Since 1996, there has been no year with more than 1,500 civilian fatalities from air crashes, and the trend has been generally downward since the early 1970s. According to planecrashinfo.com, if you are travelling on a regular airliner, there are about 4 fatalities (from all causes) in every million hours of flying. At 600mph, that is fewer than 7 deaths per billion miles in flight. The corresponding figure for driving is 12 to 15 fatalities per billion miles.


It has been said that you are more likely to have an accident on the way to the airport than on your flight, but that is a little bit disingenuous. The vast bulk of car accidents are prangs rather than serious collisions, whereas if your plane has an accident, the chances are it will not be one where the pilot can jump out to demand the insurance details of the chump who has just flown into their plane’s newly painted tail.


It is all very well talking about fatalities per billion miles, but it is a bit of a tricky concept to wrap your head around. If I drive to see my brother, 250 miles away, what are my chances of dying in a crash? Sure, I could work it out but I am not sure the answer would mean very much to me. What we need is the micromort.
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WHAT RISKS ARE WORTH TAKING?


When Ronald A Howard, a professor in the field of decision analysis at Stanford University, talks about the probability of a catastrophic event, he measures things in micromorts. A micromort is a one-in-a-million chance of dying while undertaking an activity.


The chance of meeting an unnatural and untimely demise as you go about your day-today existence is somewhere about 1 micromort (in 2012, about 48 people in England and Wales died every day from things other than natural causes, out of a population of 56.5 million – so the probability of not surviving a day is 48/56,500,000, or about 0.0000008. It is simpler to compare that to other things if you write it as 0.8 millionths – or 0.8 micromorts. In the US, it is a bit more (1.6 micromorts, based on 2010 data; the difference is due to a higher chance of dying in a car accident). This varies depending on your age: if you are a newborn baby in the UK, your first day carries 430 micromorts of risk, although that drops to an average of about 17 over your first year.


With that baseline, you can gauge how dangerous different activities are. A marathon carries a risk of about seven micromorts and a sky dive for charity carries about nine micromorts – so the two activities (one of which is seen as super-healthy and the other as a crazy risk) are broadly comparable in danger.


You can also assess the safety of forms of transport in a simple and intuitive way: a 6-mile motorbike ride carries a risk of 1 micromort, and so does a 250-mile drive in the car. Motorcycling is about forty times as dangerous as driving (over all drivers and motorcyclists). However, travelling by plane is safer still: it takes a thousand miles of jet travel to rack up a micromort due to accidents, so cars are four times as risky as planes. As for terrorism, you would need to fly 12,000 miles for it to add up to a micromort.
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HOW FAR CAN YOU FALL AND SURVIVE?


Oh no! The building is on fire! I am trapped two stories above the ground! The fire brigade will not be here before the house burns down – I suppose I had better jump. But first, let me get my calculator out and figure out how likely I am to survive the fall.


If I just stepped out of the window, 4.6 metres above the ground, I would accelerate under gravity at about 9.8 metres per second per second. I would hit the ground with a speed of v=√2as, where a is the acceleration and s is the distance to fall. So the speed I hit the ground would be somewhere in the region of 34 kilometres per hour (about 21 miles per hour). Thinking about car/pedestrian accidents at that speed, that is probably a “hospital rather than morgue” sort of fall, although obviously many other factors come into play: after all, there are people who fall out of planes and survive, and others who fall out of bed and do not – my personal health and the softness of the landing will come into play too.


I can mitigate the effect of falling if I dangle from the window-ledge rather than stepping straight out. If my upper-body strength is good enough to keep me steady by my finger-tips, my toes are only 2.4 metres (8 feet) from the ground, and I would land at about 24 kilometres per hour (15 miles per hour) instead – an impact I could probably limp away from.


If I wanted to give myself the best chance of surviving a fall from a building, I would consider the following options:


If I can lower my height, by dangling, dropping onto an awning or balcony, or fashioning a rope out of bedsheets, every foot I move closer to the ground improves my odds.


If I can increase my air resistance with a makeshift parachute (or better, a real one), this will also slow down my impact.


If I can find a soft landing spot, persuade people to catch me, bend my legs as I land, or otherwise make sure I meet the ground with a groan rather than a splat, then my injuries should be less severe.
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Elections


A short disclaimer before we begin: I always vote if I can. I vote even if my preferred candidate is on a hiding to nothing (which they normally are).


 


WHEN IS IT WORTH VOTING?


A perfect, selfish mathematician would vote only if it was worth it. They would calculate the value of voting as:


(the estimated benefit of their preferred candidate winning) × (the probability of an extra vote changing the result)


So if a candidate would make the voter $1,000 better off, and had a 1/1,000 chance of needing an extra vote to win the election, the value to the mathematician of voting would be $1. If the cost (in time and transport) of traipsing down to the polling station was more than that, they would stay home or do something else.


In practice, the smaller the election, the more likely your vote is to make a difference by breaking a tie: in my last local council elections, the winning candidate won by just 11 votes out of about 700; the chances of a tie between two evenly matched candidates in those circumstances is [image: illustration] which is about 3%. If you live in Florida, where the turnout is typically around eight or nine million, the chances of your vote making a difference to the presidential race is about 0.03% – much higher than I expected! (See the graph.)


WHY ARE ELECTION BOUNDARIES WEIRD?


It is surprisingly difficult to divide a country or a state up into electoral regions that give both a fair representation of the population and competitive races (at least in a winner-takes-all system.) It is also very easy, if you happen to have partisan boundary commissions, to create voting districts that give an advantage to one party over another.


The practice of drawing boundaries for your own advantage is called gerrymandering, after the Massachusetts governor in the 1810s, Elbridge Gerry. He signed a bill creating odd-shaped districts that favored his Democratic-Republican Party. One was reputed to look like a salamander. “You mean,” said a journalist, “a Gerry-mander!” and the name stuck.
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The binomial distribution provides a good first approximation for an election process.


For example, suppose there are 100 voters in a state, equally split between two parties, and there are ten congressional districts to apportion. If the commission were so inclined, it could arrange the boundaries so their preferred party won 8 of the districts 6–4, and lost the remaining two 9–1. By grouping your opponent’s voters together in huge numbers, and your own voters with slim (but reliable) majorities, you can create a wildly biased result – here, 8–2 as opposed to the more reasonable 5–5.


The most logical ways to guard against gerrymandering are either removing control of boundaries from the political parties, or implementing a more proportional voting system that skews the results less than first-past-the-post does. Better still, agreeing a mathematical procedure to determine fair and equal districts would stop the practice altogether!


Obviously, there is a small problem with any of these suggestions: they all rely on the parties giving up some of their power. And the chances of them doing that are as slim as the part of Illinois’s 4th congressional district that follows I-294 for purely constitutional reasons.
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Conformity


Why do buses come in threes? Why do political parties generally have such similar policies? Why are there more Smiths in America than Millers, but more Müllers in Germany than Schmidts? Why is there a Starbucks on every corner? And, most pressingly, why do hipsters all look the same?


 


THE MATHEMATICS BEHIND CONFORMITY AND CLUSTERING


In a fair and just world, English words would be evenly spread through the dictionary: there are 26 letters, so each letter deserves a little under 4% of the words. That is not the way it is though: the top five letters (T, A, S, H and W) together begin more than half of the words. The bottom half of the letters (X, Z, Q, K, J, V, U, Y, R, G, E, N, P and D) only begin 18.3% of words – compared with 16.6% starting with T alone. Why aren’t the words uniformly distributed? There are many possible explanations – most of them linguistic rather than mathematical. For example, the easier a letter is to say to an English speaker, the likelier it is to start a word, and the more combinations a letter can appear in, the more common it is as an initial – S, for example, can be easily followed by C, E, H, I, K, L, M, N, O, P, Q, T, U, W or Y.
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Each candidate can appeal to more of the electorate by moving their position closer to their opponent’s. This results in a tendency of candidates to have similar policies.


THE MATHEMATICS BEHIND THE SAME OLD POLITICS


“I don’t vote,” says my neighbour. “They’re all the same.” I sigh, deeply (some, I say, are significantly more awful than others), but recognize that there is an element of truth in what he says.


Let us start with a very simple model of politics. Everybody is somewhere on a spectrum of left-wing to right-wing (or liberal to conservative, or socialist to capitalist, as you prefer. The important thing is that there is a scale.) Each candidate has a set of policies that lie somewhere on that scale, and each voter votes for the candidate closest to his or her position. It might look something like the diagram above.


In an efficient system, the parties would be evenly spaced out across the political spectrum, but unfortunately, that is not the way things work. Imagine you are in charge of the Purple Party in the situation above. If you move your party’s policies along the scale to the right, more people will consider you to be the closest party to their opinions. Similarly for the Orange Party, moving policies to the left increases their share of the vote. This process repeats until the two parties (in principle) have virtually the same set of policies.


This simple model can be extended fairly easily to more than two parties and more than two dimensions (and even more complicated ideas than “vote for the closest party”) with the same conclusion being reached every time: whenever you move towards the centre ground, you tend to pick up votes.


The only exception I know of is when ideologically fixed parties at the extremes gain some publicity. These parties are more interested in their position than in their popularity. In these cases, parties that had bunched up in the centre may begin to separate again in search of the fringe voters they are losing to the fixed parties. However, this effect is generally softened because most of the electorate tends to be fairly moderate; there is a trade-off between gaining a few voters at the extremes and potentially losing more voters in the centre.



WHY IS THERE A STARBUCKS ON EVERY CORNER?


The same reasoning explains why gas stations or coffee shops tend to be clustered together. If customers tend to go to the nearest shop, the best place to start your shop is next door to the one that is there already, taking half of its customers. Of course, other effects come into play here too; if I have to walk halfway across town to get my cappuccino, walking next door is not going to make much difference to me! There is a gap between shops where the difference in convenience becomes a factor.


This is not why outlets of big chains tend to be close together; that is more of a dirty strategy. If you are a multi-million dollar megachain, you can afford to have the odd under-performing store for a while. So, if you open two new shops on the same block as an existing cafe, neither of them is likely to make much profit at first. However, the existing cafe will almost certainly take a hit – and, depending on its customer loyalty and profit margins – it is liable to go out of business. At which point, the big chain can close one of its stores (if it needs to) and be the only coffee retailer on the block.
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THE MATHEMATICS BEHIND MILLERS AND SMITHS


Suppose you have a population of 128 families with different surnames. Each family produces two offspring, each of whom marries someone from another family to form a new family. In a marriage in this population, one or other of the partners takes the other’s surname – no double-barrelling here, I am afraid! What happens to the surnames?


Well, in the first generation, about a quarter of the surnames will die out completely. Half will now show up in just one family, and a quarter will now be in two families each. We are down to 96 names. (Table 1)


In the second generation, the one-family names will carry on in the same vein as before – a quarter will die out, half will be in one family, and a quarter will belong to two families. The two-family names are more interesting. For every 16, one will die out, four will belong to one family, six to two families, four to three families and one to four, and now we have only 78 names. (Table 2)


More interestingly, after just two generations, a quarter of the families share only ten of the original more-than-a-hundred names. The more families share a name, the more likely it is a) to survive into the next generation and b) grow. A one-family name has a 25% chance of growing, and 50% chance of remaining stable in numbers; by contrast, a ten-family name grows 41% of the time, and maintains its numbers 18% of the time. Even if it declines, it is a million-to-one shot that it will die out in the next generation.


These factors together mean that however the original population of surnames is arranged, some will come to predominate – typically the ones with higher numbers to begin with. If every medieval village had a forge but only some a mill, there will be more Smiths than Millers. If the tradition is to name families after people rather than jobs (Williams and Johnson, for example), the more common forenames become the most common surnames. The variations in naming traditions, jobs and even geography across different countries account for the differences in the distributions of surnames.
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DNA Testing


The computer in the forensics lab flashes up “MATCH CONFIRMED” and the absurdly good-looking and unflustered detectives high-five and say “we got him!” Another case closed by the magic of DNA testing.
    But is it really so reliable? How can they be so sure that they have fingered the right perp? In reality, there is a bit more to it than that.


 


THE HUMAN GENOME


Every cell in your body contains DNA (deoxy-ribonucleic acid), an extremely complicated molecule made up of smaller molecules called nucleotides; there are four types of nucleotide in DNA: cytosine (usually denoted as just a C), guanine (G), adenine (A) or thymine (T).


DNA is arranged into structures called chromosomes and, in principle, if you had a sample of cells from someone’s body, you could transcribe all of the nucleotides in each of the chromosomes and have a complete map of the human genome.


We do not usually do that (although the Human Genome Project did, it was a two-decade undertaking – and far too costly to do for every suspect). The full human genome would take about 6.5 billion characters to write it all down. For comparison, this book has only about 300,000 characters – your genetic book is 20,000 times as long, although it uses a smaller alphabet and is a less interesting read.
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THE GENETIC FINGERPRINT


Instead of comparing all of those billions of characters, a DNA test looks at a small number of regions of DNA with some useful properties:




they are “junk” DNA, part of the genetic code that does not have any obvious effect on development;


they have short strings of nucleotides that repeat over and over again – for example, TACATACATACATACA – known as short tandem repeats (STRs);


the number of times the strings repeat varies between people;


the number of STRs in one region does not affect the number of STRs in the other – they are independent.





If you are watching CSI, the DNA test is based on the FBI CODIS database, which uses 13 regions; if you are watching Silent Witness, they would use the UK standard of 10. In either case, the suspect’s DNA is reduced to a sort of numerical fingerprint – simply the number of STRs in each of the regions.


THE PROBABILITY OF A RANDOM MATCH


Knowing the prevalence of a certain number of STRs in each location (it might be that 20% of people have ten STRs at one of the regions) and that these numbers are independent, you can not only compare the genetic fingerprint, but work out how likely it is that someone else shares it, simply by multiplying the probabilities together.


If 20% of the population shared the suspect’s number of STRs at just one of the locations, the UK database would tell you that about one person in ten million has exactly the same fingerprint. The American test would call it a one in a billion chance.


UK: 0.2 × 0.2 × ...0.2 = 0.210 ≈ 10-7
US: 0.213 ≈ 10-9


So, have we definitely caught the bad guy once the computer flashes its results? Sadly, it is not so simple. Because there is a risk of errors and contamination in the lab (not to mention identical twins and other long shots), the detectives would normally need more evidence before they could bring the case to trial.






Cheating
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I think it is fair to say that none of us is 100% scrupulous all of the time – whether we kid ourselves that the traffic light had not quite turned red, or that the receipt was definitely for a justified business expense, or that it is OK to tell our toddlers that the favourite toy they left on the plane has gone off on an adventure and will be coming home to tell them all about it soon. Each of us has an idea of when it is OK to bend the rules a little bit.


 


Here I am not talking about bending the rules a little bit. I am talking about cheating of the flagrant and terrible sort, like copying someone else’s essay, completely fabricating your accounts, or systematically altering your body chemistry in the pursuit of sporting glory. How can mathematics help catch the baddies?


HOW CAN YOU TELL IF SOMETHING IS PLAGIARIZED?


In the past it was easier for students to get away with copying their work off each other or using online essay-writing services. In those dark days, there were not too many tools to stop it. The poor graduate students marking the work were not paid enough to spot similarities between submissions, let alone check each handwritten document against the whole of the internet.


Luckily, today’s essays are largely submitted electronically, and practical tools have been developed in the last couple of decades to make the grad student’s life easier.


One of the most common tools is the fingerprint. Every document has a fingerprint, typically based on sequences of words called n-grams. For example, (one, of, the, most) is a 4-gram. You could list every sequence of four words in the document, and compare how many of the patterns match precisely or approximately with a reference collection of fingerprints. At its most basic, if more than a certain percentage of n-grams show up in an essay and a document elsewhere, the essay may warrant further scrutiny.




Principal component analysis is a technique used for finding the most useful vectors to describe a data set. At each iteration, the vector giving the largest variance is selected, subject to the condition that it is at right angles to any vectors already selected.
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Another smart example is citation analysis – checking the sequence, proximity and origin of references marked within the text. This gives an idea of structural plagiarism, rather than simply copying someone’s work word for word.


The most interesting plagiarism-catching technique (mathematically speaking) is stylom-etry, which uses statistical methods to compare the style of one document to another – meaning that if a student’s writing style in exam conditions is significantly different to their style in other submissions, there may again be cause to investigate further. For example, the writer invariant technique considers the fifty most common words used by a writer. In each chunk of the document, those words are counted, giving an identifier of 50 numbers for each bit of text. The method then uses principal component analysis to find the plane of best fit for all of the identifiers; if the planes match up between two documents, it is very likely they share an author. Stylometry is a very neat trick, as it can also catch people who use essay-writing services, and hopefully prevent them from prospering.
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Several stylometric analyses have suggested that some of Shakespeare’s plays were at least co-authored with Christopher Marlowe.



CAN YOU SPOT FAKE DATA?
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Of course, it is not just in writing that cheating takes place. There is also a wide range of numerical fraud that mathematics can help catch. One of the simpler tools available is a process known as Benford’s Law.


Take a large list of measurements – the only criterion is that the largest needs to be at least 100 times as large as the smallest. You might, for instance, pick the areas of the lakes in Michigan, of which Wikipedia lists about 200. The largest, Lake Superior, has an area of more than 20 million acres; the smallest listed right now is Lake Ligon, at 5 acres, so it meets the criterion. Now, if you look at the first digit of each of the areas, you might expect to see about a ninth of the areas starting with 1, a ninth starting with 2, and so on. But that is not what you see at all: there are 29% starting with 1, 17% with 2, dropping down to only 5% of the areas beginning with 9.
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Surprisingly, that is almost exactly what Benford’s Law tells you to expect: in any naturally occurring data set, about 30% of the numbers will start with 1, 18% with 2, 13% with 3 and so on. Mathematically, the probability of a number in such a list starting with n is log ((n+1)/n). There is no simple explanation for why Benford’s Law holds, although there are several complicated ones.


In any event, Benford’s Law can also be used to detect fraud in several ways. For example, a forensic analysis of the macroeconomic data originally sent to the EU by the Greek government as it tried to join the Eurozone showed the hallmarks of made-up numbers. However, this did not come to light until much later, by which time the damage was done.


Similarly, the results of the 2009 Iranian general election do not obey Benford’s Law as they should: for example, the number of votes in each precinct for fourth-placed candidate Mehdi Karroubi began with a 7 much more often than would be expected from a fair election. (In fairness, there were many other reasons to suspect fraud, including the number of cities in which more than 100% of the electorate voted, and a strong negative correlation between the number of invalid votes and the number of votes for the incumbent, Mahmoud Ahmadinejad, which is consistent with widespread ballot-stuffing.)
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Cheats: Nations at the Rio 2016 Olympics with athletes serving doping suspensions indicated in red.


WHEN IS CHEATING WORTH THE RISK?


As we said earlier, everybody has a different idea of what constitutes serious misconduct and what constitutes bending the rules. A perfectly rational human would weigh up every decision as a balance between risk and reward: how much do I stand to gain from this? How much do I stand to lose if I get caught? What is the probability of getting caught?


If (reward) > (risk) × (probability), then ignore the rules; otherwise, follow them.


We are not perfectly rational, though. Most of us would not commit a crime, even if we knew we could get away with it. I do not have a good mathematical answer to why that is. It could be that there is a cost to breaking the rules, even if you are not caught. Perhaps social norms are a useful thing to keep society functioning after all.











War


The second half of the 20th century was characterized not by war, but by the threat of it. Both the USA and the Soviet Union had vast stockpiles of devastating nuclear weapons, and spent vast amounts on monitoring each other in case of a first strike. And both employed mathematicians to ensure they were adopting the optimal strategy.


 


The nuclear standoff resembles a classic problem from the relatively new field of game theory, known as the Prisoner’s Dilemma.


Two criminals are arrested for a serious crime on flimsy evidence. If both stay silent, the police will only be able charge them with a minor offence, carrying a one-year prison term. If one incriminates the other, he will be freed while the other is imprisoned for 20 years. If each incriminates the other, they both get 15 years.


The payoff matrix for each of the prisoners looks like Table 1.


The best overall outcome for the pair is to remain silent (they end up with a total jail time of two years), but that is not what happens.


The first criminal reasons: if my accomplice incriminates me, I get a lighter sentence if I incriminate him also. If my accomplice stays silent, I also get a lighter sentence by incriminating him. So, whatever he does, my best choice is to incriminate. The accomplice reasons in the same way; both end up giving evidence against the other, and they end up with the worst possible outcome, spending a total of thirty years in jail.


The Prisoner’s Dilemma relates to a one-off decision. The nuclear war problem relates to a decision made over and over again and that changes the logic. The iterated Prisoner’s Dilemma problem does not have an analytical best solution. The best solution found in simulations is tit-for-tat: stick to the “nice” option until the other side picks the “nasty” option, then retaliate.


This is what the mathematicians on both sides realized: knowing that a first strike would meet with an immediate and devastating response, both refrained from attacking the other. The doctrine of Mutually Assured Destruction (the acronym is not accidental) prevented a nuclear war.
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WHO WILL WIN A BATTLE?



If you are a general you want to make sure you only engage in battles you are likely to win. Surprisingly, it was not until World War I that Frederick Lanchester devised a simple set of formulas for predicting the outcome of a battle.


In hand-to-hand fighting, the bigger army almost always wins. Lanchester’s Linear Law predicts that if the bigger army has B soldiers and the smaller army has S soldiers, then the bigger army will have B–S soldiers still standing when the smaller army is wiped out. An army twice as big is twice as powerful.


However, modern wars are not fought hand-to-hand. Instead, armies fire indiscriminately at each other and this dramatically increases the advantage for the larger army. Suppose the bigger army is twice the size of the smaller army: it has an attacking advantage (many guns firing on few enemies) and a defensive advantage (fewer guns firing on many comrades). In combination, this means an army twice as big is four times as powerful, and it turns out the number of soldiers still standing at the end of the battle is [image: illustration] This is Lanchester’s Square Law.
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