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Praise for Probably Approximately Correct


“[Valiant’s] major point is that Darwin introduced evolution by natural selection,

but the detailed mechanism is still sketchy. A hundred years of genetics

has filled in some details, but Valiant sees the computational details as essential

and still missing. The goal of this book is to encourage further research

and to set a paradigm for such work. As Erwin Schrödinger’s What Is Life? inspired

those who built molecular biology, Valiant hopes to inspire those who

will build a future computational biology. Highly recommended.”—Choice




“[I]nsightful. . . . This is an ambitious proposal, sure to ignite controversy.

But what I find so appealing about this discussion, and the book in general, is

that Dr. Valiant fearlessly goes to the heart of the ‘BIG’ questions. . . . He passionately

argues his case, but is also first to point out the parts of this theory

that are incomplete, eager to anticipate and confront possible counterarguments.

This is science at its best, driven not by dogma and blind belief, but by

the desire to understand, intellectual integrity and reliance on facts. . . . The

book is written in a lively, accessible style and is surprisingly entertaining. It’s

funny how your perception of even mundane tasks can change after reading

it—you start thinking algorithmically, confirming Dr. Valiant’s maxim

that computer science is ‘more about humans than about computers.’”—Edward Frenkel, New York Times




“Probably Approximately Correct stands out from most other ‘popular science’

books by explaining not only the theory itself, but the remarkable advances

made in the rest of computer science theory that were required to

make PAC possible. . . . [T]he book really shines as a defense of computer

science theory to the general public, providing a compact and accessible description

of basic, important results that are sadly not widely known outside the field. This is a book that should be on every computer scientist’s shelf so that when someone asks, ‘Why is computer science theory important?’ the

three word response can be, ‘Read this book’.”—SIGACT News




“A scholar at the intersection of computing and evolutionary neuroscience,

Valiant explores ‘ecorithms’: algorithms that learn by interacting with their

environment, not from their designer—and so are fundamental to the process

of evolution. His text is clear and approachable . . . the argument is

sweeping.”—Harvard Magazine




“Computer scientist Leslie Valiant celebrates Alan Turing as the progenitor

of a third scientific revolution, potentially as profound as Newton’s and Einstein’s

in transforming our understanding of the world. Why not a ‘fourth

revolution’—why omit Darwin? Because, Valiant dares to say, Darwin’s theory

is radically incomplete, and until it is equipped to make quantitative, verifiable

predictions, evolution by natural selection cannot account for the complexity

of living things and is not ‘more than a metaphor.’ . . . The algorithms

of computational learning theory, he posits, will be key—in particular, a special

kind he calls ‘ecorithms,’ which incorporate information gathered from

the environment to improve an organism’s ‘performance.’”—The Scientist




“[A]mbitious in scope. . . . It is hard not to read the book as a challenge, to

computer science in particular, but to the sciences more generally. It is a call

to arms, a vision, a plea, an agenda. Because of this, I would recommend it

highly to all computer scientists (in any area). I would also recommend to

it all scientists, so they could see this clearly laid out research vision from

one of the leaders in computer science—and, arguably, the one who is most

interested in promoting the extension of the theory of computation to other

sciences.”—Michael Mitzenmacher, My Biased Coin




“[A]n engaging meditation on complexity and on how living things often

unwittingly use math to navigate it.”—Scientific American




“[Valiant] grounds his hypotheses in solid computational theory, drawing on

Alan Turing’s pioneering work on ‘robust’ problem-solving and algorithm design,

and in successive chapters he demonstrates how ecorithms can depict

evolution as a search for optimized performance, as well as help computer scientists

create machine intelligence. . . . [H]is book offers a broad look at how

ecorithms may be applied successfully to a variety of challenging problems.”—Publishers Weekly




“This remarkable book gives the lay person a sense of subtle problems in

mathematics and artificial intelligence, and offers a framework for biologists

and computer scientists to use in jointly investigating the most fascinating

and enigmatic biological questions.”—Marc Kirschner, Professor of Systems Biology, Harvard Medical School,

and coauthor of The Plausibility of Life




“This book contains fresh thinking and elegant, nuanced ideas. It is more

than probably approximately brilliant. Anyone interested in computation,

learning, evolution, or human nature should find these pages extraordinarily

stimulating and informative.”—Stephen M. Kosslyn, Founding Dean, Minerva University, and former

Professor of Psychology, Stanford University




“Ecorithms are algorithms that learn from interaction with their environment.

This book provides a theoretical framework for understanding the

power and limits of ecorithms and applies it to human cognition, biological

evolution, and artificial intelligence. Elegantly written, it will be accessible

to a wide circle of readers.”—Richard Karp, Turing Award–winner and director, Simons Institute for

the Theory of Computing, UC Berkeley




“This ambitious little book suggests quantitative, mathematical theory to explain

all essential mechanisms governing the behavior of all living organisms:

adaptation, learning, evolution, and cognition. This theory has the

characteristics of a great one; it is simple, general, falsifiable, and moreover

seems probably, approximately, correct!”—Avi Wigderson, Nevanlinna Prize–winner and Professor of Mathematics,

Institute for Advanced Study, Princeton




“Probably Approximately Correct is a great book. It was eye-opening to me,

as a mathematician, to learn how we think and reason, and as a grandfather,

to understand better the development and learning of my four-month-old

grandson. Valiant’s book offers deep insights, both for young and old.”—Shing-Tung Yau, Professor of Mathematics, Harvard University, and

coauthor of The Shape of Inner Space




“The quest for machines (and codes) that never make mistakes was only a

first step toward machines (and codes) that learn from them. Probably Approximately

Correct is a detailed, much-needed guide to how nature brought

us here, and where technology is taking us next.”—George Dyson, author of Turing’s Cathedral
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Summary


Algorithms are the step-by-step instructions used in computing for achieving desired results, much like recipes in cooking. In both cases the recipe designer has a certain controlled environment in mind for realizing the recipe, and foresees how the desired outcome will be achieved. The algorithms I discuss in this book are special. Unlike most algorithms, they can be run in environments unknown to the designer, and they learn by interacting with the environment how to act effectively in it. After sufficient interaction they will have expertise not provided by the designer, but extracted from the environment. I call these algorithms ecorithms. The model of learning they follow, known as the probably approximately correct model, provides a quantitative framework in which designers can evaluate the expertise achieved and the cost of achieving it.


These ecorithms are not merely a feature of computers. I argue in this book that such learning mechanisms impose and determine the character of life on Earth. The course of evolution is shaped entirely by organisms interacting with and adapting to their environments. This biological inheritance, as well as further learning from the environment after conception and birth, have a determining influence on the course of an individual’s life. The focus here will be the unified study of the mechanisms of evolution, learning, and intelligence using the methods of computer science.


The book has the following simple structure. Chapters 1, 2, and 4 set the scene for the natural phenomena to which the quantitative computational approach is to be applied. Chapter 3 is an introduction to computer science, particularly the quantitative study of algorithms and their complexity, and describes the background for the methodology used. Chapters 5, 6, and 7 contain the resulting theory for learning, evolution, and intelligence, respectively. The final chapters make some informal and more speculative suggestions with regard to some consequences for humans and machines.


Mathematics


The language of mathematics will be used, but only a little, and will be explained where used.



Chapter One



Ecorithms

In 1947 John von Neumann, the famously gifted mathematician, was keynote speaker at the first annual meeting of the Association for Computing Machinery. In his address he said that future computers would get along with just a dozen instruction types, a number known to be adequate for expressing all of mathematics. He went on to say that one need not be surprised at this small number, since 1,000 words were known to be adequate for most situations in real life, and mathematics was only a small part of life, and a very simple part at that. The audience reacted with hilarity. This provoked von Neumann to respond: “If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.”1

Though counterintuitive, von Neumann’s quip contains an obvious truth. Einstein’s theory of general relativity is simple in the sense that one can write the essential content on one line as a single equation. Understanding its meaning, derivation, and consequences requires more extensive study and effort. However, this formal simplicity is striking and powerful. The power comes from the implied generality, that knowledge of one equation alone will allow one to make accurate predictions about a host of situations not even conceived when the equation was first written down.

Most aspects of life are not so simple. If you want to succeed in a job interview, or in making an investment, or in choosing a life partner, you can be quite sure that there is no equation that will guarantee you success. In these endeavors it will not be possible to limit the pieces of knowledge that might be relevant to any one definable source. And even if you had all the relevant knowledge, there may be no surefire way of combining it to yield the best decision.

This book is predicated on taking this distinction seriously. Those aspects of knowledge for which there is a good predictive theory, typically a mathematical or scientific one, will be called theoryful. The rest will be called theoryless. I use the term theory here in the same sense as it is used in science, to denote a “good, effective, and useful theory” rather than the negative sense of “only a theory.” Predicting the orbit of a planet based on Newton’s laws is theoryful, since the predictor uses an explicit model that can accurately predict everything about orbits. A card player is equally theoryful in predicting an opponent’s hand, if this is done using a principled calculation of probabilities, as is a chemist who uses the principles of chemistry to predict the outcome of mixing two chemicals.

In contrast, the vast majority of human behaviors look theoryless. Nevertheless, these behaviors are often highly effective. These abundant theoryless but effective behaviors still lack a scientific account, and it is these that this book addresses.

The notions of the theoryful and the theoryless as used here are relative, relative to the knowledge of the decision maker in question. While gravity and mechanics may be theoryful to a physicist, they will not be to a fish or a bird, which still have to cope with the physical world, but do so, we presume, without following a theory. Worms can burrow through the ground without apparently any understanding of the physical laws to which they are subject. Most humans manage their finances adequately in an economic world they don’t fully understand. They can often muddle through even at times when experts stumble. Humans can also competently navigate social situations that are quite complex, without being able to articulate how.

In each of these examples the entity manages to cope somehow, without having the tenets of a theory or a scientific law to follow. Almost any biological or human behavior may be viewed as some such coping. Many instances of effective coping have aspects both of the mundane and also of the grand and mysterious. In each case the behavior is highly effective, yet if we try to spell out exactly how the behavior operates, or why it is successful, we are often stumped. How can such behavior be effective in a world that is too complex to offer a clear scientific theory to be followed as a guide? Even more puzzling, how can a capability for such effective coping be acquired in the first place?

Science books generally restrict their subject matter to the theoryful. However, I am impressed with how effectively life forms “cope” with the theoryless in this complex world. Surely these many forms of coping have some commonality. Perhaps behind them all is a single basic phenomenon that is itself subject to scientific laws.

This book is based on two central tenets. The first is that the coping mechanisms with which life abounds are all the result of learning from the environment. The second is that this learning is done by concrete mechanisms that can be understood by the methods of computer science.

On the surface, any connection between coping and computation may seem jarring. Computers have traditionally been most effective when they follow a predictive science, such as the physics of fluid flow. However, computers also have their softer side. Contrary to common perception, computer science has always been more about humans than about machines. The many things that computers can do, such as search the Web, correct our spelling, solve mathematical equations, play chess, or translate from one language to another, all emulate capabilities that humans possess and have some interest in exercising. Depending on the task, the performance of present-day computers will be better or worse than humans. But in regarding computers merely as our slaves for getting things done, we may be missing the point. The overlap between what computers and humans do every day is already vast and diverse. Even without any extrapolation into the future, we have to ask what computers already teach us about ourselves.

The variety of applications of computation to domains of human interest is a totally unexpected discovery of the last century. There is no trace of anyone a hundred years ago having anticipated it. It is a truly awesome phenomenon. Each of us can identify our own different way of being impacted by the range of applications that computers now offer. A few years ago I was interested in the capabilities of a certain model of the brain. In a short, hermit-like span of a few weeks I ran a simulation of this model on my laptop and wrote up a paper based on the calculations performed by my laptop. I used a word processor on the same laptop to write and edit the article. I then emailed it off to a journal again from that laptop. This may sound unremarkable to the present-day reader, but a few generations ago, who would have thought that one device could perform such a variety of tasks? Indeed, while for most ideas some long and complex history can be traced, the modern notion of computation emerged remarkably suddenly, and in a most complete form, in a single paper published by Alan Turing in 1936.2

Science prior to that time made no mention of abstract machines. Turing’s theory did. He defined the mathematical notion of computation that our all-pervasive information technology now follows. But in offering his work, he made it clear that his goal went beyond understanding only machines: “We may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions.” With these words he was declaring that he was aiming to formalize the process of computation where a human mechanically follows some rules. He was seeking to capture the limits of what could be regarded as mechanical intellectual work, where no appeal to other capabilities such as intuition or creativity was being made.

Turing succeeded so well that the word computation is now used in exactly the sense in which he defined it. We forget that a “computer” in the 1930s referred to a human being who made a living doing routine calculations. Speculations that philosophers or psychologists entertained in earlier times as to the nature of mechanical mental capabilities equally dim in the memory. Turing had discovered a precise and fundamental law that both living and inert things must obey, but which only humans had been observed to exhibit up to that time. His notion is now being realized in billions of pieces of technology that have transformed our lives. But if we are blinded by this technological success, we may miss the more important point that Turing’s concept may enable us to understand human activity itself.

This may seem paradoxical. Humans clearly existed before Turing, but Turing’s notion of computation was not noticed before his time. So how can his theory be so fundamental to humans if little trace of it had even been suspected before?

My answer to this is that even in the pre-Turing era, in fact since the beginning of life, the dominating force on Earth within all its life forms was computation. But the computations were of a very special kind. These computations were weak in almost every respect when compared with the capabilities of our laptops. They were exceedingly good, however, at one enterprise: adaptation. These are the computations that I call ecorithms—algorithms that derive their power by learning from whatever environment they inhabit, so as to be able to behave effectively in it. To understand these we need to understand computations in the Turing sense. But we also need to refine his definitions to capture the more particular phenomena of learning, adaptation, and evolution.

Understanding learning has been one of my personal research goals for several decades. The natural phenomenon of young children learning is extraordinary. A spectacular facet of this learning is that, beyond remembering individual experiences, children will also generalize from those experiences, and very quickly. After seeing a few examples of apples or chairs, they know how to categorize new examples. Different children see different examples, yet their notions become similar. When asked to categorize examples they have not seen before, their rate of agreement will be remarkably high, at least within any one culture. Young children can sort apples from balls even when both are round and red.

This ability to generalize looks miraculous. Of course, it cannot really be a miracle. It is a highly reproducible natural phenomenon. Ripe apples fall from the tree to the ground predictably enough that one can base a universal law of gravitation on this phenomenon. Children generalizing successfully from their specific experiences manifest a similarly predictable phenomenon, which therefore also begs for a scientific explanation. I seek to explain this in terms of concrete computational processes.

The phenomenon of generalization has been widely discussed by philosophers for millennia. It has been called the problem of induction. I have found that as a scientist I have some advantages over philosophers: It is sufficient to aim to capture the fundamental part of a specific reproducible phenomenon. I need not explain all of the many senses in which the words induction or generalization have been used. Scientific discovery—for example, Johannes Kepler discovering his laws of planetary orbits—may have some commonality with the phenomenon of generalization exhibited by children learning words, but it may be a secondary and harder to reproduce by-product of a more basic and fundamental capability. Turing did not attempt to capture all the connotations that the word computing may have had in his day. He sought only to uncover a phenomenon associated with that word that had fundamental reality independent of any word usage.

What kind of explanation of induction do we need? Does it need to be mathematical? There is no better answer to this than what is implicit in the work of Turing himself. I have already referred to his successful mathematical formulation of computation. But he is also famous for the notion that is now known as the Turing Test, which he offered as a test for recognizing whether a machine can be considered to think. A simplified definition is as follows. A machine passes the Turing Test if a person, conversing with it via remote electronic interactions, cannot distinguish it from a person. The Turing Test is an important notion, and researchers in artificial intelligence have not succeeded in either building machines that can pass the test or in showing it to be irrelevant. However, it is an informal notion. Unlike Turing’s mathematical definition of computation, it does not tell us how exactly to proceed in order to emulate thinking. As a result, it has not led to progress in artificial intelligence remotely comparable to the success of general computation.

Hence the right goal must be to find a mathematical definition of learning of a nature similar to Turing’s notion of computation, rather than an informal notion like the Turing Test. After all, where would we be if Turing had given for computation only an informal definition? Let us think about that. What would have been an informal notion of the “mechanically computable” that would have sounded plausible in Turing’s time? How about this: “A task is mechanically computable if and only if it can be computed by a person of average intelligence while at the same time doing a mundane but exacting task, such as eating spaghetti.” Few could have disputed the reasonableness of such a definition. But I doubt such a definition in 1936 could have spawned the twenty-first century we see around us.

At the heart of my thesis here is a mathematical definition of learning. It is called the PAC or the probably approximately correct model of learning, and its main features are the following:3 The learning process is carried out by a concrete computation that takes a limited number of steps. Organisms cannot spend so long computing that they have no time for anything else or die before they finish. Also, the computation requires only a similarly limited number of interactions with the world during learning. Learning should enable organisms to categorize new information with at most a small error rate. Also, the definition has to acknowledge that induction is not logically fail-safe: If the world suddenly changes, then one should not expect or require good generalization into the future.

The biology of living organisms can be described in terms of complex circuits or networks that act within and between cells. Our biology is based on proteins and the interactions among them. Our DNA contains more than 20,000 genes that describe various proteins. Additionally, the DNA encodes descriptions of the regulation mechanism, a specification of how much new protein of each kind is to be produced, or expressed. This overall regulation mechanism is absolutely fundamental to our biology, and is called the protein expression network. It is of enormous complexity. Even though many of its details remain to be discovered, we can ask: How have these well-functioning, highly intricate networks with so many interlocking parts come into being? I believe that all these circuits are the result of some learning process instigated by the interactions between a biological entity and its environment.

Life’s interactions can be viewed in terms of either a single organism’s lifetime or the longer spans during which genes and species evolve. In either case the information gained by the entity from the interaction is processed in some mechanical way by what I call an ecorithm. The primary purpose of the ecorithm is to change the circuits so that they will behave better in the environment in the future and produce a better outcome for the owner.

Human biochemistry is an important enough topic. However, our neural circuits, comprising some tens of billions of neurons, may be viewed as being involved in our personal experiences even more intimately. Our psychological behavior is controlled by these circuits. How do these circuits arise in evolution, and how are they updated during life? By the same arguments they too must be the result of information obtained from interactions, by ourselves or our ancestors, and incorporated in our genes or brain by some adaptive mechanism.

If biological circuits are fundamentally shaped by learning processes, there seems little chance of understanding them, or their manifestations in our psychology, unless we recognize their origins in learning. We may not yet know in detail the actual ecorithms used in biology on Earth. However, the fact that our behaviors have their origins in such learning algorithms already has implications.

Earlier I listed as two central tenets that the behaviors that need explanation all arose from learning, and that this learning can be understood as a computational process. These tenets are not offered here as mere unproved assumptions, but as the consequences of the assumption that life has a mechanistic explanation.

The argument that these tenets actually follow from the formulation of ecorithms goes as follows: I start with the mechanistic assumption that biological forms came into existence as a result of concrete mechanisms operating in some environments. These mechanisms have been of two kinds, those that operate in individuals interacting with their environment, and those that operate via genetic changes over many generations. I then make two observations. First, ecorithms are defined broadly enough that they encompass any mechanistic process. This follows from the work of Turing and his contemporaries that established the principle, known as the Church-Turing Hypothesis, that all processes that can be regarded as mechanistic can be captured by a single notion of computation or algorithm. Second, ecorithms are also construed broadly enough to encompass any process of interaction with an environment. From these two observations one can conclude that the coping mechanisms of nature have no sources of influence on them that are not fully accounted for by ecorithms, simply because we have defined ecorithms broadly enough to account for all such influences.

To put this in a different way, the news reported here is that there is a burgeoning science of learning algorithms. Once the existence of such a science is accepted, its centrality to the study of life is more or less self-evident.

Of course, the reader should be cautious when confronted with purported logical arguments such as the one I just gave. Indeed, later chapters will address the general pitfalls of reasoning about theoryless subject matter. It is appropriate, therefore, to attempt to corroborate my proposition. Is there somewhere we can turn for a sanity check? The answer is machine learning, a method for finding patterns in data that are usefully predictive of future events but which do not necessarily provide an explanatory theory.

Machine learning is already a widely used technology with diverse applications. For example, companies such as Amazon and Netflix make recommendations to shoppers based on the predictions of learning algorithms trained on past data. Of course, there is no theory of which books or movies you will like. You may even completely change your tastes at any time. Nevertheless, using machine learning algorithms, it is possible to do a useful job in making such recommendations. Financial institutions likewise use machine learning algorithms, in their case, for example, for detecting whether individual credit card purchase attempts are likely to be fraudulent. These algorithms pick up various kinds of relevant information, such as the geographical pattern of your previous purchases, to make some decisions based on data collected from many past transactions. The development of the learning algorithms used may well be theoryful. But this again does not mean that fraud itself is theoryful. New kinds of fraud are being invented all the time. The algorithms merely find patterns in past credit card purchases that are useful enough to give financial institutions a statistical edge in coping with this area of the theoryless.

Much of everyday human decision making appears to be of a similar nature—it is based on a competent ability to predict from past observations without any good articulation of how the prediction is made or any claim of fundamental understanding of the phenomenon in question. The predictions need not be perfect or the best possible. They need merely to be useful enough. The fact that these algorithms are already in widespread use, and produce useful results in areas most would regard as theoryless, is good evidence that we are on the right track.

However, the idea of an ecorithm goes well beyond the idea of machine learning in its current, general usage. Within the study of ecorithms several additional notions beyond the learning algorithms themselves are included. First, there is the notion that it is important to specify what we expect a learning algorithm to be able to do before we can declare it to be successful. Second, using such a specification, we can then discuss problems that are not learnable—some environments will be so complex that it is impossible for any entity to cope. Third, there is the question of how broad a functionality one wants to have beyond generalization in the machine learning sense. To have intelligent behavior, for example, one needs at least a reasoning capability on top of learning. Finally, biological evolution must fit somehow into the study of coping mechanisms, but it is not clear exactly how, since traditional views of evolution do not exactly fit the machine learning paradigm. In studying ecorithms, we want to embrace all of these issues, and more.

The problem of dealing with the theoryless is ever present in our lives. Every day we are forced to put our trust in the judgment of experts who operate outside the bounds of any strict science. Your doctor and car mechanic are paid to make judgments, based on their own experience and that of their teachers. We presume that their expertise is the result of learning from a substantial amount of real-world experience and, for that reason, is effective in coping with this complex world. Their expertise can be evaluated by how well their diagnoses and predictions work out. In some areas we can evaluate performance, at least after the fact.

We are also exposed every day to commentators and pundits whose diagnoses and predictions are infrequently checked for ultimate accuracy. We hear about what will happen in politics, the stock market, or the economy, but these predictions often seem hardly better than random guessing.

In late 2008 Queen Elizabeth II asked a group of academics why the world financial crisis had not been predicted. She was not the only one asking this question. Was the crisis inherently unpredictable in some sense, or was the failure due to some gross negligence? After the crisis a substantial amount of public discussion pertained to this question. Is there a rational way of predicting rare events? Why do humans have so many intellectual frailties and behave as irrationally as they do? Why are humans subject so easily to deception and self-deception? Why do humans systematically delude themselves into thinking that they are good predictors of future events even if they are not?

Many reasons have been given for the difficulty of making predictions, and the mistakes that people are prone to make have been widely analyzed.4 The following, for example, is an instructive argument. After any significant historical event numerous explanations of the causes are offered. These explanations can be so beguilingly plausible that we easily mistake them for actual causes that might have been detected before the events in question. We are then communally led into the belief that world events have identifiable causes and are generally predictable. Hence popular disappointment that the world financial crisis had not been better anticipated can be ascribed to widespread overexpectation and naïveté with regard to the possibility of making predictions.

This book departs from this approach and takes an opposing, more positive view. While making predictions may be inherently difficult, and we humans have our special failings, human predictive abilities are substantial and reason enough for some celebration. Humans, and biological systems generally, do have an impressive capability to make predictions. The ability of living organisms to survive each day in this dangerous world is surely evidence of an ability to predict the consequences of their actions and those of others, and to be prepared for whatever happens, and be rarely taken totally by surprise. In human terms, the fact that we can go through a typical day, one that may include many events and interactions with others, and be seldom surprised is testament surely of our good predictive talents. Of course, the domains in which we make these reliable predictions often relate only to everyday life—what other people will say or other drivers do. They are mundane, almost by definition. But even mundane predictions become mystifying once one tries to understand the process by which the predictions are being made, or tries to reproduce them in a computer.

From this viewpoint, the general disappointment that the world financial crisis had not been better predicted was not based entirely on naïve illusion. It was based on the well-justified high regard we have for our predictive abilities, and so it would be clearly to our advantage to identify why they failed. It may be that the world was changing in such a random fashion that the past did not even implicitly contain reliable information about the future. Or perhaps the past did indeed contain this information, but that it was somehow so complex that it was not practically feasible to dig it out. A third case is that prediction was indeed feasible, but the wrong algorithm or the wrong data had been used.

The study of ecorithms is concerned with delineating among these possibilities. Having the ability to make these distinctions among topics of everyday concern, such as predictions about the course of the economy, seems important. One may be able to do more than merely lament human frailties in this regard. Are there inherent reasons why reliable predictions are not possible regarding the course of a country’s economy? Perhaps one can show that there are. It would then follow that there is no reason to listen to pundits other than for entertainment.

Computation allows one to construct concrete situations in which the world does reveal sufficient information for prediction in principle, but not in practice. Consider the area of encryption. If messages in the wireless connection of your home computer are encrypted, the intention is that if your neighbor listens in, he should not be able to get any information about what you are doing. Even if he listens in over a long period and does clever computations on the data he collects using a powerful computer, he should not be able to invade your privacy. This is another way of saying that the environment defined by your enciphered messages should be too complex for your neighbor, or anyone else, to make any sense of.

How can entities cope with what they do not fully understand? The simplest living organisms have had to face this problem from the beginnings of life. With limited mechanisms they had to survive in a complex world and to reproduce. Every evolving species has faced a similar problem, as do individual humans going through their daily lives. I shall argue that solutions to these problems have to be sought within the framework of learning algorithms, since this is the mechanism by which life extracts information from its environment. By the end of the book I hope to have persuaded the reader that when seeking to understand the fundamental character of life, learning algorithms are a good place to start.


Chapter Two



Prediction and Adaptation

Only adapt.

ADAPTED FROM E. M. FORSTER

“You never walk into a situation and believe that you know better than the natives. You have to listen and look around. Otherwise you can make some very serious mistakes.”1 This was a lesson that Kofi Annan, the former Secretary General of the United Nations learned, not on some far-flung diplomatic posting for the UN, but as a young man in St. Paul, Minnesota. He had arrived from Africa to study economics as an undergraduate. Inexperienced as he was with cold weather, when he first saw local students wearing ear muffs he thought they looked ridiculous. But after walking round the campus on a cold day, he went out to buy some for himself.

The logic of ecorithms has much in common with Annan’s analysis. That logic emphasizes listening and looking around. It encourages caution in applying specialized expertise gained in one environment to another, and gives respectful deference to observed experience. It says that it is we who must seek to adapt.

Such an adaptive imperative is absent from most aphorisms. “Neither a borrower nor a lender be” urges one to act in a specific way rather than to adapt to one’s environment. The pitfalls of following such nonadaptive advice are clear. While the advice may be good in some circumstances, perhaps those from which it was derived, in others it may not be.

Annan’s strategy has the strength that it accepts that there are many possible worlds and warns against assuming that they are all the same. On the other hand, it is not too specific in prescribing a course of action. I shall argue that some of the most important phenomena of biology and cognition arise from general adaptive strategies akin to Annan’s, empty as they may appear to be of any specific expert knowledge. Although such strategies as listening and looking are not fine-tuned to any particular environment, they may nonetheless be effective in any environment that has certain weak regularities hidden among all the complexities. I shall suggest that not only are they effective, but, further, they are integral to any explanation of life and culture as we witness these on Earth.

The new word ecorithm that I use to encapsulate these ideas derives from the word algorithm and the prefix eco-. An algorithm is simply any well-defined procedure. It is derived from the Latinized transliteration Algoritmi of the name of the mathematician Al-Khwārizmī, who worked in the House of Wisdom in Baghdad in the ninth century and authored an influential book on algebra. I invoke the word algorithm intentionally. In the domain in which it is most widely used, namely computer science, the standards of explicitness—of what is considered well defined—are high. In the words of computer scientist Donald Knuth, “Science is what we understand well enough to explain to a computer. Art is everything else we do.”2 I want to discuss evolution, learning, and intelligence in terms of algorithms that are unambiguous and explicit enough that they can be “explained to,” and hence simulated by, a computer. The prefix eco-, from the ancient Greek word oikos meaning household or home (and which evokes the word ecology), signals that we are interested in algorithms that operate in complicated environments, especially environments that are much more complex than the algorithm itself. There is no contradiction in this. While the algorithm has to perform well in a complex environment, about which it has little knowledge initially, it has a chance of doing so if it is allowed to interact extensively with the environment and learn from it.

Within the realm of computation I make the following distinction. Algorithms as traditionally studied in mathematics and computer science are designed to solve instances of particular problems, such as solving algebraic equations or searching for a word in a text. All the expertise they need for their success is encoded in their own description by their designer. For example, Euclid in his textbook The Elements describes an elegant algorithm for finding the greatest common divisor of two numbers. (The greatest common divisor of 30 and 42 is 6.) His algorithm is correct and efficient in a specifiable sense even for arbitrarily large numbers. Its exact behavior on all pairs of numbers is entirely predictable, and no doubt foreseen by Euclid.
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