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Introduction



Welcome to the second edition of Physics for the IB Diploma. The content and structure of this second edition has been completely revised to meet the demands of the 2014 IB Diploma Programme Physics Guide.


Within the IB Diploma Programme, the physics content is organized into compulsory topics plus a number of options, from which all students select one. The organization of this resource exactly follows the IB Physics Guide sequence:





•  Core: Chapters 1–8 cover the common core topics for Standard and Higher Level students.



•  Additional Higher Level (AHL): Chapters 9–12 cover the additional topics for Higher Level students.



•  Options: Chapters 13–16 cover Options A, B, C and D respectively. Each of these is available to both Standard and Higher Level students. (Higher Level students study more topics within the same option.)





Each of the core and AHL topics is the subject of a corresponding single chapter in the Physics for the IB Diploma printed book.


The Options (Chapters 13–16) are available on the website accompanying this book, as are useful appendices and additional student support (including Starting points and Summary of knowledge): www.hoddereducation.com/IBextras


There are two additional short chapters offering physics-specific advice on the skills necessary for Graphs and data analysis and Preparing for the IB Diploma Physics examination, including explanations of the command terms. These chapters can be found on the accompanying website.


Special features of the chapters of Physics for the IB Diploma are described below.





•  The text is written in straightforward language, without phrases or idioms that might confuse students for whom English is a second language.



•  The depth of treatment of topics has been carefully planned to accurately reflect the objectives of the IB syllabus and the requirements of the examinations.
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•  The Nature of Science is an important new aspect of the IB Physics course, which aims to broaden students’ interests and knowledge beyond the confines of its specific physics content. Throughout this book we hope that students will develop an appreciation of the processes and applications of physics and technology. Some aspects of the Nature of Science may be examined in IB Physics examinations and important discussion points are highlighted in the margins.



•  The Utilizations and Additional Perspectives sections also reflect the Nature of Science, but they are designed to take students beyond the limits of the IB syllabus in a variety of ways. They might, for example, provide a historical context, extend theory or offer an interesting application. They are sometimes accompanied by more challenging, or research-style, questions. They do not contain any knowledge that is essential for the IB examinations.
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•  Science and technology have developed over the centuries with contributions from scientists from all around the world. In the modern world science knows few boundaries and the flow of information is usually quick and easy. Some international applications of science have been indicated with the International Mindedness icon.



•  Worked examples are provided in each chapter whenever new equations are introduced. A large number of self-assessment questions are placed throughout the chapters close to the relevant theory. Answers to most questions are provided at the end of the book.
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•  It is not an aim of this book to provide detailed information about experimental work or the use of computers. However, our Skills icon has been placed in the margin to indicate wherever such work may usefully aid understanding. A number of key experiments are included in the IB Physics Guide and these are listed in Chapter 18: Preparing for the IB Diploma Physics examination, to be found on the website that accompanies this book.



•  A selection of IB examination-style questions is provided at the end of each chapter, as well as some past IB Physics examination questions.



•  Links to the interdisciplinary Theory of Knowledge (ToK) element of the IB Diploma course are made in all chapters.



•  Comprehensive glossaries of words and terms for Core and AHL topics are included in the printed book. Glossaries for the Options are available on the website.





Using this book


The sequence of chapters in Physics for the IB Diploma deliberately follows the sequence of the syllabus content. However, the IB Diploma Physics Guide is not designed as a teaching syllabus, so the order in which the syllabus content is presented is not necessarily the order in which it will be taught. Different schools and colleges should design a course based on their individual circumstances.


In addition to the study of the physics principles contained in this book, IB science students carry out experiments and investigations, as well as collaborating in a Group 4 Project. These are assessed within the school (Internal Assessment), based on well-established criteria.


The contents of Chapter 1 (Physics and physical measurement) have applications that recur throughout the rest of the book and also during practical work. For this reason, it is intended more as a source of reference, rather than as material that should be fully understood before progressing to the rest of the course.


Author profiles


John Allum


John has taught pre-university physics courses as a Head of Department in a variety of international schools for more than 30 years. He has taught IB Physics in Malaysia and in Abu Dhabi, and has been an examiner for IB Physics for many years.


Christopher Talbot


Chris teaches TOK and IB Chemistry at a leading IB World School in Singapore. He has also taught IB Biology and a variety of IGCSE courses, including IGCSE Physics, at Overseas Family School, Republic of Singapore.


Authors’ acknowledgements


We are indebted to the following teachers and lecturers who reviewed early drafts of the chapters: Dr Robert Smith, University of Sussex (Astrophysics); Dr Tim Brown, University of Surrey (Communications and Digital Technology); Dr David Cooper (Quantum Physics); Mr Bernard Taylor (Theory of Knowledge, Internal Assessment and Fields and Forces); Professor Christopher Hammond, University of Leeds (Electromagnetic Waves); Professor Phil Walker, University of Surrey (Nuclear Physics); Dr David Jenkins, University of York (Nuclear Physics) and Trevor Wilson, Bavaria International School e.V., Germany.


We also like to thank David Talbot, who supplied some of the photographs for the book, and Terri Harwood and Jon Homewood, who drew a number of physicists.


For this second edition, we would like to thank the following academics for their advice, comment and feedback on drafts of the chapters: Dr Robert Smith, Emeritus Reader in Astronomy, University of Sussex, Dr Tim Brown, Lecturer in Radio Frequency Antennas and Propagation, University of Surrey, Dr Alexander Merle, Department of Physics and Astronomy, University of Southampton, Dr David Berman, School of Physics and Astronomy, Queen Mary College, Professor Carl Dettmann, School of Mathematics, University of Bristol and Dr John Roche, Linacre College, University of Oxford. We would like to thank Richard Burt, Windermere School, UK for authoring Option A Relativity (Chapter 13).


Finally we would also like to express our gratitude for the tireless efforts of the Hodder Education team that produced the book you have in front of you, led by So-Shan Au and Patrick Fox.





1 Measurements and uncertainties
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ESSENTIAL IDEAS





•  Since 1948, the Système International d’Unités (SI) has been used as the preferred language of science and technology across the globe and reflects current best measurement practice.



•  Scientists aim towards designing experiments that can give a ‘true value’ from their measurements but, due to the limited precision in measuring devices, they often quote their results with some form of uncertainty.



•  Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities.
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1.1 Measurements in physics


Since 1948, the Système International d’Unités (SI) has been used as the preferred language of science and technology across the globe and reflects current best measurement practice



Fundamental and derived SI units


[image: ] To communicate with each other we need to share a common language, and to share numerical information we need to use common units of measurement. An internationally agreed system of units is now used by scientists around the world. It is called the SI system (from the French ‘Système International’). SI units will be used throughout this course.
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Nature of Science


Common terminology


For much of the last 200 years many prominent scientists have tried to reach agreement on a metric (decimal) system of units that everyone would use for measurements in science and commerce. A common system of measurement is invaluable for the transfer of scientific information and for international trade. In principle this may seem more than sensible, but there are significant historical and cultural reasons why some countries, and some societies and individuals, have been resistant to changing their system of units.


The SI system was formalized in 1960 and the seventh unit (the mole) was added in 1971. Before that, apart from SI units, a system based on centimetres, grams and seconds (CGS) was widely used, while the imperial (non-decimal) system of feet, pounds and seconds was also popular in some countries. For non-scientific, everyday use, people in many countries sometimes still prefer to use different systems that have been popular for centuries. Confusion between different systems of units has been famously blamed for the failure of the Mars orbiter in 1999 and has been implicated in several aviation incidents.
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The fundamental units of measurement


There are seven fundamental (basic) units in the SI system: kilogram, metre, second, ampere, mole, kelvin (and candela, which is not part of this course). The quantities, names and symbols for these fundamental SI units are given in Table 1.1.
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They are called ‘fundamental’ because their definitions are not combinations of other units (unlike metres per second, for example). You do not need to learn the definitions of these units.
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Nature of Science


Improvement in instrumentation


Accurate and precise measurements of experimental data are a cornerstone of science, and such measurements rely on the precision of our system of units. The definitions of the fundamental units depend on scientists’ ability to make very precise measurements and this has improved since the units were first defined and used.


Scientific advances can come from original research in new areas, but they are also driven by improved technologies and the ability to make more accurate measurements. Astronomy is a good example: controlled experiments are generally not possible, so our rapidly expanding understanding of the universe is being achieved largely as a result of the improved data we can receive with the help of the latest technologies (higher-resolution telescopes, for example).
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Derived units of measurement


All other units in science are combinations of the fundamental units. For example, the unit for volume is m3 and the unit for speed is m s−1. Combinations of fundamental units are known as derived units.


Sometimes derived units are also given their own name (Table 1.2). For example, the unit of force is kg m s−2, but it is usually called the newton, N. All derived units will be introduced and defined when they are needed during the course.
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Note that students are expected to write and recognize units using superscript format, such as m s−1 rather than m/s. Acceleration, for example, has the unit m s−2.


Occasionally physicists use units that are not part of the SI system. For example, the electronvolt, eV, is a conveniently small unit of energy that is often used in atomic physics. Units such as this will be introduced when necessary during the course. Students will be expected to be able to convert from one unit to another. A more common conversion would be changing time in years to time in seconds.
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ToK Link


Fundamental concepts


As well as some units of measurement, many of the ideas and principles used in physics can be described as being ‘fundamental’. Indeed, physics itself is often described as the fundamental science. But what exactly do we mean when we describe something as fundamental? We could replace the word with ‘elementary’ or ‘basic’, but that does not really help us to understand its true meaning.


One of the central themes of physics is the search for fundamental particles − particles that are the basic building blocks of the universe and are not, themselves, made up of smaller and simpler particles. It is the same with fundamental laws and principles: a physics principle cannot be described as fundamental if it can be explained by ‘simpler’ ideas. Most scientists also believe that a principle cannot be really fundamental unless it is relatively simple to express (probably using mathematics). If it is complicated, maybe the underlying simplicity has not yet been discovered.


Fundamental principles must also be ‘true’ everywhere and for all time. The fundamental principles of physics that we use today have been tested, re-tested and tested again to check if they are truly fundamental. Of course, there is always a possibility that in the future a principle that is believed to be fundamental now is discovered to be explainable by simpler ideas.


Consider two well-known laws in physics. Hooke’s law describes how some materials stretch when forces act on them. It is a simple law, but it is not a fundamental law because it is certainly not always true. The law of conservation of energy is also simple, but it is described as fundamental because there are no known exceptions.
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Scientific notation and metric multipliers



Scientific notation


When writing and comparing very large or very small numbers it is convenient to use scientific notation (sometimes called ‘standard form’).


In scientific notation every number is expressed in the form a × 10b, where a is a decimal number larger than 1 and less than 10, and b is a whole number (integer) called the exponent. For example, in scientific notation the number 434 is written as 4.34 × 102; similarly, 0.000 316 is written as 3.16 × 10−4.


Scientific notation is useful for making the number of significant figures clear (see the next section). It is also used for entering and displaying large and small numbers on calculators. ×10x or the letter E is often used on calculators to represent ‘times ten to the power of…’. For example, 4.62E3 represents 4.62 × 103, or 4620.


[image: ] The worldwide use of this standard form for representing numerical data is of great importance for the communication of scientific information between different countries.


Standard metric multipliers


In everyday language we use the words ‘thousand’ and ‘million’ to help represent large numbers. The scientific equivalents are the prefixes kilo- and mega-. For example, a kilowatt is one thousand watts, and a megajoule is one million joules. Similarly, a thousandth and a millionth are represented scientifically by the prefixes milli- and micro-. A list of standard prefixes is shown in Table 1.3. It is provided in the Physics data booklet.
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ToK Link


Effective communication needs a common language and terminology


What has influenced the common language used in science? To what extent does having a common standard approach to measurement facilitate the sharing of knowledge in physics?


There can be little doubt that communication between scientists is much easier if they share a common scientific language (symbols, units, standard scientific notation etc. as outlined in this chapter). But are our modern methods of scientific communication and terminology the best, or could they be improved? To what extent are they just a historical accident, based on the specific languages and cultures that were dominant at the time of their development?
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Significant figures


The more precise a measurement is, the greater the number of significant figures (digits) that can be used to represent it. For example, an electric current stated to be 4.20 A (as distinct from 4.19 A or 4.21 A) suggests a much greater precision than a current stated to be 4.2 A.


Significant figures are all the digits used in data to carry meaning, whether they are before or after a decimal point, and this includes zeros. But sometimes zeros are used without thought or meaning, and this can lead to confusion. For example, if you are told that it is 100 km to the nearest airport, you might be unsure whether it is approximately 100 km, or ‘exactly’ 100 km. This is a good example of why scientific notation is useful. Using 1.00 × 103 km makes it clear that there are three significant figures. 1 × 103 km represents much less precision.


When making calculations, the result cannot be more precise than the data used to produce it. As a general (and simplified) rule, when answering questions or processing experimental data, the result should have the same number of significant figures as the data used. If the number of significant figures is not the same for all pieces of data, then the number of significant figures in the answer should be the same as the least precise of the data (which has the fewest significant figures). This is illustrated in Worked example 1.
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Worked example





1 Use the equation:
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    to determine the power, P, of an electric motor that raises a mass, m, of 1.5 kg, a distance, h, of 1.128 m in a time, t, of 4.79 s. (g = 9.81 m s−2)
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A calculator will display an answer of 3.4652…, but this answer suggests a very high precision, which is not justified by the data. The data used with the least number of significant figures is 1.5 kg, so the answer should also have the same number:


P = 3.5 W
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‘Rounding off’ to an appropriate number of significant figures


‘Rounding off’, as in Worked example 1, should be done at the end of a multi-step calculation, when the answer has to be given. If further calculations using this answer are then needed, all the digits shown previously on the calculator should be used. The answer to this calculation should then be rounded off to the correct number of significant figures. This process can sometimes result in small but apparent inconsistencies between answers.



Orders of magnitude


Physics is the fundamental science that tries to explain how and why everything in the universe behaves in the way that it does. Physicists study everything from the smallest parts of atoms to distant objects in our galaxy and beyond (Figure 1.1).
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Physics is a quantitative subject that makes much use of mathematics. Measurements and calculations commonly relate to the world that we can see around us (the macroscopic world), but our observations may require microscopic explanations, often including an understanding of molecules, atoms, ions and sub-atomic particles. Astronomy is a branch of physics that deals with the other extreme − quantities that are very much bigger than anything we experience in everyday life.


The study of physics therefore involves dealing with both very large and very small numbers. When numbers are so different from our everyday experiences, it can be difficult to appreciate their true size. For example, the age of the universe is believed to be about 1018 s, but just how big is that number? The only sensible way to answer that question is to compare the quantity with something else with which we are more familiar. For example, the age of the universe is about 100 million human lifetimes.


When comparing quantities of very different sizes (magnitudes), for simplicity we often make approximations to the nearest power of 10. When numbers are approximated and quoted to the nearest power of 10, it is called giving them an order of magnitude. For example, when comparing the lifetime of a human (the worldwide average is about 70 years) with the age of the universe (1.4 × 1010 y), we can use the approximate ratio 1010/102. That is, the age of the universe is about 108 human lifetimes, or we could say that there are eight orders of magnitude between them.


Here are three further examples:





• The mass of a hydrogen atom is 1.67 × 10−27 kg. To an order of magnitude this is 10−27 kg.



• The distance to the nearest star (Proxima Centauri) is 4.01 × 1016 m. To an order of magnitude this is 1017 m. (Note: log of 4.01 × 1016 = 16.60, which is nearer to 17 than to 16.)



• There are 86 400 seconds in a day. To an order of magnitude this is 105 s.





Tables 1.4 to 1.6 list the ranges of mass, distance and time that occur in the universe. You are recommended to look at computer simulations representing these ranges.
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Estimation


Sometimes we do not have the data needed for accurate calculations, or maybe calculations need to be made quickly. Sometimes a question is so vague that an accurate answer is simply not possible. The ability to make sensible estimates is a very useful skill that needs plenty of practice. The worked example and questions 2–5 below are typical of calculations that do not have exact answers.


When making estimates, different people will produce different answers and it is usually sensible to use only one (maybe two) significant figures. Sometimes only an order of magnitude is needed.
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Worked example





2 Estimate the mass of air in a classroom. (density of air = 1.3 kg m−3)
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A typical classroom might have dimensions of 7 m × 8 m × 3 m, so its volume is about 170 m3.


mass = density × volume = 170 × 1.3 = 220 kg


Since this is an estimate, an answer of 200 kg may be more appropriate. To an order of magnitude it would be 102 kg.
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  1 Estimate the mass of:







   a a page of a book


   b air in a bottle


   c a dog


   d water in the oceans of the world.







  2 Give an estimate for each of the following:







   a the height of a house with three floors


   b how many times a wheel on a car rotates during the lifetime of the car


   c how many grains of sand would fill a cup


   d the thickness of a page in a book.







  3 Estimate the following periods of time:







   a how many seconds there are in an average human lifetime


   b how long it would take a person to walk around the Earth (ignore the time not spent walking)


   c how long it takes for light to travel across a room.







  4 Research the relevant data so that you can compare the following measurements. (Give your answer as an order of magnitude.)







   a the distance to the Moon with the circumference of the Earth


   b the mass of the Earth with the mass of an apple


   c the time it takes light to travel 1 m with the time between your heartbeats.








[image: ]





1.2 Uncertainties and errors


Scientists aim towards designing experiments that can give a ‘true value’ from their measurements, but because of the limited precision in measuring devices, they often quote their results with some form of uncertainty
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Nature of Science


Certainty


Although scientists are perceived as working towards finding ‘exact’ answers, an unavoidable uncertainty exists in any measurement. The results of all scientific investigations have uncertainties and errors, although good experimentation will try to keep these as small as possible.


When we receive numerical data of any kind (scientific or otherwise) we need to know how much belief we should place in the information that we are reading or hearing. The presentation of the results of serious scientific research should always have an assessment of the uncertainties in the findings, because this is an integral part of the scientific process. Unfortunately the same is not true of much of the information we receive through the media, where data are too often presented uncritically and unscientifically, without any reference to their source or reliability.


No matter how hard we try, even with the very best of measuring instruments, it is simply not possible to measure anything exactly. For one reason, the things that we can measure do not exist as perfectly exact quantities; there is no reason why they should.


This means that every measurement is an approximation. A measurement could be the most accurate ever made, for example the width of a ruler might be stated as 2.283 891 03 cm, but that is still not perfect, and even if it was we would not know because we would always need a more accurate instrument to check it. In this example we also have the added complication of the fact that when measurements of length become very small we have to deal with the atomic nature of the objects that we are measuring. (Where is the edge of an atom?)





[image: ]





The uncertainty in a measurement is the range, above and below a stated value, over which we would expect any repeated measurements to fall. For example, if the average height to which a ball bounced when dropped (from the same height) was 48 cm, but actual measurements varied between 45 cm and 51 cm, the result should be recorded as 48 ± 3 cm. The uncertainty is ± 3 cm, but this is sometimes better quoted as a percentage, in this example ± 6%. Obviously, it is desirable that experiments should produce results with low uncertainties – such measurements are described as being precise. But it should be noted that sometimes results can be precise, but wrong!


The more precise that a measurement is, the greater the number of significant figures (digits) that can be used to represent it.


If the correct (‘true’) value of a quantity is known, but an actual measurement is made that is not the same, we refer to this as an experimental error. That is, an error occurs in a measurement when it is not exactly the same as the correct value. For example, if a student recorded the height of a ball’s bounce as 49 cm, but careful observation of a video recording showed that it was actually 48 cm, then there was an error in the measurement of +1 cm.


All measurements involve errors, whether they are large or small, for which there are many possible reasons, but they should not be confused with mistakes. Errors can be described as either random or systematic (see below), although all measurements involve both kinds of error to some extent.


The words error and uncertainty are sometimes used to mean the same thing, although this can only be true when referring to experiments that have a known correct result.
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ToK Link


Scientific knowledge is provisional


‘One aim of the physical sciences has been to give an exact picture of the material world. One achievement of physics in the twentieth century has been to prove that this aim is unattainable.’


Jacob Bronowski


Can scientists ever be truly certain of their discoveries?


The popular belief is that science deals with ‘facts’ and, to a large extent, that is a fair comment, but it also gives an incomplete impression of the nature of science. The statement is misleading if it suggests that scientists typically believe that they have uncovered certain universal ‘truths’ for all time. Scientific knowledge is provisional and fully open to change if and when we make new discoveries. More than that, it is the essential nature of science and good scientists to encourage the re-examination of existing ‘knowledge’ and to look for improvements and progress.
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Different kinds of uncertainty


The uncertainty in experimental measurements discussed in this chapter is a consequence of the limitations of scientists and their equipment to obtain 100% accurate results. However, we should also consider that the act of measurement, in itself, can change what we are attempting to measure. For example, connecting an ammeter in an electric circuit must affect the current it is trying to measure, although every effort should be made to ensure this effect is not significant. Similarly, putting a cold thermometer in a warm liquid will alter its temperature.


‘Uncertainty’ also appears as an important concept in modern physics: the Heisenberg uncertainty principle deals with the behaviour of sub-atomic particles and is discussed in Chapter 12 (Higher Level students). One of its core ideas is that the more precisely the position of a particle is known, the less precisely its momentum can be known, and vice versa. But it should be stressed that the Heisenberg uncertainty principle is a fundamental feature of quantum physics and has nothing to do with the experimental limits of current laboratory technology.


Random and systematic errors


Random errors


Random errors cannot be avoided because exact measurements are not possible. Measurements can be bigger or smaller than the correct value and are scattered randomly around that value. Random errors are generally unknown and unpredictable. There are many possible reasons for them, including:





• limitations of the scale or display being used



• reading scales from wrong positions



• irregular human reaction times when using a stopwatch



• difficulty in making observations that change quickly with time.





The reading obtained from a measuring instrument is limited by the smallest division of its scale. This is sometimes called a readability (or reading) error. For example, a liquid-in-glass thermometer with a scale marked only in degrees (23°C, 24°C, 25°C, etc.) cannot reliably be used to measure to every 0.1°C. It is usually assumed that the error for analogue (continuous) scales, like a liquid-in-glass thermometer, is half of the smallest division – in this example ± 0.5°C. For digital instruments the error is assumed to be the smallest division that the meter can display. Figure 1.2 shows analogue and digital ammeters that can be used for measuring electric current.
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A common reason for random errors is reading an analogue scale from an incorrect position. This is called a parallax error – an example is shown in Figure 1.3.
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Systematic errors


A systematic error occurs because there is something consistently wrong with the measuring instrument or the method used. A reading with a systematic error is always either bigger or smaller than the correct value by the same amount. Common causes are instruments that have an incorrect scale (wrongly calibrated), or instruments that have an incorrect value to begin with, such as a meter that displays a reading when it should read zero. This is called a zero offset error – an example is shown in Figure 1.4. A thermometer that incorrectly records room temperature will produce systematic errors when used to measure other temperatures.
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Accuracy


A measurement that is close to the correct value (if it is known) is described as accurate, but in science the word accurate also means that a set of measurements made during an experiment have a small, systematic error. This means that an accurate set of measurements are approximately evenly distributed around the correct values (whether they are close to it or not), so that an average of those measurements will be close to the true value.


In many experiments the ‘correct’ result might not be known, which means that the accuracy of measurements cannot be known with any certainty. In such cases, the quality of the measurements can best be judged by their precision: can the same results be repeated?


The difference between precise and accurate can be illustrated by considering arrows fired at a target, as in Figure 1.5. The aim is precise if the arrows are grouped close together and accurate if the arrows are approximately evenly distributed around the centre of the target. The last diagram shows both accuracy and precision, although in everyday conversation we would probably just describe it as accurate.
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A watch that is always 5 minutes fast can be described as precise but not accurate. This is an example of a systematic zero offset error. Using hand-operated stopwatches to time a 100 m race might give accurate results (if there are no systematic errors), but they are unlikely to be precise because human reaction times will produce significant random errors.


Identifying and reducing the effects of errors


If a single measurement is made of a particular quantity, we may have no way of knowing how close it is to the correct result; that is, we probably do not know the size of any error in measurement. But if the same measurement is repeated and the results are similar (low uncertainty, high precision), we will gain some confidence in the results of the experiment, especially if we have checked for any possible causes of systematic error.


The most common way of reducing the effects of random errors is by repeating measurements and calculating a mean value, which should be closer to the correct value than most, or all, of the individual measurements. Any unusual (anomalous) values should be checked and probably excluded from the calculation of the mean.


Many experiments involve taking a range of measurements, each under different experimental conditions, so that a graph can be drawn to show the pattern of the results. (For example, changing the voltage in an electric circuit to see how it affects the current.) Increasing the number of pairs of measurements made also reduces the effects of random errors because the line of best-fit can be placed with more confidence.


Experiments should be designed, wherever possible, to produce large readings. For example, a metre ruler might only be readable to the nearest half a millimetre and this will be the same for all measurements that are made with it. When measuring a length of 90 cm this error will probably be considered as acceptable (it is a percentage error of 0.56%), but the same sized error when measuring only 2 mm is 25%, which is probably unacceptable. The larger a measurement (that is made with a particular measuring instrument), the smaller the percentage error should be. If this is not possible, then the measuring instrument might need to be changed to one with smaller divisions.


It is possible to carry out an experiment carefully with good quality instruments, but still have large random errors. There could be many different reasons for this and the experiment may have to be redesigned to get over the problems. Using a stopwatch to time the fall of an object dropped from a hand to the floor, or measuring the height of a bouncing ball, are two examples of simple experiments which may have significant random errors.


The effects of systematic errors cannot be reduced by repeating measurements. Instruments should be checked for errors before they are used, but a systematic error might not even be noticed until a graph has been drawn of the results and a line of best-fit found not to pass through the expected intercept, as shown in Figure 1.6. In such a case it might then be sensible to adjust all measurements up or down by the same amount if the cause of the systematic error can be determined.


[image: ]


Absolute, fractional and percentage uncertainties


Uncertainties in experimental data


Uncertainties in experimental data can be expressed in one of three ways:





• The absolute uncertainty of a measurement is the range, above and below the stated value, within which we would expect any repeated measurements to fall. For example, the mass of a pen might be stated as 53.2 g ± 0.1 g, where the uncertainty is ± 0.1 g.



• The fractional uncertainty is the ratio of the absolute uncertainty to the measured value.



• The percentage uncertainty is the fractional uncertainty expressed as a percentage.





Uncertainties expressed in percentages are often the most informative. Experiments that produce results with uncertainties of less than 5% may be desirable, but are not always possible.
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Worked example




  3 The mass of a piece of metal is quoted to be 346 g ± 2.0%.







   a What is the absolute uncertainty?


   b What is the range of values that the mass could be expected to have?


   c What is the fractional uncertainty?
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   a 2.0% of 346 g is ± 7 g (to the nearest gram, as provided in the data in the question)


   b 339 g to 353 g (to 3 significant figures)


   c 2% is equivalent to [image: ]
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Ideally uncertainties should be quoted for all experimental measurements, but this can be repetitive and tedious in a learning environment, so they are often omitted unless being taught specifically.


It is usually easy to decide on the size of an uncertainty associated with taking a single measurement with a particular instrument. It is often assumed to be the readability error, as described earlier. However, the overall uncertainty in a measurement, allowing for all experimental difficulties, is sometimes more difficult to decide. For example, the readability error on a hand-operated stopwatch might be 0.01 s, but the uncertainty in its measurements will be much greater because of human reaction times.


The amount of scattering of the readings around a mean value is a useful guide to random uncertainty, but not systematic uncertainty. After the mean value of the readings has been calculated, the random uncertainty can be assumed to be the largest difference between any single reading and the mean value. This is shown in the following worked example.
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Worked example




  4 The following measurements (in cm) were recorded in an experiment to measure the height to which a ball bounced: 32, 29, 33, 32, 37 and 28. Estimate values for the absolute and percentage random uncertainties in the experiment.
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The mean of these six readings is 31.83 cm, but it would be sensible to quote this to two significant figures (32 cm), as in the original data. The measurement that has the greatest difference from this value is 37 cm, so an estimate of the uncertainty is 5 cm, which means a percentage uncertainty of (5/37) × 100 = 14%.


Note that if the same data had been obtained in the order 28, 29, 32, 32, 33, 37, it would be difficult to believe that the uncertainties were random, and another explanation for the variation in results would need to be found.
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Uncertainties in calculated results


When making further calculations based on experimental data, the uncertainty in individual measurements should be known. It is then important to know how to use these uncertainties to determine the uncertainty in any results that are calculated from those data.


Consider a simple example: a trolley moving with constant speed was measured to travel a distance of 76 cm ± 2 cm (± 2.6%) in a time of 4.3 s ± 0.2 s (± 4.7%).


The speed can be calculated from distance/time = 76/4.3 = 17.67…, which is 18 m s−1 when rounded to two significant figures, consistent with the experimental data.


To determine the uncertainty in this answer we consider the uncertainties in distance and time. Using the largest distance and shortest time, the largest possible answer for speed is 78/4.1= 19.02…. Using the smallest distance and the longest time, the smallest possible answer for speed is 74/4.5 = 16.44…. (The numbers will be rounded at the end of the calculations.)


The speed is therefore between 16.44 cm s−1 and 19.02 cm s−1. The value 19.02 has the greater difference (1.35) from 17.67. So the final result can be expressed as 17.67 ± 1.35 cm s−1, which is a maximum uncertainty of 7.6%. Rounding to two significant figures, the result becomes 18 ± 1 cm s−1.


Uncertainty calculations like these can be very time consuming and, for this course, approximate methods are acceptable. For example, in the calculation for speed shown above, the uncertainty in the data was ± 2.6% for distance and ± 4.7% for time. The percentage uncertainty in the final result is approximated by adding the percentage uncertainties in the data: 2.6 + 4.7 = 7.3%. This gives approximately the same value as calculated using the largest and smallest possible values for speed. Rules for finding uncertainties in calculated results are given below.


Rules for uncertainties in calculations





•  For quantities that are added or subtracted: add the absolute uncertainties. In the Physics data booklet this is given as:
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If y = a ± b then Δy = Δa + Δb
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•  For quantities that are multiplied or divided: add the individual fractional or percentage uncertainties. In the Physics data booklet this is given as:
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•  For quantities that are raised to a power, n, the Physics data booklet gives:
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• For other functions (such as trigonometric functions, logarithms or square roots): calculate the highest and lowest absolute values possible and compare with the mean value, as shown in the following worked example. But note that although such calculations can occur in connection with laboratory work, they will not be required in examinations.
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Worked example




  5 An angle, θ, was measured to be 34° ± 1°. What is the uncertainty in the slope of this angle?
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tan 34° = 0.675 tan 33° = 0.649 tan 35° = 0.700


Larger absolute uncertainty = 0.675 − 0.649 = 0.026
(0.700 − 0.675 = 0.025, which is smaller than 0.026)


So, tan θ = 0.67 ± 0.03 (using the same number of significant figures as in the original data).
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  5 A mass of 346 ± 2 g was added to a mass of 129 ± 1 g.







   a What was the overall absolute uncertainty?


   b What was the overall percentage uncertainty?







  6 The equation [image: ] was used to calculate a value for s when a was 4.3 ± 0.2 m s−2 and t was 1.4 ± 0.1 s.







   a Calculate a value for s.


   b Calculate the percentage uncertainty in the data provided.


   c Calculate the percentage uncertainty in the answer.


   d Calculate the absolute uncertainty in the answer.







  7 A certain quantity was measured to have a magnitude of (1.46 ± 0.08). What is the maximum uncertainty in the square root of this quantity?
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Using computer spreadsheets to calculate uncertainties


Computer spreadsheets can be very helpful when it is necessary to make multiple calculations of uncertainties in experimental results. For example, the resistivity, ρ, of a metal wire can be calculated using the equation ρ = Rπr2/l, where r and l are the radius and length of the wire, and R is its resistance. Figure 1.7 shows the raw data (shaded green) of an experiment that measured the resistance of various wires of the same metal. The rest of the spreadsheet shows the calculations involved with processing the data to determine resistivity and the uncertainty in the result. A computer program can then be used to draw a suitable graph of the results, and this can include error bars (see page 13).


[image: ]


[image: ]









8 a Use a computer spreadsheet to enter the same raw data as shown in Figure 1.7.







   b Use the spreadsheet to confirm the results of the calculations shown.


   c What difference would it make to the results if the radius of the wire could only be measured to the nearest half a millimetre?
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Nature of Science


Uncertainties


‘All scientific knowledge is uncertain…’


Richard P. Feynman (1998), The Meaning of It All: Thoughts of a Citizen-Scientist


It is not only measurements that have uncertainties. All scientific knowledge is uncertain in the sense that good scientists understand that anything we believe to be true today, may have to be changed in the light of future discoveries or insights. This doubt is fundamental to the true nature of science. At any time, past or present, in the development of science there is an accepted body of knowledge, and the greatest advances come from those who question and doubt the status quo of existing knowledge and thinking.





[image: ]





Representing uncertainties on graphs


[image: ] Graph drawing skills are discussed in detail in Graphs and data analysis on the free accompanying website.


The range of random uncertainty in a measurement or a calculated result can be represented on a graph by using crossed lines to mark the point (instead of a dot).



Error bars


Figure 1.8 shows an example – a graph of distance against time for the motion of a train. Vertical and horizontal lines are drawn through each data point to represent the uncertainties in the two measurements. In this example, the uncertainty in time is ± 0.5 s and the uncertainty in distance is ± 1 m. These lines, which usually have small lines to indicate clearly where they end, are called error bars (perhaps they would be better called uncertainty bars). In Figure 1.8 the space outlined by each error bar has been shaded for emphasis – it is expected that a line of best-fit should pass somewhere through each shaded area.
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In some experiments the error bars are so short and insignificant that they are not included on the graph. For example, a mass could be measured as 347.46 ± 0.01 g. The uncertainty in this reading would be too small to show as an error bar on a graph. (Note that error bars are not expected for trigonometric or logarithmic functions.)



Uncertainty of gradients and intercepts


If the results of an experiment suggest a straight-line graph, it is often important to determine values for the gradient and/or the intercept(s) with the axes. However, it is often possible to draw a range of different straight lines, all of which pass through the error bars representing the experimental data.


We usually assume that the best-fit line is midway between the lines of maximum possible gradient and minimum possible gradient. Figure 1.9 shows an example (for simplicity, only the first and last error bars are shown, but in practice all the error bars need to be considered when drawing the lines).


Figure 1.9 shows how the length of a metal spring changed as the force applied was increased. We know that the measurements were not very precise because the error bars are long. The line of best-fit has been drawn midway between the other two. This is a linear graph (a straight line) and it is known that the gradient of the graph represents the force constant (stiffness) of the spring and the x-intercept represents the original length of the spring. Taking measurements from the best-fit line, we can make the following calculations:
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original length = x-intercept = 1.9 cm


To determine the uncertainty in the calculations of gradient and intercept, we need to consider the range of straight lines that could be drawn through the error bars. The uncertainty will be the maximum difference between values obtained from graphs of maximum and minimum possible gradients and the value calculated from the best-fit line. In this example it can be shown that:


force constant is between 14 N cm−1 and 28 N cm−1


original length is between 1.1 cm and 2.6 cm.


The final result can be quoted as:


force constant = 19 ± 9 N cm−1


original length = 1.9 ± 0.8 cm.


Clearly, the large uncertainties in these results confirm that the experiment lacked precision.
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1.3 Vectors and scalars


Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities
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Nature of Science


Models in three dimensions


Spatial awareness and an appreciation that the principles of science apply to three-dimensional space can easily be overlooked when studying the two-dimensional pages of a book or a screen. Knowing the directions of some physical quantities (in two or three dimensions) is important for understanding their effects. Such quantities are called vectors. Mathematical treatment of vector quantities in three dimensions (vector analysis) began in the eighteenth century.
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Vector and scalar quantities


The diagrams in Figure 1.10 show the force(s) acting on an object. In Figure 1.10a the object is being pulled to the right with a force of 5 N. The length of the arrow represents the size of the force and the orientation of the arrow shows the direction in which the force acts. The length of the arrow is proportional to the force. In Figure 1.10b there is a smaller force (3 N) pushing the object to the right. In both examples the object will move (accelerate) to the right.
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In Figure 1.10c there are two forces acting. We can add them together to show that the effect is the same as if a single force of 8 N (= 3 + 5) was acting on the object. We say that the resultant (net) force is 8 N.


In Figure 1.10d there are two forces acting on the object, but they act in different directions. The overall effect is still found by ‘adding’ the two forces, but also taking their direction into account. This can be written as +5 + (−3) = +2 N, where forces to the right are given a positive sign and forces to the left are given a negative sign. The resultant will be the same as if there was only one force (2 N) acting to the right. In Figures 1.10e and 1.10f there are also two forces acting, but they are not acting along the same line. For these forces, the resultant can be determined using a scale drawing or trigonometry (see page 16).


Clearly, force is a quantity for which we need to know its direction as well as its magnitude (size).
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Quantities that have both magnitude and direction are called vectors.
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Everything that we measure has a magnitude and a unit. For example, we might measure the mass of a book to be 640 g. Here 640 g is the magnitude of the measurement, but mass has no direction.
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Quantities that have only magnitude, and no direction, are called scalars.
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Most quantities are scalars. Some common examples of scalars used in physics are mass, length, time, energy, temperature and speed. However, when using the following quantities we need to know both the magnitude and the direction in which they are acting, so they are vectors:





•  displacement (distance in a given direction)



•  velocity (speed in a given direction)



•  force (including weight)



•  acceleration



•  momentum and impulse



•  field strength (gravitational, electric and magnetic).





The symbols for vector quantities are sometimes shown in bold italic (for example, F). Scalar quantities are shown with a normal italic font (for example, m).


In diagrams, all vectors are shown with straight arrows, pointing in the correct direction, which have a length proportional to the magnitude of the vector (as shown by the forces in Figure 1.11). In this course vector calculations will be limited to two dimensions.


[image: ] The importance of vectors is easily illustrated by the difference between distance and displacement. The pilot of an international flight from, say, Istanbul to Cairo needs to know more than that the two cities are a distance of 1234 km apart. Of course, the pilot also needs to know the ‘heading’ (direction) in which the plane must fly in order to reach its destination. Similarly, in order to draw accurate maps or make land surveys, the distance and direction of a chosen position from a reference point must be measured.


Combination and resolution of vectors


Adding vectors to determine a resultant


When two or more scalar quantities are added together (for example masses of 25 g and 50 g), there is only one possible answer (resultant): 75 g. But when vector quantities are added, there is a range of different resultants possible, depending on the directions involved.


To determine the resultant of the two forces shown in Figures 1.10e or 1.10f there are two possible methods: by drawing (graphical method) or by trigonometry.


Graphical method


The two vectors shown in Figure 1.10f are drawn carefully to scale (for example, by using 1 cm to represent 1 N), with the correct angle (140°) between them. A parallelogram is then completed. The resultant is the diagonal of the parallelogram (see Figure 1.11). Remember that the magnitude and the direction should both be determined from the diagram. In this example the resultant force is represented by the line drawn in red. Its length is 3.4 cm, which represents 3.4 N, at an angle of 36° to the 5.0 N force.
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Trigonometric method


The forces in Figure 1.11e are at right angles to each other. This means that a parallelogram drawn to represent these forces will be a rectangle (Figure 1.12) and the magnitude of the resultant of the forces, F, can be found using Pythagoras’s theorem:


F2 = 3.02 + 5.02 = 34


F = 5.8 N


[image: ]


The direction of this force can be determined by using trigonometry:


tan [image: ] (θ is the angle that the resultant makes with the direction of the 5.0 N force)


θ = 31°


You will not be expected to determine trigonometrical solutions if the parallelogram is not a rectangle.


Subtracting vectors to find their difference


We may need to know the difference between two vectors when we are considering by how much a vector quantity has changed. This is determined by subtracting one vector from the other. A negative vector has the same magnitude, but opposite direction, as a positive vector, so when finding the difference between vectors P and Q we can write:


P − Q = P + (−Q)


Figure 1.13 shows how vectors are subtracted graphically. The red line represents the difference when a particular vector changed in magnitude and direction from P to Q.
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Multiplying and dividing vectors by scalars


If a vector P is multiplied or divided by a scalar number k, the resultant vectors are simply kP or P/k. If k is negative, then the resultant vector becomes negative, meaning that the direction is reversed.


Resolving a single vector into two components


We have seen that two individual vectors can be combined mathematically to find a single resultant that has the same effect as the two separate vectors. This process can be reversed: a single vector can be considered as having the same effect as two separate vectors. This is called resolving a vector into two components. Resolving can be very useful because, if the two components are chosen to be perpendicular to each other (often horizontal and vertical), they will then both be independent of each other, so that they can both be considered totally separately.


Figure 1.14 shows a single vector, A, acting at an angle θ to the horizontal. If we want to know the effects of this vector in the horizontal and vertical directions, we can resolve it into two components:
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and
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so that
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AH = A cos θ
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and
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AV = A sin θ
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Both of these equations and the associated diagram are given in the Physics data booklet.
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Worked example




  6 Figure 1.15 shows a box resting on a sloping surface (an ‘inclined plane’). The box has a weight of 585 N. What are the components of weight:







   a down the slope?


   b perpendicularly into the slope?
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   a component down the slope = 585 sin 23° = 230 N


   b component into the slope = 585 cos 23° = 540 N
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ToK Link


Physics and mathematics


What is the nature of certainty and proof in mathematics?


Science is mostly based on knowledge gained from experimentation and measurement, although it has been made very clear in this chapter that absolute accuracy and certainty in the gathering of data is not possible. In contrast, the essential theories and methods of pure mathematics seem to deal with certainty. Mathematics is an indispensible tool for a physicist for many reasons, including its conciseness, its lack of ambiguity and its usefulness in making predictions. Most important principles in physics can be summarized in mathematical form.
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Examination questions – a selection


Paper 1 IB questions and IB style questions





Q1 The diameter of a wire was measured three times with an instrument that has a zero offset error. The results were 1.24 mm, 1.26 mm and 1.25 mm. The average of these results is:







       A accurate but not precise


       B precise but not accurate


       C accurate and precise


       D not accurate and not precise.








Q2 The approximate thickness of a page in a textbook is:







       A 0.02 mm


       B 0.08 mm


       C 0.30 mm


       D 1.00 mm.








Q3 Which of the following an approximate conversion of a time of 1 month into SI units?







       A 0.08 y


       B 30 d


       C 3 × 106 s


       D all of the above








Q4 The masses and weights of different objects are independently measured. The graph is a plot of weight versus mass that includes error bars.
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       These experimental results suggest that:


       A the measurements show a significant systematic error but small random error


       B the measurements show a significant random error but small systematic error


       C the measurements are precise but not accurate


       D the weight of an object is proportional to its mass.








Q5 Which of the following is a fundamental SI unit?







       A newton


       B coulomb


       C ampere


       D joule








Q6 The distance travelled by a car in a certain time was measured with an uncertainty of 6%. If the uncertainty in the time was 2%, what would the uncertainty be in a calculation of the car’s speed?







       A 3%


       B 4%


       C 8%


       D 12%








Q7 Which of the following quantities is a scalar?







       A pressure


       B acceleration


       C gravitational field strength


       D displacement








Q8 The current in a resistor is measured as 2.00 A ± 0.02 A. Which of the following correctly identifies the absolute uncertainty and the percentage uncertainty in the current?









	 

	Absolute uncertainty

	Percentage uncertainty






	A

	± 0.02 A

	± 1%






	B

	± 0.01 A

	± 0.5%






	C

	± 0.02 A

	± 0.01%






	D

	± 0.01 A

	± 0.005%







© IB Organization





Q9 Which of the following is a reasonable estimate of the order of magnitude of the mass of a large aircraft?







       A 103 kg


       B 105 kg


       C 107 kg


       D 109 kg








Q10 Which of the following is equivalent to the SI unit of force (the newton)?







       A kg m s−1



       B kg m2 s−1



       C kg m s−2



       D kg m2 s2






© IB Organization





2 Mechanics
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ESSENTIAL IDEAS





•  Motion may be described and analysed by the use of graphs and equations.



•  Classical physics requires a force to change a state of motion, as suggested by Newton in his laws of motion.



•  The fundamental concept of energy lays the basis on which much of science is built.



•  Conservation of momentum is an example of a law that is never violated.
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2.1 Motion


Motion may be described and analysed by the use of graphs and equations


Kinematics is the study of moving objects. The ideas of classical physics presented in this chapter can be applied to the movement of all masses, from the very small (freely moving atomic particles) to the very large (stars).


To completely describe the motion of an object at any one moment we need to say where it is, how fast it is moving and in what direction. For example, we might observe that a car is 20 m to the west of an observer, and moving northeast at a speed of 8 m s−1 (see Figure 2.1).


[image: ]


Of course, any or all of these quantities might be changing. In real life the movement of many moving objects can be complicated; they do not often move in straight lines and they might even rotate or have different parts moving in different directions.


In this chapter we will develop an understanding of the basic principles of kinematics by dealing with single objects moving in straight lines, and calculations will be confined to those objects that have a regular motion. We will consider the effects of air resistance later in this chapter.
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Nature of Science


Everything is moving


The study of motion must be a cornerstone of science because everything moves. Stars and galaxies are moving apart from each other at enormous speeds, the Earth orbits the Sun and everything on Earth is rotating around the axis once every day. Atoms and molecules are in constant motion, as are the sub-atomic particles within them. Of course in everyday life many objects appear to be stationary, but only because we are only comparing them with their surroundings. If we were to imagine that an object was truly, absolutely, not in motion, we would have no way to prove it because all motion is relative to something else.
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Distance and displacement
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Displacement is defined as the distance in a given direction from a fixed reference point.
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The displacement of an object is its position compared with a known reference point. For example, the displacement of the car in Figure 2.1 is 20 m to the west of the observer. To specify a displacement we need to state a distance and a direction from the reference point. The reference point is often omitted because it is obvious – for example, we might just say that an airport is 50 km to the north. Although a displacement can be anywhere in three dimensions, in this topic we will usually restrict our thinking to one or two dimensions.


Displacement and distance are both given the symbol s. This should not be confused with the symbol for speed (and velocity), which is v. The symbol h is also widely used for vertical distances (heights). The SI unit for distance is the metre, m, although other units, such as mm, cm and km, are in common use.


Because a direction is specified as well as a magnitude (size), displacement is a vector quantity. Distance is a scalar quantity because it has magnitude, but no direction.


Figure 2.2 shows the route of some people walking around a park. The total distance walked was 4 km, but the displacement from the reference point varied and is shown every few minutes by the vector arrows (a–e). The final displacement is zero because the walkers returned to their starting place.


[image: ]


[image: ] The transport of various vehicles, goods and people around the world is big business, and is monitored and controlled by many countries and international companies. This requires accurate means of tracking the location and movement of a large number of vehicles (ships, aircraft etc.) and the rapid communication of this information between countries.
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Speed and velocity
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Speed is defined as the rate of change of distance with time.
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Speed is a scalar quantity and it is given the symbol v. Its SI unit is metres per second, m s−1. Speed is calculated from:
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The delta symbol (Δ) is used wherever we want to represent a (small) change of something, so we can define speed in symbols, as follows:
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If an object is moving with a constant speed, determining its value is a straightforward calculation. However, the speed of an object often changes during the time we are observing it, and the calculated value is then an average speed during that time. For example, if a car is driven a distance of 120 km in 1.5 h, its average speed is 80 km h−1, but its actual speed will certainly have varied during the journey. At any one time we could look at the car’s speedometer to find out the instantaneous speed – that is, the speed at that exact instant (moment). In kinematics we are usually more interested in instantaneous values of speed (and velocity and acceleration) than average values.


Average speeds are calculated over lengths of time that are long enough for the actual speeds to have changed. Instantaneous values have to be calculated from measurements made over very short time intervals (during which time we can assume that the speed was constant).


Speed is calculated using the distance travelled in the time being considered, regardless of the direction of motion. If the walkers in Figure 2.2 took 2 hours to walk around the park, their average speed would be Δs/Δt (= 4/2) = 2 km h−1.
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Utilizations


Travel timetables


Figure 2.4 shows a timetable for the Ghan, a train that travels across Australia between Adelaide and Darwin, a distance of 2979 km along the track.
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1 a Calculate the journey time and hence the average speed.


   b Why is your answer to a misleading?
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We are often concerned not only with how fast an object is moving, but also with the direction of movement. If speed and direction are stated then the quantity is called velocity.
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Velocity is defined as the rate of change of displacement with time (speed in a given direction):
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Note that Δs in this equation refers to displacement and not to the overall distance. (To avoid confusion, it is often better to define speed and velocity in words, not symbols.)


Velocity has the same symbol and unit as speed, but the direction should usually be stated as well, since velocity is a vector quantity. However, if the direction of motion does not change, it is not uncommon to refer to a speed, of say 4 m s−1, as velocity because the direction is understood from the context.


Returning to the walkers in the park – at the end of their walk their average speed was 2 km h−1, but their average velocity was zero because the final displacement was zero. This might not be a very useful piece of information; we are more likely to be interested in the instantaneous velocity at various times during the walk.


When the velocity (or speed) of an object changes during a certain time, the symbol u is used for the initial velocity and v is used for the final velocity during that time. These velocities are not necessarily at the beginning and end of the entire motion, just the velocities at the start and end of the period of time that is being considered.


The distance travelled in time t can be determined using the equation:


distance = average speed × time


For an object with constant acceleration:


average speed = ½ (initial speed + final speed)


For example, if a car accelerates uniformly from 12 m s−1 to 16 m s−1, then its average speed during that time was 14 m s−1.


In symbols, this is shown as:
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This equation is given in the Physics data booklet.


Data logging in motion investigations


[image: ] The use of motion sensors and data loggers (see Figure 2.5), light gates and electronic timers, and video recording have all made the investigation of various kinds of motion more interesting, much easier and more accurate.
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Acceleration


Any variation from moving at a constant speed in a straight line is described as an acceleration. It is very important to realise that going faster, going slower and/or changing direction are all different kinds of acceleration (changing velocities).
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Acceleration, a, is defined as the rate of change of velocity with time:


[image: ] (if the acceleration is constant over time Δt)
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The SI unit of acceleration is metres per second squared, m s−2 (the same as the units of velocity/time, m s−1/s). Acceleration is a vector quantity.


Acceleration can be:





•  an increase in velocity (positive acceleration)



•  a decrease in velocity (negative acceleration – sometimes called a deceleration)



•  a change of direction.
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Additional perspectives


Reaction times when timing motions


The delay between seeing something happen and responding with some kind of action is known as reaction time. A typical value is about 0.20 s, but it can vary considerably depending on the conditions involved. A simple way of measuring a person’s reaction time is by measuring how far a metre rule falls before it can be caught between thumb and finger. The time can then be calculated using the equation s = 5t2.


The measurement can be repeated with the person tested being blindfolded to see if the reaction time changes if the stimulus (to catch the ruler) is either sound or touch, rather than sight. Whatever tests are carried out, our reaction times are likely to be inconsistent. This means that whenever we use stopwatches operated by hand, the results will have an unavoidable uncertainty (see Chapter 1). It is sensible to make time measurements as long as possible to decrease the significance of this problem. (This reduces the percentage uncertainty.) Repeating measurements and calculating an average will also reduce the effect of random errors.




  1 Use the method described above (or any other) to measure your reaction time when the stimulus is sight. Repeat the measurement 10 times.







   a What was the percentage variation between your average result and your quickest reaction time?


   b Did your reaction times improve with practice?
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Graphs describing motion


Graphs can be drawn to represent any motion and they provide extra understanding and insight (at a glance) that very few people can get from written descriptions or equations. Furthermore, the gradients of graphs and the areas under graphs often provide additional valuable information.



Displacement–time graphs and distance–time graphs


Displacement–time graphs, similar to those shown in Figure 2.6, show how the displacements of objects from a reference point vary with time. All the examples shown in Figure 2.6 are straight lines and can be described as representing linear relationships.
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•  Line A represents an object moving away from a reference point such that equal displacements occur in equal times. That is, the object has a constant velocity. Any linear displacement–time graph represents a constant velocity (it does not need to start or end at the origin).



•  Line B represents an object moving with a higher velocity than A.



•  Line C represents an object that is moving closer to the reference point.



•  Line D represents an object that is stationary (at rest). It has zero velocity and stays at the same distance from the reference point.





Displacement is a vector quantity, but displacement–time graphs like these are usually used in situations where the motion is in a known direction, so that the direction may not need to be stated again. Displacement in opposite directions is represented by the use of positive and negative values. This is shown in Figure 2.7, in which the solid line represents the motion of an object moving with a constant (positive) velocity. The object moves towards a reference point (when the displacement is zero), passes it, and then moves away in the opposite direction with the same velocity. The dotted line represents an identical speed in the opposite direction (or it could also represent the original motion if the directions chosen to be positive and negative were reversed).
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Any curved (non-linear) line on a displacement–time graph represents a changing velocity, in other words, an acceleration (or deceleration). This is illustrated in Figure 2.8.
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Figure 2.8a shows motion away from a reference point. Line A represents an object accelerating. Line B represents an object decelerating (negative acceleration).


Figure 2.8b shows motion towards a reference point. Line C represents an object accelerating. Line D represents an object decelerating (negative acceleration).


The values of the accelerations represented by these graphs may, or may not, be constant (this cannot be determined without a more detailed analysis).


In physics, we are usually more concerned with displacement–time graphs than distance–time graphs. In order to explain the difference, consider Figure 2.9. Figure 2.9a shows a displacement–time graph for an object thrown vertically upwards with an initial speed of 20 m s−1, without air resistance. It takes 2 s to reach a maximum height of 20 m. At that point it has an instantaneous velocity of zero, before returning to where it began after 4 s and regaining its initial speed. Figure 2.9b shows how the same motion would appear on an overall distance–time graph.
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Gradients of displacement–time graphs


Consider the motion at constant velocity shown in Figure 2.10.
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From the graph, the velocity v is given by:
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Note that the velocity is numerically equal to the gradient (slope) of the line. This is always true, whatever the shape of the line.
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The instantaneous velocity of an object is equal to the gradient of the displacement–time graph at that instant.
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Figure 2.11 shows an object moving with increasing velocity. The velocity at any time (for example t1) can be determined by calculating the gradient of the tangent to the line at that instant.
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The triangle used should be large, in order to make this process as accurate as possible. The tangent drawn at time t2 has a smaller gradient because the velocity is smaller. At time t3 the velocity is higher and the gradient steeper. So, in this example:
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  1 Figure 2.12 represents the motion of a train on a straight track between two stations.







   a Describe the motion.


   b How far apart are the stations?


   c Calculate the maximum speed of the train.


   d What was the average speed of the train between the two stations?
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  2 a Draw a displacement–time graph for a swimmer who swims 50 m at a constant speed of 1.0 m s−1 if the swimming pool is 25 m long and the swimmer takes 1 s to turn around half way through the race.







   b Find out the average speed of the world freestyle record holder when the 100 m record was last broken.







   c The world record for swimming 50 m in a pool of length 25 m is quicker than for swimming in a pool of length 50 m. Suggest why.







  3 Draw a displacement–time graph for the following motion: a stationary car is 25 m away; 2 s later it starts to move further away in a straight line from you with a constant acceleration of 1.5 m s−2 for 4 seconds; then it continues with a constant velocity for another 8 s.


  4 Describe the motion of the runner shown by the graph in Figure 2.13.
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5 a Describe the motion represented by the graph in Figure 2.14.
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   b Compare the velocities at points A and B.


   c When is the object moving with its maximum and minimum velocities?


   d Estimate values for the maximum and minimum velocities.


   e Suggest what kind of object could move in this way.
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Velocity–time graphs


Any velocity–time graph, like those shown in Figure 2.15, shows how the velocity of an object varies with time. Any straight (linear) line on any velocity–time graph shows that equal changes of velocity occur in equal times – that is, a constant acceleration.
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•  Line A shows an object that has a constant positive acceleration.



•  Line B represents an object moving with a higher positive acceleration than A.



•  Line C represents an object that is decelerating (negative acceleration).



•  Line D represents an object moving with a constant velocity – that is, it has zero acceleration.





Curved lines on velocity–time graphs represent changing accelerations. Velocities in opposite directions are represented by positive and negative values. The solid line in Figure 2.16 represents an object that decelerates uniformly to zero velocity and then moves in the opposite direction with an acceleration of the same magnitude. This graph could represent the motion of a stone thrown in the air, reaching its maximum height and then falling down again. The acceleration remains the same throughout (9.81 m s−2 downwards). In this example velocity and acceleration upwards have been chosen to be negative, and velocity and acceleration downwards are positive. The dashed line would represent exactly the same motion if the directions chosen to be positive and negative were reversed.
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Gradients of velocity–time graphs


Consider the motion at constant acceleration shown in Figure 2.17.
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From the graph:
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Note that the acceleration is numerically equal to the gradient (slope) of the line. This is always true, whatever the shape of the line.
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The instantaneous acceleration of an object is equal to the gradient of the velocity–time graph at that instant.
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Worked example




  1 The red line in Figure 2.18 shows an object decelerating (with a decreasing negative acceleration). Use the graph to find the instantaneous acceleration at 10 s.
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A tangent drawn at the time of 10 s can be used to determine the value of the acceleration at that instant:
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In this example the large triangle used to determine the gradient accurately was drawn by extending the tangent to the axes for convenience.





[image: ]








[image: ]





Areas under velocity–time graphs


Consider again the motion represented in Figure 2.17. The change of displacement, s, between the fourth and ninth second can be found from (average velocity) × time.
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This is numerically equal to the area under the line between t = 4.0 s and t = 9.0 s (as shaded in Figure 2.17). This is always true, whatever the shape of the line.


[image: ]






The area under a velocity–time graph is equal to the change of displacement in the chosen time.
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Worked example




  2 Figure 2.19a shows how the velocity of a car changed in the first 5 s after starting. Use the graph to estimate the distance travelled in this time.
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In Figure 2.19b the blue line has been drawn so that the area under it and the area under the original line are the same (as judged by eye).
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6 a Describe the motion represented by the graph in Figure 2.20.


   b Calculate accelerations for the three parts of the journey.


   c What was the total distance travelled?


   d What was the average speed?





[image: ]




  7 The velocity of a car was read from its speedometer at the moment it started and every 2 s afterwards.


     The successive values (m s−1) were: 0, 1.1, 2.4, 6.9, 12.2, 18.0, 19.9, 21.3 and 21.9. Plot a graph of these readings and use it to estimate the maximum acceleration and the distance covered in 16 s.








8 a Describe the motion of the object represented by the graph in Figure 2.21.


   b Calculate the acceleration during the first 8 s.


   c What was the total distance travelled in 12 s?


   d What was the total displacement after 12 s?


   e What was the average speed during the 12 s interval?
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  9 Sketch a velocity–time graph of the following motion: a car is 100 m away and travelling along a straight road towards you at a constant velocity of 25 m s−1. Two seconds after passing you, the driver decelerates uniformly and the car stops 62.5 m away from you.
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Utilizations


Biomechanics and 100 m sprinters


World-class sprinters can run 100 m in about 10 s (see Figure 2.22). The average velocity is easy to calculate: v =100/10 = 10 m s−1. Clearly they start from 0 m s−1, so their highest instantaneous velocity must be greater than 10 m s−1.
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Trainers use the science of biomechanics to improve an athlete’s techniques, and the latest computerized methods are used to analyse every moment of their races. The acceleration off the blocks at the start of the race is all important, so that the highest velocity is reached as soon as possible. For the rest of the race the athlete should be able to maintain the same speed, although there may be a slight decrease towards the end of the race. Figure 2.23 shows a typical velocity–time graph for a 100 m race completed in 10 s.
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1 a Estimate the highest acceleration achieved during the race illustrated in Figure 2.23.


   b When does the athlete reach their greatest velocity?


   c Explain why the two shaded areas on the graph are equal.


   d Using the internet to collect data, draw a graph showing how the world (or Olympic) record for the 100 m has changed over the last 100 years.


   e Predict the 100 m record for the year 2040.
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Acceleration–time graphs


An acceleration–time (a–t) graph, like those shown in Figure 2.24, shows how the acceleration of an object changes with time. In this chapter, we are mostly concerned with constant accelerations (it is less common to see motion graphs showing changing acceleration). The graphs in Figure 2.24 show five lines representing constant accelerations.
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•  Line A shows zero acceleration, constant velocity.



•  Line B shows a constant positive acceleration (uniformly increasing velocity).



•  Line C shows the constant negative acceleration (deceleration) of an object that is slowing down at a constant rate.



•  Line D shows a (linearly) increasing positive acceleration.



•  Line E shows an object that is accelerating positively, but at a (linearly) decreasing rate.





Areas under acceleration–time graphs


Figure 2.25 shows the constant acceleration of a moving car. Using a = Δv/Δt, between the fifth and thirteenth seconds, the velocity of the car increases by:
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The change in velocity is numerically equal to the area under the line between t = 5 s and t = 13 s (shaded in Figure 2.25). This is always true, whatever the shape of the line.


[image: ]






The area under an acceleration–time graph is equal to the change of velocity in the chosen time.
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10 Draw an acceleration–time graph for a car that starts from rest, accelerates at 2 m s−2 for 5 s, then travels at constant velocity for 8 s, before decelerating uniformly to rest again in a further 2 s.



11 Figure 2.26 shows how the acceleration of a car changed during a 6 s interval. If the car was travelling at 2 m s−1 after 1 s, estimate a suitable area under the graph and use it to determine the approximate speed of the car after 5 s.



12 Figure 2.27 shows a tennis ball being struck by a racquet. Sketch a possible velocity–time graph and an acceleration–time graph from 1 s before impact to 1 s after the impact.



13 Sketch possible displacement–time and velocity–time graphs for a bouncing ball dropped from rest. Continue the sketches until the third time that the ball contacts the ground.
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Graphs of motion: summary


If any one graph of motion is plotted (s–t, v–t or a–t), then the motion is fully defined and the other two graphs can be drawn with information about gradients and/or areas taken only from the first graph. This is summarized in Figure 2.28.
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To reproduce one graph from another by hand is a long and repetitive process, because in order to produce accurate graphs a large number of similar measurements and calculations need to be made over short intervals of time. Of course, computers are ideal for this purpose.


In more mathematically advanced work, which is not part of this course, calculus can be used to perform these processes using differentiation and integration.
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Utilizations


Kinematic equations: vehicle braking distances


Figure 2.29 represents how the velocities of two identical cars changed from the moment that their drivers saw danger in front of them and tried to stop their cars as quickly as possible. It has been assumed that both drivers have the same reaction time (0.7 s) and both cars decelerate at the same rate (−5.0 m s−2).
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The distance travelled at constant velocity before the driver reacts and depresses the brake pedal is known as the ‘thinking distance’. The distance travelled while decelerating is called the ‘braking distance’. The total stopping distance is the sum of these two distances.


Car B, travelling at twice the velocity of car A, has twice the thinking distance. That is, the thinking distance is proportional to the velocity of the car. The distance travelled when braking, however, is proportional to the velocity squared. This can be confirmed from the areas under the v–t graphs. The area under graph B is four times the area under graph A (during the deceleration). This has important implications for road safety and most countries make sure that people learning to drive must understand how stopping distances change with the vehicle’s velocity. Some countries measure the reaction times of people before they are given a driving licence.


Set up a spreadsheet that will calculate the total stopping distance for cars travelling at initial speeds, u, between 0 and 40 m s−1 with a deceleration of −6.5 m s−2. (Make calculations every 2 m s−1.) The thinking distance can be calculated from st = 0.7u (reaction time 0.7 s). In this example the braking time can be calculated from tb = u/6.5 and the braking distance can be calculated from sb =(u/2)tb. Use the data produced to plot a computer-generated graph of stopping distance (y-axis) against initial speed (x-axis).
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Equations of motion for uniform acceleration


The five quantities u, v, a, s and t are all that is needed to fully describe the motion of an object moving with uniform (constant) acceleration.





•  u = velocity (speed) at the start of time t




•  v = velocity (speed) at the end of time t




•  a = acceleration (constant)



•  s = distance travelled in time t




•  t = time taken for velocity (speed) to change from u to v and to travel a distance s






If any three of the quantities are known, the other two can be calculated using the two equations below. If we know the initial velocity u and acceleration a of an object, and the acceleration is uniform, then we can determine its final velocity v after a time t by rearranging the equation used to define acceleration. This gives:
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v = u + at
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This equation is given in the Physics data booklet.


We have also seen that the distance travelled while accelerating uniformly from a velocity u to a velocity v in a time t can be calculated from:
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This equation is given in the Physics data booklet.


These two equations can be combined mathematically to give two further equations, shown below, which are also found in the Physics data booklet. These very useful equations do not involve any further physics theory; they just express the same physics principles in a different way.
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[image: ]





[image: ]





Remember that, the four equations of motion can only be used if the acceleration is uniform during the time being considered.


The equations of motion are covered in the IB Mathematics course (and also treated in calculus form).


[image: ]






Worked example




  3 A Formula One racing car (see Figure 2.30) accelerates from rest (i.e. it was stationary to begin with) at 18 m s−2.







   a What is its speed after 3.0 s?


   b How far does it travel in this time?


   c If it continues to accelerate at the same rate, what will its velocity be after it has travelled 200 m from rest?


   d Convert the final velocity to km h−1.
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      But note that the distance can be calculated directly, without first calculating the final velocity, as follows:
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4 A train travelling at 50 m s−1 (180 km h−1) needs to decelerate uniformly so that it stops at a station 2 kilometres away.





a What is the necessary deceleration?



b How long does it take to stop the train?
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Assume that all accelerations are constant.





14 A ball rolls down a slope with a constant acceleration. When it passes a point P its velocity is 1.2 m s−1 and a short time later it passes point Q with a velocity of 2.6 m s−1.







   a What was its average velocity between P and Q?


   b If it took 1.4 s to go from P to Q, what is the distance PQ?


   c What is the acceleration of the ball?








15 A plane accelerates from rest along a runway and takes off with a velocity of 86.0 m s−1. Its acceleration during this time is 2.40 m s−2.







   a What distance along the runway does the plane travel before take-off?


   b How long after starting its acceleration does the plane take off?








16 An ocean-going oil tanker can decelerate no quicker than 0.0032 m s−2.







   a What is the minimum distance needed to stop if the ship is travelling at 10 knots? (1 knot = 0.514 m s−1)


   b How much time does this deceleration require?








17 An advertisement for a new car states that it can travel 100 m from rest in 8.2 s.







   a What is the average acceleration?


   b What is the speed of the car after this time?








18 A car travelling at a constant velocity of 21 m s−1 (faster than the speed limit of 50 km h−1) passes a stationary police car. The police car accelerates after the other car at 4.0 m s−2 for 8.0 s and then continues with the same velocity until it overtakes the other car.







   a When did the two cars have the same velocity?


   b Has the police car overtaken the other car after 10 s?


   c By equating two equations for the same distance at the same time, determine exactly when the police car overtakes the other car.








19 A car brakes suddenly and stops 2.4 s later, after travelling a distance of 38 m.







   a What was its deceleration?


   b What was the velocity of the car before braking?








20 A spacecraft travelling at 8.00 km s−1 accelerates at 2.00 × 10−3 m s−2 for 100 hours.







   a What is its final speed?


   b How far does it travel during this acceleration?








21 Combine the first two equations of motion (given on page 33) to derive the second two (v2 = u2 + 2as and [image: ]
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Nature of Science


Observations


Scientific knowledge only really developed after the importance of experimental evidence was understood.


The equations of motion (and Newton’s laws of motion) are a very important part of classical physics that all students should understand well. They were first proposed at an early stage in the historical development of physics, when experimental techniques were not as developed as they are today. However, these basic ideas about motion still remain just as important in the modern world.


Early scientists, like Galileo and Newton, were able to make careful observations and gather enough evidence to support their theories about idealized motion despite the fact that friction and air resistance always complicate the study of moving objects. This is especially impressive because some of their theories contradicted ideas that had been accepted for 2000 years.
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Acceleration due to gravity


[image: ] We are all familiar with the motion of objects falling towards Earth because of the force of gravity. Figure 2.31 shows an experiment to gather data on distances and times for a falling mass, so that a value for its acceleration can be calculated. The electronic timer starts when the electric current to the electromagnet is switched off and the steel ball starts to fall. When the ball hits the trapdoor at the bottom, a second electrical circuit is switched off and the timing stops. Alternatively, a position sensor could be used to track the fall of the ball.
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Worked example




  5 Suppose that when the mass fell 0.84 m the time was measured to be 0.42 s. Calculate its gravitational acceleration.
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Of course, obtaining an accurate and reliable result will require further measurements. The measurement could be repeated for the same height, so that averages could be calculated. But it would be better to take measurements for different heights, so that an appropriate graph can be drawn, which will provide a better way of assessing random and systematic errors.


If accurate measurements are made in a vacuum (to be sure that there is no air resistance), the results are very similar (but not identical) at all locations on the Earth’s surface. Some examples are shown in Table 2.1.


The acceleration due to gravity in a vacuum near the Earth’s surface is given the symbol g. This is also called the acceleration of free fall. The accepted value of g is 9.81 m s−2. This value should be used in calculations and is listed in the Physics data booklet. Anywhere on the Earth’s surface (or in an airplane) can be considered as ‘near to the Earth’s surface’.
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It is very important to remember that all freely moving objects close to the Earth’s surface experience this same acceleration, g, downwards. This is true whether the object is large or very small, or whether it is moving upwards, downwards, sideways or in any other direction. ‘Freely moving’ means that the effects of air resistance can be ignored and that the object is not powered in any way. In reality, however, the effects of air resistance usually cannot be ignored, except for large, dense masses moving short distances from rest. But, as is often the case in science, we need to understand simplified examples first before we move onto more complicated situations.


[image: ]






Worked example




  6 A coin falls from rest out of an open window 16 m above the ground. Assuming that there is no air resistance:







   a what is its velocity when it hits the ground?


   b how long did it take to fall that distance?
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  7 A ball is thrown vertically upwards and reaches a maximum height of 21.4 m.







   a Calculate the speed with which the ball was released.


   b What assumption did you make?


   c Where will the ball be 3.05 s after it was released?


   d What will its velocity be at this time?
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   a v2 = u2 + 2as








      When the ball has travelled a distance s = 21.4 m, its speed, v, at the highest point will be zero.


      02 = u2 + (2 × −9.81 × 21.4)


      u2 = 419.9


      u = 20.5 m s−1



      In this example, the vector quantities directed upwards (u, v, s) are considered positive and the quantity directed downwards (a) is negative. The same answer would be obtained by reversing all the signs. Using positive and negative signs to represent vectors (like displacement, velocity and acceleration) in opposite directions is common practice.







   b It was assumed that there was no air resistance.


   c [image: ]



   d v = u + at
v = 20.5 + (−9.81 × 3.05)
v = −9.42 ms−1 (moving downwards)
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In all of the following questions, ignore the possible effects of air resistance. Use g = 9.81 m s−2.





22 Suggest possible reasons why the acceleration due to gravity is not the same everywhere on the Earth’s surface.








23 a How long does it take a stone dropped from rest from a height of 2.1 m to reach the ground?







   b If the stone was thrown downwards with an initial velocity of 4.4 m s−1, with what speed would it hit the ground?


   c If the stone was thrown vertically upwards with an initial velocity of 4.4 m s−1, with what speed would it hit the ground?








24 A small rock is thrown vertically upwards with an initial velocity of 22 m s−1. When will its speed be 10 m s−1? (There are two possible answers.)



25 A falling ball has a velocity of 12.7 m s−1 as it passes a window 4.81 m above the ground. When will it hit the ground?



26 A ball is thrown vertically upwards with a speed of 18.5 m s−1 from a window that is 12.5 m above the ground.







   a When will it pass the same window moving down?


   b With what speed will it hit the ground?


   c How far above the ground was the ball after exactly 2 s?








27 Two balls are dropped from rest from the same height. If the second ball is released 0.750 s after the first, and assuming they do not hit the ground, how far apart are the two balls:







   a 3.00 s after the second ball was dropped?


   b 2.00 s later?








28 A stone is dropped from rest from a height of 34 m. Another stone is thrown downwards 0.5 s later. If they both hit the ground at the same time, what was the initial velocity of the second stone?



29 In Worked example 3 an acceleration of 18 m s−2 was quoted for a Formula One racing car. The driver of that car could be said to experience a ‘g-force’ of nearly 2g, and during the course of a typical race a driver may have to undergo g-forces of nearly 5g. Explain what you think is meant by a ‘g-force’ of 2g.



30 Stone A is dropped from rest from a cliff. After it has fallen 5 m, stone B is dropped.







   a How does the distance between the two stones change (if at all) as they fall?


   b Explain your answer.








31 a A flea accelerates at the enormous average rate of 1500 m s−2 during a vertical take-off that lasts only about 0.0012 s. What height will the flea reach?







   b Measure how high you can jump vertically (standing in the same place), and use the result to calculate your take-off velocity.


   c In order to jump up you had to bend your knees and reduce your height. Measure by how much your height was reduced just before jumping, then use the result to estimate your average acceleration during take-off.


   d What was the duration of your take-off?


   e Compare your performance with the flea’s.








32 Use the internet to learn more about the GOCE project, which ended in 2013 (Figure 2.32).
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33 Figure 2.33 shows the tallest building in the world: Burj Khalifa in Dubai.







   a How long would it take an object to reach the ground if it was dropped from 828 m (the height of Burj Khalifa)?


   b With what speed would it hit the ground?
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34 The times of fall for a ball dropped from different heights (Figure 2.31) were measured.







   a Sketch the height–time graph you would expect to get from these results.


   b By considering the equation s = ut + [image: ] what would be the best graph to draw to produce a straight best-fit line from which the acceleration due to gravity could be determined?
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Fluid resistance and terminal speed


As any object moves through air, the air is forced to move out of the path of the object. This causes a force opposing the motion called air resistance, or drag.


Similar forces will oppose the motion of an object moving in any direction through any gas or liquid. (Gases and liquids are both described as fluids because they can flow.) Such forces opposing motion are generally described as fluid resistance.


Figure 2.34 represents the motion of an object falling towards Earth. Line A shows the motion without air resistance and line B shows the motion, more realistically, with air resistance.
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When any object first starts to fall, there is no air resistance. The initial acceleration, g, is the same as if it was in a vacuum. As the object falls faster, the air resistance increases, so that the rate of increase in velocity becomes less. This is shown in the Figure 2.34 by the line B becoming less steep. Eventually the object reaches a constant, maximum speed known as the terminal speed or terminal velocity (‘terminal’ means final). The value of an object’s terminal speed will depend on its cross-sectional area, shape and weight, as discussed in Section 2.2. The terminal speed of a skydiver is usually quoted at about 200 km h−1 (56 m s−1) – Figure 2.35. Terminal speed also depends on the density of the air – in October 2012 Felix Baumgartner (Figure 2.36), an Austrian skydiver, reached a world record speed of 1358 km h−1 by starting his jump from a height of about 39 km above the Earth’s surface where there is very little air.
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[image: ] The design and motion of simple parachutes make interesting investigations, especially if they can be videoed falling near to vertical scales. The movement of an object falling vertically through a liquid (oil for example) is slower and can also be investigated in a school laboratory. It may also reach a terminal speed, and have a pattern of motion similar to that shown in Figure 2.34. Computer simulations are also useful for gaining a quick appreciation of the factors that affect terminal speeds. Air resistance is discussed in greater detail later in this chapter (page 52).
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Additional Perspectives


Galileo


It is a matter of common observation that ‘heavier objects fall to Earth quicker than lighter objects’. This is easily demonstrated by dropping, for example, a ball and a piece of paper side by side. The understandable belief that heavier objects fall faster was a fundamental principle in ‘natural philosophy’ (the name for early studies of what is now known as science) for more than 2000 years of civilization. In ancient Greece, Aristotle had closely linked the motion of falling objects to the belief that all processes have a purpose and that the Earth was the natural and rightful resting place for everything.


In the sixteenth century the Italian scientist Galileo (Figure 2.37) was among the first to suggest that the reason why various objects fall differently is only because of air resistance. He predicted that, if the experiment could be repeated in a vacuum (without air), all objects would have exactly the same pattern of downwards motion under the effects of gravity.


[image: ]


In one of the most famous stories in science, Galileo dropped different masses off a balcony on the Tower of Pisa in Italy to show to those watching on the ground below that falling objects are acted on equally by gravity. This story may or may not be true, but one of the reasons that Galileo is so respected as a great scientist is that he was one of the first to actually do experiments, rather than just think about them.


It was many years later, after the invention of the first vacuum pumps, that Isaac Newton and others were able to remove the effects of air resistance and demonstrate that a coin (a ‘guinea’) and a feather fall together.


In 1971 that famous experiment was repeated on the Moon (Figure 2.38) when astronaut David Scott dropped a hammer and feather side by side. Millions of people all over the world were watching while he reminded them of Galileo’s achievements. The strength of gravity is less on the Moon than on the Earth because the Moon is smaller. Objects accelerate towards the Moon at about ⅙ of the rate that they would on the Earth (g = 1.6 m s−2).
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  1 Galileo’s achievements were specifically mentioned when the experiment was repeated on the Moon, but do you think that there were other scientists who were equally deserving of credit for advancing understanding of motion and gravity? Give the names of two such pioneers of science and list their greatest achievements.
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Nature of Science


What is science?


The Italian scientist Galileo Galilei (1564–1642) is famous for his pioneering work on kinematics and falling objects, and it has been acknowledged that he was one of the first practical scientists (in the modern meaning of the word). But what, exactly, is science and what makes science different from other human activities?


This is not an easy question to answer in a few words, although there are certainly important characteristics that most scientific activities share:





•  Science attempts to see some underlying simplicity in the vast complexity around us.



•  Science looks for the logical patterns and rules that control events.



•  Science seeks to accumulate knowledge and, wherever possible, to build on existing knowledge to make an ever-expanding framework of understanding.





Most importantly, science is based on experimentation and evidence – that is, science relies on ‘facts’ that are, at the current time, accepted to be ‘true’. No good scientist would ever claim that something must be absolutely ‘true’ for all time – one of the leading characteristics of science is the constant independent and widespread testing of existing theories by experiment. No fact or theory can ever be proven to be true for all times and all places, so science often advances through experiments that try to disprove new theories or existing knowledge.


The question ‘what is science?’ is often answered by explaining how scientists work, the so-called ‘scientific method’, which can be summarized as follows, although any particular scientific process can show variations from this generalized pattern:





•  Choose a topic for investigation (for example, the design of golf balls – Figure 2.39).
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•  Research available information on the chosen topic (maybe use the internet to find out about the design of golf balls).



•  Ask a suitable question for investigation (for example, would a larger golf ball travel further than a smaller golf ball, if struck in the same way?).



•  Use theory to predict what you think will happen in the investigation (for example, you might think that a smaller ball has less air resistance and so will go further).



•  Design and carry out an investigation to test your prediction.



•  Process the results and evaluate their uncertainties.



•  Draw conclusions, accepting or rejecting your predictions.



•  If the conclusions are unsatisfactory, repeat them and/or redesign the investigation.



•  If the conclusions are satisfactory and can be repeated, present your findings to other people.
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35 A well-known old Chinese proverb says ‘I hear and I forget, I see and I remember, I do and I understand’. Consider your own knowledge of physics. To what extent has doing experimental work improved your understanding? Do you think doing more experimental work (and less theoretical work) would improve:







   a your interest?


   b your examination results?







    Explain your answers.
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Projectile motion


In our discussion of objects moving through the air, we have so far only considered motion vertically up or down. Now we will extend that work to cover objects moving in any direction. A projectile is an object that has been projected through the air (for example, fired, launched, thrown, kicked or hit) and which then moves only under the action of the forces of gravity (and air resistance, if significant). A projectile has no ability to power or control its own motion.


Components of a projectile’s velocity


The instantaneous velocity of any projectile at any time can conveniently be resolved into vertical and horizontal components, vV and vH, as shown in Figure 2.40.
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Because these components are perpendicular to each other, they can be treated independently (separately) in calculations.
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When there is no air resistance, all objects moving through the air in the uniform gravitational field close to the Earth’s surface will accelerate vertically downwards at 9.81 m s−2 because of the force of gravity. This is true for all masses and for all directions of motion (including moving upwards). In other words, any object that is projected at any angle will always accelerate vertically downwards at the same rate as an object dropped vertically (in the absence of air resistance).


Because of the acceleration due to gravity, the values of the vertical component and the resultant velocity of a projectile will change continuously during the motion, but it is important to realise that the horizontal component will remain the same, if the air resistance is negligible, because there are no horizontal forces acting on the projectile.
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ToK Link


Intuition


The independence of horizontal and vertical motion in projectile motion seems to be counter-intuitive. How do scientists work around their intuitions? How do scientists make use of their intuitions?


Human intuition has played a significant part in many scientific discoveries and developments, but scientists also need the imagination to propose theories that may sometimes seem contrary to ‘common sense’.


This is especially true in understanding the weird realm of quantum physics, where relying on everyday experiences for inspiration is of little or no use. But it is worth remembering that many of the well-established concepts and theories of classical physics that are taught now in schools would have seemed improbable to scientists at the time they were first proposed.
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36 At one particular moment a tennis ball is moving upwards with velocity of 28.4 m s−1 at an angle of 15.7° to the horizontal. Calculate the vertical and horizontal components of this velocity.



37 An aircraft is descending with a constant velocity of 480 km h−1 at an angle of 2.0° to the horizontal.







   a What is the vertical component of the plane’s velocity?


   b How long will it take to descend by 500 m on this flight path? (Give the answer to the nearest minute.)








38 A stone is projected upwards at an angle of 22° to the vertical. At that moment it has a vertical component of velocity of 38 m s−1.







   a What is the horizontal component of velocity at this time?


   b After another second will:







    i the horizontal component


    ii the vertical component


    be greater, smaller or the same as before? (Ignore the effects of air resistance.)
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Parabolic trajectory


Figure 2.41 shows a stroboscopic photograph of a bouncing ball. In a stroboscopic photograph the time intervals between the different positions of the ball are always the same.
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The typical trajectory of a projectile is parabolic (shaped like a parabola or part of a parabola) when air resistance is negligible. For example, Figure 2.42 shows the trajectory of an object projected horizontally compared with that of an object dropped vertically at the same time. Note that both objects fall the same vertical distance in the same time.
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[image: ] The distance travelled and time of flight of various projectiles have always made popular and interesting physics investigations. Video recording and analysis make this much easier and more accurate. Many computer simulations are also available that enable students to quickly compare trajectories under different conditions.
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Utilizations


Ballistics


The study of the use of projectiles is known as ballistics. Because of its close links to hunting and fighting, this is an area of science with a long history, going all the way back to spears, and bows and arrows. Figure 2.43 shows a common medieval misconception about the motion of cannon balls: they were thought to travel straight until they ran out of energy.
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Photographs taken in quick succession became useful in analysing many types of motion in the nineteenth century, but the trajectories of very rapid motion (like projectiles) was difficult to understand until they could be filmed, or illuminated by lights flashing very quickly (stroboscopes). The photograph of the bullet from a gun shown in Figure 2.44 required high-technology, such as a very high-speed flash and very sensitive image recorders, in order to ‘freeze’ the projectile (bullet) in its rapid motion (more than 500 m s−1).
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Use the internet to find out about the work of Eadweard Muybridge.
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Effects of air resistance


In practice, ignoring the effects of air resistance can be unrealistic, especially for smaller and/or faster-moving objects. So it is important to understand, in general terms, how air resistance affects the motion of projectiles.


Air resistance (drag) provides a force that opposes motion. Without air resistance we assume that the horizontal component of a projectile’s velocity is constant, but with air resistance it decreases. Without air resistance the vertical motion always has a downwards acceleration of 9.81 m s−2, but with air resistance the acceleration will be reduced for falling objects and the deceleration increased for objects moving upwards.


Figure 2.45 shows typical trajectories with and without air resistance (for the same initial velocity). Note that with air resistance the path is no longer parabolic or symmetrical.
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Calculations on projectile motion


If the velocity (speed and direction) of any projectile moving through the air is known at any moment, then the equations of motion can be used to determine the object’s velocity at any time during its trajectory. To carry out any of these calculations, we must assume that there is no air resistance and that the downwards acceleration due to gravity is always 9.81 m s−2.


The transfer of gravitational potential energy (mgh) to kinetic energy ([image: ]) can sometimes provide an alternative solution to a problem – by equating these two energies we see that for a mass falling from rest through a vertical height close to the Earth’s surface:
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Objects projected horizontally
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Worked example





8 A bullet is fired horizontally with a speed of 524 m s−1 from a height of 22.0 m above the ground. Calculate where it will hit the ground.
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First we need to calculate how long the bullet is in the air. We can do this by finding the time that the same bullet would have taken to fall to the ground if it had been dropped vertically from rest (so u = 0):
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Without air resistance the bullet will continue to travel with the same horizontal component of velocity (524 m s−1) until it hits the ground 2.12 s later. Therefore:
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39 Make a copy of Figure 2.45 and add to it the trajectories of an object projected in the same direction with:







   a lower initial velocity


   b higher initial velocity.








40 a Use a spreadsheet to calculate the vertical and horizontal displacements (every 0.2 s) of a stone thrown horizontally off a cliff (from a height of 48 m) with an initial velocity of 25 m s−1. Continue calculations until it hits the ground.







   b Plot a graph of the stone’s trajectory.








41 A rifle is aimed horizontally and directly at the centre of a target that is 52.0 m away.







   a If the bullet had an initial velocity of 312 m s−1, how long would it take to reach the target?


   b How far below the centre would the bullet hit the target?
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Objects projected at other angles


The physics is the same for all projectiles at all angles: trajectories are still parabolic and the vertical and horizontal components remain independent of each other. But the mathematics is more complicated if the initial motion is not vertical or horizontal.


The most common problems involve finding the maximum height and the maximum horizontal distance (range) of the projectile.


If we know the velocity and position of a projectile, we can always use its vertical component of velocity to determine:





•  the time taken before it reaches its maximum height, and the time before it hits the ground



•  the maximum height reached (assuming its velocity has an upwards component).





The horizontal component can then be used to determine the range.


If the velocity at any time is needed, for example when the projectile hits the ground, then the vertical and horizontal components have to be combined to determine the resultant in magnitude and direction.
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Worked example




  9 A stone was thrown upwards from a height 1.60 m above the ground with a speed of 18.0 m s−1 at an angle of 52.0° to the horizontal. Assuming that air resistance is negligible, calculate:







   a its maximum height


   b the vertical component of velocity when it hits the ground


   c the time taken to reach the ground


   d the horizontal distance to the point where it hits the ground


   e the velocity of impact.
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   First we need to know the two components of the initial velocity:
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   a Using v2 = u2 + 2as for the upwards vertical motion (with directions upwards considered to be positive), and remembering that at the maximum height v = 0, we get:
0 = 14.22 + [2 × (−9.81) × s]
s = +10.3 m above the point from which it was released; a total height of 11.9 m.
(Using ½v2 = gh is an alternative way of performing the same calculation.)


   b Using v2 = u2 + 2as for the complete motion gives:
v2 = 14.22 + [2 × (−9.81) × (−1.60)]
v = 15.3 m s−1 downwards







   c Using v = u + at gives:
−15.3 = 14.2 + (−9.81)t
t = 3.0 s







   d Using s = vt with the horizontal component of velocity gives:
s = 11.1 × 3.0 = 33.3 m







   e Figure 2.46 illustrates the information we have determined so far and the unknown angle and velocity.
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       From looking at the diagram, we can use Pythagoras’s theorem to calculate the velocity of impact:
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(velocity of impact)2 = (horizontal component)2 + (vertical component)2
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The angle of impact with the horizontal, θ, can be found using trigonometry:
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42 Repeat Worked example 9 for a stone thrown with a velocity of 26 m s−1 at an angle of 38° to the horizontal from a cliff top. The point of release was 33 m vertically above the sea.



43 The maximum theoretical range of a projectile occurs when it is projected at an angle of 45° to the ground (once again, ignoring the effects of air resistance). Calculate the maximum distance a golf ball will travel before hitting the ground if its initial velocity is 72 m s−1. (Because you need to assume that there is no air resistance, your answer should be much higher than the actual ranges achieved by top-class golfers.)



44 A jet of water from a hose is aimed directly at the base of a flower, as shown in Figure 2.47. The water emerges from the hose with a speed of 3.8 m s−1.
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   a Calculate the angle, θ, and the vertical and horizontal components of the initial velocity of the water.


   b How far away from the base of the plant does the water hit the ground?








45 A ball rolls down the slope shown in Figure 2.48 and is then projected horizontally off the table top at point P.
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   a Show that the maximum range of the ball is given by [image: ]. (Ignore any effects due to the spinning of the ball.)


   b What assumption(s) did you make?


   c Explain why your answer to a did not depend on the mass of the ball.








46 If the maximum distance a man can throw a ball is 78 m, what is the minimum speed of release of the ball? (Assume that the ball lands at the same height from which it was thrown and that the greatest range for a given speed is when the angle is 45°.)
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Utilizations


Projectiles in sport


Many sports and games involve some kind of object (often a ball) being thrown, kicked or hit through the air. Obvious examples are basketball (see Figure 2.49), tennis, football, badminton, archery, cricket and golf. The skill of the players is to make the ball, or other object, move with the right speed and trajectory, and often to also be able to judge correctly the trajectory of an object moving towards them.


[image: ]


The mass, shape, diameter and the nature of the surface of a ball will all affect the way in which it moves through the air after it has been ‘projected’. Although in most sports it can be assumed that the ball will follow an approximately parabolic path through the air, if the ball always had a perfectly parabolic trajectory then the game would be predictable and less skilful. The effect of the air moving over the surface of the ball plays an important part in many sports and good players can use this to their advantage by putting spin on the ball. There is a difference in air pressure on opposite sides of a spinning ball, producing a force that affects the direction of motion.


Part of the fun of playing or watching sports is to see a ball being struck or thrown with such skill that it travels with great accuracy and speed, or goes a long distance. It is interesting to consider how the design of the balls in different sports has evolved.


Badminton is an unusual sport because the design of the shuttlecock deliberately produces non-parabolic trajectories (see Figure 2.50). A shuttlecock has a small mass for its cross-sectional area, which means that it can travel very fast when it is first hit; after that, air resistance has a significant effect, considerably reducing its range. Most of a shuttlecock’s mass is concentrated in the ‘cork’ at the opposite end from the feathers, so that it always moves in flight such that the cork leads the motion.
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  1 In which sport can the struck ball travel the longest distance? Find out if there are any regulations in that game that try to limit how far the ball can travel.


  2 If the balls from a variety of different sports were all dropped from the same height onto the same hard surface, which one would bounce up to the greatest height? Discuss possible reasons why that ball loses the smallest fraction of its energy when colliding with the surface and why that is important for the sport in which it is used.


  3 Research an explanation of how spin can cause a ball to change direction.
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2.2 Forces


classical physics requires a force to change a state of motion, as suggested by Newton in his laws of motion


At its simplest, a force is a push or a pull. A force acting on an object (a body) can make it start to move (Figure 2.51) or change its motion if it is already moving. In other words, a force can change the velocity of an object; accelerations are caused by forces.
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Forces can also change the shape of an object. That is, a force can make an object become deformed in some way. For example, when we sit on a soft chair the deformation is easy to see. When we sit on a hard chair, or stand on the floor, there is still a deformation but it is usually too small to see.


Clearly, the effect of a force will depend on the direction in which it acts. Force is a vector quantity. Like all vectors, a force can be represented by drawing a line of the correct length in the correct direction (shown with an arrow), to or from the correct point of application. The vector arrow should be clearly labelled with an accepted name or symbol. The length should be proportional to the magnitude of the force. For example, in Figure 2.52 vector arrows represent the different weights of two people.
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When discussing the forces acting on an object, we may alternatively talk about applying a force to an object, or exerting a force on an object.


The symbol F is used for force and the SI unit of force is the newton, N. One newton is defined as the (resultant) force that makes a mass of 1 kg accelerate by 1 m s−2.



Objects as point particles


When a force is applied to an object in simple situations, the shape and size of the object are often not of much importance, and adding details to any drawing can lead to confusion. We might, for example, wonder if an extended object shown in a drawing will tip or rotate when acted on by forces. See Figure 2.61 for an example. For this reason, and for simplicity, objects are often represented as points – point particles.


Different types of force


Apart from obvious everyday pushes and pulls, we are surrounded by a number of different types of force. In the following section we will introduce and briefly discuss these types of force:





•  weight



•  tension and compression



•  reaction forces



•  friction and air resistance



•  upthrust



•  other non-contact forces (like weight)





Weight


The weight, W, of a mass is the gravitational force that pulls it towards the centre of the Earth. Weight is related to mass by the following equation:
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W = mg
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In this equation, W is the weight in newtons, m is the mass of the object in kilograms and g is the acceleration due to gravity in metres per second squared (m s−2). The larger the mass of the object, the bigger its weight. (The symbol W is more commonly used for work.)


An alternative interpretation of g is as the ratio of weight to mass, g = W/m. Expressed in this way, it is known as the gravitational field strength with the unit of newtons per kilogram, N kg−1 (1 N kg−1 = 1 m s−2). A certain mass would weigh less on the Moon because the Moon has a smaller gravitational field strength than the Earth.


The value of g on, or close to, the Earth’s surface is assumed to be 9.81 m s−2, although it does vary as we saw in Table 2.1. For quick approximations a value of g = 10 m s−2 is often used – which is only a 2% difference. The value of g decreases as the distance from the centre of the Earth increases. For example, at a height of 300 km above the Earth’s surface the value of g has decreased slightly to 9.67 m s−2. This means that objects at that height, such as a satellite or astronauts in orbit around the Earth, are not weightless (as is often believed), but weigh only a little less than on the Earth’s surface.


If we want to represent the weight of an object in a diagram, we use a vector arrow of an appropriate length drawn vertically downwards from the centre of mass of the object, as shown in Figure 2.52. The centre of mass of an object can be considered as the ‘average’ position of all of its mass. For symmetrical and uniform objects the centre of mass is at the geometrical centre.


The mass of an object stays the same wherever it is in the universe, but the gravitational force on an object (its weight) varies depending on its location. For example, the acceleration due to gravity (gravitational field strength) on the Moon is 1.6 m s−2 and on Mars it is 3.7 m s−2. The acceleration due to gravity is different on the Moon and Mars because they have different masses and sizes compared with the Earth. In deep space, a very long way from any star or planet, any object would be (almost) weightless.


Unfortunately, in everyday conversation the word ‘weighing’ is used for finding the mass of an object, in kg for example (not the weight in N), and the question ‘what does that weigh?’ would also usually be answered in kilograms, not newtons. This is a common confusion that every student and teacher of physics has to face.
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Worked example





10 An astronaut has a mass of 62.2 kg. What would her weight be in the following locations?







   a on the Earth’s surface


   b in a satellite 300 km above the Earth


   c on the Moon


   d on Mars


   e a very, very long way from any planet or star
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   a W = mg = 62.2 × 9.81 = 610 N


   b W = 62.2 × 9.67 = 601 N


   c W = 62.2 × 1.6 = 100 N


   d W = 62.2 × 3.7 = 230 N


   e zero
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47 Calculate the weight of the following objects on the surface of the Earth:







   a a car of mass 1250 kg


   b a newborn baby of mass 3240 g


   c one pin in a pile of 500 pins that has a total mass of 124 g.








48 A girl has a mass of 45.9 kg. Use the data given in Table 2.1 to calculate the difference in her weight between Bangkok and London.



49 a It is said that ‘an A380 plane has a maximum take-off weight of 570 tonnes’ (Figure 2.53). A tonne is the same as a mass of 1000 kg. What is the maximum weight of the plane (in newtons) during take-off?







   b The plane can carry a maximum of about 850 passengers. Estimate the total mass of all the passengers and crew. What percentage is this of the total mass of the plane on take-off?


   c The maximum landing weight is ‘390 tonnes’. Suggest a reason why the plane needs to be less massive when landing than when taking off.


   d Calculate the difference in mass and explain where the ‘missing’ mass has gone.
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50 The weight of an object decreases very slightly as its distance above the Earth’s surface increases. Suggest why the weight of an object might not increase if it was taken down a mine shaft and closer to the centre of the Earth.



51 A mass of 50 kg would have a weight of 445 N on the planet Venus. What is the strength of the gravitational field there? Compare it with the value of g on Earth.



52 Consider two solid spheres made of the same metal. Sphere A has twice the radius of sphere B. Calculate the ratio of the two spheres’ circumferences, surface areas, volumes, masses and weights.
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Utilizations


Force meters and weighing


Forces are most easily measured by the changes in length they produce when they squash or stretch a spring (or something similar). Such instruments are called force meters (also called newton meters or spring balances) – see Figure 2.54. In this type of instrument the spring usually has a change of length proportional to the applied force. The length of the spring is shown on a linear scale, which can be calibrated (marked) in newtons. The spring goes back to its original shape after it has measured the force.
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Such instruments can be used for measuring forces acting in any direction, but they are also widely used for the measurement of weight. The other common way of measuring weight is with some kind of ‘balance’ (scales). In an equal-arm balance, as shown in Figure 2.55, the beam will only balance if the two weights are equal. That is, the unknown weight equals the known weight.
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In this type of balance, the pivot could be moved closer to the unknown weight if it is much heavier than the known weight(s). The balance then has to be calibrated using the principle of moments. This principle is not part of the course, but it may be familiar to students from earlier work.


Either of these methods can be used to determine an unknown weight (N) and they rely on the force of gravity to do this, but such instruments are much more commonly calibrated to indicate mass (kg or g) rather than weight. This is because we are usually more concerned with the quantity of something, rather than the effects of gravity on it. We usually assume that mass (kg) = weight (N)/9.81 anywhere on Earth because any variations in the acceleration due to gravity, g, are insignificant for most, but not all, purposes.




  1 If you were buying something small and expensive, like gold or diamonds (Figure 2.56), should the amount you are buying be measured as a mass or a weight? Explain your answer.
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Tension and compression


When an object is stretched by equal and opposite forces pulling it outwards, we describe it as being under tension (Figure 2.57a). Stretched strings or rubber bands are familiar examples of objects under tension, but tensile forces are also very common in more rigid objects, such as the horizontal tie in a stool or chair, where its purpose is to stop the legs from moving outwards.
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When an object is squashed by equal and opposite forces pushing it inwards, we describe it as being under compression (Figure 2.57b).


All structures have parts that are under tension and parts under compression. The stone pillars at Stonehenge, in the UK (Figure 2.58) are strong under the compression caused by their own weight and the weight of the slabs resting on top.
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[image: ] The horizontal slabs on the top of stonehenge bend very slightly, so that the top surface is compressed, while the lower surface is under tension and this can result in destructive cracks spreading upwards. Similar principles apply to the construction of all modern buildings, bridges etc. As an example consider Figure 2.59, which shows a sketch of a suspension bridge, along with the parts that are under tension (T) and the parts under compression (C). Construction of model bridges of various designs, followed by observation of the testing of their strengths by adding increasing loads is a popular educational exercise for physics students.
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Reaction forces


If two objects are touching (in contact with) each other, then each must exert a force on the other. For example, if you push on a wall, then the wall must also push back on you; when you stand on the floor your weight presses down but the floor must also push up on you to support your weight. If this was not true you would fall through the floor or the wall.


In Figure 2.60 the boy’s weight is pushing down on the ground and his hand is also pushing the wall. The force of the wall on the boy’s hand and the force of the ground on his feet are examples of contact forces (also called reaction forces). These forces are always perpendicular to the surface and that is why they are often called normal reaction forces (the word ‘normal’ used in this way means perpendicular).
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Solid friction


When objects are moving (or trying to move) and they are in contact with other surfaces, forces between the surfaces act in such a way as to oppose (try to stop) the motion. This type of force is called friction.


There are many ways of trying to reduce the effects of friction in an attempt to make movement easier, but friction can never be completely overcome. Friction between two objects acts parallel to the surfaces of both, in the opposite direction from the motion (or intended motion). This is shown in Figure 2.61, in which a block is being accelerated by being pulled by a rope along the floor.
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But without friction, movement would be very difficult. Consider how you walk across a room (Figure 2.62) – in order to take a step, the foot pushes backwards on the ground and, because of friction, the ground pushes forward on the foot. Without friction, walking and most methods of transportation would be impossible.
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Friction is discussed in more detail later in this chapter.


Air resistance


Air resistance (sometimes called drag) is also a force that opposes motion. An object moving through air has to knock the air out of the way, and this produces a force in the opposite direction to motion.


The study of the factors affecting air resistance is of great importance when discussing falling objects, parachutes and all modes of transport (especially for vehicles moving fast) and it has many interesting sporting applications.


The amount of air resistance depends on the cross-sectional area of the moving object, but also on the way in which the air flows past the surfaces. Altering the shape of an object and the nature of its surfaces can have a considerable effect on the air resistance it experiences. Changing the shape and/or surface of an object, particularly at the front, in order to reduce air resistance is called streamlining.


Most importantly, the faster an object moves the higher the air resistance opposing its motion becomes. Typically, for a given object, it is often assumed that air resistance is proportional to the speed squared. This means that air resistance becomes much more important for objects moving very quickly. The air resistance opposing a 100 m sprinter moving at 10 m s−1 could be 400 times bigger than on a casual walker moving at 0.5 m s−1. The retarding effects of air resistance on a car driving a few blocks to the local shops at an average speed of 30 km h−1 would be much less than the same car driving at 110 km h−1 along a motorway (about 13 times greater).


Similar ideas apply to the drag effects when an object, person or animal moves through (or on) water (fluid resistance). For example, the amount of resistance experienced by a swimmer can be reduced by about 5% by wearing drag-reducing swimsuits, as shown in Figure 2.63. Of course it is very important that the suit does not affect the swimmer’s movement in any way and that the extra weight of the swimsuit is insignificant.


[image: ]


Figure 2.64 shows one of the magnetic levitation (‘maglev’) trains that run between Shanghai and its main airport, which is about 30 km away. Magnetic forces lift the train above the surface of the track to eliminate friction, and the streamlined shape of the train is designed to reduce air resistance. The train completes the journey in about 7 minutes and reaches a top speed of about 430 km h−1, although in test runs it exceeded 500 km h−1.


[image: ]


The effect of air resistance on different objects is often tested in ‘wind tunnels’ (Figure 2.65). Instead of the object moving through stationary air, it is kept still while fast moving air is blown against it.
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Utilizations


Air travel


Aircraft use a lot of fuel moving passengers and goods from place to place quickly, but we are all becoming more aware of the effects of planes on global warming and air pollution. Some people think that governments should put higher taxes on the use of planes to discourage people from using them too much. Improving railway systems, especially by operating trains at higher speeds, will also attract some passengers away from air travel. Of course, engineers try to make planes more efficient so that they use less fuel, but the laws of physics cannot be broken and jet engines, like all other heat engines, cannot be made much more efficient than they are already.


Planes will use a lower fuel if there is a lower air resistance acting on them. This can be achieved by designing planes with streamlined shapes, and also by flying at greater heights where the air is less dense. Flying more slowly (than their maximum speed) can also reduce the amount of fuel used for a particular trip, as it does with cars, but people generally want to spend as little time travelling as possible.


The pressure of the air outside an aircraft at its typical cruising height is far too low for the comfort and health of the passengers and crew, so the air pressure has to be increased inside the plane, but this is still much lower than the air pressure near the Earth’s surface. The difference in air pressure between the inside and outside of the plane would cause problems if the plane had not been designed to withstand the extra forces.


Planes generally carry a large mass of fuel, and the weight of a plane decreases during a journey as the fuel is used up. The upwards force supporting the weight of a plane in flight comes from the air that it is flying through and will vary with the speed of the plane and the density of the air. When the plane is lighter towards the end of its journey it can travel higher, where it will experience less air resistance.




  1 a Find out how much fuel is used on a long-haul flight of, say, 12 hours.







   b Compare your answer with the capacity of the fuel tank on an average sized car.


   c On a short-haul flight as much of 50% of a plane’s fuel might be used for taxiing, taking off, climbing and landing, but on longer flights this can reduce to under 15%. Explain the difference.







  2 Do you agree that the use of planes should be discouraged in some way? Does the rest of your group agree with you? Does the government have the right or obligation to try to change people’s behaviour by the use of taxes? (Taxes on alcohol and cigarettes are similar examples.)
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Upthrust


Upthrust is a force exerted vertically upwards on any object that is in a fluid (gas or liquid). This force arises because the pressure of the fluid on the object is greater at its bottom than at its top. Upthrust acts in the opposite direction to weight and its effect is to reduce the apparent weight of the object.


The upthrust from water is a familiar experience for swimmers and divers and is the same force that keeps a boat afloat. The weight of a floating object, or an object buoyant under water, is equal and opposite to the upthrust (see Figure 2.66). Upthrust forces also exist on objects in air, but they are less significant and are only normally noticeable on very light objects like balloons.
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Non-contact forces


Of all the forces discussed above, gravitational force (weight) is different from the others because it acts across space and there does not need to be any contact (between an object and the Earth). Magnetic forces and electric forces behave in a similar way, and non-contact nuclear forces also exist within atoms. Understanding these fundamental forces plays a very important part in physics. These forces are all covered in more detail in later chapters of this book.


In order to fully explain all the contact forces mentioned earlier in this chapter, it would be necessary to consider the electromagnetic forces acting between particles in the different objects/substances.



Free-body diagrams


When objects come into contact with each other they exert forces on each other. This means that even the simplest force diagrams can get confusing if all the forces are included. To avoid this confusion, we often draw only one object and show only the forces acting on that one object. Forces that act from the body onto something else are not included.


Drawings that show only one object and the forces acting on it are called free-body diagrams. Some simple examples are shown in Figure 2.67.
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53 Figure 2.68 shows two unequal masses connected by string over a frictionless pulley. Draw free-body diagrams to show the forces acting on both masses.





[image: ]





54 Figure 2.69 represents a hot air balloon. The two ropes are stopping it from moving vertically away from the ground. Draw a free-body diagram for all the forces acting on the basket.
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Resultant forces and component forces



Resultants


There is usually more than one force acting on an object. In order to determine the overall effect of two or more forces on an object, we must add up the forces, taking their directions into consideration. This gives the resultant (overall, net) force acting on the object.


Determining the sums and differences of vectors, such as forces, was covered in Chapter 1. It might be helpful to review that section before continuing.
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55 Three separate forces of 1 N, 2 N and 3 N act on an object at the same time. If the forces are parallel to each other what are the possible values for the magnitude of the resultant force?



56 Use a scale drawing to determine the resultant of two forces of 8.5 N and 12.0 N acting at an angle of 120° to each other.



57 Calculate the resultant of forces of 7.7 N and 4.9 N acting perpendicularly to each other.



58 The resultant of two forces is 74 N to the west. If one force was 18 N to the south, what was the size and direction of the other force?



59 A 32 kg box is being pushed across a horizontal floor with a horizontal force of 276 N. The frictional force is equal to 76% of its weight.







   a Draw a free-body diagram for the box.


   b What is the resultant force on the box?
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Components


Two or more forces can be combined to give a resultant, but the ‘opposite’ process is just as important.


A single force can be considered as equivalent to two separate forces, which are usually chosen to be at right angles to each other (F cos θ and F sin θ). This is called resolving a force into two components (Chapter 1).


Resolving forces into components is usually done when a single force is not acting in the direction of motion. As an example, consider the swinging pendulum shown in Figure 2.70. The single force of the weight, mg, can be resolved into a force, FA, acting in the instantaneous direction of motion and a force, FB, that is at right angles to FA acting along the line of the string and equal and opposite to the tension in the string.
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60 The mass of the pendulum shown in Figure 2.70 is 382 g and the angle θ is 27.4°.







   a What is the tension in the string?


   b What is the force acting in the direction of motion?








61 The mass shown in Figure 2.71 is stationary on the slope (inclined plane).





[image: ]




   a Draw a free-body diagram showing the forces acting on the mass.


   b Resolve the weight of the mass into two components that are parallel and perpendicular to the slope.








62 A resultant forward force of 8.42 × 104 N acting on a train of mass 3.90 × 105 kg accelerates it a rate of 0.216 m s−2 when it is travelling on a horizontal track.







   a If the train starts to climb a slope of angle 1.00° to the horizontal, calculate the component of weight acting down the slope.


   b What is the new resultant force acting on the train?


   c Predict a possible acceleration of the train as it starts to climb the slope.


   d Suggest why it is more difficult for trains to travel up steeper slopes than for cars.
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Translational equilibrium
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An object that has no resultant force acting on it is said to be in translational equilibrium.
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The word ‘translational’ refers to movement from place to place. Being ‘in equilibrium’ means that the forces acting on an object are ‘balanced’, so that they have no overall effect and the object will therefore continue to move in exactly the same way (or remain stationary).


It should be noted that it is possible for parallel, equal and opposite forces to act on an object along different lines and thereby cause it to rotate, as shown in Figure 2.72. The object will start to rotate under the turning effect of the two forces, but there will be no translational movement. It is not in rotational equilibrium.
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Newton’s first law of motion


Newton’s first law of motion summarizes the conditions necessary for translational equilibrium:
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Newton’s first law of motion states that an object will remain at rest, or continue to move in a straight line at a constant speed, unless a resultant force acts on it.
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In other words, if there is a resultant force acting on an object, it will accelerate.


Examples of Newton’s first law


It is not possible to have an object on Earth with no forces acting on it because gravity affects all masses. Therefore any object that is in equilibrium must have at least two forces acting on it, and quite possibly many more. All moving objects, or objects tending to move, will also have frictional forces acting on them. If an object is in translational equilibrium, then the forces acting on it (in any straight line) are balanced, so that the resultant force is zero. Consider the following examples.





•  Objects at rest with no sideways forces – The box shown in Figure 2.67a is in equilibrium because its weight is equal to the normal reaction force pushing up on it.



•  Horizontal motion at constant velocity – Consider Figure 2.67d, which also shows an object in translational equilibrium because the forces are balanced. It may be stationary or moving to the right with a constant velocity (we cannot tell from this diagram).



•  Vertical motion of falling objects – Figure 2.73 shows a falling ball. In a the ball is just starting to move and there is no air resistance. In b the ball has accelerated and has some air resistance acting against its motion, but there is still a resultant force and acceleration downwards. In c the speed of the falling ball has increased to the point where the increasing air resistance has become equal and opposite to the weight. There is then no resultant force and the ball is in translational equilibrium, falling with a constant velocity called its terminal velocity or terminal speed.
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•  Horizontal acceleration – Figure 2.74 shows the forces acting on a bicycle and rider. Because the force from the road is bigger than air resistance the cyclist will accelerate to the right. As the bicycle and rider move faster and faster, they will meet more and more air resistance. Eventually the air resistance becomes equal to the forward force (but opposite in direction) and a top speed is reached. This is similar to the ideas used to explain the terminal speed of a falling object and the same principles apply to the motion of all vehicles.
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We know that any object that is stationary for some time, like a book placed on a table, is in equilibrium, and an object moving with constant velocity is also in equilibrium. But it is important to realise that a moving object that is only at rest for a moment is not in equilibrium. For example, a stone thrown vertically in the air comes to rest for a moment at its highest point, but the resultant force on it is not zero and it is not in equilibrium. Similarly, at the instant that a race is started a sprinter is stationary, but that is the time of highest resultant force and acceleration.


Three forces in equilibrium


If two forces are acting on a mass such that it is not in equilibrium, then to produce equilibrium a third force can be added that is equal in magnitude to the resultant of the other two, but in the opposite direction. All three forces must act through the same point. For example, Figure 2.75 shows a free-body diagram of a ball on the end of a piece of string kept in equilibrium by a sideways pull that is equal in magnitude to the resultant of the weight and the tension in the string.


[image: ]


[image: ]The equilibrium of three forces can be investigated simply by connecting three force meters together with string just above a horizontal surface, as shown in Figure 2.76. The three forces and the angles between them can be measured for a wide variety of different values, each of which maintains the system stationary.
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63 Draw fully labelled free-body diagrams for:







   a a car moving horizontally at constant velocity


   b an aircraft moving horizontally with a constant velocity


   c a boat decelerating after the engine has been switched off


   d a car accelerating up a hill.








64 Figure 2.77 shows the path of an object thrown through the air without air resistance. Make a copy of the diagram and add to it vector arrows to represent the forces acting on the object in each position.
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65 A heavy suitcase resting on the ground has a mass of 30.6 kg.







   a Draw a labelled free-body diagram to show the forces acting on the suitcase.


   b Re-draw the sketch to show all the forces acting if someone tries to lift up the case with a vertical force of 150 N.








66 Stand on some bathroom scales with a heavy book in your hand. Quickly move the book upwards while watching the reading on the scales. Repeat, but this time move the book quickly downwards. Explain your observations.








67 a If you are in an elevator (lift) with your eyes closed, is it possible to tell if you are stationary, or moving up or moving down? Explain.







   b A person in an elevator (lift) experiences two forces: their weight downwards and the normal reaction force up from the floor. Sketch a free-body diagram to show the forces acting on a person in an elevator if:







        i they are moving at a constant velocity


        ii they are starting to move downwards


        iii they are starting to move upwards


        iv the elevator decelerates after it has been moving downwards


        v the elevator decelerates after it has been moving upwards.








68 A skydiver is falling with a terminal velocity of about 200 km h−1 when he opens his parachute.







   a Draw free-body diagrams showing the forces acting on the skydiver:







        i at the moment that the parachute opens


        ii just before the skydiver reaches the ground.







   b Sketch a fully labelled graph showing how the velocity of the skydiver changed from the moment he left the plane to the time he landed on the ground.








69 Refer back to Figure 2.71, which shows a box resting on a slope. It can only stay stationary because of the frictional force opposing its movement down the slope. What is the magnitude of the frictional force?



70 Figure 2.78 shows a climber using a rope to get up a mountain. Draw a free-body diagram to represent the forces acting on the climber.





[image: ]


[image: ]





71 Figure 2.79 represents two raindrops falling side by side with the same instantaneous velocity. The forces acting on drop A are shown and it has a radius r.







   a Copy the diagram and show the forces acting on drop B, which has radius 2r.


   b Describe the immediate motion of the two drops and explain the difference.
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Nature of Science


Aristotle and natural philosophy


Isaac Newton is widely quoted as writing modestly about his achievements: ‘I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.’


Newton’s apparent humility is also reflected in the following quotation: ‘…if I have seen a little further it is by standing on the shoulders of giants.’ Although this is not an entirely original quotation, it is believed that Newton was giving credit to those scientists and philosophers who had preceded him. Among these was Aristotle.


Aristotle (384–322 BC) was a Greek philosopher and one of the most respected founding figures in the development of human thinking and philosophy. His work covered a very wide range of subjects, including his interpretation of the natural world and the beginnings of what we now call science, although it was called ‘natural philosophy’ and had a very different approach from modern scientific methods.


Although the ‘science’ of the time did not involve careful observation, measurements, mathematics or experiments (remember, this was more than 2300 years ago), Aristotle did appreciate the need for universal (all-embracing) explanations of natural events in the world around him.


He believed that everything in the world was made of a combination of the four elements he called earth, fire, air and water. The Earth was the centre of everything and each of the four earthly elements had its natural place. When something was not in its natural place, then it would tend to return – in this way he explained why rain falls and why flames and bubbles rise, for example.


With our greatly improved knowledge in the modern world it can be easy to dismiss Aristotle’s work and point out the inconsistencies. But his basic ideas on motion, for example, were so simple and powerful that they were widely believed for more than 1500 years, until the age of Galileo and Newton.
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Solid friction


As discussed earlier, friction is a force that will try to stop any solid surface moving over another solid with which it is in contact. The origins of friction can be various and complicated but, in general terms, the magnitude of frictional forces will depend on:





•  the nature of the two materials



•  the ‘roughness’ of the surfaces of the two materials (roughness is not easily defined and although rougher surfaces often create more friction, it would be wrong to assume that rougher surfaces always increase frictional forces)



•  the forces acting normally between the surfaces (pushing them together).





To reduce the friction between two given surfaces, something should be placed between them. This could be water, oil, air, graphite, small rollers or balls. Fluids used in this way are called lubricants.


[image: ] The forces of friction can be investigated using simple apparatus such as that in Figure 2.81, which shows a wooden block being pulled on a horizontal table. The horizontal pulling force is increased until the block just starts to move.
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Applying Newton’s first law, if the block is not moving then it must be in translational equilibrium, so that there is no resultant force and the frictional force must be equal and opposite to any pulling force, as indicated by the force meter. If the block is pulled with a bigger force but it still does not move then the frictional force must also have increased, remaining equal and opposite to the pulling force. But the frictional force will have an upper limit, and if the force is continually increased, at some time it will become greater than the maximum possible value of the frictional force. Then there will be a resultant force on the block and it will accelerate (see Figure 2.82).
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Usually the frictional force during motion (dynamic friction) is less than the maximum frictional force before movement has started (static friction). The force of dynamic friction can be considered to be approximately the same for all speeds. That is, for any given two surfaces, the force of dynamic friction has an approximately constant value, whereas the force of static friction can vary from zero up to a limiting value.


Figure 2.83 shows typical results showing how the maximum value of the static frictional force varies as the total weight pressing down is changed by loading masses on top of the block. Note that the total weight is equal to the normal reaction force between the surfaces, R.
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If the experiment shown in Figure 2.81 is repeated with the same block, but with surface B resting on the table, the measurements of frictional forces will be (approximately) the same. Even though the area of A may be half that of B, the pressure under the block will be doubled (p = F/A – see Chapter 3), pushing the surfaces closer together. In this simplified analysis, maximum values of frictional force depend only on the nature of the two surfaces and the normal reaction force between them, and not on the area involved.


Looking at Figure 2.83, we can see that maximum static frictional force, Fmax, is proportional to normal reaction force, R, so that:


[image: ]


where μ is a constant for friction between these two materials, which can be determined from the gradient of the graph.


It is usual to quote two different values – for static friction μs and for dynamic friction μd. These constants are known as the coefficients of friction. (The term ‘coefficient’ simply means a constant used to multiply a variable, in this case a force.) Since these coefficients/constants are ratios of forces, they have no units.


Table 2.2 gives some examples of the coefficients of static friction. Values are quoted for two clean, dry, flat, smooth surfaces. Although such simplified situations are a very useful starting point in any analysis, it should be understood that in realistic situations frictional forces are often complex and unpredictable.
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The following two equations for frictional forces can be found in the Physics data booklet.
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Alternatively the maximum possible frictional forces are given by [image: ]
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Worked example





11 a What is the coefficient of friction for the two surfaces represented in Figure 2.83?







  b Assuming the results were obtained for apparatus like that shown in Figure 2.81, what minimum force would be needed to move a block of total mass


     i 200 g


     ii 2000 g?


     iii Why is any answer to ii unreliable?


  c Estimate a value for the dynamic frictional force for the same apparatus with a 200 g mass


     i for movement at 1.0 m s−1



     ii for movement at 2.0 m s−1
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   a [image: ] = 0.40 (This is equal to the gradient of the graph.)


   b i Ff = μsR = μsmg = 0.40 × 0.200 × 9.81 = 0.78 N







        ii 0.40 × 2.000 × 9.81 = 7.8 N


        iii Because the answer is extrapolated from well outside the range of experimental results shown on the graph.







   c i We would expect the dynamic frictional force to be a little smaller than the maximum static frictional force, say about 0.6 N instead of 0.78 N.







        ii The dynamic frictional force is usually assumed to be independent of speed, so the force would still be about 0.6 N at the higher speed.
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Utilizations


Tyres and road safety


Much of road safety is dependent on the nature of road surfaces and the tyres on vehicles. Friction between the road and a vehicle provides the forces needed for any change of velocity – speeding up, slowing down, changing direction and going around corners. Smooth tyres will usually have the most friction in dry conditions, but when the roads are wet, ridges and grooves in the tyres are needed to disperse the water (Figure 2.84).


[image: ]





To make sure that road surfaces produce enough friction, they cannot be allowed to become too smooth and they may need to be resurfaced every few years. This is especially important on sharp corners and hills. Anything that gets between the tyres and the road surface – for example oil, water, ice and snow – is likely to affect friction and may have a significant effect on road safety.


Increasing the area of tyres on a vehicle will change the pressure underneath them and this may alter the nature of the contact between the surfaces. For example, a farm tractor may have a problem about sinking into soft ground, and such a situation is more complicated than simple friction between two surfaces. Vehicles that travel over soft ground need tyres with large areas to help avoid this problem.




  1 Use the internet to find out what materials are used in the construction of tyres and road surfaces to produce high coefficients of friction.
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72 a Explain what a coefficient of friction equal to zero would mean.







   b Is it possible to have a coefficient of friction greater than 1? Explain your answer.








73 a A 30 kg wooden container rests on a dry concrete floor. Estimate the force needed to start to move it sideways.







   b Estimate the solid frictional force opposing the motion of a 55 kg girl skating across ice.








74 Consider question 61 and Figure 2.71. The mass can only be stationary on the slope because of friction.







   a Explain how an inclined plane can be used to determine a value for the coefficient of static friction between the surfaces.


   b If the block shown in the diagram just begins to slip down the slope when the angle is 45°, calculate a value for the coefficient of static friction.








75 The coefficient of friction between a moving car and the road surface on a dry day was 0.67.







   a If the car and driver has a total mass of 1400 kg, what frictional force acts between the road and the tyre?


   b If three passengers with a total mass of 200 kg get into the car, calculate a new value for the frictional force.


   c Discuss the possible effects on safety of having extra passengers in the car.








76 How can friction with roads be increased under icy conditions?



77 Suggest why Formula One racing drivers ‘warm up’ the tyres on their cars. Find out how this is this done. Also, suggest why F1 tyres are so large.



78 Suggest circumstances under which a ‘rougher’ surface might reduce (rather than increase) friction.
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Nature of Science


Newton’s Principia: an outstanding combination of using mathematics and intuition
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