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Introduction


Humanity has an urge to explore. We can’t stop ourselves from wondering what is around the corner, over the next hill and beyond the horizon. This is as true for the great explorers as it is for any of us travelling somewhere for the first time. In the spirit of exploration, we would like to take you on a journey to an exciting land, one that is familiar to some but foreign to many. We will take you to some of our favourite places, show you the dramatic landscapes, beautiful views and precious treasures, and tell you stories of the valiant heroes, the baffling mysteries and the brilliant conquests. We’re going on a guided tour through the world of mathematics.


It’s a world that can seem hard to penetrate, but the forbidding symbols and equations are just another language: code for beautiful ideas that often find surprising uses in the ordinary world we all live in. We will help translate, taking you to some of mathematics’ most famous landmarks, as well as some secluded coves and exotic beaches we’ve discovered on our own travels. Our guides will be those friendly representatives of maths we all meet every day: numbers. Each number is an opportunity to stop off, enjoy the view and explore the local territory along paths we’ve found fun to travel down ourselves.


People love a place for many reasons – the views, the weather, the people, the food, the culture – there are also many things that draw people to mathematics. For many, maths is fundamentally beautiful; indeed many mathematicians won’t be entirely satisfied with their work until it has an elegance, simplicity and grace. Others are drawn by its ‘unreasonable effectiveness’ – its power to explain the world we live in. Sometimes this happens long after a piece of mathematics was discovered and often it’s hidden from view. Maths is the language spoken by all the sciences, taking us to the frontiers of knowledge, from the workings of the Universe to the workings of our minds, which enabled us to dream it all up in the first place.


As editors of Plus magazine (plus.maths.org), an online magazine that aims to open the door onto the world of maths, we’ve had the privilege to explore mathematics widely and to meet some of the amazing (and sometimes eccentric) people that build it. Apart from visiting our favourite mathematical sights, we would also like to tell the stories of the people and cultures that have created them. Funny, bizarre, tragic and dramatic, these stories are worth telling all by themselves. And in the same way that you appreciate a great piece of architecture more when you learn who built it and why, these stories can also give great insight into the lofty mathematical structures we’ll meet along the way.


This book is our opportunity to do what we love doing most: to show off the beauty of maths in all its glory and tell the stories that weave through it. You’ll probably have heard of many of our destinations, but some may be new, and we might even reveal some surprises along the way. We hope you enjoy the ride …









 


0 How nothing gave us something


In the beginning, there was nothing. Well, actually, no. In the beginning there was always something. It might have been beans, successful hunts, or victories in battle, but, for millennia, people were using maths to describe things – counting them, measuring them, dividing them up. A mathematical description of nothing, zero, was still a long way off.


Count for something


It’s most likely that early humans counted on their fingers in the same way that we all first learn to count. (It’s handy having a set of counting sticks at the end of your arm, or, rather, in the fold of your animal skin.) One of the first pieces of evidence of our use of numbers is what are believed to be tally marks cut into a 20,000-year-old bone, known as the Ishango Bone, found in Zaire, Africa. A tally system is a very sensible way to keep track of accumulating quantities, whether you’re keeping track of a score or you are a prisoner marking your days in prison on your cell wall. The way we keep control of a large number of tally marks today is still firmly connected to our early days of counting – we group them into fives, like the five fingers on our hands. The first four are marked individually, the fifth as a line crossing the first four, making a complete set. It makes sense that our idea of an easily manageable set is the same as the count of the digits on our hand.


[image: image]


What we called these counting quantities, whether we even had words for them, is another question. There are still cultures today, including the Pirahã and Mundurukú from the Brazilian Amazon, who have a name for small numbers or quantities, but refer to anything larger simply as ‘many’.


But over the centuries almost all cultures developed names and symbolic representations for numbers, and a way to combine these to write any number they could possibly need. Inscriptions found in Egyptian tombs from over 5,000 years ago (3000 BC) show that the Egyptians were using beautiful hieroglyphs to represent numbers, such as coils of rope, lotus flowers and frogs, to represent 100, 1,000 and 100,000. These symbols would then be repeated, to build up the number they required, some numbers requiring a large collection of symbols to be represented.


[image: image]


The number 4622 written in Egyptian numerals


The ancient Greeks built up numbers in a similar way, using letters from their alphabet to write numbers – for example α for 1, β for 2, γ for 3, κ for 20, τ for 300. The Romans used combinations of symbols such as I for 1, V for 5, X for 10, L for 50, C for 100, D for 500 and M for 1,000 to write numbers. Generally Roman numbers were built up by adding together the symbols’ values, for example XII means 12 (though there were conventions for subtraction too, for example IV means 5 – 1 = 4). It’s a system we still use today for names of kings and queens (King George VI) and for dates at the end of movies and TV shows.


But, a number, no matter what language it is written in, is just a name or symbol for the quantity of things that are being counted. The number 3 means the same thing whether it is written in tally marks or in Egyptian, Roman or Greek numerals. The one-ness of a set of one thing, the two-ness of a set of two things, the three-ness of a set of three things is one of the very first mathematical abstractions that we all intuitively make. The number of the things we are counting is independent of what those things actually are, be they kittens or cabbages.


It all adds up


None of the systems we’ve looked at included a symbol for the set of no things – it just wasn’t necessary. All of the systems are additive – you simply add up the values of the symbols (or blocks of symbols) in the number to get its value. There may be a convention for ordering in such systems, for example starting with the largest block on the left. But there isn’t usually any ambiguity, because reading the number is just about adding up the individual pieces. (For example the Roman number MCMLXXIV can be read as four blocks, M+CM+LXX+IV, meaning 1,000 + 900 + 70 + 4 = 1974.) This is good, but it does lead to complications if you are dealing with big numbers or trying to do complicated sums.


Take, for example, the numbers MCMLXXIV and XXXIX written in Roman numerals. If you add these together the answer is MMXIII. But this is a far harder task than adding 1974 and 39 (to get 2013) with our modern numerals. This is where tally-based number systems fail. To really get control of large numbers and to simplify mathematical calculations takes a cleverer way of writing numbers. The vital piece to make such a system work is zero.


[image: image]


Babylonian numerals


Place has value


A people we now loosely call the Babylonians lived in Mesopotamia between the Tigris and Euphrates rivers. As far back as 3000 BC the indigenous Mesopotamian people, the Sumerians, used soft clay tablets to write their numbers, imprinted with the wedged end of their writing stylus. This way of writing numbers evolved into a system that used two wedge-shaped symbols arranged to represent all the numbers 1 to 59.


But rather than continue in this way, inventing ever new arrangements and symbols, the Babylonians, some 4,000 years ago, made a brilliant leap: they invented a place value system very similar to what we use today. The numbers are written side by side in a string, and the value of each number depends on its place in this string.


We can illustrate this using our own number system. For us the digit ‘4’ in 4622 no longer represents the value 4. Instead, it tells us that our number contains exactly 4 multiples of 1,000. Similarly, the 6 tells us that there are 6 multiples of 100. And the two 2s in the number represent different values: the left-most 2 means that there are 2 multiples of 10 and the right-most 2 represents 2 multiples of 1. What do the place values 1,000, 100, 10 and 1 have in common? They are all powers of the number 10, that is, numbers you get by multiplying 10 by itself a number of times:







	1,000
	=
	10 × 10 × 10 = 103





	100
	=
	10 × 10 = 102





	10
	=
	101





	1
	=
	100 (by mathematical convention).








The Babylonian system worked in the same way except that, instead of being based on powers of 10, it was based on powers of 60. A digit within a number told you how many multiples of 1, 60, 602 (= 3,600), and so on, there were in the number, based on where in the string the digit appeared.


Something for nothing


The place value system was a great advance. It made it possible to write very large numbers without having to invent new symbols to represent greater and greater orders of magnitude. It also made complicated sums easier: the way we write the numbers does some of the work for us. If one number contained 3 multiples of 60 and another contained 4 multiples of 60, then clearly their sum would contain 7 multiples of 60, telling you exactly what to write in the slot allotted to multiples of 60. The only complication arises when the multiples of 60 in the sum give you something bigger than 602. This is dealt with by carrying digits to the next slot along, as we do in our own system.


But there was a hitch. What would you write when there isn’t a multiple of 60, or 602 or some other power of 60 in a given number? For example, a number such as 3,601 = 602 + 1 doesn’t have a multiple of 60 in it so it would be missing a digit in the 60 slot. Originally the Babylonians indicated such a missing digit with a space, leaving lots of scope for ambiguity: is this an intended space, or just the result of the writer having a hiccup? The Babylonians seemed able to cope with this ambiguity by an intuitive understanding of the size of the numbers they were dealing with for any particular calculation. But what they really needed was a placeholder to separate the powers of 60.


Around 300 BC such a new symbol began to appear in the shape of two angled wedges. Whenever you came across those you knew that a power of 60 was missing. The new sophisticated number system allowed Babylonian mathematics to flourish. Complex calculations now became possible and spawned extremely accurate astronomical tables.
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The Babylonian placeholder symbol to separate powers of 60


The place value system was invented at least another couple of times before the origins of our own came along: by the Chinese, from around 300 BC, and by the Mayans, whose culture began as far back as 2000 BC but peaked around AD 500. Both systems also developed a placeholder symbol; zero had begun its inexorable spread in mathematics.


Nothing really is something


What none of these cultures seem to have recognized, however, was that their placeholder symbol – their zero – was a number in its own right. That realization, along with a number system that we use today, comes from India. Indians were using the system, which was positional and had a decimal base, as far back as AD 500. In AD 499 the mathematician and astronomer Aryabhata beautifully captured its essence in his book Aryabhatiya:




From place to place, each is ten times the preceding.





Indians used the Sanskrit word for ‘void’, s´ūnya, to refer to zero. Our first record of a little round circle used to describe it is from 870. It later mutated into the symbol for zero we use today.


But, most importantly, Indian mathematicians treated zero as a number in itself, a number they could do calculations with and that might even pop out as the answer to a problem.


In his book Brahmasphutasiddhanta, published in around 628, mathematician and astronomer Brahmagupta laid down rules for arithmetic. In doing so he captured the essence of zero’s nothingness, at least as far as arithmetic was concerned. We can express it as follows:


When zero is added to a number or subtracted from a number, the number remains unchanged:




b + 0 = 0 + b = b, b – 0 = b.





This fact makes zero unique among numbers: no other number leaves its partner in addition (or subtraction) quite so undisturbed. For suppose that there was another such number and call it u for ‘unknown’.


Since adding u to any number leaves that number unchanged we have




0 = 0 + u.





And since adding 0 to any number also leaves that number unchanged, we also have




0 + u = u.





Putting the two together gives




0 = 0 + u = u.





So u was equal to 0 all along!


This, incidentally, is our first example of a mathematical proof: an argument that shows, beyond any doubt, that something is true. The concept of proof belongs to mathematics like fish belong to water and we will be meeting it many times later on.


Another rule attributed to Brahmagupta concerns the behaviour of zero under multiplication:


Zero multiplied by any number is zero.


This little number, so unobtrusive when it comes to addition, under multiplication becomes all absorbing.


What, then, can we say about zero and division? What is 5 divided by 0, or 0 divided by 0? These turned out to be tricky questions that planted the seed for mathematics that was developed centuries later. Brahmagupta hedged his bet on the answer to the former, but was categorical about the latter, asserting that 0 divided by 0 (i.e [image: images]) should be 0. In the modern view he was wrong. It was another Indian mathematician who provided a deeper insight into this hairy problem: Bhaskara II.


Fatherly love


Bhaskara II, who lived in the twelfth century AD, is regarded by many as the greatest mathematician and astronomer to emerge from medieval India. His most famous contribution to mathematics, however, seems to have been the result of something we today regard as astronomy’s evil twin: astrology. According to legend, Bhaskara consulted his beloved daughter’s horoscope and found, to his horror, that she was to remain childless and unmarried. Not prepared to bow to that fate, Bhaskara determined an auspicious moment at which her wedding should take place. To make absolutely sure the moment wouldn’t be missed, he constructed a water clock. But his daughter, by the beautiful name of Lilavati, could not suppress her curiosity. When looking at the clock from close up, a pearl from her bridal dress fell into it. It blocked the hole through which the water flowed and thus the auspicious moment could never come. The wedding was off! To console Lilavati, a devastated Bhaskara promised to write a book in her name, a book that would exist forever. Luckily for her, the book was a maths book.


The Lilavati is just one part of a greater work, called Siddhānta Shiromani, which translates from the Sanskrit as Crown of Treatises. It covers an eclectic collection of mathematical questions: there is a lot of arithmetic, but also geometry and algebra. Some questions are directly addressed to Lilavati, ‘whose eyes are like fawn’s’, and many with a poetry our textbooks can only dream of, for example:




The square root of half the number of a swarm of bees is gone to a shrub of jasmine; and so are eight-ninth of the whole swarm: a female is buzzing to one remaining male that is humming within a lotus flower in which he is confined, having been allured to it by its fragrance at night. Say, lovely woman, the number of bees.





If you can’t work out the answer, you can find it end of this chapter.


In the Lilavati Bhaskara gives rules for calculating with zero, including one that appears to say that, for any number a,




[image: image]





This seems to suggest that [image: images] can be anything – any number a we care to choose – and we will see an echo of this below. Bhaskara’s great insight, however, came in a lesser-known work of his, the Vija-Ganita, where he considers what [image: images] should be:




Quotient the fraction [image: images]. This fraction of which the denominator is [zero], is termed an infinite quantity. In this quantity … there is no alteration, though many be inserted or extracted; as no change takes place in the infinite and immutable God.





So according to Bhaskara, the result of division by zero should be infinity, a number he equates with an unchanging God as infinity is unchanged by addition or subtraction. Modern mathematicians do not agree with this idea, but it is quite easy to see why Bhaskara came up with it. If you divide a line segment into smaller and smaller pieces, the number of pieces gets larger and larger. As the length of your pieces gets closer to zero, the number of them gets closer to, well, infinity.


From above and below


Under normal circumstances division behaves in a nice continuous fashion. If I divide 1 by a sequence of numbers that get closer and closer to 2, then the result will get closer and closer to [image: images] = 0.5:




[image: image]





and so on. If we assume that the same should happen when dividing a number by numbers that get closer and closer to 0, then we get:




[image: image]





This seems to be getting larger and larger, approaching or tending to infinity, which suggests that any number divided by 0 gives infinity.


But unfortunately things are not quite as simple as this. Imagine the number 0 as it appears on your thermometer, with positive temperatures above it and negative ones below it. If we mark the sequence of numbers we divided by in the argument above – the smaller and smaller lengths – on the thermometer we would get a sequence of numbers creeping up on 0 from the positive side of the thermometer. But we could equally have crept up on it from the negative side, dividing by negative numbers that get closer and closer to zero, for example –0.001, –0.0001, –0.00001, –0.000001 and so on. Dividing a positive number, such as 1, by a negative one gives you a negative answer, so the results are now




[image: image]





This sequence seems to tend to something infinite as well, but it seems to be infinite in the opposite direction! Rather than climbing higher and higher on the thermometer we are dropping lower and lower. Is there such a thing as minus infinity? And if there is, is it different from plus infinity? These are difficult questions. Suffice to say that modern mathematicians refuse to commit when it comes to dividing a number by 0: they simply state that the result of such a division is undefined.


To the limit


What, then, about dividing 0 by 0? Nothing divided by something is still nothing, that’s an uncontentious issue that was already decided by Brahmagupta. So if we divide zero successively by a sequence of numbers that get closer and closer to it we always get 0




[image: image]





The same is true if we divide by the negatives of the numbers in that sequence:




[image: image]





and so on. So in accord with Brahmagupta, we could be tempted to decide that [image: images] = 0.


But again there is a hitch. What if I take two sequences of numbers, both creeping up on zero, say




0.01, 0.001, 0.0001, …





and




0.02, 0.002, 0.0002, …





and divide the corresponding terms by each other? We get




[image: image]





and so on. Since both sequences, the one that gives us the top of the fractions and the one that gives us the bottom, creep up on 0, this might suggest that [image: images] should be equal to 2. Equally, if I had turned the division around and divided the numbers in the first sequence by those in the second, the same reasoning would suggest that the result of [image: images] should be [image: images]! As it turns out, by choosing the two sequences just right you can make a case for any number being the result of [image: images]. Which is why mathematicians have opted out of this one too. The answer of [image: images] is officially undefined. Nothing divided by nothing is no thing!


Despite these difficulties, and thanks to the initial efforts of Bhaskara and his contemporaries, we are today happy to use zero both as a placeholder in our number system and as a number in itself. And zero has become even more valuable in today’s digital age. But to unlock the secret of information we need to combine the power of zero with the number 1.





Answer to Lilavati bee question:


Let x be the number of bees. Then [image: images] which after some manipulation gives [image: images] giving a solution of x = 72.












 


1 One is all you need


Let’s try that again: in the beginning there was 1. And 1 is all you need. Think of a counting number; 1, 2, 3 and so on. You can get to it by repeatedly adding 1s, for example: 2 = 1 + 1, 4 = 1 + 1 + 1 + 1, 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1. It’s tedious but it’s easy. And if you imagine that for each 1 you add, you take one step along a straight line, then the natural numbers line up neatly and evenly spaced a distance of 1 apart.


[image: image]


This concept of a number line is incredibly useful. Addition simply becomes moving forward: adding 4 to 6 means starting from 6 and walking 4 steps forward. You would end up at the same place by starting from 4 and walking 6 steps forward, which makes sense as order doesn’t matter in addition – it is commutative.


Subtraction is moving backwards: 6 – 4 is taking four steps backward from 6. Easy! This also brings negative numbers into the picture. Walking 6 steps backward from 0 gives you –6, and walking 8 steps backwards from 4 gets you to –4. So 4 – 8 = –4. Equivalently you could walk 4 steps forward from –8, showing that 4 – 8 = –8 + 4 = –4. Subtraction, thought of as addition with a negative number, is commutative too.


Even multiplication yields to the power of repeated 1s: 2 × 4 is taking four steps forward, twice starting from 0; or, equivalently, taking two steps forward, four times (like well-behaved addition, multiplication is also commutative). The multiplication 2 × –4 means taking four steps backward, twice, giving you –8, or equivalently, taking two steps backward, four times; which shows that 2 × –4 = –2 × 4 = –8. As you learnt at school, ‘positive times positive is positive’ and ‘positive times negative is negative’.


This leaves us with the one hairy case: what is ‘negative times negative’? It’s positive, as any textbook will confirm, but why? Teachers often say that’s just the way it is. It’s a convention adopted to make arithmetic consistent. But the number line gives some intuition as to why this makes sense. A minus sign indicates a reversal of direction: –2 × 3 means ‘take 2 steps backward, three times’ but it can also be interpreted as ‘take three steps, twice, but take them backward rather than forward’. More generally, –2 × some number n can be interpreted as ‘do n steps twice, but in the opposite direction to the one indicated by n’. So if the number n in the bracket is negative, say you are calculating –2 × –3, then you are actually taking 6 steps forwards: –2 × –3 = 6.


On or off?


So 1 can get you anywhere as far as the whole numbers and their arithmetic is concerned. But real life is a little more complicated than this. In real life we face choices, of which there are always at least two: left or right, tea or coffee, dog or cat. For machines one particular pair of choices is of special significance: on or off, which we can write as 0 (off) and 1 (on). It turns out that this crucial choice is the only one necessary: the binary world is what powers our digital lives.


To see how, start with numbers. As you saw in chapter 0, our way of writing numbers depends on two ingredients: the ten symbols 0 to 9, and their position in a number, which tells us what they mean. The 7 in 7,345 stands for 7 × 1,000, the 3 for 3 × 100, the 2 for 2 × 10 and the 5 for 5 × 1. What is so special about 10, 100, 1,000, and so on? They are all powers of 10: 10 = 101, 100 = 102, 1,000 = 103. Even 1 is a power of 10 because by mathematical convention 100 = 1. Our number system is positional and decimal, taking the number 10 as its base.


But the choice of 10 is arbitrary. We could just as well have made do with two symbols, 0 and 1, and worked with powers of 2. The number 2, which is 1 × 21 + 0 × 20, then becomes 10 when written as a binary number. The number 3, which is 1 × 21 + 1 × 20, is 11 in binary. Four, corresponding to 1 × 22 + 0 × 21 + 0 × 20, is 100 in binary. Here is what all the numbers zero to ten look like written in binary:





	0
	zero




	1
	one




	10
	two




	11
	three




	100
	four




	101
	five




	110
	six




	111
	seven




	1000
	eight




	1001
	nine




	1010
	ten






In this way any positive whole number can be represented as a binary string made of 0s and 1s. You can get to the negative numbers by sticking an additional digit in front of such a sequence to act as a minus sign (there are different conventions for doing this). To get to numbers that aren’t whole you play the same game, but with powers of [image: images]. For example, the binary expression 0.111 means [image: images][image: images] in decimal. And the binary expression 11.01 means




[image: images]





which is equivalent to the decimal number 3.25.


Any number that you can write as a decimal can be expressed using only 0s and 1s. And this is indeed the way computers represent numbers.


True or false?


But if computers were all about numbers, they’d be nothing more than glorified calculators. Their real power lies in their ability to perform complex tasks that allow you to book your holiday or survive a boring meeting by illicitly playing Minesweeper. They can do this because they work on one fundamental assumption: that everything is either true or false. In real life this doesn’t quite work, but in mathematics it (usually) does. This idea inspired the 19th-century English mathematician George Boole (1815–1864) to build up an entire system of logic.


Boolean logic rests on the idea that statements can be strung together using words like AND and OR. Whether a composite statement is true or false depends on the truth or falsity of its component parts. For example, suppose you know that the statement ‘Jim is walking towards me’ is true. Then does that make the statement ‘Jim is walking towards me AND Jim is dead’ true? No, it doesn’t. (Unless, of course, Jim is a zombie, in which case, run!) A composite statement P AND Q is only true if both components P and Q are true. Only one of them being true isn’t good enough, and both of them being false definitely makes the composite false.


You can capture this in a truth table for the AND operator. It looks at all combinations of true and false for the two components P and Q and tells you what the corresponding result for P AND Q is.







	P
	Q
	
P AND Q









	True
	True
	True




	True
	False
	False




	False
	True
	False




	False
	False
	False








The OR operator is a lot more permissive. The composite statement P OR Q, say ‘Jim is walking towards me OR Jim is dead’, is true as long as one of the components is true.







	P
	Q
	
P OR Q









	True
	True
	True




	True
	False
	True




	False
	True
	True




	False
	False
	False








Apart from AND and OR, Boole also had a NOT operator, which only takes one statement as input.


If the statement ‘Jim is walking towards me’ is true then clearly ‘Jim is NOT walking towards me’ is false and vice versa. So NOT simply switches the truth value of a statement.







	P
	NOT P









	True
	False




	False
	True








Using AND, OR and NOT you can construct all sorts of complicated statements and by doggedly chasing through the truth tables decide whether they are true or false.


Logical sums


All this trailing through truth tables sounds complicated and dreary, but in fact we can simplify things by turning them into a maths problem. Boole ingeniously recognized that binary logical operations behaved in a way that’s strikingly similar to our normal arithmetic operations, with a few twists.


First of all, the variables in our new kind of arithmetic (called Boolean algebra) are logical statements (loosely speaking, sentences that are either true or false, like ‘Jim is a zombie’). As these can only take two values we can write 0 for a statement we know is false and 1 for a statement we know is true. Then we can rewrite OR as a kind of addition using only 0s and 1s:




0 + 0 = 0 (since ‘P OR Q’ is false when both P and Q are false) 1 + 0 = 0 + 1 = 1 (since ‘true OR false’ and ‘false OR true’ are both true).


1 + 1 = 1 (since ‘true OR true’ is true).





We can rewrite AND as a kind of multiplication:




0 × 1 = 1 × 0 = 0 (since ‘false AND true’ and ‘true AND false’ are both false)


0 × 0 = 0 (since ‘false AND false’ is false)


1 × 1 = 1 (since ‘true AND true’ is true).





As the variables can only have the values of 0 and 1, we can define the NOT operation as the complement, taking a number to the opposite of its value:




If A = 1, then A′ = 0


If A = 0, then A′ = 1


A + A′ = 1 (since ‘true OR false’ is true)


A × A′ = 0 (since ‘true AND false’ is false).





Our new version of these operations is similar in many ways to our more familiar notions of addition and multiplication but there are a few key differences. Parts of equations can conveniently disappear in Boolean algebra, which can be very handy. For example, the variable B in




A + A × B





is irrelevant, no matter what value B has or what logical statement it represents. This is because if A is true (or equivalently A = 1) then A OR (A AND B) is true no matter whether the statement B is true or false. And if A is false (that is, A = 0) then (A AND B) is false no matter the value of B, and so A OR (A AND B) is false. So Boolean algebra provides us with a disappearing act: the expression A + A × B is equal to a simple little A:




A + A × B = A.





Bright sparks


It was the power of simplification that interested Claude Shannon (1916–2001), who in 1936 was a 20-year-old student at Massachusetts Institute of Technology writing his Masters thesis.


Shannon’s Masters thesis brought together ideas from his undergraduate degrees in mathematics and electronic engineering. He considered complex circuits of switches and relays that were used in places such as telephone exchanges and realized, thanks to his mathematical training, that these circuits were a physical embodiment of Boole’s algebra of logic.


Suppose you have an electrical circuit with a switch and a light bulb attached to it. The light will come on if the switch is on, closing the circuit. When the switch is off the circuit is open and the light is off. Now suppose you have two switches arranged in series (as in the image on the right, 1). The light will come on if both switches are closed. If on the other hand the switches are arranged in parallel (as in the image on the right, 2) then the light is on if either one of the switches is on.


[image: image]

Circuits with switches: (1) switches in series, (2) switches in parallel


We can write all this down in tables:


 


Circuit 1 – switches in series







	Switch 1
	Switch 2
	Light








	On
	On
	On




	On
	Off
	Off




	Off
	On
	Off




	Off
	Off
	Off








 


Circuit 2 – switches in parallel







	Switch 1
	Switch 2
	Light








	On
	On
	On




	On
	Off
	On




	Off
	Off
	On




	Off
	Off
	Off








These should look familiar. Replace ‘On’ by ‘True’ and ‘Off’ by ‘False’ in circuit 1 and you get the truth table for the AND operator. Similarly, circuit 2 gives the truth table for the OR operator. You can also construct a circuit for the NOT operator using a switch that acts in reverse to normal switches: when a normally closed switch is off it is closed, completing the circuit, and when it is on it is open, breaking the circuit.


This correspondence between circuit and logic is incredibly useful. Suppose that you have a complicated circuit design, a mess of wires and switches. Shannon realized that if you wrote down the corresponding Boolean algebra expression, you could quickly use the simplification laws to remove redundant components in your circuit (see the box for an example).


Before Shannon’s work, simplifying a circuit design involved writing all the possible positions of the switches in the circuit and following through the chain of events for each, a process he himself described as ‘very tedious and open to errors’. But now, thanks to his insight, any circuit could be easily described and simplified using Boolean algebra.


But Shannon’s ideas went even further. In 1948, when he was a research mathematician at the telephone company AT&T Bell, he published the revolutionary paper ‘A mathematical theory of communication’. His revolutionary idea was that any information, whether pictures, words, sounds or numbers, could be described mathematically using a series of 0s and 1s. It was here that these binary digits, the 0s and 1s, were described as ‘bits’ for the first time. Using the electronic circuits that embody the logical AND, OR and NOT operators, you can perform any operation that can be broken down into logical steps on this binary information. You are limited only by your imagination and the technology of the day.




 


KEEP IT SIMPLE, SHANNON


[image: image]


This circuit diagram is written in shorthand with symbols to the AND, OR and NOT gates that combine the 0/1 values for P and Q.


The circuit above corresponds to the expression




((P × Q + Q′) × Q′ + P)′.





This expression can be simplified using the rules of Boolean algebra to the much simpler expression




Q × P′.





So analysing the original circuit using Boolean algebra reveals that a simple circuit with just two gates will do the same trick as the original complicated one.


[image: image]





The limits of logic


The on/off world of Boolean logic encapsulates what you might have been thinking about maths all along: things are either true or false and, whichever it is, it has nothing to do with your preference. A few decades after Boole’s death, at the beginning of the twentieth century, hopes were riding high that all of maths could be mechanized in the same way as Boole’s logic was. The idea was to turn maths in one gigantic but logically rigorous edifice, rather than a loosely connected jumble of different areas such as geometry, algebra, and calculus.


The general idea behind this formal dream goes all the way back to the Greek mathematician Euclid, around 3000 BC. Euclid wrote a book called The Elements, which turned out to be one of the most successful maths textbooks of all time; some have claimed that only the Bible produced more editions. In The Elements Euclid gave a set of five axioms on which he thought all of geometry should be built. These were statements that were so obvious they needed no further justification. His axioms were:




	

A straight-line segment can be drawn joining any two points.





	

Any straight-line segment can be extended indefinitely in a straight line.





	

Given any straight-line segment, a circle can be drawn with the segment as radius and one endpoint as centre.





	

All right angles are equal.








The fifth axiom was a bit of a mouthful, but it is equivalent to


 


5. The angles in a triangle add up to 180 degrees.


The idea is that any statement you can make in geometry should be derived directly from these axioms using logical arguments. That way, unless you doubt the axioms, the statement is definitely and irrevocably true.


Euclid’s axioms were about geometry, but you can also come up with axioms that describe the whole numbers. Without realizing it, we have already come across the central idea behind one such set of axioms, devised by the Italian mathematician Giuseppe Peano (1858–1932) in 1889: that all the natural numbers can be generated by successive steps. Peano’s first four axioms were:




	

0 is a number.





	

Every natural number has a successor which is also a number.





	

No natural number has 0 as its successor.





	

Distinct natural numbers have distinct successors.








This gives us all the numbers and their ordering, and also addition and multiplication, which, as described above, correspond to moving backwards and forwards on a number line.


Peano’s fifth axiom was not about the numbers themselves but about how you can say something about all of them, even though there are infinitely many. The general idea is that if something is true for 0, the first natural number, and you can show that it being true for one number, n, means it is also true for the next one, n + 1, then it is true for all of them. It’s like a chain of dominoes: if it’s true for 0, then it must be true for 1, which means it must be true for 2, and so on, all the way towards infinity. This fifth axiom is called the principle of induction.


One set of axioms to bind them all


Peano’s work inspired the British thinker Bertrand Russell (1872–1970) to try to complete the axiomatic dream in collaboration with Alfred N. Whitehead (1861–1947). In their monumental work Principia Mathematica (published between 1910 and 1913) they intended to show that all of pure mathematics could be built on a small set of concise axioms. This wasn’t easy: the proof that 1 + 1 = 2 doesn’t appear until well into the second volume. Neither did they manage to pull it off completely, failing to prove that the axiomatic system they built didn’t contain any contradictions.


These exciting developments in logic drew the attention of the Austrian Kurt Gödel (1906–1978), a shy and introverted man with a taste for philosophy. Gödel’s work on the subject culminated in a result that came as a shock.


Suppose you have a set of axioms and rules for how to make logical arguments. Also suppose that your axiomatic system is able to express the natural numbers and their arithmetic. And finally, suppose that your system is free from contradiction, which is what you expect from any decent mathematical construct. Gödel’s first incompleteness theorem, which he proved in 1931, says that within such a system there will always be statements about the natural numbers that you cannot prove to be true or false. By this he didn’t mean statements that had nothing to do with numbers, such as ‘the world is ruled by shape-shifting lizards’ or ‘I love you’. He meant statements that can be phrased within the language of the system. There are things that even the best axiomatic system can’t prove although it can formulate them. That explains the name of the theorem: any such system is necessarily incomplete.


This does sound bad, but perhaps there is a way to fix it. Suppose you come across an unprovable statement and you know, you are convinced, that this statement should be true. If you can’t derive this statement from the axioms, why not simply turn it into one? You simply take it as read and proceed from there. After all, this is what most of us do in real life; there are lots of things we can’t prove but choose to believe.


But this quick fix won’t work. According to Gödel’s theorem, if your new system, with the extra axiom appended, is still free from contradiction, then there will still be other unprovable statements. You simply can’t win.


A fundamental flaw?


Think about this for a second and you realize just how devastating the result is. It means that things in maths aren’t inherently true or false; they can be neither. In fact, by changing the rules (the axioms), you can make some statements true or false according to personal taste. Perhaps the noble realm of mathematics is simply a matter of opinion?


On the face of it this should get you really worried. After all, the planes you fly in, the car you drive and the tax bill you pay are constructed using mathematics. What if the mathematical truths behind these calculations aren’t so true after all? But there is no need to worry. Gödel’s original theorem was based around tricky self-referential statements such as ‘this sentence can’t be proven true or false’. If you could prove it either true or false, then this would make it provable, introducing a contradiction into your system. Since Gödel’s time, mathematicians have found more concrete examples of unprovable statements but so far most of these reside in the lofty heights of abstract mathematics without impact on the real world. For the moment, and probably for a few centuries more, real-life mathematics is safe.


Philosophers of mathematics haven’t given up either. There may not be a definite set of axioms that hands us all of mathematics on a plate in a strictly true/false fashion. But we can still choose a set that feels most natural; one that renders true those unprovable statements that most chime with intuition. Philosophers too can be practical.


Gödel’s incompleteness theorems (there was also a second one) brought him enormous acclaim, but it did not save him from a tragic end. An apparent hypochondriac, he was plagued by a fear of poisoning and, probably imaginary, heart problems. In the mid 1930s, a time in which he travelled between Vienna and the USA, he suffered nervous breakdowns. The person who supported him through these hard times and beyond was his partner, Adele Porkert, a dancer, who was six years older than him, divorced and not too popular with his parents.


In 1939 Gödel was declared fit for service in the German armed forces, a fact that woke him up to the grim reality of Nazi Germany. With help from the Institute for Advanced Study in Princeton, he and Adele were able to obtain visas for travel to the USA in 1940, and they stayed in that country for the rest of their lives. Albert Einstein was a considerable support to Gödel during the late 1940s and early 1950s.


From about 1958, the year in which he published his last paper, Gödel became increasingly withdrawn and mentally unstable. In the mid 1970s he was dealt a couple of cruel blows. In 1976 Adele suffered a stroke which left her in need of his care and around the same time his good friend Oskar Morgenstern died of cancer. Still paranoid of being poisoned, Gödel began to starve himself and eventually died on 14 January 1978.


Gödel’s fate is not the only tragic one in mathematics; you will meet quite a few more in this book. Perhaps the most famous one goes back to the ancient Greeks, and it involves a very special number: the square root of 2.









[image: image] Butterflies, murder and a proof that didn’t fit in the margin


If there is one mathematical result you remember from school it’s probably Pythagoras’ theorem. It goes like this: take a right-angled triangle and construct a square on each of the two sides of the triangle that enclose the right angle. Then the sum of the areas of these two squares is equal to the area of the square constructed on the remaining side. The area of a square whose sides have length a is a × a = a2
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