

[image: image]

[image:]

Unless otherwise acknowledged, the questions, example answers and comments that appear in this book were written by the authors. In examinations, the way marks are awarded may be different. Questions from the Cambridge International AS & A Level Computer Science papers are reproduced by permission of Cambridge Assessment International Education. Cambridge Assessment International Education bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication.

The publishers would like to thank the following who have given permission to reproduce the following material in this book:

Page 181 Extract from IEEE Code of Ethics. Reprinted with permission of IEEE with the copyright notice © Copyright 2018 IEEE; Pages 181–3 Copyright © 1999 by the Institute for Electrical and Electronics Engineers, Inc. and the Association for Computing Machinery, Inc.; Page 187 eBay software pirates stump up $100,000 – https://www.theregister.co.uk/2006/11/24/ebay_pirates_payup/. Reprinted with permission of Out-Law.com, the news service of international law firm Pinsent Masons; Page 218 Map data © 2018 Google, Imagery © 2018 Landsat/Copernicus.

Photo credits

Figures 1.1 and 1.2 © David Watson; Figure 1.3 © Sébastien Delaunay/stock.adobe.com; Figure 2.18 © Forgem/Shutterstock.com; Figure 3.1 tl © studio306fotolia/stock.adobe.com; tr © Chavim/stock.adobe.com; bl © pozdeevvs/stock.adobe.com; br © Sergey Yarochkin/stock.adobe.com; Figure 3.4 © Mau Horng/stock.adobe.com; Figure 3.5 © science photo/stock.adobe.com; Figure 3.9 © Maksym Dykha/Shutterstock.com; Figure 3.10 © Hurst Photo/Shutterstock.com; Figure 3.11 © philipus/stock.adobe.com; Figure 3.12 © belekekin/ Shutterstock.com; Figure 4.4 l © cybertrone/stock.adobe.com, c © Tungphoto/Shutterstock.com, r © Luminis/Shutterstock.com; Figure 5.1 l © Stuart Brady (Public Domain) via Wikipedia Commons; r © Jiri Hera/stock.adobe.com; Figure 6.3 © Andrey Burmakin/stock.adobe.com; Figure 6.4 © bkilzer/stock.adobe.com; Figure 7.2 l © Pres Panayotov/
Shutterstock.com; c © James Balog/Getty Images; r © caluian/stock.adobe.com; Figure 18.19 © seewhatmitchsee/
123rf.com; Figure 18.21 b © Garmon/stock.adobe.com; t © Christian Musat/stock.adobe.com; ct © Ammit/stock.adobe.com; cb © Martina Berg/stock.adobe.com; Figure 18.24 Harshal/stock.adobe.com; Figures 18.27 and 18.28 all © David Watson.

l = left, c = centre, b = bottom, t = top, r = right

Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be glad to make suitable arrangements with any copyright holders whom it has not been possible to contact. Computer hardware and software brand names mentioned in this book are protected by their respective trademarks and are acknowledged.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: (44) 01235 827827. Fax: (44) 01235 400401. Email education@bookpoint.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through our website: www.hoddereducation.com

© David Watson and Helen Williams 2019

First published 2019 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2023 2022 2021 2020 2019

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © Terrance Emerson – stock.adobe.com

Illustrations by Aptara Inc. and Hodder Education

Typeset by Aptara Inc.

Printed by Bell & Bain Ltd, Glasgow

A catalogue record for this title is available from the British Library.

ISBN: 9781510457591
eISBN: 9781510457607

[image:]

Introduction

This textbook provides the knowledge, understanding and practical skills to support those studying Cambridge International AS & A Level Computer Science. This textbook is part of a suite of resources which include a Programming Skills Workbook and an Online Teacher’s Guide.

The syllabus content has been covered comprehensively and is presented in two sections: Chapters 1 to 12 cover the AS Level, Chapters 13 to 20 cover the extra content required for the full A Level.

How to use this book

To make your study of Computer Science as rewarding and successful as possible, this textbook, endorsed by Cambridge Assessment International Education, offers the following important features.

Organisation

The content is presented in the same order as in the syllabus, and the chapter titles match those in the syllabus.

Features to help you learn

Each chapter is broken down into several sections, so that the content is accessible.

At the start of each chapter, there is a blue box that gives a summary of the syllabus points to be covered in that chapter, to show you what you are going to learn.

[image:]

In this chapter, you will learn about

• binary magnitudes, binary prefixes and decimal prefixes

• binary, denary and hexadecimal number systems

• how to carry out binary addition and subtraction

• the use of hexadecimal and binary coded decimal (BCD) number systems

• the representation of character sets (such as ASCII and Unicode)

• how data for a bit-mapped image is encoded

• how to estimate the file size for a bit-map image

• image resolution and colour depth

• encoding of vector graphics

• the representation of sound in a computer

• the effects of changing sampling rate and resolution on sound quality

• the need for file compression methods (such as lossy and lossless formats)

• how to compress common file formats (such as text files, bit-map images, vector graphics, sound files and video files).

[image:]

The grey-blue What you should already know boxes at the beginning of each chapter or section help you to check you have the right level of knowledge before you begin. You may have already studied Computer Science at IGCSE, O Level or equivalent, or you may not have. These boxes contain questions to find out how much you remember, or to gauge your previous learning. If you are unable to answer the questions, you will need to refresh your memory, or make sure you are familiar with the the relevant ideas, before continuing.

WHAT YOU SHOULD ALREADY KNOW

Try these four questions before you read this chapter.

1 What are the column weightings for the binary number system?

2 Carry out these binary additions. Convert your answers to denary.

 a) 0 0 1 1 0 1 0 1 + 0 1 0 0 1 0 0 0

 b) 0 1 0 0 1 1 0 1 + 0 1 1 0 1 1 1 0

 c) 0 1 0 1 1 1 1 1 + 0 0 0 1 1 1 1 0

 d) 0 1 0 0 0 1 1 1 + 0 1 1 0 1 1 1 1

 e) 1 0 0 0 0 0 0 1 + 0 1 1 1 0 1 1 1

 f) 1 0 1 0 1 0 1 0 + 1 0 1 0 1 0 1 0

3 What are the column weightings for the hexadecimal (base 16) number system?

4 Carry out these hexadecimal additions. Convert your answers to denary.

 a) 1 0 7 + 2 5 7

 b) 2 0 8 + A 1 7

 c) A A A + 7 7 7

 d) 1 F F + 7 F 7

 e) 1 4 9 + F 0 F

 f) 1 2 5 1 + 2 5 6 7

 g) 3 4 A B + C 0 0 A

 h) A 0 0 1 + D 7 7 F

 i) 1 0 0 9 + 9 F F 1

 j) 2 7 7 7 + A C F 1

Key terms for each chapter or section are listed, with definitions. When you are reading through the chapter and you come across a term you don’t understand, go back and see if it has been explained here.

[image:]

Key terms

Logic gates – electronic circuits which rely on ‘on/off’ logic; the most common ones are NOT, AND, OR, NAND, NOR and XOR.

Logic circuit – formed from a combination of logic gates and designed to carry out a particular task; the output from a logic circuit will be 0 or 1.

Truth table – a method of checking the output from a logic circuit; they use all the possible binary input combinations depending on the number of inputs; for example, two inputs have 22 (4) possible binary combinations, three inputs will have 23 (8) possible binary combinations, and so on.

Boolean algebra – a form of algebra linked to logic circuits and based on TRUE and FALSE.

[image:]

There are Activities throughout, so that you can apply what you have learned. Some of these take the form of questions, to allow you to test your knowledge; others aim to give you experience of practical work. Some of these will also give you opportunities to work collaboratively with other students.

[image:]

ACTIVITY 3B

Produce truth tables for each of the following logic circuits. You are advised to split them up into intermediate parts to help eliminate errors.

a)

[image:]

b)

[image:]

c)

[image:]

d)

[image:]

e)

[image:]

[image:]

There are also some Extension activities. These go beyond the requirements of the syllabus, but it is good to see if you know the answers. We hope they will be of interest to you.

[image:]

EXTENSION ACTIVITY 3E

1 Look at this simplified diagram of a keyboard; the letter H has been pressed. Explain:

a) how pressing the letter H has been recognised by the computer

b) how the computer manages the very slow process of inputting data from a keyboard.

2 a) Describe how these types of pointing devices work.

 i) Mechanical mouse

 ii) Optical mouse

b) Connectivity between mouse and computer can be through USB cable or wireless. Explain these two types of connectivity.

[image:]

[image:]

The End of chapter questions are practice exam-style questions; these provide a more formal way to check your progress. Some questions from Cambridge International AS & A Level Computer Science past papers are included.

[image:]

End of chapter questions

1 a) The following bytes represent binary integers using the two’s complement form. State the equivalent denary values.

 i) 0 1 0 0 1 1 1 1

[1]

 ii) 1 0 0 1 1 0 1 0

[1]

 iii) Write the integer −53 in two’s complement form.

[1]

 iv) Write the maximum possible range of numbers using the two’s complement form of an 8-bit binary number.

Give your answers in denary.

[2]

b) i) Write the denary integer 798 in binary-coded decimal (BCD) format.

[1]

 ii) Write the denary number that is represented by the following BCD number.

[image:]

[2]

c) Give one use of binary-coded decimal system.

[1]

Assessment

If you are following the AS Level course, you will take two examination papers:

• Paper 1 Theory Fundamentals (1 hour 30 minutes)

• Paper 2 Fundamental Problem-solving and Programming Skills (2 hours)

If you are studying the A Level course, you will take four examination papers, Papers 1 and 2 and also:

• Paper 3 Advanced Theory (1 hour 30 minutes)

• Paper 4 Practical (2 hours 30 minutes)

Note that calculators must not be used in any paper.

Command words

The table below includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context. Make sure you are familiar with these.

	Command word

	What it means

	Analyse

	examine in detail to show meaning, identify elements and the relationship between them

	Assess

	make an informed judgement

	Calculate

	work out from given facts, figures or information

	Comment

	give an informed opinion

	Compare

	identify/comment on similarities and/or differences

	Complete

	add information to an incomplete diagram or table

	Consider

	review and respond to given information

	Contrast

	identify/comment on differences

	Define

	give precise meaning

	Demonstrate

	show how or give an example

	Describe

	state the points of a topic/give characteristics and main features

	Develop

	take forward to a more advanced stage or build upon given information

	Discuss

	write about issue(s) or topic(s) in depth in a structured way

	Draw

	draw a line to match a term with a description

	Evaluate

	judge or calculate the quality, importance, amount, or value of something

	Examine

	investigate closely, in detail

	Explain

	set out purposes or reasons/make the relationships between things evident/provide why and/or how and support with relevant evidence

	Give

	produce an answer from a given source or recall/memory

	Identify

	name/select/recognise

	Justify

	support a case with evidence/argument

	Outline

	set out main points

	Predict

	suggest what may happen based on available information

	Sketch

	make a simple freehand drawing showing the key features, taking care over proportions

	
State

	express in clear terms

	Suggest

	apply knowledge and understanding to situations where there are a range of valid responses in order to make proposals

	Summarise

	select and present the main points, without detail

	Write

	write an answer in a specific way

From the authors

We hope you enjoy this book. It encourages you to develop your computational thinking while broadening your understanding of computer science. This should prove helpful when you go on to further study, where topics such as artificial intelligence, quantum cryptography and imperative and declarative programming will be studied; all of these are covered in the later chapters of the book. In order to handle such topics confidently, you will need to be a competent programmer who uses computational thinking to solve problems and has a good understanding of computer architecture. All chapters are designed to build on your previous experience in a way that develops essential skills and at the same time expands the techniques you are able to use.

David Watson

Helen Williams

Notes for teachers

Key concepts

These are the essential ideas that help learners to develop a deep understanding of the subject and to make links between the different topics. Although teachers are likely to have these in mind at all times when they are teaching the syllabus, the following icons are included in the textbook at points where the key concepts relate to the text:

[image:] Computational thinking

Computational thinking is a set of fundamental skills that help produce a solution to a problem. Skills such as abstraction, decomposition and algorithmic thinking are used to study a problem and design a solution that can be implemented. This may involve using a range of technologies and programming languages.

[image:] Programming paradigms

A programming paradigm is a way of thinking about or approaching problems. There are many different programming styles that can be used, which are suited to unique functions, tools and specific situations. An understanding of programming paradigms is essential to ensure they are used appropriately, when designing and building programs.

[image:] Communication

Communication is a core requirement of computer systems. It includes the ability to transfer data from one device or component to another and an understanding of the rules and methods that are used in this data transfer. Communication could range from the internal transfer of data within a computer system, to the transfer of a video across the internet.

[image:] Computer architecture and hardware

Computer architecture is the design of the internal operation of a computer system. It includes the rules that dictate how components and data are organised, how data are communicated between components, to allow hardware to function. There is a range of architectures – with different components and rules – that are appropriate for different scenarios. All computers comprise a combination of hardware components, ranging from internal components, such as the central processing unit (CPU) and main memory, to peripherals. To produce effective and efficient programs to run on hardware, it is important to understand how the components work independently and together to produce a system that can be used. Hardware needs software to be able to perform a task. Software allows hardware to become functional. This enables the user to communicate with the hardware to perform tasks.

[image:] Data representation and structures

Computers use binary and understanding how a binary number can be interpreted in many different ways is important. Programming requires an understanding of how data can be organised for efficient access and/or transfer.

Additional support

The Programming Skills Workbook provides practice for the programming papers and includes exercises designed to give students the necessary experience of working in one of the three prescribed high-level programming languages: Java (Console mode), Visual Basic and Python (Console mode). It is a write-in workbook designed to be used throughout the course.

Answers to questions are available in the Online Teacher’s Guide.

1 Information representation and multimedia

[image:]

In this chapter, you will learn about

• binary magnitudes, binary prefixes and decimal prefixes

• binary, denary and hexadecimal number systems

• how to carry out binary addition and subtraction

• the use of hexadecimal and binary coded decimal (BCD) number systems

• the representation of character sets (such as ASCII and Unicode)

• how data for a bit-mapped image is encoded

• how to estimate the file size for a bit-map image

• image resolution and colour depth

• encoding of vector graphics

• the representation of sound in a computer

• the effects of changing sampling rate and resolution on sound quality

• the need for file compression methods (such as lossy and lossless formats)

• how to compress common file formats (such as text files, bit-map images, vector graphics, sound files and video files).

[image:]

WHAT YOU SHOULD ALREADY KNOW

Try these four questions before you read this chapter.

1 What are the column weightings for the binary number system?

2 Carry out these binary additions. Convert your answers to denary.

 a) 0 0 1 1 0 1 0 1 + 0 1 0 0 1 0 0 0

 b) 0 1 0 0 1 1 0 1 + 0 1 1 0 1 1 1 0

 c) 0 1 0 1 1 1 1 1 + 0 0 0 1 1 1 1 0

 d) 0 1 0 0 0 1 1 1 + 0 1 1 0 1 1 1 1

 e) 1 0 0 0 0 0 0 1 + 0 1 1 1 0 1 1 1

 f) 1 0 1 0 1 0 1 0 + 1 0 1 0 1 0 1 0

3 What are the column weightings for the hexadecimal (base 16) number system?

4 Carry out these hexadecimal additions. Convert your answers to denary.

 a) 1 0 7 + 2 5 7

 b) 2 0 8 + A 1 7

 c) A A A + 7 7 7

 d) 1 F F + 7 F 7

 e) 1 4 9 + F 0 F

 f) 1 2 5 1 + 2 5 6 7

 g) 3 4 A B + C 0 0 A

 h) A 0 0 1 + D 7 7 F

 i) 1 0 0 9 + 9 F F 1

 j) 2 7 7 7 + A C F 1

[image:] 1.1 Data representation

[image:]

Key terms

Binary – base two number system based on the values 0 and 1 only.

Bit – abbreviation for binary digit.

One’s complement – each binary digit in a number is reversed to allow both negative and positive numbers to be represented.

Two’s complement – each binary digit is reversed and 1 is added in right-most position to produce another method of representing positive and negative numbers.

Sign and magnitude – binary number system where left-most bit is used to represent the sign (0 = + and 1 = –); the remaining bits represent the binary value.

Hexadecimal – a number system based on the value 16 (uses the denary digits 0 to 9 and the letters A to F).

Memory dump – contents of a computer memory output to screen or printer.

Binary-coded decimal (BCD) – number system that uses 4 bits to represent each denary digit.

ASCII code – coding system for all the characters on a keyboard and control codes.

Character set – a list of characters that have been defined by computer hardware and software. It is necessary to have a method of coding, so that the computer can understand human characters.

Unicode – coding system which represents all the languages of the world (first 128 characters are the same as ASCII code).

[image:]

1.1.1 Number systems

Every one of us is used to the decimal or denary (base 10) number system. This uses the digits 0 to 9 which are placed in ‘weighted’ columns.

[image:]

The denary number represented above is thirty-one thousand, four hundred and twenty-one.

(Note that dealing with decimal fractions is covered in Chapter 13 since this is slightly more complex.)

Designers of computer systems adopted the binary (base 2) number system since this allows only two values, 0 and 1. No matter how complex the system, the basic building block in all computers is the binary number system. Since computers contain millions and millions of tiny ‘switches’, which must be in the ON or OFF position, this lends itself logically to the binary system. A switch in the ON position can be represented by 1; a switch in the OFF position can be represented by 0. Each of the binary digits are known as bits.

1.1.2 Binary number system

The binary system uses 1s and 0s only which gives these corresponding weightings:

[image:]

A typical binary number would be:

[image:]

Converting from binary to denary and from denary to binary

It is fairly straightforward to change a binary number into a denary number. Each time a 1 appears in a column, the column value is added to the total. For example, the binary number above is:

[image:]

The 0 values are simply ignored when calculating the total.

The reverse operation – converting from denary to binary – is slightly more complex. There are two basic ways of doing this.

Consider the conversion of the denary number, 107, into binary …

Method 1

This method involves placing 1s in the appropriate position so that the total equates to 107.

[image:]

[image:]

ACTIVITY 1A

Convert these binary numbers into denary.

a) 0 0 1 1 0 0 1 1

b) 0 1 1 1 1 1 1 1

c) 1 0 0 1 1 0 0 1

d) 0 1 1 1 0 1 0 0

e) 1 1 1 1 1 1 1 1

f) 0 0 0 0 1 1 1 1

g) 1 0 0 0 1 1 1 1

h) 0 0 1 1 0 0 1 1

i) 0 1 1 1 0 0 0 0

j) 1 1 1 0 1 1 1 0

[image:]

Method 2

This method involves successive division by 2; the remainders are then written from bottom to top to give the binary value.

[image:]

[image:]

ACTIVITY 1B

Convert these denary numbers into binary (using either method).

a) 4 1

b) 6 7

c) 8 6

d) 1 0 0

e) 1 1 1

f) 1 2 7

g) 1 4 4

h) 1 8 9

i) 2 0 0

j) 2 5 5

[image:]

Binary addition and subtraction

Up until now we have assumed all binary numbers have positive values. There are a number of methods to represent both positive and negative numbers. We will consider:

• one’s complement

• two’s complement.

In one’s complement, each digit in the binary number is inverted (in other words, 0 becomes 1 and 1 becomes 0). For example, 0 1 0 1 1 0 1 0 (denary value 90) becomes 1 0 1 0 0 1 0 1 (denary value −90).

In two’s complement, each digit in the binary number is inverted and a ‘1’ is added to the right-most bit. For example, 0 1 0 1 1 0 1 0 (denary value 90) becomes:

[image:]

Throughout the remainder of this chapter, we will use the two’s complement method to avoid confusion. Also, two’s complement makes binary addition and subtraction more straightforward. The reader is left to investigate one’s complement and the sign and magnitude method in binary arithmetic.

Now that we are introducing negative numbers, we need a way to represent these in binary. The two’s complement uses these weightings for an 8-bit number representation:

[image:]

This means:

[image:]

The first example is: −128 + 64 + 16 + 8 + 2 = −38

[image:]

EXTENSION ACTIVITY 1A

Show the column headings for a system that uses 16 bits to represent a binary number.

[image:]

The second example is: 32 + 4 + 2 = 38

The easiest way to convert a number into its negative equivalent is to use two’s complement. For example, 104 in binary is 0 1 1 0 1 0 0 0.

To find the binary value for −104 using two’s complement:

[image:]

[image:]

ACTIVITY 1C

Convert these denary numbers into 8-bit binary numbers using two’s complement where necessary. Use these binary column weightings:

[image:]

a) +114

b) +61

c) +96

d) −14

e) −116

[image:]

Binary addition

Consider Examples 1.1 and 1.2.

[image:]

Example 1.1

Add 0 0 1 0 0 1 0 1 (37 in denary) and 0 0 1 1 1 0 1 0 (58 in denary).

Solution

[image:]

This gives us 0 1 0 1 1 1 1 1, which is 95 in denary; the correct answer.

[image:]

[image:]

Example 1.2

Add 0 1 0 1 0 0 1 0 (82 in denary) and 0 1 0 0 0 1 0 1 (69 in denary).

Solution

[image:]

This gives us 1 0 0 1 0 1 1 1, which is –105 in denary (which is clearly nonsense). When adding two positive numbers, the result should always be positive (likewise, when adding two negative numbers, the result should always be negative). Here, the addition of two positive numbers has resulted in a negative answer. This is due to the result of the addition producing a number which is outside the range of values which can be represented by the 8 bits being used (in this case +127 is the largest value which can be represented, and the calculation produces the value 151, which is larger than 127 and, therefore, out of range). This causes overflow; it is considered in more detail in Chapter 13.

[image:]

Binary subtraction

To carry out subtraction in binary, we convert the number being subtracted into its negative equivalent using two’s complement, and then add the two numbers.

[image:]

Example 1.3

Carry out the subtraction 95 – 68 in binary.

Solution

1 Convert the two numbers into binary:

95 = 0 1 0 1 1 1 1 1

68 = 0 1 0 0 0 1 0 0

2 Find the two’s complement of 68:

[image:]

3 Add 95 and −68:

[image:]

The additional ninth bit is simply ignored leaving the binary number 0 0 0 1 1 0 1 1 (denary equivalent of 27, which is the correct result of the subtraction).

[image:]

[image:]

Example 1.4

Carry out the subtraction 49 – 80 in binary.

Solution

1 Convert the two numbers into binary:

49 = 0 0 1 1 0 0 0 1

80 = 0 1 0 1 0 0 0 0

2 Find the two’s complement of 80:

[image:]

3 Add 49 and −80:

[image:]

This gives us 1 1 1 0 0 0 0 1, which is −31 in denary; the correct answer.

[image:]

[image:]

ACTIVITY 1D

Carry out these binary additions and subtractions using these 8-bit column weightings:

[image:]

a) 0 0 1 1 1 0 0 1 + 0 0 1 0 1 0 0 1

b) 0 1 0 0 1 0 1 1 + 0 0 1 0 0 0 1 1

c) 0 1 0 1 1 0 0 0 + 0 0 1 0 1 0 0 0

d) 0 1 1 1 0 0 1 1 + 0 0 1 1 1 1 1 0

e) 0 0 0 0 1 1 1 1 + 0 0 0 1 1 1 0 0

f) 0 1 1 0 0 0 1 1 − 0 0 1 1 0 0 0 0

g) 0 1 1 1 1 1 1 1 − 0 1 0 1 1 0 1 0

h) 0 0 1 1 0 1 0 0 − 0 1 0 0 0 1 0 0

i) 0 0 0 0 0 0 1 1 − 0 1 1 0 0 1 0 0

j) 1 1 0 1 1 1 1 1 − 1 1 0 0 0 0 1 1

[image:]

Measurement of the size of computer memories

The byte is the smallest unit of memory in a computer. Some computers use larger bytes, such as 16-bit systems and 32-bit systems, but they are always multiples of 8. 1 byte of memory wouldn’t allow you to store very much information; so memory size is measured in these multiples. See Table 1.1.

	
Name of memory size

	Equivalent denary value (bytes)

	1 kilobyte (1 KB)

	1 000

	1 megabyte (1 MB)

	1 000 000

	1 gigabyte (1 GB)

	1 000 000 000

	1 terabyte (1 TB)

	1 000 000 000 000

	1 petabyte (1 PB)

	1 000 000 000 000 000

Table 1.1 Memory size and denary values

The system of numbering shown in Table 1.1 only refers to some storage devices, but is technically inaccurate. It is based on the SI (base 10) system of units where 1 kilo is equal to 1000. A 1 TB hard disk drive would allow the storage of 1 × 1012 bytes according to this system. However, since memory size is actually measured in terms of powers of 2, another system has been proposed by the International Electrotechnical Commission (IEC); it is based on the binary system. See Table 1.2.

	Name of memory size

	Number of bytes

	Equivalent denary value (bytes)

	1 kibibyte (1 KiB)

	210

	1 024

	1 mebibyte (1 MiB)

	220

	1 048 576

	1 gibibyte (1 GiB)

	230

	1 073 741 824

	1 tebibyte (1 TiB)

	240

	1 099 511 627 776

	1 pebibyte (1 PiB)

	250

	1 125 899 906 842 624

Table 1.2 IEC memory size system

This system is more accurate. Internal memories (such as RAM) should be measured using the IEC system. A 64 GiB RAM could, therefore, store 64 × 230 bytes of data (68 719 476 736 bytes).

See Section 1.2 for examples of how to calculate the size of a file.

1.1.3 Hexadecimal number system

The hexadecimal system is very closely related to the binary system. Hexadecimal (sometimes referred to as simply hex) is a base 16 system with the weightings:

[image:]

Because it is a system based on 16 different digits, the numbers 0 to 9 and the letters A to F are used to represent hexadecimal digits.

A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15.

Since 16 = 24, four binary digits are equivalent to each hexadecimal digit. Table 1.3 summarises the link between binary, hexadecimal and denary.

	
Binary value

	Hexadecimal value

	Denary value

	0 0 0 0

	0

	 0

	0 0 0 1

	1

	 1

	0 0 1 0

	2

	 2

	0 0 1 1

	3

	 3

	0 1 0 0

	4

	 4

	0 1 0 1

	5

	 5

	0 1 1 0

	6

	 6

	0 1 1 1

	7

	 7

	1 0 0 0

	8

	 8

	1 0 0 1

	9

	 9

	1 0 1 0

	A

	10

	1 0 1 1

	B

	11

	1 1 0 0

	C

	12

	1 1 0 1

	D

	13

	1 1 1 0

	E

	14

	1 1 1 1

	F

	15

Table 1.3 The link between binary, hexadecimal and denary

Converting from binary to hexadecimal and from hexadecimal to binary

Converting from binary to hexadecimal is a fairly easy process. Starting from the right and moving left, split the binary number into groups of 4 bits. If the last group has less than 4 bits, then simply fill in with 0s from the left. Take each group of 4 bits and convert it into the equivalent hexadecimal digit using Table 1.3.

Examples 1.5 and 1.6 show you how this works.

[image:]

Example 1.5

Convert 1 0 1 1 1 1 1 0 0 0 0 1 from binary to hexadecimal.

Solution

First split it into groups of 4 bits:

[image:]

Then find the equivalent hexadecimal digits:

[image:]

[image:]

[image:]

Example 1.6

Convert 1 0 0 0 0 1 1 1 1 1 1 1 0 1 from binary to hexadecimal.

Solution

First split it into groups of 4 bits:

[image:]

The left group only contains 2 bits, so add in two 0s to the left:

[image:]

Now find the equivalent hexadecimal digits:

[image:]

[image:]

[image:]

ACTIVITY 1E

Convert these binary numbers into hexadecimal.

a) 1 1 0 0 0 0 1 1

b) 1 1 1 1 0 1 1 1

c) 1 0 0 1 1 1 1 1 1 1

d) 1 0 0 1 1 1 0 1 1 1 0

e) 0 0 0 1 1 1 1 0 0 0 0 1

f) 1 0 0 0 1 0 0 1 1 1 1 0

g) 0 0 1 0 0 1 1 1 1 1 1 1 0

h) 0 1 1 1 0 1 0 0 1 1 1 0 0

i) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

j) 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0

[image:]

Converting from hexadecimal to binary is also straightforward. Using the data from Table 1.3, simply take each hexadecimal digit and write down the 4 bit code which corresponds to the digit.

[image:]

Example 1.7

Convert this hexadecimal number to its binary equivalent.

4 5 A

Solution

Using Table 1.3, find the 4-bit code for each digit:

0 1 0 0 0 1 0 1 1 0 1 0

Put the groups together to form the binary number:

0 1 0 0 0 1 0 1 1 0 1 0

[image:]

[image:]

Example 1.8

Convert this hexadecimal number to its binary equivalent.

B F 0 8

Solution

Using Table 1.3:

1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

Then put all the digits together:

1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

[image:]

Use of the hexadecimal system

This section reviews two uses of the hexadecimal system.

Memory dumps

It is much easier to work with:

B 5 A 4 1 A F C

than it is to work with:

1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0

So, hexadecimal is often used when developing new software or when trying to trace errors in programs. When the memory contents are output to a printer or monitor, this is known as a memory dump.

[image:]

ACTIVITY 1F

Convert these hexadecimal numbers into binary.

a) 6 C

b) 5 9

c) A A

d) A 0 0

e) 4 0 E

f) B A 6

g) 9 C C

h) 4 0 A A

i) D A 4 7

j) 1 A B 0

[image:]

A program developer can look at each of the hexadecimal codes (as shown in Table 1.4) and determine where the error lies. The value on the far left shows the memory location, so it is possible to find out exactly where in memory the fault occurs. Using hexadecimal is more manageable than binary. It is a powerful fault-tracing tool, but requires considerable knowledge of computer architecture to be able to interpret the results.

[image:]

Table 1.4 Memory dump

1.1.4 Binary-coded decimal (BCD) system

The binary-coded decimal (BCD) system uses a 4-bit code to represent each denary digit:

[image:]

Therefore, the denary number 3 1 6 5 would be 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 in BCD format.

The 4-bit code can be stored in the computer either as half a byte or two 4-bit codes stored together to form one byte. For example, using 3 1 6 5 again …

Method 1: four single bytes

[image:]

Method 2: two bytes

[image:]

[image:]

ACTIVITY 1G

1 Convert these denary numbers into BCD format.

 a) 2 7 1

 b) 5 0 0 6

 c) 7 9 9 0

2 Convert these BCD numbers into denary numbers.

 a) 1 0 0 1 0 0 1 1 0 1 1 1

 b) 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0

[image:]

Uses of BCD

The most obvious use of BCD is in the representation of digits on a calculator or clock display.

[image:]

Each denary digit will have a BCD equivalent value which makes it easy to convert from computer output to denary display.

As you will learn in Chapter 13, it is nearly impossible to represent decimal values exactly in computer memories which use the binary number system. Normally this doesn’t cause a major issue since the differences can be dealt with. However, when it comes to accounting and representing monetary values in computers, exact values need to be stored to prevent significant errors from accumulating. Monetary values use a fixed-point notation, for example $1.31, so one solution is to represent each denary digit as a BCD value.

Consider adding $0.37 and $0.94 together using fixed-point decimals.

[image:]

Using binary addition, this sum will produce:

0 0 0 0 0 0 0 0 . 1 1 0 0 1 0 1 1 which produces 1 1 0 0 (denary 12) and 1 0 1 1 (denary 11), which is clearly incorrect. The problem was caused by 3 + 9 = 12 and 7 + 4 = 11, as neither 12 nor 11 are single denary digits. The solution to this problem, enabling the computer to store monetary values accurately, is to add 0 1 1 0 (denary 6) whenever such a problem arises. The computer can be programmed to recognise this issue and add 0 1 1 0 at each appropriate point.

If we look at the example again, we can add .07 and .04 (the two digits in the second decimal place) first.

[image:]

Now we will add .3 and .9 together (the two digits in the first decimal place) remembering the carry bit from the addition above:

[image:]

This produces 1 1 0 1 which isn’t a denary digit; this will flag an error and the computer again needs to add 0 1 1 0.

[image:]

Adding 1 to 0 0 0 0 0 0 0 0 produces:

[image:]

Final answer:

[image:]

which is 1.31 in denary – the correct answer.

[image:]

ACTIVITY 1H

Carry out these BCD additions.

a) 0.45 + 0.21

b) 0.66 + 0.51

c) 0.88 + 0.75

[image:]

1.1.5 ASCII codes and Unicodes

The ASCII code system (American Standard Code for Information Interchange) was set up in 1963 for use in communication systems and computer systems. The newer version of the code was published in 1986. The standard ASCII code character set consists of 7-bit codes (0 to 127 denary or 0 to 7F in hexadecimal); this represents the letters, numbers and characters found on a standard keyboard together with 32 control codes (which use up codes 0 to 31 (denary) or 0 to 19 (hexadecimal)).

Table 1.5 shows part of the standard ASCII code table (only the control codes have been removed from the table).

[image:]

▲ Table 1.5 Part of the ASCII code table

Notice the storage of characters with uppercase and lowercase. For example:

[image:]

Notice the sixth bit changes from 1 to 0 when comparing lower and uppercase characters. This makes the conversion between the two an easy operation. It is also noticeable that the character sets (such as a to z, 0 to 9, and so on) are grouped together in sequence, which speeds up usability.

Extended ASCII uses 8-bit codes (128 to 255 in denary or 80 to FF in hex). This allows for non-English characters and for drawing characters to be included.

Since ASCII code has a number of disadvantages and is unsuitable for some purposes, different methods of coding have been developed over the years. One coding system is called Unicode. Unicode allows characters in a code form to represent all languages of the world, thus supporting many operating systems, search engines and internet browsers used globally. There is overlap with standard ASCII code, since the first 128 (English) characters are the same, but Unicode can support several thousand different characters in total. As can be seen in Tables 1.5 and 1.6, ASCII uses one byte to represent a character, whereas Unicode will support up to four bytes per character.

[image:]

▲ Table 1.6 Extended ASCII code table

The Unicode consortium was set up in 1991. Version 1.0 was published with five goals, these were to

• create a universal standard that covered all languages and all writing systems

• produce a more efficient coding system than ASCII

• adopt uniform encoding where each character is encoded as 16-bit or 32-bit code

• create unambiguous encoding where each 16-bit or 32-bit value always represents the same character (it is worth pointing out here that the ASCII code tables are not standardised and versions other than the ones shown in tables 1.5 and 1.6 exist)

• reserve part of the code for private use to enable a user to assign codes for their own characters and symbols (useful for Chinese and Japanese character sets).

A sample of Unicode characters are shown in Table 1.7. As can be seen from the table, characters used in languages such as Russian, Greek, Romanian and Croatian can now be represented in a computer).

[image:]

▲ Table 1.7 Sample of Unicode characters

1.2 Multimedia

[image:]

Key terms

Bit-map image – system that uses pixels to make up an image.

Pixel – smallest picture element that makes up an image.

Colour depth – number of bits used to represent the colours in a pixel, e.g. 8 bit colour depth can represent 28 = 256 colours.

Bit depth – number of bits used to represent the smallest unit in, for example, a sound or image file – the larger the bit depth, the better the quality of the sound or colour image.

Image resolution – number of pixels that make up an image, for example, an image could contain 4096 × 3192 pixels (12 738 656 pixels in total).

Screen resolution – number of horizontal and vertical pixels that make up a screen display. If the screen resolution is smaller than the image resolution, the whole image cannot be shown on the screen, or the original image will become lower quality.

Resolution – number of pixels per column and per row on a monitor or television screen.

Pixel density – number of pixels per square centimetre.

Vector graphics – images that use 2D points to describe lines and curves and their properties that are grouped to form geometric shapes.

Sampling resolution – number of bits used to represent sound amplitude (also known as bit depth).

Sampling rate – number of sound samples taken per second.

Frame rate – number of video frames that make up a video per second.

[image:]

Images can be stored in a computer in two common formats: bit-map image and vector graphic.

1.2.1 Bit-map images

Bit-map images are made up of pixels (picture elements); the image is stored in a two-dimensional matrix of pixels.

Pixels can take different shapes, such as [image:] or [image:]

When storing images as pixels, we have to consider

• at least 8 bits (1 byte) per pixel are needed to code a coloured image (this gives 256 possible colours by varying the intensity of the blue, green and red elements)

• true colour requires 3 bytes per pixel (24 bits), which gives more than one million colours

• the number of bits used to represent a pixel is called the colour depth.

[image:]

EXTENSION ACTIVITY 1B

Find out how HTML is used to control the colour of each pixel on a screen. How is HTML used in the design stage of a web page screen layout?

[image:]

In terms of images, we need to distinguish between bit depth and colour depth; for example, the number of bits that are used to represent a single pixel (bit depth) will determine the colour depth of that pixel. As the bit depth increases, the number of possible colours which can be represented also increases. For example, a bit depth of 8 bits per pixel allows 256 (28) different colours (the colour depth) to be represented, whereas using a bit depth of 32 bits per pixel results in 4 294 967 296 (232) different colours. The impact of bit depth and colour depth is considered later.

We will now consider the actual image itself and how it can be displayed on a screen. There are two important definitions here:

• Image resolution refers to the number of pixels that make up an image; for example, an image could contain 4096 × 3192 pixels (12 738 656 pixels in total).

• Screen resolution refers to the number of horizontal pixels and the number of vertical pixels that make up a screen display (for example, if the screen resolution is smaller than the image resolution then the whole image cannot be shown on the screen or the original image will now be a lower quality).

We will try to clarify the difference by using an example.

Figure 1.1 has been taken by a digital camera using an image resolution of 4096 × 3192 pixels:

[image:]

Figure 1.1 Image taken by a digital camera

Suppose we wish to display Figure 1.1 on a screen with screen resolution of 1920 × 1080. To display this image the web browser (or other software) would need to re-size Figure 1.1 so that it now fits the screen. This could be done by removing pixels so that it could now be displayed, or part of the image could be cropped (and, in this case, rotated through 90°) as shown in Figure 1.2.

[image:]

Figure 1.2 Image cropped and rotated through 90°

However, a lower resolution copy of Figure 1.1 (for example, 1024 × 798) would now fit on the screen without any modification to the image. We could simply zoom in to enlarge it to full screen size; however, the image could now become pixelated (in other words, the number of pixels per square inch (known as the pixel density) is smaller, causing deterioration in the image quality).

We will now consider a calculation which shows how pixel density can be calculated for a given screen. Imagine we are using an Apple iPhone 8 which has 5.5-inch screen size and screen resolution of 1920 pixels × 1080 pixels:

1 add together the squares of the resolution size ((19202 + 10802) = (3 686 400 + 16 640) = 4 852 800)

2 find the square root [image:]

3 divide by screen size (2202.907 ÷ 5.5 = 401)

This gives us the pixel density of 401 pixels per square inch (ppi) (which is the same as the published figure from the manufacturer).

A pixel-generated image can be scaled up or scaled down; it is important to understand that this can be done when deciding on the resolution. The resolution can be varied on many cameras before taking, for example, a digital photograph. When magnifying an image, the number of pixels that makes up the image remains the same but the area they cover is now increased. This means some of the sharpness could be lost. This is known as the pixel density and is key when scaling up photographs. For example, look at Figure 1.3.

[image:]

Figure 1.3 Five images of the same car wheel

Image A is the original. By the time it has been scaled up to make image E it has become pixelated (‘fuzzy’). This is because images A and E have different pixel densities.

The main drawback of using high resolution images is the increase in file size. As the number of pixels used to represent the image is increased, the size of the file will also increase. This impacts on how many images can be stored on, for example, a hard drive. It also impacts on the time to download an image from the internet or the time to transfer images from device to device. Bit-map images rely on certain properties of the human eye and, up to a point, the amount of file compression used (see Section 1.3 File compression). The eye can tolerate a certain amount of resolution reduction before the loss of quality becomes significant.

Calculating bit-map image file sizes

It is possible to estimate the file size needed to store a bit-map image. The file size will need to take into account the image resolution and bit depth.

For example, a full screen with a resolution of 1920 × 1080 pixels and a bit depth of 24 requires 1920 × 1080 × 24 bits = 49 766 400 bits for the full screen image.

[image:]

EXTENSION ACTIVITY 1C

Calculate the file size needed to store the screen image on a UHD television.

[image:]

Dividing by 8 gives us 6 220 800 bytes (equivalent to 6.222 MB using the SI units or 5.933 MiB using IEE units). An image which does not occupy the full screen will obviously result in a smaller file size.

Note: when saving a bit-map image, it is important to include a file header; this will contain items such as file type (.bmp or .jpeg), file size, image resolution, bit depth (usually 1, 8, 16, 24 or 32), any type of data compression employed and so on.

1.2.2 Vector graphics

Vector graphics are images that use 2D points to describe lines and curves and their properties that are grouped to form geometric shapes. Vector graphics can be designed using computer aided design (CAD) software or using an application which uses a drawing canvas on the screen. See Figure 1.4.

[image:]

Figure 1.4 Drawing of a robot made up of a number of geometric shapes

A vector graphic will contain a drawing list (included in a file header) that is made up of

• the command used for each object that makes up the graphic image

• the attributes that define the properties that make up each object (for example consider the ellipse of the robot’s mouth – this will need the position of the two centres, the radius from centres, the thickness and style of each line, the line colour and any fill colour used)

• the relative position of each object will also need to be included

• the dimensions of each object are not defined, but the relative positions of objects to each other in the final graphic need to be defined; this means that scaling up the vector graphic image will result in no loss of quality.

When printing out vector graphics it is usually necessary to first convert it into a bit-map image to match the format of most printers.

Comparison between vector graphics and bit-map images

	Vector graphic images

	Bit-map images

	made up of geometric shapes which require definition/attributes

	made up of tiny pixels of different colours

	to alter/edit the design, it is necessary to change each of the geometric shapes

	possible to alter/edit each of the pixels to change the design of the image

	they do not require large file size since it is made up of simple geometric shapes

	because of the use of pixels (which give very accurate designs), the file size is very large

	because the number of geometric shapes is limited, vector graphics are not usually very realistic

	since images are built up pixel by pixel, the final image is usually very realistic

	file formats are usually .svg, .cgm, .odg

	file formats are usually .jpeg, .bmp, .png

Table 1.8 Comparison between vector graphics and bit-map images

It is now worth considering whether a vector graphic or a bit-map image would be the best choice for a given application. When deciding which is the better method, we should consider the following:

• Does the image need to be resized? If so, a vector graphic could be the best option.

• Does the image need to be drawn to scale? Again, a vector graphic is probably the best option.

• Does the image need to look real? Usually bit-map images look more realistic than vector graphics.

• Are there file restrictions? If so, it is important to consider whether vector graphic images can be used; if not, it would be necessary to consider the image resolution of a bit-map image to ensure the file size is not too large.

For example, when designing a logo for a company or composing an ‘exploded diagram’ of a car engine, vector graphics are the best choice.

However, when modifying photographs using photo software, the best method is to use bit-map images.

1.2.3 Sound files

Sound requires a medium in which to travel through (it cannot travel in a vacuum). This is because it is transmitted by causing oscillations of particles within the medium. The human ear picks up these oscillations (changes in air pressure) and interprets them as sound. Each sound wave has a frequency and wavelength; the amplitude specifies the loudness of the sound.

[image:]

Figure 1.5 High and low frequency wave signals

Sound is an analogue value; this needs to be digitised in order to store sound in a computer. This is done using an analogue to digital converter (ADC). If the sound is to be used as a music file, it is often filtered first to remove higher frequencies and lower frequencies which are outside the range of human hearing. To convert the analogue data to digital, the sound waves are sampled at a given time rate. The amplitude of the sound cannot be measured precisely, so approximate values are stored.

[image:]

Figure 1.6 A sound wave

Figure 1.6 shows a sound wave. The x-axis shows the time intervals when the sound was sampled (0 to 20), and the y-axis shows the amplitude of the sampled sound (the amplitudes above 10 and below 0 are filtered out in this example).

At time interval 1, the approximate amplitude is 9; at time interval 2, the approximate amplitude is 4, and so on for all 20 time intervals. Because the amplitude range in Figure 1.6 is 0 to 10, then 4 binary bits can be used to represent each amplitude value (for example, 9 would be represented by the binary value 1001). Increasing the number of possible values used to represent sound amplitude also increases the accuracy of the sampled sound (for example, using a range of 0 to 127 gives a much more accurate representation of the sound sample than using a range of, for example, 0 to 10). This is known as the sampling resolution (also known as the bit depth).

Sampling rate is the number of sound samples taken per second. The higher the sampling rate and/or sampling resolution, the greater the file size. For example, a 16-bit sampling resolution is used when recording CDs to give better sound quality.

So, how is sampling used to record a sound clip?

• The amplitude of the sound wave is first determined at set time intervals (the sampling rate).

• This gives an approximate representation of the sound wave.

• The sound wave is then encoded as a series of binary digits.

Using a higher sampling rate or larger resolution will result in a more faithful representation of the original sound source.

	Pros

	Cons

	larger dynamic range

	produces larger file size

	better sound quality

	takes longer to transmit/download sound files

	less sound distortion

	requires greater processing power

Table 1.9 The pros and cons of using a larger sampling resolution when recording sound

Recorded sound is often edited using software. Common features of such software include the ability to

• edit the start/stop times and duration of a sample

• extract and save (or delete) part of a sample

• alter the frequency and amplitude of a sample

• fade in and fade out

• mix and/or merge multiple sound tracks or sources

• combine various sound sources together and alter their properties

• remove ‘noise’ to enhance one sound wave in a multiple of waves (for example, to identify and extract one person’s voice out of a group of people)

• convert between different audio formats.

1.2.4 Video

This section considers the use of video and extends beyond the syllabus. While this is not specifically mentioned in the syllabus, it has been included here for completeness. Many specialist video cameras exist. However, most digital cameras, smart phones and tablets are also capable of taking moving images by ‘stitching’ a number of still photos (frames) together. They are often referred to as DV (digital video) cameras; they store compressed photo frames at a speed of 25 MB per second – this is known as motion JPEG.

In both single frame and video versions, the camera picks up the light from the image and turns it into an electronic signal using light-sensitive sensors. In the case of the DV cameras, these signals are automatically converted into a compressed digital file format.

When recording video, the frame rate refers to the number of frames recorded per second.

1.3 File compression

[image:]

Key terms

Lossless file compression – file compression method where the original file can be restored following decompression.

Lossy file compression – file compression method where parts of the original file cannot be recovered during decompression, so some of the original detail is lost.

JPEG – Joint Photographic Expert Group – a form of lossy file compression based on the inability of the eye to spot certain colour changes and hues.

MP3/MP4 files – file compression method used for music and multimedia files.

Audio compression – method used to reduce the size of a sound file using perceptual music shaping.

Perceptual music shaping – method where sounds outside the normal range of hearing of humans, for example, are eliminated from the music file during compression.

Bit rate – number of bits per second that can be transmitted over a network. It is a measure of the data transfer rate over a digital telecoms network.

Run length encoding (RLE) – a lossless file compression technique used to reduce text and photo files in particular.

[image:]

It is often necessary to reduce the file size of a file to either save storage space or to reduce the time taken to stream or transmit data from one device to another (see Chapter 2). The two most common forms of file compression are lossless file compression and lossy file compression.

Lossless file compression

With this technique, all the data from the original file can be reconstructed when the file is uncompressed again. This is particularly important for files where loss of any data would be disastrous (such as a spreadsheet file of important results).

Lossy file compression

With this technique, the file compression algorithm eliminates unnecessary data (as with MP3 and JPEG formats, for example).

Lossless file compression is designed to lose none of the original detail from the file (such as Run-Length Encoding (RLE) which is covered later in this chapter). Lossy file compression usually results in some loss of detail when compared to the original; it is usually impossible to reconstruct the original file. The algorithms used in the lossy technique have to decide which parts of the file are important (and need to be kept) and which parts can be discarded.

We will now consider file compression techniques applied to multimedia files.

1.3.1 File compression applications

MPEG-3 (MP3) and MPEG-4 (MP4)

MPEG-3 (MP3) uses technology known as audio compression to convert music and other sounds into an MP3 file format. Essentially, this compression technology will reduce the size of a normal music file by about 90%. For example, an 80 MB music file on a CD can be reduced to 8 MB using MP3 technology.

MP3 files are used in MP3 players, computers or mobile phones. Music files can be downloaded or streamed from the internet in a compressed format, or CD files can be converted to MP3 format. While streamed or MP3 music quality can never match the ‘full’ version found on a CD, the quality is satisfactory for most purposes.

But how can the original music file be reduced by 90% while still retaining most of the music quality? This is done using file compression algorithms that use perceptual music shaping.

Perceptual music shaping removes certain sounds. For example

• frequencies that are outside the human hearing range

• if two sounds are played at the same time, only the louder one can be heard by the ear, so the softer sound is eliminated.

This means that certain parts of the music can be removed without affecting the quality too much. MP3 files use what is known as a lossy format, since part of the original file is lost following the compression algorithm. This means that the original file cannot be put back together again. However, even the quality of MP3 files can be different, since it depends on the bit rate – this refers to the number of bits per second used when creating the file. Bit rates are between 80 and 320 kilobits per second; usually 200 kilobits or higher gives a sound quality close to a normal CD.

MPEG-4 (MP4) files are slightly different to MP3 files. This format allows the storage of multimedia files rather than just sound. Music, videos, photos and animation can all be stored in the MP4 format. Videos, for example, could be streamed over the internet using the MP4 format without losing any real discernible quality (see Chapter 2 for notes on video streaming).

[image:]

EXTENSION ACTIVITY 1D

Find out how file compression can be applied to a photograph without noticeably reducing its quality. Compare this to run-length encoding (RLE), described below.

[image:]

Photographic (bit-map) images

When a photographic file is compressed, both the file size and quality of image are reduced. A common file format for images is JPEG, which uses lossy file compression. Once the image is subjected to the JPEG compression algorithm, a new file is formed and the original file can no longer be constructed. A JPEG will reduce the raw bit-map image by a factor of between 5 and 15, depending on the quality of the original.

Vector graphics can also undergo some form of file compression. Scalable vector graphics (.svg) are defined in XML text files which, therefore, allows them to be compressed.

Run-length encoding (RLE)

Run-length encoding (RLE) can be used to compress a number of different file formats.

It is a form of lossless/reversible file compression that reduces the size of a string of adjacent, identical data (such as repeated colours in an image).

A repeating string is encoded into two values.

The first value represents the number of identical data items (such as characters) in the run. The second value represents the code of the data item (such as ASCII code if it is a keyboard character).

RLE is only effective where there is a long run of repeated units/bits.

Using RLE on text data

Consider the text string ‘aaaaabbbbccddddd’.

Assuming each character requires 1 byte, then this string needs 16 bytes. If we assume ASCII code is being used, then the string can be coded as follows:

[image:]

This means we have five characters with ASCII code 97, four characters with ASCII code 98, two characters with ASCII code 99, and five characters with ASCII code 100. Assuming each number in the second row requires 1 byte of memory, the RLE code will need 8 bytes. This is half the original file size.

One issue occurs with a string such as ‘cdcdcdcdcd’, where compression is not very effective. To cope with this we use a flag. A flag preceding data indicates that what follows are the number of repeating units (for example, 255 05 97 where 255 is the flag and the other two numbers indicate that there are five items with ASCII code 97). When a flag is not used, the next byte(s) are taken with their face value and a run of 1 (for example, 01 99 means one character with ASCII code 99 follows).

Consider this example:

[image:]

The original string contains 32 characters and would occupy 32 bytes of storage.

The coded version contains 18 values and would require 18 bytes of storage.

Introducing a flag (255 in this case) produces:

255 08 97 255 10 98 99 100 99 100 99 100 255 08 101

This has 15 values and would, therefore, require 15 bytes of storage. This is a reduction in file size of about 53%.

Using RLE with images

Black and white images

Figure 1.7 shows the letter F in a grid where each square requires 1 byte of storage. A white square has a value 1 and a black square a value of 0.

[image:]

Figure 1.7 Using RLE with a black and white image

The 8 × 8 grid would need 64 bytes; the compressed RLE format has 30 values, and therefore needs only 30 bytes to store the image.

Coloured images

Figure 1.8 shows an object in four colours. Each colour is made up of red, green and blue (RGB) according to the code on the right.

[image:]

Figure 1.8 Using RLE with a coloured image

This produces the following data:

2 0 0 0 4 0 255 0 3 0 0 0 6 255 255 255 1 0 0 0 2 0 255 0 4 255 0 0 4 0 255 0 1 255 255 255 2 255 0 0 1 255 255 255 4 0 255 0 4 255 0 0 4 0 255 0 4 255 255 255 2 0 255 0 1 0 0 0 2 255 255 255 2 255 0 0 2 255 255 255 3 0 0 0 4 0 255 0 2 0 0 0

The original image (8 × 8 square) would need 3 bytes per square (to include all three RGB values). Therefore, the uncompressed file for this image is 8 × 8 × 3 = 192 bytes.

The RLE code has 92 values, which means the compressed file will be 92 bytes in size. This gives a file reduction of about 52%. It should be noted that the file reductions in reality will not be as large as this due to other data which needs to be stored with the compressed file (such as a file header).

1.3.2 General methods of compressing files

All the above file compression techniques are excellent for very specific types of file. However, it is also worth considering some general methods to reduce the size of a file without the need to use lossy or lossless file compression:

[image:]

Figure 1.9 General methods of compressing files

[image:]

ACTIVITY 1I

1 a) What is meant by lossless and lossy file compression?

 b) Give an example of a lossless file format and an example of a lossy file format.

2 a) Describe how music picked up by a microphone is turned into a digitised music file in a computer.

 b) Explain why it is often necessary to compress stored music files. Describe how the music quality is essentially retained.

3 a) What is meant by run length encoding?

 b) Describe how RLE compresses a file. Give an example in your description.

4 a) Describe the differences between bit-map images and vector graphics.

 b) A software designer needs to incorporate images into her software to add realism.

Explain what she needs to consider when deciding between using bit-map images and vector graphics in her software.

[image:]

[image:]

End of chapter questions

1 a) The following bytes represent binary integers using the two’s complement form. State the equivalent denary values.

 i) 0 1 0 0 1 1 1 1

[1]

 ii) 1 0 0 1 1 0 1 0

[1]

 iii) Write the integer −53 in two’s complement form.

[1]

 iv) Write the maximum possible range of numbers using the two’s complement form of an 8-bit binary number.

Give your answers in denary.

[2]

b) i) Write the denary integer 798 in binary-coded decimal (BCD) format.

[1]

 ii) Write the denary number that is represented by the following BCD number.

[image:]

[2]

 c) Give one use of binary-coded decimal system.

[1]

2 A software developer is using a microphone and a sound editing app to collect and edit sounds for his new game.

When collecting sounds, the software developer can decide on the sampling resolution he wishes to use.

a) i) State what is meant by sampling resolution.

[1]

 ii) Describe how sampling resolution will affect how accurate the stored digitised sound will be.

[2]

 b) The software developer will include images in his new game.

 i) Explain the term image resolution.

[1]

 ii) The software developer is using 16-colour bit-map images.

State the number of bits required to encode data for one pixel of his image.

[1]

 iii) One of the images is 16 384 pixels wide and 512 pixels high.

The developer decides to save it as a 256-colour bit-map image.

Calculate the size of the image file in gibibytes.

[3]

 iv) The bit-map image will contain a header.

State two items you would expect to see in the header.

[2]

 v) Give three features you would expect to see in the sound editing app.

[3]

3 The editor of a movie is finalising the music score. They will send the final version of the score to the movie producer by email attachment.

 a) Describe how sampling is used to record the music sound clips.

[3]

 b) The music sound clips need to undergo some form of data compression before the music editor can send them via email.

Identify the type of compression, lossy or lossless, they should use.

Give a justification for your answer.

[3]

 c) One method of data compression is known as run length encoding (RLE).

 i) Explain what is meant by RLE.

[3]

 ii) Show how RLE would be used to produce a compressed file for the image below.

Write down the data you would expect to see in the RLE compressed format (you may assume that the grey squares have a code value of 85 and the white squares have a code value of 255).

[4]

[image:]

4 a) Write the denary numbers 60, 27 and −27 in 8-bit binary two’s complement form.

[3]

 b) Show the result of the addition 60 + 27 using 8-bit binary two’s complement form. Show all of your working.

[2]

 c) Show the result of the subtraction 60 − 27 using 8-bit binary two’s complement form.

[2]

 d) Give the result of the following addition.

0 1 0 1 1 0 0 1

+

0 1 1 0 0 0 0 1

Explain why the expected result is not obtained.

[2]

5 a) Carry out 0.52 + 0.83 using binary-coded decimal (BCD). Show all of your working.

[4]

 b) i) Define the term hexadecimal.

[1]

 ii) Give two uses of the hexadecimal system.

[2]

 iii) Convert the following binary number into hexadecimal.

 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0

[2]

6 a) Convert the denary number 95 into binary coded decimal (BCD).

[1]

 b) Using two’s complement, carry out the binary subtraction:

0 0 1 0 0 0 1 1 – 0 1 0 0 0 1 0 0

and convert your answer into denary.

[3]

 c) Convert the denary number 506 into hexadecimal.

[1]

2 Communication

[image:]

In this chapter, you will learn about

• the benefits of networking devices

• the characteristics of a local area network (LAN) and a wide area network (WAN)

• client-server and peer-to-peer models in networking

• the differences between thin client and thick client

• bus, star, mesh and hybrid networking topologies

• public and private cloud computing

• the differences between wired and wireless networks (including types of cable and wireless technologies)

• the hardware required to support a LAN

• the function of routers

• Ethernet and how data collisions are detected and avoided

• bit streaming (including differences between real-time and on-demand streaming of data)

• the differences between the internet and the World Wide Web (WWW)

• the hardware needed to support the internet

• IP addresses (including IPv4, IPv6, public IP addresses and private IP addresses)

• the use of the uniform resource locator (URL) to locate a resource on the world wide web

• the role of the domain name service (DNS).

[image:]

WHAT YOU SHOULD ALREADY KNOW

Try these three questions before you read this chapter.

1 a) Explain the following terms associated with devices connected to a network/internet.

i) MAC address

ii) IP address

b) Explain the main differences between a MAC address and an IP address and why it is necessary to have both associated with a device connected to the internet.

c) What is the purpose of an internet service provider (ISP)?

d) Explain the function of an internet browser. In what ways is this different to an ISP?

2 A college is about to form a network from 20 stand-alone computers. Describe the hardware and software that might be needed to produce this simple computer network.

3 a) Mobile phones and tablets can be configured to access the internet from any location. Describe the software required to allow this to happen.

b) Describe some of the benefits and drawbacks (when compared to a desktop PC) of accessing website pages from a mobile phone.

[image:] 2.1 Networking

[image:]

Key terms

ARPAnet – Advanced Research Projects Agency Network.

WAN – wide area network (network covering a very large geographical area).

LAN – local area network (network covering a small area such as a single building).

MAN – metropolitan area network (network which is larger than a LAN but smaller than a WAN, which can cover several buildings in a single city, such as a university campus).

File server – a server on a network where central files and other data are stored. They can be accessed by a user logged onto the network.

Hub – hardware used to connect together a number of devices to form a LAN that directs incoming data packets to all devices on the network (LAN).

Switch – hardware used to connect together a number of devices to form a LAN that directs incoming data packets to a specific destination address only.

Router – device which enables data packets to be routed between different networks (for example, can join LANs to form a WAN).

Modem – modulator demodulator. A device that converts digital data to analogue data (to be sent down a telephone wire); conversely it also converts analogue data to digital data (which a computer can process).

WLAN – wireless LAN.

(W)AP – (wireless) access point which allows a device to access a LAN without a wired connection.

PAN – network that is centred around a person or their workspace.

Client-server – network that uses separate dedicated servers and specific client workstations. All client computers are connected to the dedicated servers.

Spread spectrum technology – wideband radio frequency with a range of 30 to 50 metres.

Node – device connected to a network (it can be a computer, storage device or peripheral device).

Peer-to-peer – network in which each node can share its files with all the other nodes. Each node has its own data and there is no central server.

Thin client – device that needs access to the internet for it to work and depends on a more powerful computer for processing.

Thick client – device which can work both off line and on line and is able to do some processing even if not connected to a network/internet.

Bus network topology – network using single central cable in which all devices are connected to this cable so data can only travel in one direction and only one device is allowed to transmit at a time.

Packet – message/data sent over a network from node to node (packets include the address of the node sending the packet, the address of the packet recipient and the actual data – this is covered in greater depth in Chapter 14).

Star network topology – a network that uses a central hub/switch with all devices connected to this central hub/switch so all data packets are directed through this central hub/switch.

Mesh network topology – interlinked computers/devices, which use routing logic so data packets are sent from sending stations to receiving stations only by the shortest route.

Hybrid network – network made up of a combination of other network topologies.

Cloud storage – method of data storage where data is stored on off-site servers.

Data redundancy – situation in which the same data is stored on several servers in case of maintenance or repair.

Wi-Fi – wireless connectivity that uses radio waves, microwaves. Implements IEEE 802.11 protocols.

Bluetooth – wireless connectivity that uses radio waves in the 2.45 GHz frequency band.

Spread spectrum frequency hopping – a method of transmitting radio signals in which a device picks one of 79 channels at random. If the chosen channel is already in use, it randomly chooses another channel. It has a range up to 100 metres.

WPAN – wireless personal area network. A local wireless network which connects together devices in very close proximity (such as in a user’s house); typical devices would be a laptop, smartphone, tablet and printer.

Twisted pair cable – type of cable in which two wires of a single circuit are twisted together. Several twisted pairs make up a single cable.

Coaxial cable – cable made up of central copper core, insulation, copper mesh and outer insulation.

Fibre optic cable – cable made up of glass fibre wires which use pulses of light (rather than electricity) to transmit data.

Gateway – device that connects LANs which use different protocols.

Repeater – device used to boost a signal on both wired and wireless networks.

Repeating hubs – network devices which are a hybrid of hub and repeater unit.

Bridge – device that connects LANs which use the same protocols.

Softmodem – abbreviation for software modem; a software-based modem that uses minimal hardware.

NIC – network interface card. These cards allow devices to connect to a network/internet (usually associated with a MAC address set at the factory).

WNIC – wireless network interface cards/controllers.

Ethernet – protocol IEEE 802.3 used by many wired LANs.

Conflict – situation in which two devices have the same IP address.

Broadcast – communication where pieces of data are sent from sender to receiver.

Collision – situation in which two messages/data from different sources are trying to transmit along the same data channel.

CSMA/CD – carrier sense multiple access with collision detection – a method used to detect collisions and resolve the issue.

Bit streaming – contiguous sequence of digital bits sent over a network/internet.

Buffering – store which holds data temporarily.

Bit rate – number of bits per second that can be transmitted over a network. It is a measure of the data transfer rate over a digital telecoms network.

On demand (bit streaming) – system that allows users to stream video or music files from a central server as and when required without having to save the files on their own computer/tablet/phone.

Real-time (bit streaming) – system in which an event is captured by camera (and microphone) connected to a computer and sent to a server where the data is encoded. The user can access the data ‘as it happens’ live.

[image:]

2.1.1 Networking devices

One of the earliest forms of networking, circa 1970 in the USA, was the Advanced Research Projects Agency Network (ARPAnet). This was an early form of packet switching wide area network (WAN) connecting a number of large computers in the Department of Defense. It later expanded to include university computers. It is generally agreed that ARPAnet developed the technical platform for what we now call the internet. Figure 2.1 shows the vast area this network covered.

[image:]

Figure 2.1 ARPAnet coverage, 1973

As personal computers developed through the 1980s, a local network began to appear. This became known as a LAN local area network (LAN). LANs tended to be much smaller networks (usually inside one building) connecting a number of computers and shared devices, such as printers. WANs typically consist of a number of LANs connected via public communications networks (such as telephone lines or satellites). Because a WAN consists of LANs joined together, it may be a private network, and passwords and user IDs are required to access it. This is in contrast to the internet which is a vast number of decentralised networks and computers which have a common point of access, so that anyone with access to the internet can connect to the computers on these networks. This makes it intrinsically different to a WAN.

In recent years, another type of network – a metropolitan area network (MAN) – has emerged. MANs are larger than LANs as they can connect together many small computer networks (e.g LANs) housed in different buildings within a city (for example, a university campus). MANs are restricted in their size geographically to, for example, a single city.

In contrast, WANs can cover a much larger geographical area, such as a country or a continent. For example, a multi-national company may connect a number of smaller networks together (e.g. LANs or MANs) to form a world-wide WAN. This is covered in more detail later.

Here are some of the main benefits of networking computers and devices (rather than using a number of stand-alone computers):

• Devices, such as printers, can be shared (thus reducing costs).

• Licences to run software on networks are often far cheaper than buying licences for an equivalent number of stand-alone computers.

• Users can share files and data.

• Access to reliable data that comes from a central source, such as a file server.

• Data and files can be backed up centrally at the end of each day.

• Users can communicate using email and instant messaging.

• A network manager can oversee the network and, for example, apply access rights to certain files, or restrict access to external networks, such as the internet.

There are also a number of drawbacks:

• Cabling and servers can be an expensive initial outlay.

• Managing a large network can be a complex and difficult task.

• A breakdown of devices, such as the file servers, can affect the whole network.

• Malware and hacking can affect entire networks (particularly if a LAN is part of a much larger WAN), although firewalls do afford some protection in this respect.

Networked computers

Networked computers form an infrastructure which enables internal and external communications to take place. The infrastructure includes the following:

Hardware

• LAN cards

• routers

• switches

• wireless routers

• cabling

Software

• operation and management of the network

• operation of firewalls

• security applications/utilities

Services

• DSL

• satellite communication channels

• wireless protocols

• IP addressing.

Networks can be categorised as private or public.

Private networks are owned by a single company or organisation (they are often LANs or intranets with restricted user access, for example, passwords and user ids are required to join the network); the companies are responsible for the purchase of their own equipment and software, maintenance of the network and the hiring and training of staff.

Public networks are owned by a communications carrier company (such as a telecoms company); many organisations will use the network and there are usually no specific password requirements to enter the network – but sub-networks may be under security management.

WANs and LANs

Local area networks (LANs)

LANs are usually contained within one building, or within a small geographical area. A typical LAN consists of a number of computers and devices (such as printers) connected to hubs or switches. One of the hubs or switches is usually connected to a router and/or modem to allow the LAN to connect to the internet or become part of a wide area network (WAN).

Wireless LANs (WLANs)

Wireless LANs (WLANs) are similar to LANs but there are no wires or cables. In other words, they provide wireless network communications over fairly short distances (up to 100 metres) using radio or infrared signals instead of using cables.

Devices, known as wireless access points (WAPs), are connected into the wired network at fixed locations. Because of the limited range, most commercial LANs (such as those on a college campus or at an airport) need several WAPs to permit uninterrupted wireless communications. The WAPs use either spread spectrum technology (which is a wideband radio frequency with a range from a few metres to 100 metres) or infrared (which has a very short range of about 1 to 2 metres and is easily blocked, and therefore has limited use; see Section 2.1.5 Wired and wireless networking).

The WAP receives and transmits data between the WLAN and the wired network structure. End users access the WLAN through wireless LAN adapters which are built into the devices or as a plug in module.

[image:]

Figure 2.2 Wireless local area networks (WLAN)

Wide area networks (WANs)

Wide area networks (WANs) are used when computers or networks are situated a long distance from each other (for example, they may be in different cities or on different continents). If a number of LANs are joined together using a router or modem, they can form a WAN. The network of automated teller machines (ATMs) used by banks is one of the most common examples of the use of a WAN.

Because of the long distances between devices, WANs usually make use of a public communications network (such as telephone lines or satellites), but they can use dedicated or leased communication lines which can be less expensive and more secure (less risk of hacking, for example).

A typical WAN will consist of end systems and intermediate systems, as shown in Figure 2.3. 1, 3, 7 and 10 are known as end systems, and the remainder are known as intermediate systems. The distance between each system can be considerable, especially if the WAN is run by a multi-national company.

[image:]

Figure 2.3 A typical WAN

The following is used as a guide for deciding the ‘size’ of a network:

	WAN:

	100 km to over 1000 km

	MAN:

	1 km to 100 km

	LAN:

	10 m to 1000 m

	PAN:

	1 m to 10 m (this is not a commonly used term – it means personal area network; in other words, a home system)

2.1.2 Client-server and peer-to-peer networking models

We will consider two types of networking models, client-server and peer-to-peer.

Client-server model

[image:]

Figure 2.4 Client-server model

• The client-server model uses separate dedicated servers and specific client workstations; client computers will be connected to the server computer(s).

• Users are able to access most of the files, which are stored on dedicated servers.

• The server dictates which users are able to access which files. (Note: sharing of data is the most important part of the client-server model; with peer-to-peer, connectivity is the most important aspect.)

• The client-server model allows the installation of software onto a client’s computer.

• The model uses central security databases which control access to the shared resources. (Note: passwords and user IDs are required to log into the network.)

• Once a user is logged into the system, they will have access to only those resources (such as a printer) and files assigned to them by the network administrator, so offers greater security than peer-to-peer networks.

• Client-server networks can be as large as you want them to be and they are much easier to scale up than peer-to-peer networks.

• A central server looks after the storing, delivery and sending of emails.

• This model offers the most stable system, for example, if someone deletes a shared resource from the server, the nightly back-up would restore the deleted resource (this is different in peer-to-peer – see later).

• Client-server networks can become bottlenecked if there are several client requests at the same time.

• In the client-server model, a file server is used and is responsible for

– central storage and management of data files, thus enabling other network users to access files

– allowing users to share information without the need for offline devices (such as a memory stick)

– allowing any computer to be configured as the host machine and act as the file server (note that the server could be a storage device (such as SSD or HDD) that could also serve as a remote storage device for other computers, thus allowing them to access this device as if it were a local storage device attached to their computer).

Examples of use of client-server network model

A company/user would choose a client-server network model for the following reasons.

• The company/user has a large user-base (however, it should be pointed out that this type of network model may still be used by a small group of people who are doing independent projects but need to have sharing of data and access to data outside the group).

• Access to network resources needs to be properly controlled.

• There is a need for good network security.

• The company requires its data to be free from accidental loss (in other words, data needs to be backed up at a central location).

An example is the company Amazon; it uses the client-server network model. The user front-end is updated every time a user logs on to the Amazon website and a large server architecture handles items such as order processing, billing customers and data security; none of the Amazon users are aware that other customers are using the website at the same time – there is no interaction between users and server since they are kept entirely separate at all times.

Peer-to-peer model

[image:]

Figure 2.5 Peer-to-peer model

On a peer-to-peer network, each node joins the network to allow

• the provision of services to all other network users; the services available are listed on a nominated ‘look up’ computer – when a node requests a service, the ‘look up’ computer is contacted to find out which of the other network nodes can provide the required service

• other users on the network to simply access data from another node

• communication with other peers connected to the network

• peers to be both suppliers and consumers (unlike the client-server model where consumers and resources are kept entirely separate from each other)

• peers to participate as equals on the network (again this is different to the client-server model where a webserver and client have different responsibilities).

The peer-to-peer model does not have a central server. Each of the nodes (workstations) on the network can share its files with all the other nodes, and each of the nodes will have its own data.

Because there is no central storage, there is no requirement to authenticate users.

This model is used in scenarios where no more than 10 nodes are required (such as a small business) where it is relatively easy for users to be in contact with each other on a regular basis. More than 10 nodes leads to performance and management issues.

Peer-to-peer offers little data security since there is no central security system. This means it is impossible to know who is authorised to share certain data. Users can create their own network node share point which is the only real security aspect since this gives them some kind of control. However, there are no real authentication procedures.

Examples of peer-to-peer network model

A user would choose the peer-to-peer network model for one or more of following reasons:

• The network of users is fairly small.

• There is no need for robust security.

• They require workstation-based applications rather than being server-based.

An example would be a small business where there is frequent user interaction and there is no need to have the features of a client-server network (for example, a builder with five associated workers located in their own homes who only need access to each other’s diaries, previous jobs, skills-base and so on – when the builder is commissioned to do a job they need to access each other’s computer to check on who is available and who has the appropriate skills).

Thin clients and thick clients

The client-server model offers thin clients and thick clients. These can often refer to both hardware and software.

Thin client

A thin client is heavily dependent on having access to a server to allow constant access to files and to allow applications to run uninterrupted. A thin client can either be a device or software which needs to be connected to a powerful computer or server to allow processing to take place (the computer or server could be on the internet or could be part of a LAN/MAN/WAN network). The thin client will not work unless it is connected at all times to the computer or server. A software example would be a web browser which has very limited functions unless it is connected to a server. Other examples include mobile phone apps which need constant access to a server to work. A hardware example is a POS terminal at a supermarket that needs constant access to a server to find prices, charge customers and to do any significant processing.

Thick client

A thick client can either be a device or software that can work offline or online; it is still able to do some processing whether it is connected to a server or not. A thick client can either be connected to a LAN/MAN/WAN, virtual network, the internet or a cloud computing server. A hardware example is a normal PC/laptop/tablet since it would have its own storage (HDD or SSD), RAM and operating system which means it is capable of operating effectively online or offline. An example of software is a computer game which can run independently on a user’s computer, but can also connect to an online server to allow gamers to play and communicate with each other.

Table 2.1 highlights some of the pros and cons of using thick client or thin client hardware.

	

	Pros

	Cons

	Thick clients

	

• more robust (device can carry out processing even when not connected to server)

• clients have more control (they can store their own programs and data/files)

	

• less secure (relies on clients to keep their own data secure)

• each client needs to update data and software individually

• data integrity issues, since many clients access the same data which can lead to inconsistencies

	Thin clients

	

• less expensive to expand (low-powered and cheap devices can be used)

• all devices are linked to a server (data updates and new software installation done centrally)

• server can offer protection against hacking and malware

	

• high reliance on the server; if the server goes down or there is a break in the communication link then the devices cannot work

• despite cheaper hardware, the start-up costs are generally higher than for thick clients

Table 2.1 Summary of pros and cons of thick and thin client hardware

Table 2.2 highlights the differences between thick and thin client software.

	Thin client software

	Thick client software

	

• always relies on a connection to a remote server or computer for it to work

	

• can run some of the features of the software even when not connected to a server

	

• requires very few local resources (such as SSD, RAM memory or computer processing time)

	

• relies heavily on local resources

	

• relies on a good, stable and fast network connection for it to work

	

• more tolerant of a slow network connection

	

• data is stored on a remote server or computer

	

• can store data on local resources such as HDD or SSD

Table 2.2 Differences between thin and thick client software

[image:]

ACTIVITY 2A

1 A company has 20 employees working on the development of a new type of battery for use in mobile phones. Decide which type of network model (client-server or peer-to-peer) would be most suitable. Give reasons for your choice.

2 Another company is made up of a group of financial consultants who advise other companies on financial matters, such as taxation and exporting overseas. Decide which type of network model (client-server or peer-to-peer) would be most suitable. Give reasons for your choice.

[image:]

2.1.3 Network topologies

There are many ways to connect computers to make complex networks. Here we will consider

• bus networks

• star networks

• mesh networks

• hybrid networks.

Bus networks

A bus network topology uses a single central cable to which all computers and devices are connected. It is easy to expand and requires little cabling. Data can only travel in one direction; if data is being sent between devices then other devices cannot transmit. Terminators are needed at each end to prevent signal reflection (bounce). Bus networks are typically peer-to-peer. The disadvantages of a bus network include:

• If the main cable fails, the whole network goes down.

• The performance of the network deteriorates under heavy loading.

• The network is not secure since each packet passes through every node.

The advantages of a bus network include:

• Even if one node fails, the remainder of the network continues to function.

• It is easy to increase the size of the network by adding additional nodes.

[image:]

Figure 2.6 Bus network topology

In bus network topology, each node looks at each packet and determines whether or not the address of the recipient in the package matches the node address. If so, the node accepts the packet; if not, the packet is ignored.

These are most suitable for situations with a small number of devices with light traffic occurring. For example, a small company or an office environment.

Star networks

A star network topology uses a central hub/switch and each computer/device is connected to the hub/switch. Data going from host to host is directed through the central hub/switch. Each computer/device has its own dedicated connection to the central node (hub/switch) – any type of network cable can be used for the connections (see Section 2.1.5 Wired and wireless networking). This type of network is typically a client-server. The disadvantages of a star network include:

• The initial installation costs are high.

• If the central hub/switch fails, then the whole network goes down.

The advantages of a star network include:

• Data collisions are greatly reduced due to the topology.

• It is a more secure network since security methods can be applied to the central node and packets only travel to nodes with the correct address.

• It is easy to improve by simply installing an upgraded hub.

• If one of the connections is broken it only affects one of the nodes.

How packets are handled depends on whether the central node is a switch or a hub. If it is a hub, all the packets will be sent to every device/node on the star network – if the address in the packet matches that of the node, it will be accepted; otherwise, it is ignored (this is similar to the way packets are handled on a bus network). If the central node is a switch, packets will only be sent to nodes where the address matches the recipient address in the packet. The latter is clearly more secure, since only nodes intended to see the packet will receive it.

[image:]

Figure 2.7 Star network topology

Star networks are useful for evolving networks where devices are frequently added or removed. They are well suited to applications where there is heavy data traffic.

Mesh networks

There are two types of mesh network topologies: routing and flooding. Routing works by giving the nodes routing logic (in other words, they act like a router) so that data is directed to its destination by the shortest route and can be re-routed if one of the nodes in the route has failed. Flooding simply sends the data via all the nodes and uses no routing logic, which can lead to unnecessary loading on the network. It is a type of peer-to-peer network, but is fundamentally different. The disadvantages of a mesh network include:

• A large amount of cabling is needed, which is expensive and time consuming.

• Set-up and maintenance is difficult and complex.

The advantages of a mesh network include:

• It is easy to identify where faults on the network have occurred.

• Any broken links in the network do not affect the other nodes.

• Good privacy and security, since packets travel along dedicated routes.

• The network is relatively easy to expand.

[image:]

Figure 2.8 Mesh network topology

There are a number of applications worth considering here:

• The internet and WANs/MANs are typical uses of mesh networks.

• Many examples include industrial monitoring and control where sensors are set up in mesh design and feedback to a control system which is part of the mesh, for example

– medical monitoring of patients in a hospital

– electronics interconnectivity (for example, systems that link large screen televisions, DVDs, set top boxes, and so on); each device will be in a location forming the mesh

– modern vehicles use wireless mesh network technology to enable the monitoring and control of many of the components in the vehicle.

[image:]

EXTENSION ACTIVITY 2A

There appear to be similarities between the peer-to-peer network model and mesh network model.

Describe the differences between the two models.

[image:]

Hybrid networks

A hybrid network is a mixture of two or more different topologies (bus and star, bus and mesh, and so on). The main advantages and disadvantages depend on which types of network are used to make up the hybrid network, but an additional disadvantage is that they can be very complex to install, configure and maintain.

Additional advantages include:

• They can handle large volumes of traffic.

• It is easy to identify where a network fault has occurred.

• They are very well suited to the creation of larger networks.

[image:]

Figure 2.9 Hybrid bus and star network

Note that the handling of packets in hybrid networks will depend on which of the above topologies are used to make up the hybrid structure.

One of the typical applications of hybrid networks is illustrated by the following example, involving three hotel chains, A, B and C.

Suppose hotel chain A uses a bus network, hotel chain B uses a star network and hotel chain C uses a mesh network.

At some point, all three hotel chains are taken over by another company. By using hybrid network technology, all three hotel chains can be connected together even though they are each using a different type of network. The system can also be expanded easily without affecting any of the existing hotels using the network.

OEBPS/OEBPS/images/10-3.gif
0

0

0|0 (0|0
0|0 (0|0
0|0 (0|0
0|0 (0|0

OEBPS/OEBPS/images/orange.jpg

OEBPS/OEBPS/images/10-2.gif
00=0
0001=1
0010=2
0011=3
0100=4

01=5
0110=6
0111=
1000=38
1001 =

OEBPS/OEBPS/images/10-1.gif
00990F60
00990F77
00990E8E
00990EAS
00990EBC
00990ED3
00990EEA

68
20
79
6F
65
6F
6F

69
6D
70
72
6E
63
74

73
65
69
79
74
61
61

20
6D
63
20
73
74
74

69
6F
61
73
20
69
69

73
72
6C
68
6F
6F
6F

20
79
20
6F
66
6E
6E

61
20
20
77
20
73
20

6E
64
63
69
61
20
20

20
75
6F
6E
20
20
00

65 78
6D 70
6D 70
67 20
6E 75
69 6E
00 00

61
20
75
74
6D
20
00

6D
66
74
68
62
20
00

70
72
65
65
65
68
00

6C
6F
72
20
72
65
00

65 20
6D 20
20 20
20 63
20 20
78 20
00 00

6F
20
6D
6F
6F
20
00

66
61
85
6E
66
20
00

OEBPS/OEBPS/images/ix-5.gif

OEBPS/OEBPS/images/light-green.jpg

OEBPS/OEBPS/images/11-2.gif
$0.37

$0.94

0000O0GO0O0O

00000O0GO0O

00110111

10010100

Expected result = $1.31

OEBPS/OEBPS/images/11-3.gif
1]0]1]1|<«— Thisproduces 10 11 which
isn't a denary digit; this

l will flag an error and the
computer needs to add

This now 1]o]1]1 0110
produces a fifth :

bit which is = /
carried to the
next decimal =
digit position. —| 1|0 | 0|0 | 1

OEBPS/OEBPS/images/11-1.gif

OEBPS/OEBPS/images/14-1.gif
Dec |Hex |Char|Dec |Hex |Char|Dec |Hex |Char|Dec |Hex |Char|Dec |Hex |Char|
128 |80 |¢ 154 |9A |U [180 |B4 |4 206 [CE [[232 [E8 |o
129 |81 i 155 |9B [¢ 181 [B5 |4 207 |CF |+ 233 |E9 |@
130 |82 |é 156 |9C |£ 182 |B6 |l 208 |DO |4 234 [EA |@
131 (83 |a 157 |9D |¥ 183 |[B7 | 209 |D1 |F |235 |EB |&
132 |84 |4 158 |9 |ps (184 |B8 |3 210 |D2 |1 |236 |[EC |=»
133185 |a 159 |9F |f 185 [B9 |4 211 |D3 | L 237 |[ED |e
134 |86 |a 160 |AO | 186 [BA | 212 |D4 | E |238 |[EE |&
135 |87 |¢ 161 |AT i 187 |[BB |7 213 |D5 | F |239 [EF |N
136 |88 |& 162 |A2 |6 188 |[BC |4 214 |D6 | m |240 [FO |=
137 |89 |& 163 |A3 |u 189 |[BD |u 215 |D7 |4 241 [F1 |+
138 [8A |& 164 |A4 i 190 |BE |4 216 |D8 |+ |242 |[F2 |=
139 |8B |i 165 |A5 [N [191 |BF |1 217 |D9 |4 243 |[F3 |<
140 |8C |i 166 |A6 |* 192 [CO [L [218 [DA |1 244 [F4 ||
141 18D |i 167 |A7 |° 193 |C1 |1 |219 |DB I 245 |F5 ||
142 |8E |A |168 |A8 |; 194 |C2 |T 1220 IDC |m [246 [F6 |+
143 |8F |A [169 |A9 |- 195 [C3 |} [221 |DD |J |247 |F7

144 190 |E 170 |AA |- 196 |C4 |- [222 |DE 1 |248 |F8

145 |91 |= |171 |AB |% [197 |C5 |+ |223 |DF |m (249 |[F9 |-
146 (92 |& |172 |AC |4 [198 [C6 |F 224 |[EO |ao [250 [FA

147 193 |6 173 |AD |; 199 |C7 |k [225[E1 |8 [251 |FB [V
148 |94 |5 174 |AE |« 200 |C8 | L (226 |[E2 |T [252 |[FC |
149 |95 |o 175 |AF |» 201 |C9 |F (227 |[E3 |m (253 |[FD |2
150 |96 |a 176 |BO 202 |CA | (228 |[E4 |y (254 |[FE |m
151 |97 |u 177 |B1 203 |CB |7 (229 |[E5 |o [255 |FF |o
152 |98 |y 178 [B2 | [204 [CC || [230 [E6 |p

153 (99 [6 [179 (B3 || 205 |CD |= [231 |E7 |t

OEBPS/OEBPS/images/3-2.gif
e i v v e I i

107

53

26

olo|r|w|a

remainder:
remainder:
remainder:
remainder:
remainder:
remainder:
remainder:
remainder:

Ok m o R ok e

Write the remainder from
bottom to top to get the
binary number:
01101011

OEBPS/OEBPS/images/green.jpg

OEBPS/OEBPS/images/3-1.gif
¥4s)

04

3Z

16

OEBPS/OEBPS/images/iv-1.gif
MIX

Paper from

responsible sources
Ew.'sumg FSC™ C104740

OEBPS/OEBPS/images/3-4.gif

OEBPS/OEBPS/images/3-3.gif
010010
+ 1
=1 0100110 (sincel+1=0,acarryof1)=denary value -90

OEBPS/OEBPS/images/23-2.gif
String

aaaaaaaa

bbbbbbbbbb

eeeeeeee

Code

08 97

10 98

0199

01100

0199

01100

0199

01 100

08 101

OEBPS/OEBPS/images/ix-3.gif

OEBPS/OEBPS/images/23-1.gif
05 97 04 98 02 99 05 100

OEBPS/OEBPS/images/26-1.jpg

OEBPS/OEBPS/images/ix-4.gif

OEBPS/OEBPS/images/ix-1.gif

OEBPS/OEBPS/images/23-3.gif
© oo ooo o

1

00

1
1

00

1
1
1

1

1
1

1
1
1

In compressed RLE format this becomes:

9W 6B 2W 1B 7W 1B 7W 5B 3W 1B 7W.
1B 7W 1B 6W

Using W = 1 and B = 0 we get:

91602110711071503110711071
10 61

OEBPS/OEBPS/images/ix-2.gif
@B

OEBPS/OEBPS/images/37-1.jpg

OEBPS/OEBPS/images/4-2.gif
invertthedigits: 1 0 0 1 0 1 1 1 (+1041n denary)
add 1: 1
which gives: 10 0 1 1 0 0 0

OEBPS/OEBPS/images/4-1.gif

OEBPS/OEBPS/images/10-4.gif

OEBPS/OEBPS/images/12-1.gif

OEBPS/OEBPS/images/15-2.jpg

OEBPS/OEBPS/images/15-1.gif
N R N I R ES S A P i e

| | 1< [[0 O P O [t [|0 20| o | || &

w|m || oo 8|0 |mlo | |w|b|—]|o|F]

& fon Bl [0 [0 [0 |0 | o [|o |w []« |m |5 |-

o |[Z [0 ol [| nfio |8 | @] w | | |0 o &].
=

w2 e | O o [|O | [T & [| |0 |0 |4 s

A | w|= |0 et [[|| 0| B m 0| = | m |2 | = |[F]-

w W [T | M2 o |0 |13 [B e [0 | o | = |© |2]
=i

N N R A R e RS A = A P R e

o | |B [[0 |B | |9 < | |1 o |a |8 ||n o]
N

@M (A D ||| |z |~ =F<]o|z|o|~ | 8]
N

e > [A e |00 o N[=[P e |n &=~ [®].

& | o R[S e | o (o]m ||| 2o w8]

N
G0 | o [B|A | | [0 | oo |o|a]m|mu|-
N

5|0 = O | A | o |0 o |2 |0 B0 |8 o |

O |5 |- | [| 4 | F][O | v |2 | B | & | N||a

] =]]

Z28gReegepgeggegasa

P e R R A R N R S R bR N S RSN

[=R=R=R =R =R=R=R=R=Rl=R=R=Nl=N(=El=Rl=Nl=El=]

OEBPS/OEBPS/images/37-2.gif
hub/switch

OEBPS/OEBPS/images/15-3.jpg

OEBPS/OEBPS/images/18-1.jpg

OEBPS/OEBPS/images/32-1.gif

OEBPS/OEBPS/images/4-4.gif
—128

52

16

OEBPS/OEBPS/images/25-1.gif

OEBPS/OEBPS/images/32-3.gif
Client sends a request to the A system administrator manages

server and the server finds the whole network; clients are
the requested data and connected through a network;
sends it back to the client. allows data access even

over large distances.

OEBPS/OEBPS/images/4-3.gif

OEBPS/OEBPS/images/7-1.gif
1048576 065536 4096 256 16 1
(165) (164) (163) (162) (161) (160)

OEBPS/OEBPS/images/19-2.gif
\
112 13 14 15 16|17 18 19 20

<1
==y
<
T
LT
NEEN 2
e
| [1oF
—— 2 E
el o g
| [S

|

i

i
-
7\7’.

Bim==nuni
il

o
Scom~onTma-o

apnydwe punos

OEBPS/OEBPS/images/31-1.gif

OEBPS/OEBPS/images/12-4.gif

OEBPS/OEBPS/images/12-2.gif
This again produces
a fifth bit which is
carried to the next
decimal digit position.

OEBPS/OEBPS/images/19-1.gif
Fressure

Fressure

high frequency wave

ik

period
low frequency wave

Time

|«—— period ——»|

OEBPS/OEBPS/images/38-1.jpg

OEBPS/OEBPS/images/12-3.gif

OEBPS/OEBPS/images/24-3.gif
I reduce the sampling rate used

movie files | reduce the sampling resolution

T reduce the frame rate

e o the image

image files || decrease the colourit depth

T reduce the image resolution

OEBPS/OEBPS/images/5-3.gif

OEBPS/OEBPS/images/16-1.jpg

OEBPS/OEBPS/images/5-2.gif
invert the digits:
add 1:

e e

1

o = ~

= —68

OEBPS/OEBPS/images/cover.jpg

OEBPS/OEBPS/images/2-1.gif
10000

1000

100

10

units

OEBPS/OEBPS/images/24-1.gif
Square | Red Green Blue
colour Components
[| 0 0 0
255 255 255
0 255 0
|] 255 0 0

OEBPS/OEBPS/images/5-1.gif
16

OEBPS/OEBPS/images/13-1.gif
Char

<DELETE>

Hex
60
61

62

63

64
65

66
67

68
69

6A
6B
6C

6D
6E

6F

70

71
72
73
74
75
76
77
78
79
7A

7B
7C

7D
7E

7F

Dec
96
97
98
99

100
101
102
103

104
105
106
107

108
109
110
111
112
113

114
115
116
117

118
119

120
121
122

123
124
125
126
127

Char

Hex
40
41

42

43

44
4

46
4

48
49

4A
4B
4C
4D

4E

4F

50
51

52
53
54
55
56
57
58
59

5A
5B
5C

5D
5E

5F

Dec
64
65

66
67

68
69
70
71
72
73
74
75

76
77
78
79
80

81

82

83

84
85

86

87

88
89
90
91
92
93

9%
95

Char

<SPACE>

%

Hex
20
21
22
23
24
25
26
27
28
29

2A
2B
2C
2D
2E

2F

30
31
32
33
34
35
36
37

38
39

3A
3B
3C

3D
3E

3F

Dec
32
33
34
35

36

37

38
39
40
a

42
43

44
45

46

47

48

49

50
51

52
53
54
55
56
57
58
59
60
61
62
63

OEBPS/OEBPS/images/sky-blue.jpg

OEBPS/OEBPS/images/13-2.gif
<< = 9

[N

o~ o w

m » o o

o~ o o

o o o o

o o o o

[N

hex 61 (lower case)
hex 41 (upper case)
hex 79 (lower case)
hex 59 (uppercase)

OEBPS/OEBPS/images/tp.gif
Cambridge
International
AS & A Level

Computer
Science

& HORRRR

AN HACHETTE UK COMPANY

OEBPS/OEBPS/images/purple.jpg

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/2-2.gif
les 64 032 16 8 4 2 1
(27) (26) (25) (24) (23) (22) (21) (20)

OEBPS/OEBPS/images/16-2.jpg

OEBPS/OEBPS/images/2-4.gif
128 + 64 + 32 + 8 + 4 + 2 = 238 (denary)

OEBPS/OEBPS/images/29-1.gif

OEBPS/OEBPS/images/x-1.gif
letter H has been pressed
and now makes contact with

bottom conductive layer
il

o

conductive layers _

letter H
interpreted

insulating layer by computer

OEBPS/OEBPS/images/2-3.gif

OEBPS/OEBPS/images/x-2.gif

OEBPS/OEBPS/images/8-4.gif

OEBPS/OEBPS/images/8-3.gif

OEBPS/OEBPS/images/6-2.gif
invert the digits:
add 1:

e miE

OEBPS/OEBPS/images/8-5.gif

OEBPS/OEBPS/images/39-1.jpg

OEBPS/OEBPS/images/17-2.gif
Gt G R (R @
N[> \[> N \Y

OEBPS/OEBPS/images/8-2.gif

OEBPS/OEBPS/images/17-1.gif
(/4852800 = 2202.907)

OEBPS/OEBPS/images/8-1.gif

OEBPS/OEBPS/images/34-1.gif

OEBPS/OEBPS/images/6-4.gif

OEBPS/OEBPS/images/6-3.gif
—128

64

32

1o

