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Preface



IGCSE Physics Third Edition aims to provide an up-to-date and comprehensive coverage of the Core and Extended curriculum in Physics specified in the current Cambridge International Examinations IGCSE syllabus.


As you read through the book, you will notice four sorts of shaded area in the text.
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Material highlighted in green is for the Cambridge IGCSE Extended curriculum.
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Areas highlighted in yellow contain material that is not part of the Cambridge IGCSE syllabus. It is extension work and will not be examined.
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Areas highlighted in blue contain important facts.
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Questions are highlighted by a box like this.
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The book has been completely restructured to align chapters and sections with the order of the IGCSE syllabus. A new chapter on momentum has been included and the checklists at the end of each chapter are all aligned more closely with the syllabus requirements. New questions from recent exam papers are included at the end of the book in the sections entitled Cambridge IGCSE exam questions, Practical test questions and Alternative to practical test questions. These can be used for quick comprehensive revision before exams.


The accompanying Revision CD-ROM provides invaluable exam preparation and practice. Interactive tests, organised by syllabus topic, cover both the Core and Extended curriculum.


T.D. and H.K.





Physics and technology



Physicists explore the Universe. Their investigations range from particles that are smaller than atoms to stars that are millions and millions of kilometres away, as shown in Figures 1a and 1b.


As well as having to find the facts by observation and experiment, physicists also must try to discover the laws that summarise these facts (often as mathematical equations). They then have to make sense of the laws by thinking up and testing theories (thought-models) to explain the laws. The reward, apart from satisfied curiosity, is a better understanding of the physical world. Engineers and technologists use physics to solve practical problems for the benefit of people, though, in solving them, social, environmental and other problems may arise.


In this book we will study the behaviour of matter (the stuff things are made of) and the different kinds of energy (such as light, sound, heat, electricity). We will also consider the applications of physics in the home, in transport, medicine, research, industry, energy production and electronics. Figure 2 shows some examples.


Mathematics is an essential tool of physics and a ‘reference section’ for some of the basic mathematics is given at the end of the book along with suggested methods for solving physics problems.
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Scientific enquiry



During your course you will have to carry out a few experiments and investigations aimed at encouraging you to develop some of the skills and abilities that scientists use to solve real-life problems.


Simple experiments may be designed to measure, for example, the temperature of a liquid or the electric current in a circuit. Longer investigations may be designed to establish or verify a relationship between two or more physical quantities.


Investigations may arise from the topic you are currently studying in class, or your teacher may provide you with suggestions to choose from, or you may have your own ideas. However an investigation arises, it will probably require at least one hour of laboratory time, but often longer, and will involve the following four aspects.





1 Planning how you are going to set about finding answers to the questions the problem poses. Making predictions and hypotheses (informed guesses) may help you to focus on what is required at this stage.



2 Obtaining the necessary experimental data safely and accurately. You will have to decide what equipment is needed, what observations and measurements have to be made and what variable quantities need to be manipulated. Do not dismantle the equipment until you have completed your analysis and you are sure you do not need to repeat any of the measurements!



3 Presenting and interpreting the evidence in a way that enables any relationships between quantities to be established.



4 Considering and evaluating the evidence by drawing conclusions, assessing the reliability of data and making comparisons with what was expected.
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A written report of the investigation would normally be made. This should include:





•  The aim of the work.



•  A list of all items of apparatus used and a record of the smallest division of the scale of each measuring device. For example, the smallest division on a metre rule is 1 mm. The scale of the rule can be read to the nearest mm. So when used to measure a length of 100 mm (0.1 m), the length is measured to the nearest 1 mm, the degree of accuracy of the measurement being 1 part in 100. When used to measure 10 mm (0.01 m), the degree of accuracy of the measurement is 1 part in 10. A thermometer is calibrated in degrees Celsius and may be read to the nearest 1 °C. A temperature may be measured to the nearest 1 °C. So when used to measure a temperature of 20 °C, the degree of accuracy is 1 part in 20 (this is 5 parts in 100).



•  Details of procedures, observations and measurements made. A clearly labelled diagram will be helpful here; any difficulties encountered or precautions taken to achieve accuracy should be mentioned.



•  Presentation of results and calculations. If several measurements of a quantity are made, draw up a table in which to record your results. Use the column headings, or start of rows, to name the measurement and state its unit; for example ‘Mass of load/kg’. Repeat the measurement of each observation; record each value in your table, then calculate an average value. Numerical values should be given to the number of significant figures appropriate to the measuring device (see Chapter 1).


    If you decide to make a graph of your results you will need at least eight data points taken over as large a range as possible; be sure to label each axis of a graph with the name and unit of the quantity being plotted (see Chapter 3).



•  Conclusions which can be drawn from the evidence. These can take the form of a numerical value (and unit), the statement of a known law, a relationship between two quantities or a statement related to the aim of the experiment (sometimes experiments do not achieve the intended objective).



•  An evaluation and discussion of the findings which should include:







    (i)   a comparison with expected outcomes,


    (ii)  a comment on the reliability of the readings, especially in relation to the scale of the measuring apparatus,



    (iii) a reference to any apparatus that was unsuitable for the experiment,


    (iv) a comment on any graph drawn, its shape and whether the graph points lie on the line,


    (v)  a comment on any trend in the readings, usually shown by the graph,


    (vi) how the experiment might be modified to give more reliable results, for example in an electrical experiment by using an ammeter with a more appropriate scale.





Suggestions for investigations


Investigations which extend the practical work or theory covered in some chapters are listed below. The section Further experimental investigations on p. 283 details how you can carry out some of these investigations.




  1  Pitch of a note from a vibrating wire (Chapter 33).


  2  Stretching of a rubber band (Chapter 6 and Further experimental investigations, p. 283).


  3  Stretching of a copper wire – wear safety glasses (Chapter 6).


  4  Toppling (Further experimental investigations, p. 283).


  5  Friction – factors affecting (Chapter 7).


  6  Energy values from burning fuel, e.g. a firelighter (Chapter 13).


  7  Model wind turbine design (Chapter 15).


  8  Speed of a bicycle and its stopping distance (Chapter 14).


  9  Circular motion using a bung on a string (Chapter 9).



10  Heat loss using different insulating materials (Chapter 23).



11  Cooling and evaporation (Further experimental investigations, pp. 283–84).



12  Variation of the resistance of a thermistor with temperature (Chapter 38).



13  Variation of the resistance of a wire with length (Further experimental investigations, p. 284).



14  Heating effect of an electric current (Chapter 36).



15  Strength of an electromagnet (Chapter 45).



16  Efficiency of an electric motor (Chapter 46).





Ideas and evidence in science


In some of the investigations you perform in the school laboratory, you may find that you do not interpret your data in the same way as your friends do; perhaps you will argue with them as to the best way to explain your results and try to convince them that your interpretation is right. Scientific controversy frequently arises through people interpreting evidence differently.


Observations of the heavens led the ancient Greek philosophers to believe that the Earth was at the centre of the planetary system, but a complex system of rotation was needed to match observations of the apparent movement of the planets across the sky. In 1543 Nicolaus Copernicus made the radical suggestion that all the planets revolved not around the Earth but around the Sun. (His book On the Revolutions of the Celestial Spheres gave us the modern usage of the word ‘revolution’.) It took time for his ideas to gain acceptance. The careful astronomical observations of planetary motion documented by Tycho Brahe were studied by Johannes Kepler, who realised that the data could be explained if the planets moved in elliptical paths (not circular) with the Sun at one focus. Galileo’s observations of the moons of Jupiter with the newly invented telescope led him to support this ‘Copernican view’ and to be imprisoned by the Catholic Church in 1633 for disseminating heretical views. About 50 years later, Isaac Newton introduced the idea of gravity and was able to explain the motion of all bodies, whether on Earth or in the heavens, which led to full acceptance of the Copernican model. Newton’s mechanics were refined further at the beginning of the 20th century when Einstein developed his theories of relativity. Even today, data from the Hubble Space Telescope is providing new evidence which confirms Einstein’s ideas.


Many other scientific theories have had to wait for new data, technological inventions, or time and the right social and intellectual climate for them to become accepted. In the field of health and medicine, for example, because cancer takes a long time to develop it was several years before people recognised that X-rays and radioactive materials could be dangerous (Chapter 49).


At the beginning of the 20th century scientists were trying to reconcile the wave theory and the particle theory of light by means of the new ideas of quantum mechanics.


Today we are collecting evidence on possible health risks from microwaves used in mobile phone networks. The cheapness and popularity of mobile phones may make the public and manufacturers reluctant to accept adverse findings, even if risks are made widely known in the press and on television. Although scientists can provide evidence and evaluation of that evidence, there may still be room for controversy and a reluctance to accept scientific findings, particularly if there are vested social or economic interests to contend with. This is most clearly shown today in the issue of global warming.





Section 1



General physics


Chapters


Measurements and motion


  1 Measurements


  2 Speed, velocity and acceleration


  3 Graphs of equations


  4 Falling bodies


  5 Density


Forces and momentum


  6 Weight and stretching


  7 Adding forces


  8 Force and acceleration


  9 Circular motion


10 Moments and levers


11 Centres of mass


12 Momentum


Energy, work, power and pressure


13 Energy transfer


14 Kinetic and potential energy


15 Energy sources


16 Pressure and liquid pressure
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1 Measurements
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•  Units and basic quantities




•  Powers of ten shorthand




•  Length




•  Significant figures




•  Area




•  Volume




•  Mass




•  Time




•  Systematic errors




•  Vernier scales and micrometers




•  Practical work: Period of a simple pendulum
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Units and basic quantities


Before a measurement can be made, a standard or unit must be chosen. The size of the quantity to be measured is then found with an instrument having a scale marked in the unit.


Three basic quantities we measure in physics are length, mass and time. Units for other quantities are based on them. The SI (Système International d’Unités) system is a set of metric units now used in many countries. It is a decimal system in which units are divided or multiplied by 10 to give smaller or larger units.
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Powers of ten shorthand


This is a neat way of writing numbers, especially if they are large or small. The example below shows how it works.
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The small figures 1, 2, 3, etc., are called powers of ten. The power shows how many times the number has to be multiplied by 10 if the power is greater than 0 or divided by 10 if the power is less than 0. Note that 1 is written as 100.


This way of writing numbers is called standard notation.


Length


The unit of length is the metre (m) and is the distance travelled by light in a vacuum during a specific time interval. At one time it was the distance between two marks on a certain metal bar. Submultiples are:






	1 decimetre (dm)

	  = 10−1 m






	1 centimetre (cm)

	  = 10−2 m






	1 millimetre (mm)

	  = 10−3 m






	1 micrometre (µm)

	  = 10−6 m






	1 nanometre (nm)

	  = 10−9 m







A multiple for large distances is


1 kilometre (km) = 103 m ([image: ] mile approx.)


Many length measurements are made with rulers; the correct way to read one is shown in Figure 1.2. The reading is 76 mm or 7.6 cm. Your eye must be directly over the mark on the scale or the thickness of the ruler causes a parallax error.
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To obtain an average value for a small distance, multiples can be measured. For example, in ripple tank experiments (Chapter 25) measure the distance occupied by five waves, then divide by 5 to obtain the average wavelength.


Significant figures


Every measurement of a quantity is an attempt to find its true value and is subject to errors arising from limitations of the apparatus and the experimenter. The number of figures, called significant figures, given for a measurement indicates how accurate we think it is and more figures should not be given than is justified.


For example, a value of 4.5 for a measurement has two significant figures; 0.0385 has three significant figures, 3 being the most significant and 5 the least, i.e. it is the one we are least sure about since it might be 4 or it might be 6. Perhaps it had to be estimated by the experimenter because the reading was between two marks on a scale.


When doing a calculation your answer should have the same number of significant figures as the measurements used in the calculation. For example, if your calculator gave an answer of 3.4185062, this would be written as 3.4 if the measurements had two significant figures. It would be written as 3.42 for three significant figures. Note that in deciding the least significant figure you look at the next figure to the right. If it is less than 5 you leave the least significant figure as it is (hence 3.41 becomes 3.4) but if it equals or is greater than 5 you increase the least significant figure by 1 (hence 3.418 becomes 3.42).


If a number is expressed in standard notation, the number of significant figures is the number of digits before the power of ten. For example, 2.73 × 103 has three significant figures.


Area


The area of the square in Figure 1.3a with sides 1 cm long is 1 square centimetre (1 cm2). In Figure 1.3b the rectangle measures 4 cm by 3 cm and has an area of 4 × 3 = 12 cm2 since it has the same area as twelve squares each of area 1 cm2. The area of a square or rectangle is given by


area = length × breadth


The SI unit of area is the square metre (m2) which is the area of a square with sides 1 m long. Note that
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Sometimes we need to know the area of a triangle (Chapter 3). It is given by
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For example in Figure 1.4
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and
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The area of a circle of radius r is πr2 where π = 22/7 or 3.14; its circumference is 2πr.


Volume


Volume is the amount of space occupied. The unit of volume is the cubic metre (m3) but as this is rather large, for most purposes the cubic centimetre (cm3) is used. The volume of a cube with 1 cm edges is 1 cm3. Note that
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For a regularly shaped object such as a rectangular block, Figure 1.5 shows that


volume = length × breadth × height
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The volume of a sphere of radius r is [image: ]πr3 and that of a cylinder of radius r and height h is πr2h.


The volume of a liquid may be obtained by pouring it into a measuring cylinder, Figure 1.6a. A known volume can be run off accurately from a burette, Figure 1.6b. When making a reading both vessels must be upright and your eye must be level with the bottom of the curved liquid surface, i.e. the meniscus. The meniscus formed by mercury is curved oppositely to that of other liquids and the top is read.


Liquid volumes are also expressed in litres (l); 1 litre = 1000 cm3 = 1 dm3. One millilitre (1 ml) = 1 cm3.




[image: ]




Mass


The mass of an object is the measure of the amount of matter in it. The unit of mass is the kilogram (kg) and is the mass of a piece of platinum–iridium alloy at the Office of Weights and Measures in Paris. The gram (g) is one-thousandth of a kilogram.
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The term weight is often used when mass is really meant. In science the two ideas are distinct and have different units, as we shall see later. The confusion is not helped by the fact that mass is found on a balance by a process we unfortunately call ‘weighing’!


There are several kinds of balance. In the beam balance the unknown mass in one pan is balanced against known masses in the other pan. In the lever balance a system of levers acts against the mass when it is placed in the pan. A direct reading is obtained from the position on a scale of a pointer joined to the lever system. A digital top-pan balance is shown in Figure 1.7.
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Time


The unit of time is the second (s) which used to be based on the length of a day, this being the time for the Earth to revolve once on its axis. However, days are not all of exactly the same duration and the second is now defined as the time interval for a certain number of energy changes to occur in the caesium atom.


Time-measuring devices rely on some kind of constantly repeating oscillation. In traditional clocks and watches a small wheel (the balance wheel) oscillates to and fro; in digital clocks and watches the oscillations are produced by a tiny quartz crystal. A swinging pendulum controls a pendulum clock.


To measure an interval of time in an experiment, first choose a timer that is accurate enough for the task. A stopwatch is adequate for finding the period in seconds of a pendulum, see Figure 1.8, but to measure the speed of sound (Chapter 33), a clock that can time in milliseconds is needed. To measure very short time intervals, a digital clock that can be triggered to start and stop by an electronic signal from a microphone, photogate or mechanical switch is useful. Tickertape timers or dataloggers are often used to record short time intervals in motion experiments (Chapter 2).


Accuracy can be improved by measuring longer time intervals. Several oscillations (rather than just one) are timed to find the period of a pendulum. ‘Tenticks’ (rather than ‘ticks’) are used in tickertape timers.


Practical work


Period of a simple pendulum


In this investigation you have to make time measurements using a stopwatch or clock.


Attach a small metal ball (called a bob) to a piece of string, and suspend it as shown in Figure 1.8. Pull the bob a small distance to one side, and then release it so that it oscillates to and fro through a small angle.


Find the time for the bob to make several complete oscillations; one oscillation is from A to O to B to O to A (Figure 1.8). Repeat the timing a few times for the same number of oscillations and work out the average. The time for one oscillation is the period T. What is it for your system? The frequency f of the oscillations is the number of complete oscillations per second and equals 1/T. Calculate f.


How does the amplitude of the oscillations change with time?


Investigate the effect on T of (i) a longer string, (ii) a heavier bob. A motion sensor connected to a datalogger and computer (Chapter 2) could be used instead of a stopwatch for these investigations.
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Systematic errors


Figure 1.9 shows a part of a rule used to measure the height of a point P above the bench. The rule chosen has a space before the zero of the scale. This is shown as the length x. The height of the point P is given by the scale reading added to the value of x. The equation for the height is


height = scale reading + x


height = 5.9 + x
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By itself the scale reading is not equal to the height. It is too small by the value of x.


This type of error is known as a systematic error. The error is introduced by the system. A half-metre rule has the zero at the end of the rule and so can be used without introducing a systematic error.


When using a rule to determine a height, the rule must be held so that it is vertical. If the rule is at an angle to the vertical, a systematic error is introduced.
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Vernier scales and micrometers


Lengths can be measured with a ruler to an accuracy of about 1 mm. Some investigations may need a more accurate measurement of length, which can be achieved by using vernier calipers (Figure 1.10) or a micrometer screw gauge.
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a) Vernier scale


The calipers shown in Figure 1.10 use a vernier scale. The simplest type enables a length to be measured to 0.01 cm. It is a small sliding scale which is 9 mm long but divided into 10 equal divisions (Figure 1.11a) so
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One end of the length to be measured is made to coincide with the zero of the millimetre scale and the other end with the zero of the vernier scale. The length of the object in Figure 1.11b is between 1.3 cm and 1.4 cm. The reading to the second place of decimals is obtained by finding the vernier mark which is exactly opposite (or nearest to) a mark on the millimetre scale. In this case it is the 6th mark and the length is 1.36 cm, since
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Vernier scales are also used on barometers, travelling microscopes and spectrometers.
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b) Micrometer screw gauge


This measures very small objects to 0.001 cm. One revolution of the drum opens the accurately flat, parallel jaws by one division on the scale on the shaft of the gauge; this is usually [image: ] mm, i.e. 0.05 cm. If the drum has a scale of 50 divisions round it, then rotation of the drum by one division opens the jaws by 0.05/50 = 0.001 cm (Figure 1.12). A friction clutch ensures that the jaws exert the same force when the object is gripped.
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The object shown in Figure 1.12 has a length of


    2.5 mm on the shaft scale +
33 divisions on the drum scale
          = 0.25 cm + 33(0.001) cm
          = 0.283 cm


Before making a measurement, check to ensure that the reading is zero when the jaws are closed. Otherwise the zero error must be allowed for when the reading is taken.
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Questions




 1  How many millimetres are there in







      a  1 cm,


      b  4 cm,


      c  0.5 cm,


      d  6.7 cm,


      e  1 m?







 2  What are these lengths in metres:







      a  300 cm,


      b  550 cm,


      c  870 cm,


      d  43 cm,


      e  100 mm?







  3  a Write the following as powers of ten with one figure before the decimal point:
100 000  3500  428 000 000  504  27 056







      b Write out the following in full:
103  2 × 106  6.92 × 104  1.34 × 102  109








  4  a Write these fractions as powers of ten:
1/1000  7/100 000  1/10 000 000  3/60 000







      b Express the following decimals as powers of ten with
one figure before the decimal point:
0.5  0.084  0.000 36  0.001 04







 5  The pages of a book are numbered 1 to 200 and each leaf is 0.10 mm thick. If each cover is 0.20 mm thick, what is the thickness of the book?


 6  How many significant figures are there in a length measurement of:







      a  2.5 cm,


      b  5.32 cm,


      c  7.180 cm,


      d  0.042 cm?







 7  A rectangular block measures 4.1 cm by 2.8 cm by 2.1 cm. Calculate its volume giving your answer to an appropriate number of significant figures.


 8  A metal block measures 10 cm × 2 cm × 2 cm. What is its volume? How many blocks each 2 cm × 2 cm × 2 cm have the same total volume?


 9  How many blocks of ice cream each 10 cm × 10 cm × 4 cm can be stored in the compartment of a freezer measuring 40 cm × 40 cm × 20 cm?








10  A Perspex container has a 6 cm square base and contains water to a height of 7 cm (Figure 1.13).







      a  What is the volume of the water?


      b  A stone is lowered into the water so as to be completely covered and the water rises to a height of 9 cm. What is the volume of the stone?
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11  What are the readings on the vernier scales in Figures 1.14a and b?
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12  What are the readings on the micrometer screw gauges in Figures 1.15a and b?
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13 a Name the basic units of: length, mass, time.







     b What is the difference between two measurements of the same object with values of 3.4 and 3.42?


     c Write expressions for







        (i)   the area of a circle,


        (ii)  the volume of a sphere,


        (iii) the volume of a cylinder.
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Checklist


After studying this chapter you should be able to





•  recall three basic quantities in physics,



•  write a number in powers of ten (standard notation),



•  recall the unit of length and the meaning of the prefixes kilo, centi, milli, micro, nano,



•  use a ruler to measure length so as to minimise errors,



•  give a result to an appropriate number of significant
figures,



•  measure areas of squares, rectangles, triangles and circles,



•  measure the volume of regular solids and of liquids,



•  recall the unit of mass and how mass is measured,



•  recall the unit of time and how time is measured,



•  describe the use of clocks and devices, both analogue and digital, for measuring an interval of time,



•  describe an experiment to find the period of a pendulum,



•  understand how a systematic error may be introduced when measuring,
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•  take measurements with vernier calipers and a micrometer screw gauge.
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2 Speed, velocity and acceleration
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•  Speed


•  Velocity


•  Acceleration


•  Timers


•  Practical work: Analysing motion
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Speed


If a car travels 300 km from Liverpool to London in five hours, its average speed is 300 km/5 h = 60 km/h. The speedometer would certainly not read 60 km/h for the whole journey but might vary considerably from this value. That is why we state the average speed. If a car could travel at a constant speed of 60 km/h for five hours, the distance covered would still be 300 km. It is always true that


[image: ]








[image: ]







[image: ]





To find the actual speed at any instant we would need to know the distance moved in a very short interval of time. This can be done by multiflash photography. In Figure 2.1 the golfer is photographed while a flashing lamp illuminates him 100 times a second. The speed of the club-head as it hits the ball is about 200 km/h.
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Velocity


Speed is the distance travelled in unit time; velocity is the distance travelled in unit time in a stated direction. If two trains travel due north at 20 m/s, they have the same speed of 20 m/s and the same velocity of 20 m/s due north. If one travels north and the other south, their speeds are the same but not their velocities since their directions of motion are different. Speed is a scalar quantity and velocity a vector quantity (see Chapter 7).
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The velocity of a body is uniform or constant if it moves with a steady speed in a straight line. It is not uniform if it moves in a curved path. Why?


The units of speed and velocity are the same, km/h, m/s.
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Distance moved in a stated direction is called the displacement. It is a vector, unlike distance which is a scalar. Velocity may also be defined as
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Acceleration


When the velocity of a body changes we say the body accelerates. If a car starts from rest and moving due north has velocity 2 m/s after 1 second, its velocity has increased by 2 m/s in 1 s and its acceleration is 2 m/s per second due north. We write this as 2 m/s2.


Acceleration is the change of velocity in unit time, or
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For a steady increase of velocity from 20 m/s to 50 m/s in 5 s
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Acceleration is also a vector and both its magnitude and direction should be stated. However, at present we will consider only motion in a straight line and so the magnitude of the velocity will equal the speed, and the magnitude of the acceleration will equal the change of speed in unit time.


The speeds of a car accelerating on a straight road are shown below.
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The speed increases by 5 m/s every second and the acceleration of 5 m/s2 is said to be uniform.


An acceleration is positive if the velocity increases and negative if it decreases. A negative acceleration is also called a deceleration or retardation.


Timers


A number of different devices are useful for analysing motion in the laboratory.


a) Motion sensors


Motion sensors use the ultrasonic echo technique (see p. 143) to determine the distance of an object from the sensor. Connection of a datalogger and computer to the motion sensor then enables a distance–time graph to be plotted directly (see Figure 2.6). Further data analysis by the computer allows a velocity–time graph to be obtained, as in Figures 3.1 and 3.2, p. 13.


b) Tickertape timer: tape charts


A tickertape timer also enables us to measure speeds and hence accelerations. One type, Figure 2.2, has a marker that vibrates 50 times a second and makes dots at [image: ] s intervals on the paper tape being pulled through it; [image: ] s is called a ‘tick’.
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The distance between successive dots equals the average speed of whatever is pulling the tape in, say, cm per [image: ] s, i.e. cm per tick. The ‘tentick’ ([image: ] s) is also used as a unit of time. Since ticks and tenticks are small we drop the ‘average’ and just refer to the ‘speed’.


Tape charts are made by sticking successive strips of tape, usually tentick lengths, side by side. That in Figure 2.3a represents a body moving with uniform speed since equal distances have been moved in each tentick interval.


The chart in Figure 2.3b is for uniform acceleration: the ‘steps’ are of equal size showing that the speed increased by the same amount in every tentick ([image: ] s). The acceleration (average) can be found from the chart as follows.


The speed during the first tentick is 2 cm for every [image: ] s, or 10 cm/s. During the sixth tentick it is 12 cm per [image: ] s or 60 cm/s. And so during this interval of 5 tenticks, i.e. 1 second, the change of speed is (60 − 10) cm/s = 50 cm/s.
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c) Photogate timer


Photogate timers may be used to record the time taken for a trolley to pass through the gate, Figure 2.4. If the length of the ‘interrupt card’ on the trolley is measured, the velocity of the trolley can then be calculated. Photogates are most useful in experiments where the velocity at only one or two positions is needed.
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Practical work


Analysing motion


a) Your own motion


Pull a 2 m length of tape through a tickertape timer as you walk away from it quickly, then slowly, then speeding up again and finally stopping.


Cut the tape into tentick lengths and make a tape chart. Write labels on it to show where you speeded up, slowed down, etc.


b) Trolley on a sloping runway


Attach a length of tape to a trolley and release it at the top of a runway (Figure 2.5). The dots will be very crowded at the start – ignore those; but beyond them cut the tape into tentick lengths.


Make a tape chart. Is the acceleration uniform? What is its average value?
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c) Datalogging


Replace the tickertape timer with a motion sensor connected to a datalogger and computer (Figure 2.6). Repeat the experiments in a) and b) and obtain distance–time and velocity–time graphs for each case; identify regions where you think the acceleration changes or remains uniform.
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Questions





1 What is the average speed of







    a  a car that travels 400 m in 20 s,


    b  an athlete who runs 1500 m in 4 minutes?








2 A train increases its speed steadily from 10 m/s to 20 m/s in 1 minute.







    a  What is its average speed during this time, in m/s?


    b  How far does it travel while increasing its speed?








3 A motorcyclist starts from rest and reaches a speed of 6 m/s after travelling with uniform acceleration for 3 s. What is his acceleration?



4 An aircraft travelling at 600 km/h accelerates steadily at 10 km/h per second. Taking the speed of sound as 1100 km/h at the aircraft’s altitude, how long will it take to reach the ‘sound barrier’?



5 A vehicle moving with a uniform acceleration of 2 m/s2 has a velocity of 4 m/s at a certain time. What will its velocity be







    a  1 s later,


    b  5 s later?








6 If a bus travelling at 20 m/s is subject to a steady deceleration of 5 m/s2, how long will it take to come to rest?



7 The tape in Figure 2.7 was pulled through a timer by a trolley travelling down a runway. It was marked off in tentick lengths.







    a  What can you say about the trolley’s motion?


    b  Find its acceleration in cm/s2.
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8 Each strip in the tape chart of Figure 2.8 is for a time interval of 1 tentick.







    a  If the timer makes 50 dots per second, what time intervals are represented by OA and AB?


    b  What is the acceleration between O and A in








        (i)   cm/tentick2,



        (ii)  cm/s per tentick,



        (iii) cm/s2?







    c  What is the acceleration between A and B?
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9 The speeds of a car travelling on a straight road are given below at successive intervals of 1 second.
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      The car travels


      1 with an average velocity of 4 m/s


      2 16 m in 4 s


      3 with a uniform acceleration of 2 m/s2.


      Which statement(s) is (are) correct?


      A 1, 2, 3


      B 1, 2


      C 2, 3


      D 1


      E 3








10  If a train travelling at 10 m/s starts to accelerate at 1 m/s2 for 15 s on a straight track, its final velocity in m/s is







      A 5


      B 10


      C 15


      D 20


      E 25
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Checklist


After studying this chapter you should be able to





• explain the meaning of the terms speed and acceleration,
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• distinguish between speed and velocity,
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• describe how speed and acceleration may be found using tape charts and motion sensors.
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3 Graphs of equations
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•  Velocity–time graphs


•  Distance–time graphs


•  Equations for uniform acceleration
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Velocity–time graphs


If the velocity of a body is plotted against the time, the graph obtained is a velocity–time graph. It provides a way of solving motion problems. Tape charts are crude velocity–time graphs that show the velocity changing in jumps rather than smoothly, as occurs in practice. A motion sensor gives a smoother plot.
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The area under a velocity–time graph measures the distance travelled.
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In Figure 3.1, AB is the velocity–time graph for a body moving with a uniform velocity of 20 m/s. Since distance = average velocity × time, after 5 s it will have moved 20 m/s × 5 s = 100 m. This is the shaded area under the graph, i.e. rectangle OABC.


In Figure 3.2a, PQ is the velocity–time graph for a body moving with uniform acceleration. At the start of the timing the velocity is 20 m/s but it increases steadily to 40 m/s after 5 s. If the distance covered equals the area under PQ, i.e. the shaded area OPQS, then
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Notes





1 When calculating the area from the graph, the unit of time must be the same on both axes.



2 This rule for finding distances travelled is true even if the acceleration is not uniform. In Figure 3.2b, the distance travelled equals the shaded area OXY.





[image: ]






The slope or gradient of a velocity–time graph represents the acceleration of the body.
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In Figure 3.1, the slope of AB is zero, as is the acceleration. In Figure 3.2a, the slope of PQ is QR/PR = 20/5 = 4: the acceleration is 4 m/s2. In Figure 3.2b, when the slope along OX changes, so does the acceleration.



Distance–time graphs



A body travelling with uniform velocity covers equal distances in equal times. Its distance–time graph is a straight line, like OL in Figure 3.3 for a velocity of 10 m/s. The slope of the graph is LM/OM = 40 m/4 s = 10 m/s, which is the value of the velocity. The following statement is true in general:
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The slope or gradient of a distance–time graph represents the velocity of the body.
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When the velocity of the body is changing, the slope of the distance–time graph varies, as in Figure 3.4, and at any point equals the slope of the tangent. For example, the slope of the tangent at T is AB/BC = 40 m/2 s = 20 m/s. The velocity at the instant corresponding to T is therefore 20 m/s.
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Equations for uniform acceleration


Problems involving bodies moving with uniform acceleration can often be solved quickly using the equations of motion.


First equation


If a body is moving with uniform acceleration a and its velocity increases from u to v in time t, then




[image: ]




or
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Note that the initial velocity u and the final velocity v refer to the start and the finish of the timing and do not necessarily mean the start and finish of the motion.


Second equation


The velocity of a body moving with uniform acceleration increases steadily. Its average velocity therefore equals half the sum of its initial and final velocities, that is,
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If s is the distance moved in time t, then since average velocity = distance/time = s/t,
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or
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Third equation


From equation (1), v = u + at


From equation (2),
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and so
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Fourth equation


This is obtained by eliminating t from equations (1) and (3). Squaring equation (1) we have
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If we know any three of u, v, a, s and t, the others can be found from the equations.


Worked example


A sprint cyclist starts from rest and accelerates at 1 m/s2 for 20 seconds. He then travels at a constant speed for 1 minute and finally decelerates at 2 m/s2 until he stops. Find his maximum speed in km/h and the total distance covered in metres.


First stage


u = 0 a = 1 m/s2 t = 20 s


We have
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The distance s moved in the first stage is given by
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Second stage






	u = 20 m/s (constant)      t = 60 s






	distance moved

	= speed × time = 20 m/s × 60 s






	 

	= 1200 m







Third stage


u = 20 m/s v = 0 a = −2 m/s2 (a deceleration)


We have


v2 = u2 + 2as
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Answers


Maximum speed = 72 km/h


Total distance covered = 200 m + 1200 m + 100 m


                          = 1500 m
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Questions





1 The distance–time graph for a girl on a cycle ride is shown in Figure 3.5.







    a  How far did she travel?


    b  How long did she take?


    c  What was her average speed in km/h?


    d  How many stops did she make?


    e  How long did she stop for altogether?


    f  What was her average speed excluding stops?


    g  How can you tell from the shape of the graph when she travelled fastest? Over which stage did this happen?
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2 The graph in Figure 3.6 represents the distance travelled by a car plotted against time.







    a  How far has the car travelled at the end of 5 seconds?


    b  What is the speed of the car during the first 5 seconds?


    c  What has happened to the car after A?


    d  Draw a graph showing the speed of the car plotted against time during the first 5 seconds.
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3 Figure 3.7 shows an incomplete velocity–time graph for a boy running a distance of 100 m.







    a  What is his acceleration during the first 4 seconds?


    b  How far does the boy travel during (i) the first 4 seconds, (ii) the next 9 seconds?


    c  Copy and complete the graph showing clearly at what time he has covered the distance of 100 m. Assume his speed remains constant at the value shown by the horizontal portion of the graph.
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4 The approximate velocity–time graph for a car on a 5-hour journey is shown in Figure 3.8. (There is a very quick driver change midway to prevent driving fatigue!)







    a  State in which of the regions OA, AB, BC, CD, DE the car is (i) accelerating, (ii) decelerating, (iii) travelling with uniform velocity.


    b  Calculate the value of the acceleration, deceleration or constant velocity in each region.


    c  What is the distance travelled over each region?


    d  What is the total distance travelled?


    e  Calculate the average velocity for the whole journey.
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5 The distance–time graph for a motorcyclist riding off from rest is shown in Figure 3.9.







    a  Describe the motion.


    b  How far does the motorbike move in 30 seconds?


    c  Calculate the speed.
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Checklist


After studying this chapter you should be able to





•  draw, interpret and use velocity–time and distance–time graphs to solve problems.
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4 Falling bodies



[image: ]









•  Acceleration of free fall




•  Measuring g




•  Distance–time graphs




•  Projectiles




•  Practical work: Motion of a falling body
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In air, a coin falls faster than a small piece of paper. In a vacuum they fall at the same rate, as may be shown with the apparatus of Figure 4.1. The difference in air is due to air resistance having a greater effect on light bodies than on heavy bodies. The air resistance to a light body is large when compared with the body’s weight. With a dense piece of metal the resistance is negligible at low speeds.


There is a story, untrue we now think, that in the 16th century the Italian scientist Galileo dropped a small iron ball and a large cannonball ten times heavier from the top of the Leaning Tower of Pisa (Figure 4.2). And we are told that, to the surprise of onlookers who expected the cannonball to arrive first, they reached the ground almost simultaneously. You will learn more about air resistance in Chapter 8.




[image: ]






[image: ]





Practical work



Motion of a falling body


Arrange things as shown in Figure 4.3 and investigate the motion of a 100 g mass falling from a height of about 2 m.


Construct a tape chart using one-tick lengths. Choose as dot ‘0’ the first one you can distinguish clearly. What does the tape chart tell you about the motion of the falling mass? Repeat the experiment with a 200 g mass; what do you notice?
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Acceleration of free fall


All bodies falling freely under the force of gravity do so with uniform acceleration if air resistance is negligible (i.e. the ‘steps’ in the tape chart from the practical work should all be equal).


This acceleration, called the acceleration of free fall, is denoted by the italic letter g. Its value varies slightly over the Earth but is constant in each place; in India for example, it is about 9.8 m/s2 or near enough 10 m/s2. The velocity of a free-falling body therefore increases by 10 m/s every second. A ball shot straight upwards with a velocity of 30 m/s decelerates by 10 m/s every second and reaches its highest point after 3 s.


In calculations using the equations of motion, g replaces a. It is given a positive sign for falling bodies (i.e. a = g = +10 m/s2) and a negative sign for rising bodies since they are decelerating (i.e. a = −g = −10 m/s2).
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Measuring g


Using the arrangement in Figure 4.4 the time for a steel ball-bearing to fall a known distance is measured by an electronic timer.


When the two-way switch is changed to the ‘down’ position, the electromagnet releases the ball and simultaneously the clock starts. At the end of its fall the ball opens the ‘trap-door’ on the impact switch and the clock stops.


The result is found from the third equation of motion s = ut + [image: ] at2, where s is the distance fallen (in m), t is the time taken (in s), u = 0 (the ball starts from rest) and a = g (in m/s2). Hence
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or


g = 2s/t2


Air resistance is negligible for a dense object such as a steel ball-bearing falling a short distance.
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Worked example



A ball is projected vertically upwards with an initial velocity of 30 m/s. Find a its maximum height and b the time taken to return to its starting point. Neglect air resistance and take g = 10 m/s2.





a We have u = 30 m/s, a = −10 m/s2 (a deceleration) and v = 0 since the ball is momentarily at rest at its highest point. Substituting in v2 = u2 + 2as,





0 = 302 m2/s2 + 2(−10 m/s2) × s


or


−900 m2/s2 = −s × 20 m/s2
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b If t is the time to reach the highest point, we have, from v = u + at,





0 = 30 m/s + (−10 m/s2) × t


or


−30 m/s = −t × 10 m/s2
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The downward trip takes exactly the same time as the upward one and so the answer is 6 s.
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Distance–time graphs


For a body falling freely from rest we have
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A graph of distance s against time t is shown in Figure 4.5a and for s against t2 in Figure 4.5b. The second graph is a straight line through the origin since s ∝ t2 (g being constant at one place).
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Projectiles


The photograph in Figure 4.6 was taken while a lamp emitted regular flashes of light. One ball was dropped from rest and the other, a ‘projectile’, was thrown sideways at the same time. Their vertical accelerations (due to gravity) are equal, showing that a projectile falls like a body which is dropped from rest. Its horizontal velocity does not affect its vertical motion.


[image: ]






The horizontal and vertical motions of a body are independent and can be treated separately.
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For example if a ball is thrown horizontally from the top of a cliff and takes 3 s to reach the beach below, we can calculate the height of the cliff by considering the vertical motion only. We have u = 0 (since the ball has no vertical velocity initially), a = g = +10 m/s2 and t = 3 s. The height s of the cliff is given by
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Projectiles such as cricket balls and explosive shells are projected from near ground level and at an angle. The horizontal distance they travel, i.e. their range, depends on





(i)     the speed of projection – the greater this is, the greater the range, and



(ii)   the angle of projection – it can be shown that, neglecting air resistance, the range is a maximum when the angle is 45º (Figure 4.7).







[image: ]







[image: ]





[image: ]






Questions





1 A stone falls from rest from the top of a high tower. Ignore air resistance and take g = 10 m/s2.







    a What is its velocity after







        (i)     1 s,


        (ii)    2 s,


        (iii)  3 s,


        (iv)   5 s?







    b How far has it fallen after







        (i)   1 s,


        (ii)  2 s,


        (iii) 3 s,


        (iv)  5 s?








2 An object falls from a hovering helicopter and hits the ground at a speed of 30 m/s. How long does it take the object to reach the ground and how far does it fall? Sketch a velocity–time graph for the object (ignore air resistance).
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Checklist


After studying this chapter you should be able to
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•  describe the behaviour of falling objects,
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•  state that the acceleration of free fall for a body near the Earth is constant.
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5 Density
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•  Calculations




•  Simple density measurements




•  Floating and sinking









[image: ]





In everyday language, lead is said to be ‘heavier’ than wood. By this it is meant that a certain volume of lead is heavier than the same volume of wood. In science such comparisons are made by using the term density. This is the mass per unit volume of a substance and is calculated from
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The density of lead is 11 grams per cubic centimetre (11 g/cm3) and this means that a piece of lead of volume 1 cm3 has mass 11 g. A volume of 5 cm3 of lead would have mass 55 g. If the density of a substance is known, the mass of any volume of it can be calculated. This enables engineers to work out the weight of a structure if they know from the plans the volumes of the materials to be used and their densities. Strong enough foundations can then be made.


The SI unit of density is the kilogram per cubic metre. To convert a density from g/cm3, normally the most suitable unit for the size of sample we use, to kg/m3, we multiply by 103. For example the density of water is 1.0 g/cm3 or 1.0 × 103 kg/m3.


The approximate densities of some common substances are given in Table 5.1.




[image: ]




Calculations


Using the symbols ρ (rho) for density, m for mass and V for volume, the expression for density is
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Rearranging the expression gives
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These are useful if ρ is known and m or V have to be calculated. If you do not see how they are obtained refer to the Mathematics for physics section on p. 279. The triangle in Figure 5.1 is an aid to remembering them. If you cover the quantity you want to know with a finger, such as m, it equals what you can still see, i.e. ρ × V. To find V, cover V and you get V = m/ρ.
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Worked example


Taking the density of copper as 9 g/cm3, find a the mass of 5 cm3 and b the volume of 63 g.





a ρ = 9 g/cm3, V = 5 cm3 and m is to be found. m = V × ρ = 5 cm3 × 9 g/cm3 = 45 g








b ρ = 9 g/cm3, m = 63 g and V is to be found.
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Simple density measurements



If the mass m and volume V of a substance are known, its density can be found from ρ = m/V.


a) Regularly shaped solid


The mass is found on a balance and the volume by measuring its dimensions with a ruler.


b) Irregularly shaped solid, such as a pebble or glass stopper


The mass of the solid is found on a balance. Its volume is measured by one of the methods shown in Figures 5.2a and b. In Figure 5.2a the volume is the difference between the first and second readings. In Figure 5.2b it is the volume of water collected in the measuring cylinder.
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c) Liquid


The mass of an empty beaker is found on a balance. A known volume of the liquid is transferred from a burette or a measuring cylinder into the beaker. The mass of the beaker plus liquid is found and the mass of liquid is obtained by subtraction.


d) Air


Using a balance, the mass of a 500 cm3 round-bottomed flask full of air is found and again after removing the air with a vacuum pump; the difference gives the mass of air in the flask. The volume of air is found by filling the flask with water and pouring it into a measuring cylinder.


Floating and sinking


An object sinks in a liquid of lower density than its own; otherwise it floats, partly or wholly submerged. For example, a piece of glass of density 2.5 g/cm3 sinks in water (density 1.0 g/cm3) but floats in mercury (density 13.6 g/cm3). An iron nail sinks in water but an iron ship floats because its average density is less than that of water.
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Questions





1 a If the density of wood is 0.5 g/cm3 what is the mass of







        (i)   1 cm3,


        (ii)  2 cm3,


        (iii) 10 cm3?







    b What is the density of a substance of







        (i)   mass 100 g and volume 10 cm3,


        (ii)  volume 3 m3 and mass 9 kg?







    c The density of gold is 19 g/cm3. Find the volume of







        (i)   38 g,


        (i)   95 g of gold.








2 A piece of steel has a volume of 12 cm3 and a mass of 96 g. What is its density in







    a g/cm3,


    b kg/m3?








3 What is the mass of 5 m3 of cement of density 3000 kg/m3?



4 What is the mass of air in a room measuring 10 m × 5.0 m × 2.0 m if the density of air is 1.3 kg/m3?



5 When a golf ball is lowered into a measuring cylinder of water, the water level rises by 30 cm3 when the ball is completely submerged. If the ball weighs 33 g in air, find its density.



6 Why does ice float on water?
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Checklist


After studying this chapter you should be able to





•  define density and perform calculations using ρ = m/V,



•  describe experiments to measure the density of solids, liquids and air,



•  predict whether an object will float based on density data.
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6 Weight and stretching
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•  Force




•  Weight




•  The newton




•  Hooke’s law




•  Practical work: Stretching a spring
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Force


A force is a push or a pull. It can cause a body at rest to move, or if the body is already moving it can change its speed or direction of motion. A force can also change a body’s shape or size.
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Weight


We all constantly experience the force of gravity, in other words. the pull of the Earth. It causes an unsupported body to fall from rest to the ground.
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The weight of a body is the force of gravity on it.
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For a body above or on the Earth’s surface, the nearer it is to the centre of the Earth, the more the Earth attracts it. Since the Earth is not a perfect sphere but is flatter at the poles, the weight of a body varies over the Earth’s surface. It is greater at the poles than at the equator.


Gravity is a force that can act through space, i.e. there does not need to be contact between the Earth and the object on which it acts as there does when we push or pull something. Other action-at-a-distance forces which, like gravity, decrease with distance are:





(i)  magnetic forces between magnets, and



(ii) electric forces between electric charges.





The newton


The unit of force is the newton (N). It will be defined later (Chapter 8); the definition is based on the change of speed a force can produce in a body. Weight is a force and therefore should be measured in newtons.


The weight of a body can be measured by hanging it on a spring balance marked in newtons (Figure 6.2) and letting the pull of gravity stretch the spring in the balance. The greater the pull, the more the spring stretches.
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On most of the Earth’s surface:
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The weight of a body of mass 1 kg is 9.8 N.
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Often this is taken as 10 N. A mass of 2 kg has a weight of 20 N, and so on. The mass of a body is the same wherever it is and, unlike weight, does not depend on the presence of the Earth.


Practical work


Stretching a spring


Arrange a steel spring as in Figure 6.3. Read the scale opposite the bottom of the hanger. Add 100 g loads one at a time (thereby increasing the stretching force by steps of 1 N) and take the readings after each one. Enter the readings in a table for loads up to 500 g.


Note that at the head of columns (or rows) in data tables it is usual to give the name of the quantity or its symbol followed by / and the unit.






	Stretching force/N

	Scale reading/mm

	Total extension/mm






	 

	 

	 







Do the results suggest any rule about how the spring behaves when it is stretched?


Sometimes it is easier to discover laws by displaying the results on a graph. Do this on graph paper by plotting stretching force readings along the x-axis (horizontal axis) and total extension readings along the y-axis (vertical axis). Every pair of readings will give a point; mark them by small crosses and draw a smooth line through them. What is its shape?
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Hooke’s law


Springs were investigated by Robert Hooke nearly 350 years ago. He found that the extension was proportional to the stretching force provided the spring was not permanently stretched. This means that doubling the force doubles the extension, trebling the force trebles the extension, and so on. Using the sign for proportionality, ∝, we can write Hooke’s law as
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extension ∝ stretching force
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It is true only if the elastic limit or ‘limit of proportionality’ of the spring is not exceeded. In other words, the spring returns to its original length when the force is removed.


The graph of Figure 6.4 is for a spring stretched beyond its elastic limit, E. OE is a straight line passing through the origin O and is graphical proof that Hooke’s law holds over this range. If the force for point A on the graph is applied to the spring, the proportionality limit is passed and on removing the force some of the extension (OS) remains. Over which part of the graph does a spring balance work?


The force constant, k, of a spring is the force needed to cause unit extension, i.e. 1 m. If a force F produces extension x then
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Rearranging the equation gives


F = kx


This is the usual way of writing Hooke’s law in symbols.


Hooke’s law also holds when a force is applied to a straight metal wire or an elastic band, provided they are not permanently stretched. Force–extension graphs similar to Figure 6.4 are obtained. You should label each axis of your graph with the name of the quantity or its symbol followed by / and the unit, as shown in Figure 6.4.


For a rubber band, a small force causes a large extension.
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Worked example



A spring is stretched 10 mm (0.01 m) by a weight of 2.0 N. Calculate: a the force constant k, and b the weight W of an object that causes an extension of 80 mm (0.08 m).





a [image: ]




b W = stretching force F










	 

	= k × x







	 

	= 200 N/m × 0.08 m






	 

	= 16 N
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Questions





1 A body of mass 1 kg has weight 10 N at a certain place. What is the weight of







    a 100 g,


    b 5 kg,


    c 50 g?








2 The force of gravity on the Moon is said to be one-sixth of that on the Earth. What would a mass of 12 kg weigh







    a on the Earth, and


    b on the Moon?








3 What is the force constant of a spring which is stretched







    a 2 mm by a force of 4 N,


    b 4 cm by a mass of 200 g?








4 The spring in Figure 6.5 stretches from 10 cm to 22 cm when a force of 4 N is applied. If it obeys Hooke’s law, its total length in cm when a force of 6 N is applied is







    A 28


    B 42


    C 50


    D 56


    E 100
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Checklist


After studying this chapter you should be able to





•  recall that a force can cause a change in the motion, size or shape of a body,



•  recall that the weight of a body is the force of gravity on it,



•  recall the unit of force and how force is measured,



•  describe an experiment to study the relation between force and extension for springs,



•  draw conclusions from force–extension graphs,
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•  recall Hooke’s law and solve problems using it,



•  recognise the significance of the term limit of proportionality.
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7 Adding forces
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•  Forces and resultants




•  Examples of addition of forces




•  Vectors and scalars




•  Friction




•  Practical work: Parallelogram law
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Forces and resultants


Force has both magnitude (size) and direction. It is represented in diagrams by a straight line with an arrow to show its direction of action.


Usually more than one force acts on an object. As a simple example, an object resting on a table is pulled downwards by its weight W and pushed upwards by a force R due to the table supporting it (Figure 7.1). Since the object is at rest, the forces must balance, i.e. R = W.
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In structures such as a giant oil platform (Figure 7.2), two or more forces may act at the same point. It is then often useful for the design engineer to know the value of the single force, i.e. the resultant, which has exactly the same effect as these forces. If the forces act in the same straight line, the resultant is found by simple addition or subtraction as shown in Figure 7.3; if they do not they are added by using the parallelogram law.


Practical work


Parallelogram law


Arrange the apparatus as in Figure 7.4a with a sheet of paper behind it on a vertical board. We have to find the resultant of forces P and Q.


Read the values of P and Q from the spring balances. Mark on the paper the directions of P, Q and W as shown by the strings.
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Remove the paper and, using a scale of 1 cm to represent 1 N, draw OA, OB and OD to represent the three forces P, Q and W which act at O, as in Figure 7.4b. (W = weight of the 1 kg mass = 9.8 N; therefore OD = 9.8 cm.)
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P and Q together are balanced by W and so their resultant must be a force equal and opposite to W.


Complete the parallelogram OACB. Measure the diagonal OC; if it is equal in size (i.e. 9.8 cm) and opposite in direction to W then it represents the resultant of P and Q.


The parallelogram law for adding two forces is:
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If two forces acting at a point are represented in size and direction by the sides of a parallelogram drawn from the point, their resultant is represented in size and direction by the diagonal of the parallelogram drawn from the point.
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Worked example


Find the resultant of two forces of 4.0 N and 5.0 N acting at an angle of 45º to each other.


Using a scale of 1.0 cm = 1.0 N, draw parallelogram ABDC with AB = 5.0 cm, AC = 4.0 N and angle CAB = 45º (Figure 7.5). By the parallelogram law, the diagonal AD represents the resultant in magnitude and direction; it measures 8.3 cm, and angle BAD = 20º.


∴ Resultant is a force of 8.3 N acting at an angle of 20º to the force of 5.0 N.
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Examples of addition of forces





1 Two people carrying a heavy bucket. The weight of the bucket is balanced by the force F, the resultant of F1 and F2 (Figure 7.6a).



2 Two tugs pulling a ship. The resultant of T1 and T2 is forwards in direction (Figure 7.6b), and so the ship moves forwards (as long as the resultant is greater than the resistance to motion of the sea and the wind).
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Vectors and scalars


A vector quantity is one such as force which is described completely only if both its size (magnitude) and direction are stated. It is not enough to say, for example, a force of 10 N, but rather a force of 10 N acting vertically downwards.


A vector can be represented by a straight line whose length represents the magnitude of the quantity and whose direction gives its line of action. An arrow on the line shows which way along the line it acts.


A scalar quantity has magnitude only. Mass is a scalar and is completely described when its value is known. Scalars are added by ordinary arithmetic; vectors are added geometrically, taking account of their directions as well as their magnitudes.
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Friction


Friction is the force that opposes one surface moving, or trying to move, over another. It can be a help or a hindrance. We could not walk if there was no friction between the soles of our shoes and the ground. Our feet would slip backwards, as they tend to if we walk on ice. On the other hand, engineers try to reduce friction to a minimum in the moving parts of machinery by using lubricating oils and ball-bearings.


When a gradually increasing force P is applied through a spring balance to a block on a table (Figure 7.7), the block does not move at first. This is because an equally increasing but opposing frictional force F acts where the block and table touch. At any instant P and F are equal and opposite.


If P is increased further, the block eventually moves; as it does so F has its maximum value, called starting or static friction. When the block is moving at a steady speed, the balance reading is slightly less than that for starting friction. Sliding or dynamic friction is therefore less than starting or static friction.


Placing a mass on the block increases the force pressing the surfaces together and increases friction.


When work is done against friction, the temperatures of the bodies in contact rise (as you can test by rubbing your hands together); mechanical energy is being changed into heat energy (see Chapter 13).
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Questions





1 Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100 N in one direction and Daniel with a force of 140 N in the opposite direction. If the ring does not move, what force does Helen exert if she pulls in the same direction as Jo?



2 A boy drags a suitcase along the ground with a force of 100 N. If the frictional force opposing the motion of the suitcase is 50 N, what is the resultant forward force on the suitcase?



3 A picture is supported by two vertical strings; if the weight of the picture is 50 N what is the force exerted by each string?



4 Using a scale of 1 cm to represent 10 N, find the size and direction of the resultant of forces of 30 N and 40 N acting at right angles to each other.



5 Find the size of the resultant of two forces of 5 N and 12 N acting







    a in opposite directions to each other,


    b at 90° to each other.
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Checklist


After studying this chapter you should be able to





•  combine forces acting along the same straight line to find their resultant,
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•  add vectors graphically to determine a resultant,



•  distinguish between vectors and scalars and give examples of each,
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•  understand friction as the force between two surfaces that impedes motion and results in heating.
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8 Force and acceleration
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•  Newton’s first law




•  Mass and inertia




•  Newton’s second law




•  Weight and gravity




•  Gravitational field




•  Newton’s third law




•  Air resistance: terminal velocity




•  Practical work: Effect of force and mass on acceleration
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