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Recipient of an IgNobel Prize for his studies on the physics of biscuit dunking, and voted an enemy of the people by The Times for research into the way roast dinners absorb gravy, Len Fisher is a tireless promoter and populariser of science. He moved to England in 1989 following a career that began in food research, but has included forays into biomedicine, mining engineering, surface science, fundamental physics and philosophy. He is currently Honorary Research Fellow in the Physics Department, University of Bristol.





introduction



Scientists, like hangmen, are socially disadvantaged by their trade. People are naturally curious about their work and their motivation for doing it but are rather afraid to ask about the details. The fear in the case of scientists is that the questioner won’t understand the answer, and will end up looking foolish. This fear can be so great that guests at parties, having discovered that I am a scientist, usually turn to my wife and ask her what I do, rather than approach me directly.


This book is for them, and for everyone else who wants to know what scientists really get up to. It uses ‘the science of the familiar’ as a key to open a door to science, to show what it feels like to be a scientist, and to view from an insider’s perspective what scientists do, why they do it, and how they go about it. I have used this approach with some success in media publicity exercises designed to show that science can be applied to many everyday activities, including biscuit dunking, the best way to use gravy on roast dinners, the making and throwing of indoor boomerangs, and the use of physics to improve your sex life. The widespread public interest in these stories has encouraged me to write this book, in which I give the background to the stories and broaden my repertoire to cover the application of science to doughnut dunking, shopping, household jobs, sport, bath-time and bed-time – in fact, the major activities of an ordinary day.


Science can add much to everyday activities, but it has also gained much from the study of such activities. Among the things that it has gained are the principle of heat convection, discovered by the Anglo-American Count Rumford after burning his mouth on a hot apple pie; the first measurement of the size of a molecule, performed by Benjamin Franklin after observing the calming effect of dirty washing-up water on the waves in a ship’s wake; and the first estimate of the range of forces between molecules, derived from consideration of the uptake of liquids by porous materials.


Each chapter is built around a familiar activity, and introduces a major scientific concept that is central to that activity. Interweaved with stories of the science are stories of the scientists, who include many of my contemporaries as well as some famous names from the past. Those from the past cannot stop me from telling stories about them. Most of those from the present have seen what I have written and have kindly refrained from censoring it.


The science of the familiar is one of the most effective ways to introduce science to non-scientists. Michael Faraday, the discoverer of electricity, was among the first in the field nearly a hundred and fifty years ago with his popular lectures on ‘The Chemical History of a Candle’, which were packed out by London’s fashionable elite. Many others have since followed, including myself.


Not everyone has approved. Some of my colleagues feel that, in reporting experiments on something as commonplace as biscuit or doughnut dunking, I am running the risk of trivialising science. Others have taken me to task for bringing science into areas where they feel it has no business to be. One newspaper editor even described me as ‘the kind of expert who cannot look at a plate of fish and chips without dropping a morsel into a handy test tube and jotting down calculations’. The writer was displeased with me for treating gravy absorption by roast dinners as a subject for scientific observation, but he unwittingly hit the nail on the head in describing what science is about. Scientists are in the business of trying to understand the world, and understanding can come just as much from the small and apparently insignificant as it can from contemplation of the grand themes. Many artists, writers, and philosophers have likewise found deep significance in some of the seemingly mundane aspects of life.


Scientists see the world around them in scientific terms, regardless of time, place or social propriety. This can lead to some unconventional behaviour. The nineteenth-century physicist James Prescott Joule selected a picturesque waterfall as a place for his honeymoon, but his choice was dictated by science rather than romance, and he took a thermometer with him so that he could measure the waterfall’s temperature and confirm his theory of heat. When a former colleague of mine was caught in a rainstorm, his rational scientific response was to remove all of his clothes and ‘hang himself out to dry’ over his laboratory radiator, in which position he scared the life out of an unsuspecting cleaner.


In this book the reader will meet many scientists (most of them clothed) from the past and the present, from different cultural backgrounds, and often with very different scientific and social aspirations. All, though, have shared a vision that Nature’s beauty is enhanced by scientific understanding, and that such understanding has its own particular beauty, whether it is concerned with phenomena on the grand scale or with the intimacy of everyday, familiar detail. It is the beauty of that familiar detail that, above all, I wish to share.


I could not have done it without the help of many of my scientific friends and colleagues who have taken the time to discuss issues, to read chapter drafts, and to bring their own expertise to bear in correcting errors and adding enlightenment. Those who have made major contributions include (in alphabetical order) Marc Abrahams, Lindsay Aitkin, Bob Aveyard, Peter Barham, Geoff Barnes, Gary Beauchamp, Tony Blake, Fritz Blank, Stuart Burgess, Arch Corriher, Terry Cosgrove, Neil Furlong, John Gregory, Simon Hanna, Michael Hanson, Robin Heath, Roger Highfield, Philip Jones, Harold McGee, Eileen McLaughlin, Mervyn Miles, Emma Mitchell, David Needham, Jeff Odell, Jeff Palmer, Alan Parker, Ric Pashley, Bob Reid, Harry Rothman, Sean Slade, Burt Slotnick, Elizabeth Thomas, Brian Vincent and Lawrence West. Other names, equally important, will no doubt come into my mind as soon as this book has gone into print.


I would especially like to thank my agent, Barbara Levy, and my editors, Peter Tallack and Richard Milner, for encouraging me in this venture and for showing such belief in my ability to carry it through. Most especially, I would like to thank my wife, Wendy, who has read and re-read every chapter draft on behalf of the eventual reader and whose perceptive comments have done so much to remove obscurities and to improve its readability.


The book is deliberately designed so that each chapter can be either dipped into or read straight through as a story. There were, furthermore, many fascinating byways, entertaining anecdotes and small points of interest that did not make it into the chapters, usually because they could not be fitted into the flow of the story without disrupting it. I have put these into notes, some of which are scattered through the chapters, but most of which are accumulated at the back of the book. Here the reader will find advice on the best way to eat hot chillies, the rules of the Mudgeeraba Creek Emu Racing and Boomerang Throwing Association and the reason why one American state attempted to sue another for the theft of its rain. These and other tit-bits are as much a part of the book as are the main chapters, and I hope that the reader derives as much entertainment from reading about them as I have from discovering and writing about them.


The publication of the hardback edition resulted in a plethora of fascinating letters from people anxious to share their experiences in the applications of science to everyday life. I have tried to answer all of these letters personally, but hope that the writers will understand that I have not always been able to incorporate their material into this edition, except for cases where errors have been pointed out. I have made every effort to correct these errors, and no doubt I have introduced some new ones in the process. The search for truth is never-ending.


There have also been the letters from people seeking free advice on everything from how to hammer a nail to how to spice up their sex life. I have avoided answering most of these letters, mainly for fear of being sued if things go wrong. The one bit of advice that I can offer is not to take this book too seriously. It is meant as much for fun as it is for information, and in it you will find that scientists can enjoy real life just as much as the next person.


Bradford-on-Avon, Wiltshire, October 2003
Phoenix paperback edition





1
the art and science
of dunking



One of the main problems that scientists have in sharing their picture of the world with a wider audience is the knowledge gap. One doesn’t need to be a writer to read and understand a novel, or to know how to paint before being able to appreciate a picture, because both the painting and the novel reflect our common experience. Some knowledge of what science is about, though, is a prerequisite for both understanding and appreciation, because science is largely based on concepts whose detail is unfamiliar to most people.


That detail starts with the behaviour of atoms and molecules. The notion that such things exist is pretty familiar these days, although that did not stop one of my companions at a dinner party from gushing, ‘Oh, you’re a scientist! I don’t know much about science, but I do know that atoms are made out of molecules!’ That remark made me realise just how difficult it can be for people who do not spend their professional lives dealing with matter at the atomic or molecular level to visualise how individual atoms and molecules appear and behave in their miniaturised world.


Some of the first evidence about that behaviour came from scientists who were trying to understand the forces that suck liquids into porous materials. One of the most common manifestations of this effect is when coffee is drawn into a dunked doughnut or tea into a dunked biscuit, so I was delighted when an English publicity firm asked me to help publicise the science of biscuit dunking1 because it gave me an opportunity to explain some of the behaviour of atoms and molecules in the context of a familiar environment, as well as an opportunity to show how scientists operate when they are confronted with a new problem.


I was less delighted when I was awarded the spoof ‘IgNobel Prize’ for my efforts. Half of these are awarded each year for ‘science that cannot, or should not, be reproduced’. The other half are awarded for projects that ‘spark public interest in science’. Unfortunately, and to the confusion of many journalists, the organisers at Harvard University do not deign to say which is which.


It was a pleasure, though, to receive letters from schoolchildren who had been enthused by the publicity surrounding both the prize and the project. One American student sought my help to take the work further in his school science project, in which he studied how doughnuts differ from biscuits. He subsequently reported with pride that he had received an ‘A’ for his efforts.


This chapter tells the story of the dunking project and of the underlying science, which is used to tackle problems ranging from the extraction of oil from underground reservoirs to the way that water reaches the leaves in trees.


Doughnuts might have been designed for dunking. A doughnut, like bread, is held together by an elastic net of the protein gluten2. The gluten might stretch, and eventually even break, when the doughnut is dunked in hot coffee, but it doesn’t swell or dissolve as the liquid is drawn into the network of holes and channels that the gluten supports. This means that the doughnut dunker can take his or her time, pausing only to let the excess liquid drain back into the cup before raising the doughnut to the waiting mouth. The only problem that a doughnut dunker faces is the selection of the doughnut, a matter on which science has some surprising advice to offer, as I will show later in the chapter.


Biscuit dunkers face much more of a challenge. If recent market research is to be believed, one biscuit dunk in every five ends in disaster, with the dunker fishing around in the bottom of the cup for the soggy remains. The problem for serious biscuit dunkers is that hot tea or coffee dissolves the sugar, melts the fat and swells and softens the starch grains in the biscuit. The wetted biscuit eventually collapses under its own weight.


Can science do anything to bring the dedicated biscuit dunker into parity with the dunker of doughnuts? Could science, which has added that extra edge to the achievements of athlete and astronaut alike, be used to enhance ultimate biscuit dunking performance and save that fifth, vital dunk?


These questions were put to me by an advertising company wanting to promote ‘National Biscuit-Dunking Week’. As someone who uses the science underlying commonplace objects and activities to make science more publicly accessible, I was happy to give ‘The Physics of Biscuit Dunking’ a try. There was, it seemed, a fair chance of producing a light-hearted piece of research that would show how science actually works, as well as producing some media publicity on behalf of both science and the advertisers.


The advertisers clearly thought that there would be keen public interest. They little realised just how keen. The ‘biscuit dunking’ story that eventually broke in the British media rapidly spread worldwide, even reaching American breakfast television, where I participated in a learned discussion of the relative problems of doughnut and biscuit dunkers. The extent of public interest in understandable science was strikingly revealed when I talked about the physics of biscuit dunking on a ring-in science show in Sydney, Australia. The switchboard of Triple-J, the rock radio station, received seven thousand3 calls in a quarter of an hour.


The advertisers had their own preconceptions about how science works. They wanted nothing less than a ‘discovery’ which would attract newspaper headlines. Advertisers and journalists weren’t the only people who see science in terms of ‘discoveries’. Even some scientists do. Shortly after the Royal Society was founded in 1660, Robert Hooke4 was appointed as ‘curator of experiments’ and charged with the job of making ‘three or four considerable experiments’ (i.e., discoveries) each week and demonstrating them to the Fellows of the Society. Given this pressure, it is no wonder that Hooke is reported to have been of irritable disposition, with hair hanging in dishevelled locks over his haggard countenance. He did in fact make many discoveries, originating much but perfecting little. I had to tell the advertisers in question that Hooke may have been able to do it, but I couldn’t. Science doesn’t usually work that way.


Scientists don’t set out to make discoveries; they set out to uncover stories. The stories are about how things work. Sometimes the story might result in a totally new piece of knowledge, or a new way of viewing the nature of things. But not often.


I thought that, with the help of my friends and colleagues in physics and food science, there would be a good chance of uncovering a story about biscuit dunking, but that it was hardly likely to result in a ‘discovery’. To their credit, the advertisers accepted my reasoning, and we set to work.


The first question that we asked was ‘What does a biscuit look like from a physicist’s point of view?’ It’s a typical scientist’s question, to be read as ‘How can we simplify this problem so that we can answer it?’ The approach can sometimes be taken to extremes, as with the famous physicist who was asked to calculate the maximum possible speed of a racehorse. His response, according to legend, was that he could do so, but only if he was permitted to assume that the horse was spherical. Most scientists don’t go to quite such lengths to reduce complicated problems to solvable form, but we all do it in some way – the world is just too complicated to understand all at once. Critics call us reductionists but, no matter what they call us, the method works. Francis Crick and James Watson, discoverers of the structure of DNA5, didn’t find the structure by looking at the complicated living cells whose destiny DNA drives. Instead, they took away all of the proteins and other molecules that make up life and looked at the DNA alone. Biologists in the fifty years following their discovery have gradually put the proteins back to find out how real cells use the DNA structure, but they wouldn’t have known what that structure was had it not been for the original reductionist approach.


We decided to be reductionist about biscuits, attempting to understand their response to dunking in simple physical terms and leaving the complications until later. When we examined a biscuit under a microscope, it appeared to consist of a tortuous set of interconnected holes, cavities and channels (so does a doughnut). In the case of a biscuit, the channels are there because it consists of dried-up starch granules imperfectly glued together with sugar and fat. To a scientist, the biscuit dunking problem is to work out how hot tea or coffee gets into these channels and what happens when it does.


With this picture of dunking in mind, I sat down with some of my colleagues in the Bristol University Physics Department and proceeded to examine the question experimentally. Solemnly, we dipped our biscuits into our drinks, timing how long they took to collapse. This was Baconian science, named after Sir Francis Bacon6, the Elizabethan courtier who declared that science was simply a matter of collecting a sufficient number of facts to make a pattern.


Baconian science lost us a lot of biscuits, but did not provide a scientific approach to biscuit dunking. Serendipity, the art of making fortunate discoveries, came to the rescue when I decided to try holding a biscuit horizontally, with just one side in contact with the surface of the tea. I was amazed to find that this biscuit beat the previous record for longevity by almost a factor of four.


Scientists, like sports followers, are much more interested in the exceptional than they are in the average. The times of greatest excitement in science are when someone produces an observation that cannot be explained by the established rules. This is when ‘normal science’ undergoes what Thomas Kuhn called a ‘paradigm shift’, and all previous ideas must be recast in the light of the new knowledge. Einstein’s demonstration that mass ‘m’ is actually a form of energy ‘E’, the two being linked by the speed of light ‘c’ in the formula E = mc 2, is a classic example of a paradigm shift.


Paradigm shifts7 often arise from unexpected observations, but these observations need to be verified. The more unexpected the observation, the harsher the testing. In the words of Carl Sagan: ‘Extraordinary claims require extraordinary proof8.’ No one is going to discard the whole of modern physics just because someone has claimed that ‘Yogic flying’ is possible, or because a magician has bent spoons on television. If levitation did prove to be a fact, though, or spoons could really be bent without a force being applied, then physics would have to take it on the chin and reconsider.


One long-lived horizontal biscuit dunk was hardly likely to require a paradigm shift for its explanation. For that rare event to happen, the new observation must be inexplicable by currently known rules. Even more importantly, the effect observed has to be a real one, and not the result of some one-off circumstance.


One thing that convinces scientists that an effect is real is reproducibility – finding the same result when a test is repeated. The long-lived biscuit could have been exceptional because it had been harder baked than others we had tried, or for any number of reasons other than the method of dunking. We repeated the experiments with other biscuits and other biscuit types. The result was always the same – biscuits that were dunked by the ‘horizontal’ technique lasted much longer than those that were dunked conventionally. It seemed that the method really was the key.


What was the explanation? One possibility was diffusion, a process whereby each individual molecule in the penetrating liquid meanders from place to place in a random fashion, exploring the channels and cavities in the biscuit with no apparent method or pattern to its wanderings. The movement is similar to that of a drunken man walking home from the pub, not knowing in which direction home lies. Each step is a haphazard lurch, which could be forwards, backwards or sideways. The complicated statistics of such movement (called a stochastic process) has been worked out by mathematicians. It shows that his probable distance from the pub depends on the square root of the time. Put simply, if he takes an hour to get a mile away from the pub, it is likely to take him four hours to get two miles away.


If the same mathematics applied to the flow of liquid in the random channels of porous materials such as biscuits, then it would take four times as long for a biscuit dunked by our fortuitous method to get fully wet as it would for a biscuit dunked ‘normally’. The reason for this is that in a normal dunk the liquid only has to get as far as the mid-plane of the biscuit for the biscuit to be fully wetted, since the liquid is coming from both sides. If the biscuit is laid flat at the top of the cup, the liquid has to travel twice as far (i.e. from one side of the biscuit to the other) before the biscuit is fully wetted, which would take four times as long according to the mathematics of9 diffusion (Figure 1.1).
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Figure 1.1: How to Dunk a Biscuit.
Left-hand diagram: Disaster – a biscuit dunked in the ‘conventional’ manner, with liquid entering from both sides. Right-hand diagram: Triumph – a biscuit dunked in the ‘scientific’ manner. The liquid takes four times as long to penetrate the width of the biscuit, and the biscuit will remain intact so long as the upper surface stays dry.


The American scientist E. W. Washburn10 found a similar factor of four when he studied the dunking of blotting paper – a mat of cellulose fibres that is also full of random channels. Washburn’s experiments, performed some eighty years ago, were simplicity itself. He marked off a piece of blotting paper with lines at equal intervals, then dipped it vertically into ink (easier to see than water) with the lines above and parallel to the liquid surface, and with one line exactly at the surface. He then timed how long it took the ink to reach successive lines. He found that it took four times as long to reach the second line as it did to reach the first, and nine times as long to reach the third line.


I attempted to repeat Washburn’s experiments with a range of different biscuits provided by my commercial sponsor. I dunked the biscuits, each marked with a pencil in five-millimetre steps, vertically into hot tea, and timed the rise of the liquid with a stopwatch. The biscuits turned out to be very similar to blotting paper when it came to taking up liquid. Just how similar became obvious when I drew out the results in a graph. If the distance penetrated follows the law of diffusion, then a graph of the square of the distance travelled versus time should be a straight line. If it took five seconds for the liquid to rise four millimetres, it should take twenty seconds for the liquid to rise eight millimetres. And so it proved, for up to thirty seconds, after which the sodden part of the biscuit dropped off into the tea (Figure 1.2).
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Figure 1.2: Distance (Squared) of Hot Tea Penetration into Different McVitie’s Biscuits versus Time.
The boxes represent individual measurements, with the lengths of the vertical and horizontal sides representing the probable error in the measurement of (distance)2 or time respectively.


These results look very convincing. Numerical agreement with prediction is one of the things that impresses scientists most. Einstein’s General Theory of Relativity, for example, predicted that the sun’s gravitation would bend light rays from a distant star by 1.75 seconds of arc (about five ten-thousandths of a degree) as they passed close by. Astronomers have now found that Einstein’s prediction was correct to within one per cent. If astrology could provide such accurate forecasts, even physicists might believe it.


That’s not the end of the story. In fact, it is hardly the beginning. Even though the experimental results followed the pattern of behaviour predicted by a diffusion model, closer reasoning suggested that diffusion was an unlikely explanation. Diffusion applies to situations where an object (whether it is a drunken man or a molecule in a liquid) has an equal chance of moving in any direction, which seems unlikely for liquid penetrating a biscuit, since the retreat is blocked by the oncoming liquid. Diffusion models, though, are not the only ones to predict experimentally observed patterns of behaviour. Washburn provided a different explanation, based on the forces that porous materials exert on liquids to draw them in.


The imbibition process is called capillary rise, and was known to the ancient Egyptians, who used the phenomenon to fill their reed pens with ink made from charcoal, water and gum arabic. The question of how capillary rise is driven, though, was first considered only two hundred years ago when two scientists, an Englishman and a Frenchman, independently asked the question: ‘What is doing the pulling?’ The Englishman, Thomas Young, was the youngest of ten children in a Somerset Quaker family. By the age of fourteen, he had taught himself seven languages, including Hebrew, Persian and Arabic. He became a practising physician and made important contributions to our understanding of how the heart and the eyes work, showing that there must be three kinds of receptor at the back of the eye (we now call them cones) to permit colour vision. Going one better, he produced the theory that light itself is wave-like in character. In his spare time he laid the groundwork for modern life assurance and came close to solving the hieroglyphic riddles posed by the Rosetta stone. The Frenchman, the Marquis de Laplace, also came from rural origins (his father was a farmer in Normandy) and his talents, too, showed themselves early on. He eventually became known as ‘The Newton of France’ on account of his incredible ten-volume work called Mécanique céleste. In this work he showed that the movements of the planets were stable against perturbation. In other words, a change in the orbit of one planet, such as might be caused by a meteor collision, would only cause minor adjustments to the orbits of the others, rather than throw them catastrophically out of synchrony.


Young and Laplace11 independently worked out the theory of capillary rise – in Laplace’s case, as an unlikely appendix to his work on the movements of the planets. Both had observed that when water is drawn into a narrow glass tube by capillary action, the surface of the water is curved. The curved liquid surface is called the meniscus, and if the glass is perfectly clean the meniscus will appear to just graze the glass surface (Figure 1.3).
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Figure 1.3: Water Rise in a Narrow Glass Tube.


Laplace’s (and Young’s) brilliantly simple thought was that it appeared as though the column of water was being lifted at the edge by the meniscus. But what was doing the lifting? It could only be the glass wall, with the molecules of the glass pulling on the nearby water molecules. But how could such a horizontal attraction provide a vertical lift? Laplace concluded that each water molecule in the surface is attracted primarily to its nearest neighbours, so that the whole surface is like a rope hammock, where each knot is a water molecule and the lengths of rope in between represent the forces holding the molecules together (Figure 1.4).


A hammock supported at each end sags in the middle. A simplistic picture of capillary rise is that the water column is being lifted in a similar manner. More accurately, the forces of local molecular attraction tend to shrink the liquid surface to the minimum possible area consistent with maintaining curvature. If the surface is curved, the tendency of the surface to shrink (known as surface tension) produces a pressure difference between the two sides, just as the stretched rubber surface of a balloon creates a high internal pressure. It is the pressure difference across a meniscus that drives capillary rise.


Laplace was able to use his picture of local molecular attraction to write down an equation describing the shape of a meniscus so accurately that the equation has never needed to be modified since. By thinking about the commonplace phenomenon of capillary rise, he had also unexpectedly found an answer to one of the big questions in science at that time: ‘How far do the forces between atoms or molecules extend?’ Are they long range, like the force of a magnet on a needle, or the force of gravity between the Sun and the Earth? Or are they very short range, so that only nearby atoms are affected? Laplace showed that only very short-range forces could explain the shape of a meniscus and the existence of surface tension. Knowing how many molecules are packed together in a given volume of liquid, he was even able to make a creditable estimate of the actual range of the intermolecular forces. His experience shows that the science of the familiar is more than a way of making science accessible or illustrating scientific principles. Many of the principles themselves have arisen from efforts to understand everyday things like the fall of an apple, the shape and colour of a soap bubble, or the uptake of liquid by a porous material. Scientists exploring such apparently mundane questions have uncovered some of Nature’s deepest laws.
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Figure 1.4: Forces Between Molecules in a Meniscus.
The molecules (circles) are held together by attractive forces (arrows). Molecules near the tube walls also experience attractive forces between themselves and the walls.


Laplace and Young12 showed that the relationship between surface curvature, surface tension and the pressure across a meniscus was an extraordinarily simple one – the pressure difference across the meniscus at any point is just twice the surface tension divided by the mean radius of curvature13 at that point. This relationship, which now bears their joint names, shows (for example) that capillary action alone can raise a column of water no more than fourteen millimetres in a tube with a radius of one millimetre. As the tube radius becomes smaller, the water can rise higher in proportion. For a tube one thousand times narrower, the water can rise one thousand times higher.


Such tiny channels are present in the leaves of trees. Nature provides a spectacular example in the Giant Sequoia, found in the Sierra Nevada range in California. The leafy crown of the largest known specimen, the ‘General Sherman’, towers eighty-three metres above the tourists passing below. The water supply for the leaves is drawn up from the soil by capillary action. The menisci of these huge columns of water reside in the leaves, and a quick calculation shows that the capillary channels containing the menisci can be no more than 0.2 micrometres wide – about one two-hundred-and-fiftieth of the diameter of a human hair. The pressure across such a tiny meniscus can support a continuous column of water, of which there are many in the bundles of tubes called the xylem, which run up the trunk below the bark. If the column of liquid breaks, however, an airlock develops at a point where the tube is much wider, and where the new meniscus cannot support anything like such a tall column of liquid. Such breaks are frequent events – the occurrence of each new break is signified by a ‘click’ that can be heard with a stethoscope. Once a column has broken, it seemingly cannot reform. Eventually, according to the accepted theory, all columns should break and the tree should die. Yet massive trees continue to grow, sometimes for thousands of years, providing botanists and biophysicists with a problem that is a long way from being solved.


The Young–Laplace equation nevertheless provides the only reasonable explanation for the uptake of water by trees. It applies equally to the uptake of coffee by doughnuts, since the coffee is held in place in the porous matrix by the pressure across the meniscus in the smallest of the pores at the upper level of the coffee, just as water is held up in the xylem of a tree by the pressure across the meniscus in the smallest of the pores in the leaves. This leads to the paradoxical conclusion that more finely textured doughnuts should be able to retain more coffee than their coarser-textured cousins, provided that both have the same total pore volume.


The Young–Laplace equation has been applied to many serious practical questions, such as the prevention of rising damp in buildings and the extraction of oil from porous rocks, as well as to the slightly less serious questions of biscuit and doughnut dunking. It tells us how far liquids will rise up a tube or penetrate into a porous material, but it doesn’t say how fast. This is a key piece of information when it comes to biscuit dunking. It was provided by a French physician, Jean-Louis-Marie Poiseuille, who practised in Paris in the 1830s. Poiseuille was interested in the relationship between the rate of flow of blood and the pressure in veins and arteries. He was the first to measure blood pressure using a mercury manometer, a technique still used by doctors today. He tested how fast blood and other liquids could flow through tubes of different diameters under the pressures that he had measured in living patients, and found that the rate of flow depended not only on the pressure, but also on the diameter of the tube and the viscosity of the liquid (i.e. its resistance to flow: honey, for example, is much more viscous than water). Poiseuille’s contribution to science was to describe the dependence of rate of flow on tube diameter and liquid viscosity by means of a very simple equation (the details of which are in the notes to this chapter).


Poiseuille’s equation14 can be combined with the Young–Laplace equation to predict rates of capillary rise. Washburn was the first to do this, producing an equation that predicts how far a liquid drawn into a cylindrical tube by capillary action will travel in a given time. The actual equation is:
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where ‘L’ is the distance that the liquid travels in time ‘t’, ‘R’ is the radius of the tube, and ‘γ’ (surface tension) and ‘η’ (viscosity) are numbers that depend on the nature of the liquid. Washburn’s very simple equation predicts an equally simple effect – that to double the distance of travel will take four times as long, and to treble it will take nine times longer; exactly the experimental result that Washburn obtained for blotting paper, and that I obtained for biscuits.


In the absence of gravitational effects (which were negligible for both Washburn’s and my own experiments15), the Washburn equation is extremely accurate, as I found when studying it as a part of my Ph.D thesis some twenty years ago. By timing the flow of liquid down glass tubes (some of them twenty times narrower than a human hair) I found that the equation is correct for tube diameters as small as three micrometres. Such tubes, though, are a far cry from the interiors of blotting paper or biscuits. There seemed to be no theoretical reason why an equation derived for a very simple situation should apply to such a complicated mess. There still isn’t. No one, to my knowledge, understands why a liquid drawn by surface tension into a tortuous set of interconnected channels should follow the same simple dynamics as a liquid drawn into a single cylindrical tube. All that we can say is that many porous materials behave in this way. The ‘drunkard’s walk’ diffusion equation, which predicts a similar relationship between distance penetrated and time taken, may have a role to play. Despite extensive computer modelling studies, though, we still don’t have a full and satisfactory answer.


What we do know is that the Washburn equation works. It’s not the only equation that works when it’s not supposed to. The equation that describes how a thin stream of water dripping from a tap breaks up into droplets, for example, has been applied very successfully to describe the break-up of an atomic nucleus during radioactive disintegration. That doesn’t mean that an atomic nucleus is like a water droplet in all other respects, any more than a biscuit or piece of blotting paper is exactly like a narrow tube. It simply happens that an equation derived for an idealised situation also applies in practice to more complicated situations, and hence can be used to give guidance and predictions in these circumstances. Such equations16 are called ‘semi-empirical’, and often arise when scientists17 are in the throes of trying to understand a complex phenomenon. They are most useful at an intermediate stage in the understanding of a problem. When a more complete explanation eventually becomes available, semi-empirical equations are usually discarded, although they sometimes retain a value as teaching instruments.


The Washburn equation, applied to cylindrical tubes, has a sound theoretical basis. Applied to biscuits or blotting paper, though, it is semi-empirical. To use it in these circumstances, we need to be able to interpret ‘R’. ‘R’ is a radius, but of what? The best that we can do is to interpret it as an ‘effective’ radius, a sort of average radius of all the pores and channels. One can try to assess the value of this effective radius by measuring as many channels as possible under a microscope and taking an average, but there is a simpler way, using the experimental graph for biscuit dunking. The slope of this graph can be used to calculate the effective radius via the Washburn equation. When I tried the calculation, though, the results didn’t seem to make sense.


The effective radii of the channels in dunked biscuits, calculated from the Washburn equation, were 68, 88 and 110 nanometres for Hobnobs, Digestives and Ginger Nuts respectively. These radii are very small. The calculated diameters are hundreds, or even thousands of times smaller than the size of the holes that can be seen in a dry biscuit under the microscope, which are measurable in micrometres (a micrometre is one thousand times bigger than a nanometre). So what’s going on? The answer seems to be that the structure of a wetted biscuit is very different from that of a dry biscuit. In a dry biscuit, the starch is in the form of shrunken, dried-up granules. These are quite tiny. In rice, for example (which is almost pure starch), there are thousands of tiny granules in every single visible grain. When these granules come into contact with hot water, they swell dramatically, taking in water as avidly as an athlete during a marathon. As it happens, my colleagues and I had studied the swelling process, which is very important in the preservation, processing and reconstitution of starchy foods. We held single potato starch granules in water while we gradually raised the temperature of the water, watching what happened through a microscope. At round 60°C the granules suddenly increased their volume by up to seventy times, producing what I subsequently described in a radio interview as the world’s smallest potato pancakes.


The starch granules in biscuits swell similarly when the biscuits are dipped into hot tea. The swollen, crinkled granules become very soft, which is one of the reasons why a dunked biscuit puffs up and eventually disintegrates (the other reason is that the fat and sugar ‘glue’ between the granules melts and dissolves). The granules that we were studying became so soft that they could be sucked into glass tubes whose diameters were three times smaller. This deformability seems to be the explanation for the extraordinarily low values of the effective channel radius calculated from the Washburn equation for dunked biscuits – the softened granules squeeze up against each other like rock fans at a concert, leaving only the narrowest of gaps in between. In practice, it’s just as well. If the pores stayed at their original ‘dry biscuit’ size, the Washburn equation predicts that a biscuit would fill up with tea or coffee in a fraction of a second, and biscuit dunking, unlike doughnut dunking, would become a matter of split-second timing.


As it is, the Washburn equation not only explains why biscuits dunked by the ‘flat-on’ scientific method can be dunked for four times as long as with the conventional method – it can also be used to predict how long a biscuit may safely be dunked by those who prefer a more conventional approach. Only one assumption is needed – that the biscuit will not fall apart so long as a thin layer remains dry and sufficiently strong to support the weight of the wet bit. But how thin can this layer be? There was only one way to find out, and that was by measuring the breaking strength of dry biscuits that had been thinned-down. I consequently ground down a range of biscuits on the physics department’s belt sander, a process that covered me with biscuit dust and which caused much amusement among workshop staff who were more used to manufacturing precision parts for astronomical instruments.


Whole dry biscuits, I found, could support up to two kilogrammes of weight when clamped horizontally at one end with the weight placed on the other end. The thinned-down dry biscuits were strong in proportion to their weight, and could be reduced to two per cent of their original thickness and still be strong enough to support the weight of an otherwise saturated biscuit (between ten and twenty grams, depending on the biscuit type). All that was needed now was to calculate how long the biscuits could be dunked while still leaving a thin dry layer, either in the mid-plane of the biscuit for a conventional dunk or on the upper surface of the biscuit for a ‘scientific’ dunk. The calculation was easily done using the Washburn equation plus the values of the effective channel radius for different biscuits. For most biscuits, the answer comes out at between 3.5 seconds and 5 seconds for a conventional dunk, and between 14 and 20 seconds for a ‘scientific’ dunk.


Was there anything else to consider? The only thing remaining was to examine the breaking process itself. The physics of how materials (including biscuits) break is quite complicated. The underlying concept, though, is relatively simple (as are quite a few scientific concepts – the expertise comes in working out their consequences in detail). The concept here is that when a crack starts all of the stress18 is concentrated at the sharp tip of the crack, in the same way that when someone wearing stiletto heels steps on your toe, all of the painful pressure is concentrated at the tip of the heel. If the stress is sufficient to start a crack, it is sufficient to finish the job. That is why brittle materials (including dry biscuits) break completely once a break has started. The stress that is needed to drive a crack depends on the sharpness of the crack tip. The sharper the tip, the less stress is needed, in the same way that a light person wearing a stiletto heel can produce as much pain as a heavier person wearing a wider heel. It would seem, then, that even the tiniest scratch could potentially grow into a catastrophic break, no matter how strong the material, so long as the tip of the scratch was sufficiently sharp.


Engineers up to the end of the Second World War knew from practical experience that there must be something wrong with this theory, or else a saboteur could have caused Tower Bridge to collapse into the Thames by scratching it with a pin. Even though experience showed that this wouldn’t happen, engineers still massively over-designed structures like bridges and ships – just in case. Even so, there were occasions when the theory took over. One such example was when an additional passenger lift was fitted to the White Star liner Majestic in 1928. Stresses concentrated at the sharp corner of the new, square hole in the deck where the lift was situated drove a crack19 across the deck and down the side of the ship, where it fortuitously struck a porthole (providing a rather more rounded tip), or the ship carrying 3000 passengers would have been lost somewhere between New York and Southampton. In other cases, such as that of the USS Schenectady, ships have actually been torn in half (Figure 1.5).


[image: image]



Figure 1.5: Crack Formation on a Grand Scale: the Schenectady Disaster.
In January 1943 the one-day-old T2 tanker SS Schenectady had just returned to harbour after sea trials when there was a huge bang, and the vessel fractured from top to bottom, jack-knifing so that the bow and stern settled to the river bottom while the centre rose clear of the water. Photograph reproduced with permission from B.B. Rath, Naval Research Institute.


Sharp corners are now rounded where possible to avoid stress concentration effects. We also understand more about the mechanisms that stop small cracks from growing, which involve plastic (i.e. plasticine-like) flow of the material at the tip of the crack, so that the tip becomes slightly rounded and less sharp. The process can be encouraged by the incorporation of crack-stoppers. These are soft components in a mixed (composite) material whose function is to stop cracks from growing. When a travelling crack hits a particle of crack-stopper, the crack-stopper ‘gives’, turning the crack tip from sharp to blunt and reducing the stress concentration to below a safe limit. The ultimate crack-stopper is an actual hole, such as the porthole in the Majestic.


Modern composite materials, such as those used for the manufacture of jet engines, routinely contain ‘crack-stoppers’. Biscuits are also composite materials, and also contain crack-stoppers. The crack-stoppers are natural materials like sugar, starch and (especially) fat, which, although hard, still have some ‘give’. As a result, most biscuits are remarkably robust, until they are thinned too far. Then the ‘graininess’ of the biscuit takes over. When a biscuit becomes as thin as the diameter of the individual grains, the separation of any two grains is sufficient to reveal the void below, and the biscuit falls apart.


There is a solution even to this problem – a two-dimensional crack-stopper. That crack-stopper is chocolate, a material that ‘gives’ slightly when an attempt is made to break it, and which can be (and is) often used to cover part or all of a biscuit surface.


Our eventual recommendation to the advertisers was that basic physics provides the ultimate answer to the perfect biscuit dunk. That answer is to use a biscuit coated on one side with chocolate, keep the chocolate side uppermost as you dunk the physicists’ way, and time the dunk so that the thin layer of biscuit under the chocolate stays dry.


To my considerable surprise, the story was taken up avidly by the media20, with the Washburn equation as the centrepiece. The idea of applying an equation to something as homely as biscuit dunking made a great hit with journalists. Those who published the equation took great care to get it right; some even telephoned several times to double-check. Only one failed to check, and they got it wrong, provoking the following letter:
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