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This book is the third volume of the Theoretical Minimum series. The first volume, The Theoretical Minimum: What You Need to Know to Start Doing Physics, covered classical mechanics, which is the core of any physics education. We will refer to it from time to time simply as Volume I. The second book (Volume II) explains quantum mechanics and its relationship to classical mechanics. This third volume covers special relativity and classical field theory.


The books in this series run parallel to Leonard Susskind’s videos, available on the Web through Stanford University (see www.theoreticalminimum.com for a listing). While covering the same general topics as the videos, the books contain additional details and topics that don’t appear in the videos.















Preface



This book is one of several that closely follow my Internet course series, The Theoretical Minimum. My coauthor, Art Friedman, was a student in these courses. The book benefited from the fact that Art was learning the subject and was therefore sensitive to the issues that might be confusing to the beginner. During the course of writing, we had a lot of fun, and we’ve tried to convey some of that spirit with a bit of humor. If you don’t get it, ignore it.


The two previous books in this series cover classical mechanics and basic quantum mechanics. So far, we have not studied light, and that’s because light is a relativistic phenomenon—a phenomenon that has to do with the special theory of relativity, or SR as we’ll sometimes call it. That’s our goal for this book: SR and classical field theory. Classical field theory means electromagnetic theory—waves, forces on charged particles, and so on—in the context of SR. Special relativity is where we’ll begin.


Leonard Susskind


My parents, the children of immigrants, were bilingual. They taught us kids some Yiddish words and phrases but mainly reserved that language for themselves, often to say things they did not want us to understand. Many of their secret conversations were accompanied by loud peals of laughter.


Yiddish is an expressive language; it’s well suited to great literature as well as to daily life and down-to-earth humor. It bothers me that my own comprehension is so limited. I’d love to read all the great works in the original, but frankly I’d be happy enough just to get the jokes.


A lot of us have similar feelings about mathematical physics. We want to understand the great ideas and problems and engage our own creativity. We know there’s poetry to be read and written, and we’re eager to participate in some fashion. All we lack is that “secret” language. In this series, our goal is to teach you the language of physics and show you some of the great ideas in their native habitat.


If you join us, you’ll be able to wrap your head around a good portion of twentieth-century physics. You’ll certainly be equipped to understand much of Einstein’s early work. At a minimum, you’ll “get the jokes” and the serious ideas that underlie them. To get you started, we’ve thrown in a few jokes of our own, including some real groaners.


I’m delighted to acknowledge everyone who helped and supported us along the way. It may be a cliché to say “we couldn’t have done it without you,” but it also happens to be true.


Working with the professionals at Brockman, Inc., and Basic Books is always a pleasure as well as a learning experience. John Brockman, Max Brockman, and Michael Healey played a critical role in transforming our idea into a real project. From there, TJ Kelleher, Hélène Barthélemy, Carrie Napolitano, and Melissa Veronesi walked us through the editorial and production process with great skill and understanding. Laura Stickney of Penguin Books coordinated the publication of the UK edition so smoothly, we hardly saw it happening. Copyeditor Amy J. Schneider made substantial improvements to our initial manuscript, as did proofreaders Lor Gehret and Ben Tedoff.


A number of Leonard’s former students generously offered to review the manuscript. This was no small task. Their insights and suggestions were invaluable, and the book is far better as a result. Our sincere thanks go to Jeremy Branscome, Byron Dom, Jeff Justice, Clinton Lewis, Johan Shamril Sosa, and Dawn Marcia Wilson.


As always, the warmth and support I’ve received from family and friends has seen me through this project. My wife, Maggie, spent hours creating and re-creating the two Hermann’s Hideaway drawings, getting them done on time while dealing with the illness and passing of her mother.


This project has afforded me the luxury of pursuing two of my life passions at the same time: graduate level physics and fourth-grade humor. In this respect, Leonard and I are a perfect team, and collaborating with him is an unmitigated pleasure.


Art Friedman















Introduction



Dear readers and students of The Theoretical Minimum,


Hello there, and welcome back to Lenny & Art’s Excellent Adventure. We last left the intrepid pair recovering from a wild rollicking roller coaster ride through the quantum world of entanglement and uncertainty. They were ready for something sedate, something reliable and deterministic, something classical. But the ride continues in Volume III, and it’s no less wild. Contracting rods, time dilation, twin paradoxes, relative simultaneity, stretch limousines that do and don’t fit into Volkswagen-size garages. Lenny and Art are hardly finished with their madcap adventure. And at the end of the ride Lenny tricks Art with a fake monopole.


Well, maybe that is a bit overwrought, but to the beginner the relativistic world is a strange and wondrous fun house, full of dangerous puzzles and slippery paradoxes. But we’ll be there to hold your hand when the going gets tough. Some basic grounding in calculus and linear algebra should be good enough to get you through.


Our goal as always is to explain things in a completely serious way, without dumbing them down at all, but also without explaining more than is necessary to go to the next step. Depending on your preference, that could be either quantum field theory or general relativity.


It’s been a while since Art and I published Volume II on quantum mechanics. We’ve been tremendously gratified by the thousands of e-mails expressing appreciation for our efforts, thus far, to distill the most important theoretical principles of physics into TTM.


The first volume on classical mechanics was mostly about the general framework for classical physics that was set up in the nineteenth century by Lagrange, Hamilton, Poisson, and other greats. That framework has lasted, and provides the underpinning for all modern physics, even as it grew into quantum mechanics.


Quantum mechanics percolated into physics starting from the year 1900, when Max Planck discovered the limits of classical physics, until 1926 when Paul Dirac synthesized the ideas of Planck, Einstein, Bohr, de Broglie, Schrödinger, Heisenberg, and Born into a consistent mathematical theory. That great synthesis (which, by the way, was based on Hamilton’s and Poisson’s framework for classical mechanics) was the subject of TTM Volume II.


In Volume III we take a historical step back to the nineteenth century to the origins of modern field theory. I’m not a historian, but I think I am accurate in tracing the idea of a field to Michael Faraday. Faraday’s mathematics was rudimentary, but his powers of visualization were extraordinary and led him to the concepts of electromagnetic field, lines of force, and electromagnetic induction. In his intuitive way he understood most of what Maxwell later combined into his unified equations of electromagnetism. Faraday was lacking one element, namely that a changing electric field leads to effects similar to those of an electric current.


It was Maxwell who later discovered this so-called displacement current, sometime in the early 1860s, and then went on to construct the first true field theory: the theory of electromagnetism and electromagnetic radiation. But Maxwell’s theory was not without its own troubling confusions.


The problem with Maxwell’s theory was that it did not seem to be consistent with a basic principle, attributed to Galileo and clearly spelled out by Newton: All motion is relative. No (inertial) frame of reference is more entitled to be thought of as at rest than any other frame. However this principle was at odds with electromagnetic theory, which predicted that light moves with a distinct velocity c = 3 × 108 meters per second. How could it be possible for light to have the same velocity in every frame of reference? How could it be that light travels with the same velocity in the rest frame of the train station, and also in the frame of the speeding train?


Maxwell and others knew about the clash, and resolved it the simplest way they knew how: by the expedient of tossing out Galileo’s principle of relative motion. They pictured the world as being filled with a peculiar substance—the ether—which, like an ordinary material, would have a rest frame in which it was not moving. That’s the only frame, according to the etherists, in which Maxwell’s equations were correct. In any other frame, moving with respect to the ether, the equations had to be adjusted.


This was the status until 1887 when Albert Michelson and Edward Morley did their famous experiment, attempting to measure the small changes in the motion of light due to the motion of Earth through the ether. No doubt most readers know what happened; they failed to find any. People tried to explain away Michelson and Morley’s result. The simplest idea was called ether drag, the idea being that the ether is dragged along with Earth so that the Michelson-Morley experiment was really at rest with respect to the ether. But no matter how you tried to rescue it, the ether theory was ugly and ungainly.


According to his own testimony, Einstein did not know about the Michelson-Morley experiment when in 1895 (at age sixteen), he began to think about the clash between electromagnetism and the relativity of motion. He simply felt intuitively that the clash somehow was not real. He based his thinking on two postulates that together seemed irreconcilable:




1. The laws of nature are the same in all frames of reference. Thus there can be no preferred ether-frame.


2. It is a law of nature that light moves with velocity c.




As uncomfortable as it probably seemed, the two principles together implied that light must move with the same velocity in all frames.


It took almost ten years, but by 1905 Einstein had reconciled the principles into what he called the special theory of relativity. It is interesting that the title of the 1905 paper did not contain the word relativity at all; it was “On the Electrodynamics of Moving Bodies.” Gone from physics was the ever more complicated ether; in its place was a new theory of space and time. However, to this day you will still find a residue of the ether theory in textbooks, where you will find the symbol [image: image]0, the so-called dielectric constant of the vacuum, as if the vacuum were a substance with material properties. Students new to the subject often encounter a great deal of confusion originating from conventions and jargon that trace back to the ether theory. If I’ve done nothing else in these lectures, I tried to get rid of these confusions.


As in the other books in TTM I’ve kept the material to the minimum needed to move to the next step—depending on your preference, either quantum field theory or general relativity.


You’ve heard this before: Classical mechanics is intuitive; things move in predictable ways. An experienced ballplayer can take a quick look at a fly ball and from its location and its velocity know where to run in order to be there just in time to catch the ball. Of course, a sudden unexpected gust of wind might fool him, but that’s only because he didn’t take into account all the variables. There is an obvious reason why classical mechanics is intuitive: Humans, and animals before them, have been using it many times every day for survival.


In our quantum mechanics book, we explained in great detail why learning that subject requires us to forget our physical intuition and replace it with something entirely different. We had to learn new mathematical abstractions and a new way of connecting them to the physical world. But what about special relativity? While quantum mechanics explores the world of the VERY SMALL, special relativity takes us into the realm of the VERY FAST, and yes, it also forces us to bend our intuition. But here’s the good news: The mathematics of special relativity is far less abstract, and we don’t need brain surgery to connect those abstractions to the physical world. SR does stretch our intuition, but the stretch is far more gentle. In fact, SR is generally regarded as a branch of classical physics.


Special relativity requires us to rethink our notions of space, time, and especially simultaneity. Physicists did not make these revisions frivolously. As with any conceptual leap, SR was resisted by many. You could say that some physicists had to be dragged kicking and screaming to an acceptance of SR, and others never accepted it at all.1 Why did most of them ultimately relent? Aside from the many experiments that confirmed the predictions made by SR, there was strong theoretical support. The classical theory of electromagnetism, perfected by Maxwell and others during the nineteenth century, quietly proclaimed that “the speed of light is the speed of light.” In other words, the speed of light is the same in every inertial (nonaccelerating) reference frame. While this conclusion was disturbing, it could not just be ignored—the theory of electromagnetism is far too successful to be brushed aside. In this book, we’ll explore SR’s deep connections to electromagnetic theory, as well as its many interesting predictions and paradoxes.





1 Notably Albert Michelson, the first American to win a Nobel Prize in physics, and his collaborator Edward Morley. Their precise measurements provided strong confirmation of SR.
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Lecture 1



The Lorentz Transformation


We open Volume III with Art and Lenny running for their lives.


Art: Geez, Lenny, thank heavens we got out of Hilbert’s place alive! I thought we’d never get disentangled. Can’t we find a more classical place to hang out?


Lenny: Good idea, Art. I’ve had it with all that uncertainty. Let’s head over to Hermann’s Hideaway and see what’s definitely happening.


Art: Where? Who is this guy Hermann?


Lenny: Minkowski? Oh, you’ll love him. I guarantee there won’t be any bras in Minkowski’s space. No kets either.


Lenny and Art soon wind up at Hermann’s Hideaway, a tavern that caters to a fast-paced crowd.


Art: Why did Hermann build his Hideaway way out here in the middle of—what? A cow pasture? A rice paddy?


Lenny: We just call it a field. You can grow just about anything you like; cows, rice, sour pickles, you name it. Hermann’s an old friend, and I rent the land out to him at a very low price.


Art: So you’re a gentleman farmer! Who knew? By the way, how come everyone here is so skinny? Is the food that bad?


Lenny: The food is great. They’re skinny because they’re moving so fast. Hermann provides free jet packs to play with. Quick! Look out! Duck! DUCK!


Art: Goose! Let’s try one out! We could both stand to get a bit thinner.


More than anything else, the special theory of relativity is a theory about reference frames. If we say something about the physical world, does our statement remain true in a different reference frame? Is an observation made by a person standing still on the ground equally valid for a person flying in a jet? Are there quantities or statements that are invariant—that do not depend at all on the observer’s reference frame? The answers to questions of this sort turn out to be interesting and surprising. In fact, they sparked a revolution in physics in the early years of the twentieth century.


1.1 Reference Frames


You already know something about reference frames. I talked about them in Volume I on classical mechanics. Cartesian coordinates, for example, are familiar to most people. A Cartesian frame has a set of spatial coordinates x, y, and z, and an origin. If you want to think concretely about what a coordinate system means, think of space as being filled up with a lattice of metersticks so that every point in space can be specified as being a certain number of meters to the left, a certain number of meters up, a certain number of meters in or out, from the origin. That’s a coordinate system for space. It allows us to specify where an event happens.


In order to specify when something happens we also need a time coordinate. A reference frame is a coordinate system for both space and time. It consists of an x-, y-, z-, and t axis. We can extend our notion of concreteness by imagining that there’s a clock at every point in space. We also imagine that we have made sure that all the clocks are synchronized, meaning that they all read t = 0 at the same instant, and that the clocks all run at the same rate. Thus a reference frame (or RF for simplicity) is a real or imagined lattice of metersticks together with a synchronized set of clocks at every point.


There are many ways to specify points in space and time, of course, which means we can have different RFs. We can translate the origin x = y = z = t = 0 to some other point, so that a location in space and time is measured relative to the new origin. We can also rotate the coordinates from one orientation to another. Finally, we consider frames that are moving relative to some particular frame. We can speak of your frame and my frame, and here we come to a key point: Besides the coordinate axes and the origin, a reference frame may be associated with an observer who can use all those clocks and metersticks to make measurements.


Let’s assume you’re sitting still at the center of the front row in the lecture hall. The lecture hall is filled with metersticks and clocks at rest in your frame. Every event that takes place in the room is assigned a position and a time by your sticks and clocks. I’m also in the lecture hall, but instead of standing still I move around. I might march past you moving to the left or to the right, and as I do I carry my lattice of clocks and metersticks with me. At every instant I’m at the center of my own space coordinates, and you are at the center of yours. Obviously my coordinates are different from yours. You specify an event by an x, y, z, and t, and I specify the same event by a different set of coordinates in order to account for the fact that I may be moving past you. In particular if I am moving along the x axis relative to you, we won’t agree about our x coordinates. I’ll always say that the end of my nose is at x = 5, meaning that it is five inches in front of the center of my head. However, you will say my nose is not at x = 5; you’ll say my nose is moving, and that its position changes with time.


I might also scratch my nose at t = 2, by which I mean that the clock at the end of my nose indicated 2 seconds into the lecture when my nose was scratched. You might be tempted to think that your clock would also read t = 2 at the point where my nose was scratched. But that’s exactly where relativistic physics departs from Newtonian physics. The assumption that all clocks in all frames of reference can be synchronized seems intuitively obvious, but it conflicts with Einstein’s assumption of relative motion and the universality of the speed of light.


We’ll soon elaborate on how, and to what extent, clocks at different places in different reference frames can be synchronized, but for now we’ll just assume that at any given instant of time all of your clocks agree with each other, and they agree with my clocks. In other words we temporarily follow Newton and assume that the time coordinate is exactly the same for you as it is for me, and there’s no ambiguity resulting from our relative motion.


1.2 Inertial Reference Frames


The laws of physics would be very hard to describe without coordinates to label the events that take place. As we’ve seen, there are many sets of coordinates and therefore many descriptions of the same events. What relativity meant, to Galileo and Newton as well as Einstein, is that the laws governing those events are the same in all inertial reference frames.1 An inertial frame is one in which a particle, with no external forces acting on it, moves in a straight line with uniform velocity. It is obvious that not all frames are inertial. Suppose your frame is inertial so that a particle, thrown through the room, moves with uniform velocity when measured by your sticks and clocks. If I happen to be pacing back and forth, the particle will look to me like it accelerates every time I turn around. But if I walk with steady motion along a straight line, I too will see the particle with uniform velocity. What we may say in general is that any two frames that are both inertial must move with uniform relative motion along a straight line.


It’s a feature of Newtonian mechanics that the laws of physics, F = ma together with Newton’s law of gravitational attraction, are the same in every IRF. I like to describe it this way: Suppose that I am an accomplished juggler. I have learned some rules for successful juggling, such as the following: If I throw a ball vertically upward it will fall back to the same point where it started. In fact, I learned my rules while standing on the platform of a railway station waiting for the train.


When the train stops at the station I jump on and immediately start to juggle. But as the train pulls out of the station, the old laws don’t work. For a time the balls seem to move in odd ways, falling where I don’t expect them. However, once the train gets going with uniform velocity, the laws start working again. If I’m in a moving IRF and everything is sealed so that I can’t see outside, I cannot tell that I’m moving. If I try to find out by doing some juggling, I’ll find out that my standard laws of juggling work. I might assume that I’m at rest, but that’s not correct; all I can really say is that I’m in an inertial reference frame.


The principle of relativity states that the laws of physics are the same in every IRF. That principle was not invented by Einstein; it existed before him and is usually attributed to Galileo. Newton certainly would have recognized it. What new ingredient did Einstein add? He added one law of physics: the law that the speed of light is the speed of light, c. In units of meters per second, the speed of light is approximately 3 × 108. In miles per second it is about 186,000, and in light-years per year it is exactly 1. But once the units are chosen, Einstein’s new law states that the velocity of light is the same for every observer.


When you combine these two ideas—that the laws of physics are the same in every IRF, and that it’s a law of physics that light moves at a fixed velocity—you come to the conclusion that light must move with the same velocity in every IRF. That conclusion is truly puzzling. It led some physicists to reject SR altogether. In the next section, we’ll follow Einstein’s logic and find out the ramifications of this new law.


1.2.1 Newtonian (Pre-SR) Frames


In this section I will explain how Newton would have described the relation between reference frames, and the conclusions he would have made about the motion of light rays. Newton’s basic postulate would have been that there exists a universal time, the same in all reference frames.


Let’s begin by ignoring the y and z directions and focus entirely on the x direction. We’ll pretend that the world is one-dimensional and that all observers are free to move along the x axis but are frozen in the other two directions of space. Fig. 1.1 follows the standard convention in which the x axis points to the right, and the t axis points up. These axes describe the metersticks and clocks in your frame—the frame at rest in the lecture hall. (I will arbitrarily refer to your frame as the rest frame and my frame as the moving frame.) We’ll assume that in your frame light moves with its standard speed c. A diagram of this kind is called a spacetime diagram. You can think of it as a map of the world, but a map that shows all possible places and all possible times. If a light ray is sent out from the origin, moving toward the right, it will move with a trajectory given by the equation
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Figure 1.1: Newtonian Frames.








x = ct.


Similarly a light ray moving to the left would be represented by


x = −ct.


A negative velocity just means moving to the left. In the various figures that follow I will draw them as if my frame is moving to the right (v positive). As an exercise you can redraw them for negative v.


In Fig. 1.1, the light ray is shown as a dashed line. If the units for the axes are meters and seconds, the light ray will appear almost horizontal; it will move 3 × 108 meters to the right while moving vertically by only 1 second! But the numerical value of c depends entirely on the units we choose. Therefore, it is convenient to use some other units for the speed of light—units in which we see more clearly that the slope of the light-ray trajectory is finite.


Now let’s add my frame, moving along the x axis relative to your frame, with a uniform velocity v.2 The velocity could be either positive (in which case I would be moving to your right), negative (in which case I would be moving to your left), or zero (in which case we are at rest relative to each other, and my trajectory would be a vertical line in the figure).


I’ll call the coordinates in my frame x′ and t′ instead of x and t. The fact that I am moving relative to you with a constant velocity implies that my trajectory through spacetime is a straight line. You may describe my motion by the equation


x = vt


or


x − vt = 0,


where v is my velocity relative to you, as shown in Fig. 1.1. How do I describe my own motion? That’s easy; I am always at the origin of my own coordinate system. In other words, I describe myself by the equation x′ = 0. The interesting question is, how do we translate from one frame to the other; in other words, what’s the relationship between your coordinates and mine? According to Newton, that relation would be


[image: image]


The first of these equations is Newton’s assumption of universal time, the same for all observers. The second just shows that my coordinate x′ is displaced from your coordinate by our relative velocity times the time, measured from the origin. From this we see that the equations


x − vt = 0


and


x′ = 0


have the same meaning. Eqs. 1.1 and 1.2 comprise the Newtonian transformation of coordinates between two inertial reference frames. If you know when and where an event happens in your coordinates, you can tell me in my coordinates when and where it happens. Can we invert the relationship? That’s easy and I will leave it to you. The result is


[image: image]


Now let’s look at the light ray in Fig. 1.1. According to assumption, it moves along the path x = ct in your frame. How do I describe its motion in my frame? I simply substitute the values of x and t from Eqs. 1.3 and 1.4 into the equation x = ct, to get


x′ + vt′ = ct′,


which we rewrite in the form


x′ = (c − v)t′.


Not surprisingly, this shows the light ray moving with velocity (c − v) in my frame. That spells trouble for Einstein’s new law—the law that all light rays move with the same speed c in every IRF. If Einstein is correct, then something is seriously wrong. Einstein and Newton cannot both be right: The speed of light cannot be universal if there is a universal time that all observers agree on.


Before moving on, let’s just see what would happen to a light ray moving to the left. In your frame such a light ray would have the equation


x = −ct.


It’s easy to see that in my frame the Newtonian rules would give


x′ = −(c + v)t.


In other words, if I’m moving to your right, a light ray moving in the same direction travels a little slower (with speed c − v), and a light ray moving in the opposite direction travels a little faster (with speed c + v) relative to me. That’s what Newton and Galileo would have said. That’s what everyone would have said until the end of the nineteenth century when people started measuring the speed of light with great precision and found out that it’s always the same, no matter how the inertial observers move.


The only way to reconcile this conflict is to recognize that something is wrong with Newton’s transformation law between coordinates in different frames.3 We need to figure out how to repair Eqs. 1.1 and 1.2 so that the speed of light is the same for both of us.



1.2.2 SR Frames


Before deriving our new transformation equations, let’s revisit one of Newton’s key assumptions. The assumption that is most at risk, and in fact the one that’s wrong, is that simultaneity means the same thing in every frame—that if we begin with our clocks synchronized, and then I start to move, my clocks will remain synchronized with your clocks. We’re about to see that the equation


t′ = t


is not the correct relationship between moving clocks and stationary clocks. The whole idea of simultaneity is frame-dependent.


Synchronizing Our Clocks


Here’s what I want you to imagine. We’re in a lecture hall. You, a student, are sitting in the front row, which is filled with eager attentive students, and each student in the front row has a clock. The clocks are all identical and completely reliable. You inspect these clocks carefully, and make sure they all read the same time and tick at the same rate. I have an equivalent collection of clocks in my frame that are spread out relative to me in the same way as your clocks. Each of your clocks has a counterpart in my setup, and vice versa. I’ve made sure that my clocks are synchronized with each other and also with your clocks. Then I, together with all my clocks, start moving relative to you and your clocks. As each of my clocks passes each of yours, we check each other’s clocks to see if they still read the same time and if not, how far out of whack each clock is compared to its counterpart. The answer may depend on each clock’s position along the line.


Of course, we could ask similar questions about our metersticks, such as, “As I pass you, does my meterstick measure 1 in your coordinates?” This is where Einstein made his great leap. He realized that we have to be much more careful about how we define lengths, times, and simultaneity. We need to think experimentally about how to synchronize two clocks. But the one anchor that he held on to is the postulate that the speed of light is the same in every IRF. For that, he had to give up Newton’s postulate of a universal time. Instead he found that “simultaneity is relative.” We will follow his logic.


What exactly do we mean when we say that two clocks—let’s call them A and B—are synchronized? If the two clocks are at the same location, moving with the same velocity, it should be easy to compare them and see if they read the same value of time. But even if A and B are standing still, say in your frame, but are not at the same position, checking if they are synchronized requires some thought. The problem is that light takes time to travel between A and B.


Einstein’s strategy was to imagine a third clock, C, located midway between A and B.4 To be specific, let’s imagine all three clocks being located in the front row of the lecture hall. Clock A is held by the student at the left end of the row, clock B is held by the student at the right end, and clock C is at the center of the row. Great care has been taken to make sure that the distance from A to C is the same as the distance from B to C.


At exactly the time when the A clock reads noon it activates a flash of light toward C. Similarly when B reads noon it also sends a flash of light to C. Of course, both flashes will take some time to reach C, but since the velocity of light is the same for both flashes, and the distance they have to travel is the same, they both take the same time to get to C. What we mean by saying A and B are synchronized is that the two flashes will arrive at C at exactly the same time. Of course, if they don’t arrive simultaneously, student C will conclude that A and B were not synchronized. She may then send a message to either A or B with instructions for how much to change their settings to get synchronized.


Suppose clocks A and B are synchronized in your frame. What happens in my moving frame? Let’s say I’m moving to the right, and I happen to reach the midpoint C just as these two flashes are emitted. But the light doesn’t get to C at noon; it gets there slightly later. By that time, I’ve already moved a little to the right of center. Since I’m right of center, the light ray coming from the left will reach me a little later than the light ray coming from the right. Therefore, I will conclude that your clocks are not synchronized, because the two light flashes reach me at two different times.


Evidently what you and I call synchronous—occurring at the same time—is not the same. Two events that take place at the same time in your frame take place at different times in my frame. Or at least that’s what Einstein’s two postulates force us to accept.


Units and Dimensions: A Quick Detour


Before moving ahead, we should pause briefly to explain that we’ll be using two systems of units. Each system is well suited to its purpose, and it’s fairly easy to switch from one system to the other.


The first system uses familiar units such as meters, seconds, and so on. We’ll call them common or conventional units. These units are excellent for describing the ordinary world in which most velocities are far smaller than the speed of light. A velocity of 1 in those units means 1 meter per second, orders of magnitude less than c.


The second system is based on the speed of light. In this system, units of length and time are defined in a way that gives the speed of light a dimensionless value of 1. We call them relativistic units. Relativistic units make it easier to carry out derivations and notice the symmetries in our equations. We’ve already seen that conventional units are impractical for spacetime diagrams. Relativistic units work beautifully for this purpose.


In relativistic units, not only does c have a value of 1, but all velocities are dimensionless. For this to work out, we have to choose appropriately defined units of length and time—after all, velocity is a length divided by a time. If our time units are seconds, we choose light-seconds as our length units. How big is a light-second? We know that it’s 186,000 miles, but for our purposes that’s unimportant. Here’s what matters: A light-second is a unit of length, and by definition light travels 1 light-second per second! In effect, we’re measuring both time and length in units of seconds. That’s how velocity—a length divided by a time—gets to be dimensionless. When we use relativistic units, a velocity variable such as v is a dimensionless fraction of the speed of light. That’s consistent with c itself having a value of 1.


In a spacetime diagram such as Fig. 1.2, the x and t axes are both calibrated in seconds.5 The trajectory of a light ray makes equal angles with the x axis and with the t axis. Conversely, any trajectory that makes equal angles with the two axes represents a light ray. In your stationary RF, that angle is 45 degrees.


Knowing how to switch easily between the two types of units will pay off. The guiding principle is that mathematical expressions need to be dimensionally consistent in whatever system of units we’re using at the time. The most common and useful trick in going from relativistic to conventional units is to replace v with v/c. There are other patterns as well, which typically involve multiplying or dividing by some appropriate power of c, the speed of light. We’ll show examples as we go, and you’ll find that these conversions are fairly simple.


Setting Up Our Coordinates—Again!


Let’s go back to our two coordinate systems. This time, we’ll be very careful about the exact meaning of the word synchronous in the moving RF. In the stationary RF, two points are synchronous (or simultaneous) if they’re both on the same horizontal level in a spacetime diagram. The two points both have the same t coordinate, and a line connecting them is parallel to the x axis. That much Newton would have agreed with.


But what about the moving frame? We’ll find out in a minute that in the moving frame, the point


x = 0, t = 0


is not synchronous with the other points on the x axis, but with an entirely different set of points. In fact, the whole surface that the moving frame calls “synchronous” is someplace else. How can we map out this surface? We’ll use the synchronization procedure, described in a previous subsection (Synchronizing Our Clocks) and further illustrated in Fig. 1.2.


Drawing a spacetime diagram is usually the best way to understand a problem in relativity. The picture is always the same; x is the horizontal axis, and t is vertical. These coordinates represent a RF that you can think of as stationary. In other words, they represent your frame. A line that represents the trajectory of an observer moving through spacetime is called a world line.


With our axes in place, the next things to draw are the light rays. In Fig. 1.2, these are represented by the lines labeled x = ct and x = −ct. The dashed line from point a to point b in the figure is also a light ray.


Back to the Main Road


Getting back to Fig. 1.2, let’s sketch in an observer, Art, who’s sitting in a railroad car moving to the right with constant speed v. His world line is labeled with equations that describe his motion. Once again, Art’s frame will be moving such that x′ = x − vt, exactly like the moving observer in Fig. 1.1.


Now let’s figure out how to draw Art’s x′ axis. We begin by adding two more observers, Maggie and Lenny. Maggie is sitting in the rail car directly in front of Art (to your right), and Lenny’s rail car is directly in front of Maggie’s. Adjacent observers are separated from each other by one unit of length as measured in your frame (the rest frame). Equations for Maggie’s and Lenny’s world lines are shown in the figure. Because Maggie is located one unit to the right of Art, her trajectory is just x = vt + 1. Likewise, Lenny’s trajectory is x = vt + 2. Art, Maggie, and Lenny are in the same moving frame. They’re at rest with respect to each other.


Our first observer, Art, has a clock, and his clock happens to read 12 noon just as he arrives at the origin. We’ll assume the clock in the rest frame also reads 12 noon at this event. We both agree to call 12 noon our “time zero,” and we label our common origin with (x = 0, t = 0) in your coordinates, and (x′ = 0, t′ = 0) in Art’s coordinates. The moving observer and the stationary observer agree, by assumption, on the meaning of t = 0. For you (the stationary observer), t equals zero all along the horizontal axis. In fact, that’s the definition of the horizontal axis: it’s the line where all times for the stationary observer are zero.
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Figure 1.2: SR Frames Using Relativistic Units (c = 1). The equations associated with Art are two different ways to characterize his world line. The dashed lines are the world lines of light rays. The constants 1 and 2 in the equations for Maggie’s and Lenny’s world lines are not pure numbers. Their relativistic units are seconds.








Suppose Art sends out a light signal to Maggie from the origin. At some point—we don’t know yet what that point is—Lenny will also send out a light signal toward Maggie. He’ll somehow arrange to do this in a way that both signals reach Maggie at the same instant. If Art’s light signal starts at the origin, Maggie will receive it at point a in Fig. 1.2. From what point must Lenny send his light signal, if it is to reach at Maggie at the same time? We can find out by working backward. The world line of any light signal that Lenny sends to Maggie must make a 45-degree angle to the x axis. So all we need to do is construct a line at point a that slopes 45 degrees downward toward the right, and extend it until it crosses Lenny’s path. This is point b in the figure. As we can easily see from the figure, point b lies above the x axis and not on it.


What we’ve just shown is that the origin and point b are simultaneous events in Art’s frame! In other words, the moving observer (Art) will say that t′ = 0 at point b. Why? Because in the moving frame of reference, Art and Lenny, who are equidistant from the central observer Maggie, sent her light signals that arrived at the same instant of time. So Maggie will say, “You guys sent me light signals at exactly the same instant of time, because they both arrived here at the same instant of time, and I happen to know that you’re at equal distances from me.”


Finding the x′ Axis


We’ve established that Art’s (and Maggie’s and Lenny’s) x axis is a line that joins the common origin (i.e., common to both frames) to point b. Our next task is to find out exactly where point b is. Once we figure out point b’s coordinates, we’ll know how to specify the direction of Art’s x′ axis. We’ll go through this exercise in detail. It’s a little cumbersome, but quite easy. There are two steps involved, the first being to find the coordinates of point a.


Point a sits at the intersection of two lines; the rightward moving light ray x = ct, and the line x = vt + 1, which is Maggie’s world line. To find the intersection, we just substitute one equation into the other. Because we’re using relativistic units for which the speed of light c is equal to 1, we can write the equation


x = ct


in an even simpler way,
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Substituting Eq. 1.5 into Maggie’s world line,


x = vt + 1,


gives


t = vt + 1


or


t(1 − v) = 1.


Or, even better,


[image: image]


Now that we know the time coordinate of point a we can find its x coordinate. This is easily done by noticing that all along the light ray, x = t. In other words, we can just replace t with x in Eq. 1.6, and write


xa = 1/(1 − v).


Voilà!—we’ve found point a.


With the coordinates of point a in hand, let’s look at line ab. Once we have an equation for line ab, we can figure out where it intersects Lenny’s world line, x = vt + 2. It takes a few steps, but they’re fun and I don’t know of any shortcuts.


Every line that slopes at 45 degrees, pointing downward to the right, has the property that x + t is constant along that line. Every line sloping upward to the right at 45 degrees has the property that x − t is constant. Let’s take the line ab. Its equation is


x + t = some constant.


What is the constant? An easy way to find out is to take one point along the line and plug in specific values x and t. In particular, we happen to know that at point a,


xa + ta = 2/(1 − v).


Therefore, we know that this is true all along line ab, and the equation for that line must be
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Now we can find b’s coordinates by solving the simultaneous equations for line ab and for Lenny’s world line. Lenny’s world line is x = vt + 2, which we rewrite as x − vt = 2. Our simultaneous equations are


x + t = 2/(1 − v)


and


x − vt = 2.


The solution, after a bit of easy algebra, is


[image: image]


First, the most important point: tb is not zero. Therefore point b, which is simultaneous with the origin in the moving frame, is not simultaneous with the origin in the rest frame.


Next, consider the straight line connecting the origin with point b. By definition, the slope of that line is tb/xb, and using Eqs. 1.8 we see that the slope is v. This line is nothing but the x′ axis, and it is given, very simply, by the equation


[image: image]


Keep in mind as we go along that the velocity v can be positive or negative depending on whether I am moving to the right or to the left relative to your frame. For negative velocity you will have to redraw diagrams or just flip them horizontally.


Fig. 1.3 shows our spacetime diagram with the x′ and t′ axes drawn in. The line t = vx (or what is really a three-dimensional surface in the spacetime map when the two other coordinates y, z are accounted for) has the important property that on it, all the clocks in the moving frame record the same value of t′. To give it a name, it is a surface of simultaneity in the moving frame. It plays the same role as the surface t = 0 does for the rest frame.


So far in this section, we’ve worked in relativistic units where the speed of light is c = 1. Here is a good opportunity to practice your skills in dimensional analysis and figure out what Eq. 1.9 would look like in conventional units of meters and seconds. In those units, Eq. 1.9 is not dimensionally consistent; the left side has units seconds and the right side has units meters squared per second. To restore consistency, we have to multiply the right side by an appropriate power of c. The correct factor is 1/c2:
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[image: image]

Figure 1.3: SR Frames with x′ and t′ Axes Shown.








The interesting thing about Eq. 1.10 is that it describes a straight line with the incredibly tiny slope [image: image]. For example, if v were 300 meters per second (roughly the speed of a jetliner) the slope would be v/c2 = 3 × 10−15. In other words, the x′ axis in Fig. 1.3 would be almost exactly horizontal. The surfaces of simultaneity in the rest and moving frames would almost exactly coincide just as they would in Newtonian physics.


This is an example of the fact that Einstein’s description of spacetime reduces to Newton’s if the relative velocity of the reference frames is much less than the speed of light. This, of course, is an important “sanity” check.


Now we can return to relativistic units with c = 1. Let’s simplify our diagram and keep only the features we’ll need going forward. The dashed line in Fig. 1.4 represents a light ray, whose world line makes a 45-degree angle with both the t and x axes. Art’s world line is shown as the t′ axis. His x′ axis is also labeled. Both of Art’s axes are also labeled with appropriate equations. Notice the symmetry of his two axes: x = vt and t = vx. These two lines are reflections of each other about the dashed light trajectory. They’re related by interchanging t and x. Another way to say it is that they each make the same angle with their nearest unprimed axis—the x axis in the case of t = vx, and the t axis in the case of x = vt.
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Figure 1.4: SR Frames Simplified.








We’ve discovered two interesting things. First, if the speed of light really is the same in every frame, and you use light rays to synchronize clocks, then the pairs of events that are synchronous in one frame are not the same pairs that are synchronous in the other frame. Second, we’ve found what synchronicity actually means in the moving frame. It corresponds to surfaces that are not horizontal, but are tilted with slope v. We have figured out the directions of the x′ and t′ axes in Art’s moving frame. Later on, we’ll figure out how to mark off the intervals along these axes.


Spacetime


Let’s pause for a moment to contemplate what we’ve found about space and time. Newton, of course, knew about both space and time but regarded them as entirely separate. To Newton, three-dimensional space was space, and time was universal time. They were entirely separate, the difference being absolute.


But maps like Figs. 1.3 and 1.4 indicate something that Newton could not have known, namely that in going from one inertial reference frame to another, the space and time coordinates get mixed up with each other. For example, in Fig. 1.3 the interval between the origin and point b represents two points at the same time in the moving frame. But in the rest frame, point b is not only shifted in space from the origin; it also is shifted in time.


Three years after Einstein’s mighty 1905 paper that introduced the special theory of relativity, Minkowski completed the revolution. In an address to the 80th Assembly of German Natural Scientists and Physicians, he said,




Space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.





That union is four-dimensional, with coordinates t, x, y, z. Depending on our mood, we physicists sometimes call that union of space and time spacetime. Sometimes we call it Minkowski space. Minkowski had another name for it. He called it the world.


Minkowski called the points of spacetime events. An event is labeled by the four coordinates t, x, y, z. By calling a point of spacetime an event, Minkowski did not mean to imply that something actually took place at t, x, y, z. Only that something could take place. He called the lines or curves describing trajectories of objects world lines. For example, the line x′ = 0 in Fig. 1.3 is Art’s world line.


This change of perspective from space and time to spacetime was radical in 1908, but today spacetime diagrams are as familiar to physicists as the palms of their hands.


Lorentz Transformations


An event, in other words a point of spacetime, can be labeled by the values of its coordinates in the rest frame or by its coordinates in the moving frame. We are talking about two different descriptions of a single event. The obvious question is, how do we go from one description to the other? In other words, what is the coordinate transformation relating the rest frame coordinates t, x, y, z to the coordinates t′, x′, y′, z′ of the moving frame?


One of Einstein’s assumptions was that spacetime is everywhere the same, in the same sense that an infinite plane is everywhere the same. The sameness of spacetime is a symmetry that says no event is different from any other event, and one can choose the origin anywhere without the equations of physics changing. It has a mathematical implication for the nature of transformations from one frame to another. For example, the Newtonian equation
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is linear; it contains only first powers of the coordinates. Equation 1.11 will not survive in its simple form, but it does get one thing right, namely that x′ = 0 whenever x = vt. In fact there is only one way to modify Eq. 1.11 and still retain its linear property, along with the fact that x′ = 0 is the same as x = vt. It is to multiply the right side by a function of the velocity:
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At the moment the function f(v) could be any function, but Einstein had one more trick up his sleeve: another symmetry—the symmetry between left and right. To put it another way, nothing in physics requires movement to the right to be represented by positive velocity and movement to the left by negative velocity. That symmetry implies that f(v) must not depend on whether v is positive or negative. There is a simple way to write any function that is the same for positive and negative v. The trick is to write it as a function of the square of the velocity v2.6 Thus, instead of Eq. 1.12, Einstein wrote


[image: image]


To summarize, writing f(v2) instead of f(v) emphasizes the point that there is no preferred direction in space.


What about t′? We’ll reason the same way here as we did for x′. We know that t′ = 0 whenever t = vx. In other words, we can just invert the roles of x and t, and write


[image: image]


where g(v2) is some other possible function. Equations 1.13 and 1.14 tell us that x′ is zero whenever x = vt, and that t′ is zero whenever t = vx. Because of the symmetry in these two equations, the t′ axis is just a reflection of the x′ axis about the line x = t, and vice versa.


What we know so far is that our transformation equations should take the following form:
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Our next task is to figure out what the functions f(v2) and g(v2) actually are. To do that we’ll consider the path of a light ray in these two frames, and apply Einstein’s principle that the speed of light is the same in both of them. If the speed of light c equals 1 in the stationary frame, it must also equal 1 in the moving frame. To rephrase this: If we start out with a light ray that satisfies x = t in the stationary frame, it must also satisfy x′ = t′ in the moving frame. To put it another way, if


x = t,


then it must follow that


x′ = t′.


Let’s go back to Eqs. 1.15. Setting x = t and requiring x′ = t′ gives the simple requirement that


f(v2) = g(v2).


In other words the requirement that the speed of light is the same in your frame and my frame leads to the simple condition that the two functions f(v2) and g(v2) are the same. Thus we may simplify Eqs. 1.15
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To find f(v2), Einstein used one more ingredient. In effect, he said “Wait a minute, who’s to say which frame is moving? Who’s to say if my frame is moving relative to you with velocity v, or your frame is moving relative to me with velocity −v?” Whatever the relationship is between the two frames of reference, it must be symmetrical. Following this approach, we could invert our entire argument; instead of starting with x and t, and deriving x′ and t′, we could do exactly the opposite. The only difference would be that for me, you’re moving with velocity −v, but for you, I’m moving with velocity +v. Based on Eqs. 1.16, which express x′ and t′ in terms of x and t, we can immediately write down the inverse transformations. The equations for x and t in terms of x′ and t′ are
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We should be clear that we wrote Eqs. 1.17 by reasoning about the physical relationship between the two reference frames. They’re not just a clever way to solve Eqs. 1.16 for the unprimed variables without doing the work. In fact, now that we have these two sets of equations, we need to verify that they’re compatible with each other.


Let’s start with Eqs. 1.17 and plug in the expressions for x′ and t′ from Eqs. 1.16. This may seem circular, but you’ll see that it isn’t. After making our substitutions, we’ll require the results to be equivalent to x = x and t = t. How could they be anything else if the equations are valid to begin with? From there, we’ll find out the form of f(v2). The algebra is a little tedious but straightforward. Starting with the first of Eqs. 1.17, the first few substitutions for x unfold as follows:


x = (x′ + vt′)f(v2)


x = {(x − vt)f(v2) + v(t − vx)f(v2)}f(v2)


x = (x − vt)f2(v2) + v(t − vx)f2(v2).


Expanding the last line gives


x = xf2(v2) − v2xf2(v2) − vtf2(v2) + vtf2(v2),


which simplifies to


x = xf2(v2)(1 − v2).


Canceling x on both sides and solving for f(v2) gives
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Now we have everything we need to transform coordinates in the rest frame to coordinates in the moving frame and vice versa. Plugging into Eqs. 1.16 gives


[image: image]


These are, of course, the famous Lorentz transformations between the rest and moving frames.


Art: “Wow, that’s incredibly clever, Lenny. Did you figure it all out yourself?”


Lenny: “I wish. No, I’m simply following Einstein’s paper. I haven’t read it for fifty years, but it left an impression.”


Art: “Okay, but how come they’re called Lorentz transformations if they were discovered by Einstein?”


1.2.3 Historical Aside


To answer Art’s question, Einstein was not the first to discover the Lorentz transformation. That honor belongs to the Dutch physicist Hendrik Lorentz. Lorentz, and others even before him—notably George FitzGerald—had speculated that Maxwell’s theory of electromagnetism required moving objects to contract along the direction of motion, a phenomenon that we now call Lorentz contraction. By 1900 Lorentz had written down the Lorentz transformations motivated by this contraction of moving bodies. But the views of Einstein’s predecessors were different and in a sense a throwback to older ideas rather than a new starting point. Lorentz and FitzGerald imagined that the interaction between the stationary ether and the moving atoms of all ordinary matter would cause a pressure that would squeeze matter along the direction of motion. To some approximation the pressure would contract all matter by the same amount so that the effect could be represented by a coordinate transformation.


Just before Einstein’s paper, the great French mathematician Henri Poincaré published a paper in which he derived the Lorentz transformation from the requirement that Maxwell’s equations take the same form in every inertial frame. But none of these works had the clarity, simplicity, and generality of Einstein’s reasoning.



1.2.4 Back to the Equations


If we know the coordinates of an event in the rest frame, Eqs. 1.19 and 1.20 tell us the coordinates of the same event in the moving frame. Can we go the other way? In other words, can we predict the coordinates in the rest frame if we know them in the moving frame? To do so we might solve the equations for x and t in terms of x′ and t′, but there is an easier way.


All we need is to realize that there is a symmetry between the rest and moving frames. Who, after all, is to say which frame is moving and which is at rest? To interchange their roles, we might just interchange the primed and unprimed coordinates in Eqs. 1.19 and 1.20. That’s almost correct but not quite.


Consider this: If I am moving to the right relative to you, then you are moving to the left relative to me. That means your velocity relative to me is −v. Therefore when I write the Lorentz transformations for x, t in terms of x′, t′, I will need to replace v with −v. The result is
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Switching to Conventional Units


What if the speed of light is not chosen to be 1? The easiest way to switch from relativistic units back to conventional units is to make sure our equations are dimensionally consistent in those units. For example, the expression x − vt is dimensionally consistent as it is because both x and vt have units of length—say meters. On the other hand t − vx is not dimensionally consistent in conventional units; t has units of seconds and vx has units of meters squared over seconds. There is a unique way to fix the units. Instead of t − vx we replace it with
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Now both terms have units of time, but if we happen to use units with c = 1 it reduces to the original expression t − vx.


Similarly the factor in the denominators, [image: image], is not dimensionally consistent. To fix the units we replace v with v/c. With these replacements the Lorentz transformations can be written in conventional units:
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Notice that when v is very small compared to the speed of light, v2/c2 is even smaller. For example, If v/c is 1/10, then v2/c2 is 1/100. If v/c = 10−5, then v2/c2 is truly a small number, and the expression [image: image] in the denominator is very close to 1.7 To a very good approximation we can write


x′ = x − vt.


That’s the good old Newtonian version of things. What happens to the time equation (Eq. 1.24) when v/c is very small? Suppose v is 100 meters per second. We know that c is very big, about 3 × 108 meters per second. So v/c2 is a very tiny number. If the velocity of the moving frame is small, the second term in the numerator, vx/c2, is negligible and to a high degree of approximation the second equation of the Lorentz transformation becomes the same as the Newtonian transformation


t′ = t.


For frames moving slowly relative to each other, the Lorentz transformation boils down to the Newtonian formula. That’s a good thing; as long as we move slowly compared to c, we get the old answer. But when the velocity becomes close to the speed of light the corrections become large—huge when v approaches c.


The Other Two Axes


Eqs. 1.23 and 1.24 are the Lorentz transformation equations in common, or conventional, units. Of course, the full set of equations must also tell us how to transform the other two components of space, y and z. We’ve been very specific about what happens to the x and t coordinates when frames are in relative motion along the x axis. What happens to the y coordinate?


We’ll answer this with a simple thought experiment. Suppose your arm is the same length as my arm when we’re both at rest in your frame. Then I start moving at constant velocity in the x direction. As we move past each other, we each hold out an arm at a right angle to the direction of our relative motion. Question: As we move past each other, would our arms still be equal in length, or would yours be longer than mine? By the symmetry of this situation, it’s clear that our arms are going to match, because there’s no reason for one to be longer than the other. Therefore, the rest of the Lorentz transformation must be y′ = y and z′ = z. In other words, interesting things happen only in the x, t plane when the relative motion is along the x axis. The x and t coordinates get mixed up with each other, but y and z are passive.


For easy reference, here’s the complete Lorentz transformation in conventional units for a reference frame (the primed frame) moving with velocity v in the positive x direction relative to the unprimed frame:
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1.2.5 Nothing Moves Faster than Light


A quick look at Eqs. 1.25 and 1.26 indicates that something strange happens if the relative velocity of two frames is larger than c. In that case 1 − v2/c2 becomes negative and [image: image] becomes imaginary. That’s obvious nonsense. Metersticks and clocks can only define real-valued coordinates.


Einstein’s resolution of this paradox was an additional postulate: no material system can move with a velocity greater than light. More accurately, no material system can move faster than light relative to any other material system. In particular no two observers can move, relative to each other, faster than light.


Thus we never have need for the velocity v to be greater than c. Today this principle is a cornerstone of modern physics. It’s usually expressed in the form that no signal can travel faster than light. But since signals are composed of material systems, even if no more substantial than a photon, it boils down to the same thing.


1.3 General Lorentz Transformation


These four equations remind us that we have considered only the simplest kind of Lorentz transformation: a transformation where each primed axis is parallel to its unprimed counterpart, and where the relative motion between the two frames is only along the shared direction of the x and x′ axes.


Uniform motion is simple, but it’s not always that simple. There’s nothing to prevent the two sets of space axes from being oriented differently, with each primed axis at some nonzero angle to its unprimed counterpart.8 It’s also easy to visualize the two frames moving with respect to each other not only in the x direction, but along the y and z directions as well. This raises a question: By ignoring these factors, have we missed something essential about the physics of uniform motion? Happily, the answer is no.


Suppose you have two frames in relative motion along some oblique direction, not along any of the coordinate axes. It would be easy to make the primed axes line up with the unprimed axes by performing a sequence of rotations. After doing those rotations, you would again have uniform motion in the x direction. The general Lorentz transformation—where two frames are related to each other by an arbitrary angle in space, and are moving relative to each other in some arbitrary direction—is equivalent to:




1. A rotation of space to align the primed axes with the unprimed axes.


2. A simple Lorentz transformation along the new x axis.


3. A second rotation of space to restore the original orientation of the unprimed axes relative to the primed axes.




As long as you make sure that your theory is invariant with respect to the simple Lorentz transformation along, say, the x axis, and with respect to rotations, it will be invariant with respect to any Lorentz transformation at all.


As a matter of terminology, transformations involving a relative velocity of one frame moving relative to another are called boosts. For example, the Lorentz transformations like Eqs. 1.25 and 1.26 are referred to as boosts along the x axis.


1.4 Length Contraction and Time Dilation


Special relativity, until you get used to it, is counterintuitive—perhaps not as counterintuitive as quantum mechanics, but nevertheless full of paradoxical phenomena. My advice is that when confronted with one of these paradoxes, you should draw a spacetime diagram. Don’t ask your physicist friend, don’t email me—draw a spacetime diagram.






[image: image]

Figure 1.5: Length Contraction.











Length Contraction


Suppose you’re holding a meterstick and I’m walking past you in the positive x direction. You know that your stick is 1 meter long, but I’m not so sure. As I walk past, I measure your meterstick relative to the lengths of my metersticks. Since I’m moving, I have to be very careful; otherwise, I could be measuring the end points of your meterstick at two different times. Remember, events that are simultaneous in your frame are not simultaneous in mine. I want to measure the end points of your meterstick at exactly the same time in my frame. That’s what I mean by the length of your meterstick in my frame.


Fig. 1.5 shows a spacetime diagram of this situation. In your frame, the meterstick is represented by a horizontal line segment [image: image] along the x axis, which is a surface of simultaneity for you. The meterstick is at rest, and the world lines of its end points are the vertical lines x = 0 and x = 1 in your frame.


In my moving frame, that same meterstick at an instant of time is represented by line segment [image: image] along the x′ axis. The x′ axis is a surface of simultaneity for me and is tilted in the diagram. One end of the meterstick is at our common origin O as I pass it. The other end of the stick at time t′ = 0 is labeled P in the diagram.


To measure the location of both ends at time t′ = 0 in my frame, I need to know the coordinate values of x′ at points O and P. But I already know that x′ is zero at point O, so all I need to do is calculate the value of x′ at point P. We’ll do this the easy way, using relativistic units (speed of light equals 1). In other words, we’ll use the Lorentz transformation of Eqs. 1.19 and 1.20.


First, notice that point P sits at the intersection of two lines, x = 1 and t′ = 0. Recall (based on Eq. 1.20) that t′ = 0 means that t = vx. Substituting vx for t in Eq. 1.19 gives


[image: image]


Plugging x = 1 into the preceding equation gives


[image: image]


or


[image: image]


So there it is! The moving observer finds that at an instant of time—which means along the surface of simultaneity t′ = 0—the two ends of the meterstick are separated by distance [image: image]; in the moving frame, the meterstick is a little shorter than it was at rest.


It may seem like a contradiction that the same meterstick has one length in your frame and a different length in my frame. Notice, though, that the two observers are really talking about two different things. For the rest frame, where the meterstick itself is at rest, we’re talking about the distance from point O to point Q, as measured by stationary metersticks. In the moving frame, we’re talking about the distance between point O and point P, measured by moving measuring rods. P and Q are different points in spacetime, so there’s no contradiction in saying that [image: image] is shorter than [image: image].


Try doing the opposite calculation as an exercise: Starting with a moving meterstick, find its length in the rest frame. Don’t forget—begin by drawing a diagram. If you get stuck you can cheat and continue reading.


Think of a moving meterstick being observed from the rest frame. Fig. 1.6 shows this situation. If the meterstick is 1 unit long in its own rest frame, and its leading end passes through point Q, what do we know about its world line? Is it x = 1? No! The meterstick is 1 meter long in the moving frame, which means the world line of its leading end is x′ = 1. The observer at rest now sees the meterstick being the length of line segment [image: image], and the x coordinate of point Q is not 1. It’s some value calculated by the Lorentz transformation. When you do this calculation, you’ll find that this length is also shortened by the factor [image: image].


The moving metersticks are short in the stationary frame, and the stationary metersticks are short in the moving frame. There’s no contradiction. Once again, the observers are just talking about different things. The stationary observer is talking about lengths measured at an instant of his time. The moving observer is talking about lengths measured at an instant of the other time. Therefore, they have different notions of what they mean by length because they have different notions of simultaneity.






[image: image]

Figure 1.6: Length Contraction Exercise.










Exercise 1.1: Show that the x coordinate of point Q in Fig. 1.6 is [image: image].





Time Dilation


Time dilation works pretty much the same way. Suppose I have a moving clock—my clock. Assume my clock is moving along with me at uniform velocity, as in Fig. 1.7.


Here’s the question: At the instant when my clock reads t′ = 1 in my frame, what is the time in your frame? By the way, my standard wristwatch is an excellent timepiece, a Rolex.9 I want to know the corresponding value of t measured by your Timex. The horizontal surface in the diagram (the dashed line) is the surface that you call synchronous. We need two things in order to pin down the value of t in your frame. First, my Rolex moves on the t′ axis which is represented by the equation x′ = 0. We also know that t′ = 1. To figure out t, all we need is one of the Lorentz transformation equations (Eq. 1.22),





[image: image]

Figure 1.7: Time Dilation.








[image: image]


Plugging in x′ = 0 and t′ = 1, we find


[image: image]


Because the denominator on the right side is smaller than 1, t itself is bigger than 1. The time interval measured along the t axis (your Timex) is bigger than the time interval measured by the moving observer along the t′ axis (my Rolex) by a factor of [image: image]. In short, t > t′.


To put it another way, as viewed from the rest frame, moving clocks run slower by a factor of [image: image]


The Twin Paradox


Lenny: Hey Art! Say hello to Lorentz over here. He has a question.


Art: Lorentz has a question for us?


Lorentz: Please call me Lor’ntz. It’s the original Lorentz contraction. In all the years I’ve been coming to Hermann’s Hideaway, I’ve never seen either one of you guys without the other. Are you biological twins?


Art: What? Look, if we were biological were twins, either I’d be a genius—don’t choke on your sausage, Lor’ntz, it’s not that funny. As I was saying, either I’d be a genius or Lenny would be some wiseguy from the Bronx. Wait a minute…10


Time dilation is the origin of the so-called twin paradox. In Fig. 1.8, Lenny remains at rest, while Art takes a high-speed journey in the positive x direction. At the point labeled t′ = 1 in the diagram, Art at the age of 1 turns around and heads back home.


We’ve already calculated the amount of rest frame time that elapses between the origin and the point labeled t in the diagram. It’s [image: image]. In other words, we find that less time elapses along the path of the moving clock than along the path of the stationary clock. The same thing is true for the second leg of the journey. When Art returns home, he finds that his twin Lenny is older than himself.






[image: image]

Figure 1.8: Twin Paradox.








We’ve calibrated the ages of Art and Lenny by the time registered on their watches. But the same time dilations that slowed Art’s watch from the viewpoint of the rest frame would affect any clock, including the biological aging clock. Thus in an extreme case, Art could return home still a boy while Lenny would have a long gray beard.


Two aspects of the twin paradox often leave people confused. First, it seems natural to expect the experiences of the two twins to be symmetrical. If Lenny sees Art moving away from him, then Art also sees Lenny traveling away, but in the opposite direction. There are no preferred directions in space, so why should they age any differently? But in fact, their experiences are not symmetrical at all. The traveling twin undergoes a large acceleration in order to change directions, while the stay-at-home twin does not. This difference is crucial. Because of the abrupt reversal, Art’s frame is not a single inertial frame, but Lenny’s is. We invite you to develop this idea further in the following exercise.




Exercise 1.2: In Fig. 1.8, the traveling twin not only reverses directions but switches to a different reference frame when the reversal happens.




a) Use the Lorentz transformation to show that before the reversal happens, the relationship between the twins is symmetrical. Each twin sees the other as aging more slowly than himself.


b) Use spacetime diagrams to show how the traveler’s abrupt switch from one frame to another changes his definition of simultaneity. In the traveler’s new frame, his twin is suddenly much older than he was in the traveler’s original frame.







Another point of confusion arises from simple geometry. Referring back to Fig. 1.7, recall that we calculated the “time distance” from point O to the point labeled t′ = 1 to be smaller than the distance from O to the point labeled [image: image] along the t axis. Based on these two values, the vertical leg of this right triangle is longer than its hypotenuse. Many people find this puzzling because the numerical comparison seems to contradict the visual message in the diagram. In fact, this puzzle leads us to one of the central ideas in relativity, the concept of an invariant. We’ll discuss this idea extensively in Section 1.5.



The Stretch Limo and the Bug


Another paradox is sometimes called the Pole in the Barn paradox. But in Poland they prefer to call it the Paradox of the Limo and the Bug.


Art’s car is a VW Bug. It’s just under 14 feet long. His garage was built to just fit the Bug.


Lenny has a reconditioned stretch limo. It’s 28 feet long. Art is going on vacation and renting his house to Lenny, but before he goes the two friends get together to make sure that Lenny’s car will fit in Art’s garage. Lenny is skeptical, but Art has a plan. Art tells Lenny to back up and get a good distance from the garage. Then step on the gas and accelerate like blazes. If Lenny can get the limo up to 161,080 miles per second before getting to the back end of the garage, it will just fit in. They try it.


Art watches from the sidewalk as Lenny backs up the limo and steps on the gas. The speedometer jumps to 172,000 mps, plenty of speed to spare. But then Lenny looks out at the garage. “Holy cow! The garage is coming at me really fast, and it’s less than half its original size! I’ll never fit!”


“Sure you will, Lenny. According to my calculation, in the rest frame of the garage you are just a bit longer than thirteen feet. Nothing to worry about.”


“Geez, Art, I hope you’re right.”


Fig. 1.9 is a spacetime diagram including Lenny’s stretch limo shown in the dark shaded region, and the garage shown as lightly shaded. The front end of the limo enters the garage at a and leaves (assuming that Art left the back door of the garage open) just above c. The back end of the limo enters at b and leaves at d. Now look at the line [image: image] It is part of a surface of simultaneity in the rest frame of the garage, and as you can see, the entire limo is contained in the garage at that time. That’s Art’s claim: In his frame the limo could be made to fit the garage. But now look at Lenny’s surfaces of simultaneity. The line [image: image] is such a surface, and as you can also see, the limo overflows the garage. As Lenny worried, the limo does not fit.






[image: image]

Figure 1.9: Stretch Limo-Garage Spacetime Diagram.








The figure makes clear what the problem is. To say that the limo is in the garage means that the front and back are simultaneously in the garage. There’s that word simultaneous again. Simultaneous according to whom, Art? Or Lenny? To say that the car is in the garage simply means different things in different frames. There is no contradiction in saying that at some instant in Art’s frame the limo was indeed in the garage—and that at no instant in Lenny’s frame was the limo wholly in the garage.


Almost all paradoxes of special relativity become obvious when stated carefully. Watch out for the possibly implicit use of the word simultaneous. That’s usually the giveaway—simultaneous according to whom?


1.5 Minkowski’s World


One of the most powerful tools in the physicist’s toolbag is the concept of an invariant. An invariant is a quantity that doesn’t change when looked at from different perspectives. Here we mean some aspect of spacetime that has the same value in every reference frame.


To get the idea, we’ll take an example from Euclidean geometry. Let’s consider a two-dimensional plane with two sets of Cartesian coordinates, x, y and a second set x′, y′. Assume that the origins of the two coordinate systems are at the same point, but that the x′, y′ axes (the primed axes) are rotated counterclockwise by a fixed angle with respect to the unprimed axes. There is no time axis in this example, and there are no moving observers; just the ordinary Euclidean plane of high school geometry. Fig. 1.10 gives you the picture.


Consider an arbitrary point P in this space. The two coordinate systems do not assign the same coordinate values to P. Obviously, the x and the y of this point are not the same numbers as the x′ and the y′, even though both sets of coordinates refer to the same point P in space. We would say that the coordinates are not invariant.






[image: image]

Figure 1.10: Euclidean Plane.








However, there’s a property that is the same, whether you calculate it in primed or unprimed coordinates: P’s distance from the origin. That distance is the same in every coordinate system regardless of how it’s oriented. The same is true for the square of the distance. To calculate this distance in the unprimed coordinates we use the Pythagorean theorem, d2 = x2 + y2, to get the square of the distance. If we use primed coordinates instead, the same distance would be given by x′2 + y′2. Therefore it follows that


x2 + y2 = x′2 + y′2.


In other words, for an arbitrary point P the quantity x2 + y2 is invariant. Invariant means that it doesn’t depend on which coordinate system you use to work it out. You get the same answer no matter what.


One fact about right triangles in Euclidean geometry is that the hypotenuse is generally larger than either side (unless one side is zero, in which case the hypotenuse is equal to the other side). This tells us that the distance d is at least as large as x or y. By the same argument it is at least as large as x′ or y’.


Circling back to relativity, our discussion of the twin paradox involved something that looked a lot like a right triangle. Go back to Fig. 1.8 and consider the triangle formed from the lines connecting the three black dots—the horizontal dashed line, the first half of Lenny’s vertical world line, and the hypotenuse formed by the first leg of Art’s journey. We can think of the dashed-line distance between the two later dots to define a spacetime distance between them.11 The time along Lenny’s side of the triangle can also be thought of as a spacetime distance. Its length would be [image: image]. And finally the time ticked off during the first half of Art’s trip is the spacetime length of the hypotenuse. But a moment’s inspection shows something unusual—the vertical leg is longer than the hypotenuse (that’s why Lenny had time to grow a beard while Art remained a boy). This immediately tells us that Minkowski space is not governed by the same laws as Euclidean space.


Nevertheless we may ask: Is there an analogous invariant quantity in Minkowski space, associated with the Lorentz transformation—a quantity that stays the same in every inertial reference frame? We know that the square of the distance from the origin to a fixed point P is invariant under simple rotations of Euclidean coordinates. Could a similar quantity, possibly t2 + x2, be invariant under Lorentz transformations? Let’s try it out. Consider an arbitrary point P in a spacetime diagram. This point is characterized by a t value and an x value, and in some moving reference frame it’s also characterized by a t′ and an x′. We already know that these two sets of coordinates are related by the Lorentz transformation. Let’s see if our guess,


[image: image]


is correct. Using the Lorentz transformation (Eqs. 1.19 and 1.20) to substitute for t′ and x′, we have


[image: image]


which simplifies to


[image: image]


Does the right side equal t2 + x2? No way! You can see immediately that the tx term in the first expression adds to the tx term in the second expression. They do not cancel, and there’s no tx term on the left side to balance things out. They can’t be the same.


But if you look carefully, you’ll notice that if we take the difference of the two terms on the right side rather than their sum, the tx terms would cancel. Let’s define a new quantity


τ2 = t2 − x2.


The result of subtracting x′2 from t′2 gives


[image: image]


After a bit of rearrangement it is exactly what we want.


[image: image]


Bingo! We’ve discovered an invariant, τ2, whose value is the same under any Lorentz transformation along the x axis. The square root of this quantity, τ, is called the proper time. The reason for this name will become clear shortly.


Up to now we’ve imagined the world to be a “railroad” in which all motion is along the x axis. Lorentz transformations are all boosts along the x axis. By now you may have forgotten about the other two directions perpendicular to the tracks: directions described by the coordinates y and z. Let’s bring them back now. In Section 1.2.4, I explained that the full Lorentz transformation (with c = 1) for relative motion along the x axis—a boost along x—has four equations:


[image: image]


y′ = y


z′ = z


What about boosts along other axes? As I explained in Section 1.3, these other boosts can be represented as combinations of boosts along x and rotations that rotate the x axis to another direction. As a consequence, a quantity will be invariant under all Lorentz transformations if it is invariant with respect to boosts along x and with respect to rotations of space. What about the quantity τ2 = t2 − x2? We’ve seen that it is invariant with respect to x-boosts, but it changes if space is rotated. This is obvious because it involves x but not y and z. Fortunately it is easy to generalize τ to a full-fledged invariant. Consider the generalized version of Eq. 1.30,


[image: image]


Let’s first argue that τ is invariant with respect to boosts along the x axis. We’ve already seen that the term t2 − x2 is invariant. To that we add the fact that the perpendicular coordinates y and z don’t change under a boost along x. If neither t2 − x2 nor y2 + z2 change when transforming from one frame to another, then obviously t2 − x2 − y2 − z2 will also be invariant. That takes care of boosts in the x direction.


Now let’s see why it does not change if the space axes are rotated. Again the argument comes in two parts. The first is that a rotation of spatial coordinates mixes up x, y, and z but has no effect on time. Therefore t is invariant with respect to rotations of space. Next consider the quantity x2




OEBPS/images/Art_P40a.jpg





OEBPS/images/Art_P40b.jpg





OEBPS/images/Art_P20a.jpg





OEBPS/images/Art_Pxxi.jpg
HERMANN'S @

HIDEAWAY






OEBPS/images/Art_P40c.jpg





OEBPS/images/Art_P49.jpg
Y






OEBPS/images/Art_P47.jpg
he





OEBPS/images/Art_P45.jpg





OEBPS/images/Art_P43.jpg





OEBPS/images/Art_P44.jpg
> T






OEBPS/images/Art_P21-a.jpg





OEBPS/images/Art_P41.jpg





OEBPS/images/Art_P42.jpg





OEBPS/images/Art_P40.jpg





OEBPS/images/Art_P22-1.jpg





OEBPS/images/Art_P51a.jpg





OEBPS/images/Art_P51b.jpg





OEBPS/images/Art_P8.jpg
Lenny:

T =t
/
Tr =
t
A
> | ot
g — (z,t): some event
o T — vt -
o~ ////,






OEBPS/images/Art_P43b.jpg





OEBPS/images/Art_P9.jpg
t=t (1L.1)

(19)





OEBPS/images/Art_P18.jpg
Art:
x = vt
=0

Maggie:
z=vt+1

Lenny:
T =u0vl+2

> I





OEBPS/images/Art_P51c.jpg
p_gr L VT —2us & UL -
1-& 1-¢

24t
=Tz

I
]






OEBPS/images/Art_P10.jpg
t=t (1.3)

(14





OEBPS/images/Art_P52.jpg





OEBPS/images/Art_P53.jpg
(1.31)





OEBPS/images/Art_P50.jpg





OEBPS/images/Art_P51.jpg





OEBPS/images/9780465093359.jpg
SPECIAL
RELATIVITY AND
CLASSICAL
FIELD THEORY

THE THEORETICAL MINIMUM

LS e
New York Times bestselling authors

LEONARD SUSSKIND
& ART FRIEDMAN





OEBPS/images/Art_P27b.jpg





OEBPS/images/Art_P39c.jpg





OEBPS/images/Art_P39d.jpg





OEBPS/images/Art_P47a.jpg
he





OEBPS/images/Art_P39a.jpg





OEBPS/images/Art_P27a.jpg





OEBPS/images/Art_P39b.jpg





OEBPS/images/Art_P35d.jpg





OEBPS/images/Art_P43a.jpg





OEBPS/images/Art_P47b.jpg
f garage limo






OEBPS/images/Art_P23a.jpg





OEBPS/images/Art_P42a.jpg





OEBPS/images/Art_P30a.jpg





OEBPS/images/Art_P42b.jpg





OEBPS/images/Art_P29.jpg
o= (z - wf(v)

- w)f(P) (1.16)





OEBPS/images/Art_P27.jpg





OEBPS/images/Art_P28.jpg
o= (z - wf(v)

t — vz)g(v?). (1.15)





OEBPS/images/Art_P26.jpg
—ut





OEBPS/images/Art_P23.jpg
Art: Maggie: Lenny:
T =t r=vt+1 zx=0vt+2
=0

~






OEBPS/images/Art_P24.jpg
> T






OEBPS/images/Art_P21.jpg
b=

-

R e (18)





OEBPS/images/Art_P22.jpg
(1.10)





OEBPS/images/Art_P20.jpg





OEBPS/images/Art_P38a.jpg





OEBPS/images/Art_P159f.jpg





OEBPS/images/Art_P33d.jpg





OEBPS/images/Art_P41a.jpg





OEBPS/images/Art_P38.jpg





OEBPS/images/Art_P39.jpg





OEBPS/images/Art_P35.jpg
= = &
Nieror
=/

Vi—#e

¥=y





OEBPS/images/Art_P32.jpg





OEBPS/images/Art_P33.jpg





OEBPS/images/Art_P30.jpg
(1.18)






OEBPS/images/Art_P29a.jpg
z= (' + vl )f(v")

(' + w')f(P). (117)





OEBPS/images/Art_P33a.jpg
V1—12





OEBPS/images/Art_P33b.jpg
(1.23)

(1:24)






OEBPS/images/Art_P52-1.jpg
(1.30)





OEBPS/images/Art_tit.jpg
SPECIAL
RELATIVITY AND
CLASSICAL
FIELD THEORY

THE THEORETICAL MINIMUM

LEONARD SUSSKIND
AND ART FRIEDMAN

BASIC BOOKS
New York





