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THE FIRST LINK
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Introduction


FEBRUARY 7, 2000, SHOULD HAVE BEEN a big day for Yahoo. Instead of the few million customers that daily flock to the Internet search engine, billions tried to enter the site. Such exploding popularity should have turned the company into the most valuable asset of the new economy. There was a problem, however. They all arrived at the exact same time and not one of them asked for a stock quote or a pecan pie recipe. Rather, they all sent, in scripted computer language, the message “Yes, I heard you!” Yahoo, as far as it could tell, had said nothing. Nevertheless, hundreds of computers in Yahoo’s Santa Clara, California, headquarters were kept busy responding to these screaming ghosts, while millions of legitimate customers, who wanted a movie title or an airline ticket, waited. I was one of them. Naturally I had no idea that Yahoo was frantically busy serving ten billion ghosts. I was patient for about three minutes before I moved to a more responsive search engine. The next day the royals of the Web, Amazon.com, eBay, CNN.com, ETrade, and Excite, fell under the same spell: They too were obliged to serve billions of ghosts making the same fruitless inquiry that had handicapped Yahoo. True consumers, with shiny credit cards ready for purchases, were forced to wait on the sidelines.


Of course, getting billions of real computer users to type “Yahoo.com” into their browser at precisely 10:20 Pacific Standard Time is impossible. There are simply not enough computers around. Early news reports construed the shutdown of the leading e-commerce sites to be the work of a group of sophisticated hackers. The consensus was that these renegade geeks, fascinated by the challenge of outsmarting sophisticated security systems, had hijacked hundreds of computers in schools, research labs, and businesses and turned them into zombies, telling Yahoo thousands of times, “Yes, I heard you.” Every second, huge amounts of data were thrown at this prominent Website, much more than it could ever handle. The massive denial-of-service attack Yahoo was experiencing set off a much-publicized international hunt for the hackers responsible.


Surprisingly, the high-profile operation of the Federal Bureau of Investigation did not lead to the much-anticipated cyberterrorist organization. Instead, the FBI arrived at the suburban home of a Canadian teenager. Investigators eavesdropping on an Internet chat room overheard the teen soliciting suggestions for new targets to attack. He was caught bragging.


Hiding behind the pseudonym MafiaBoy, this fifteen-year-old successfully halted the operations of billion-dollar companies with access to the best computer security experts in the world. Was he a contemporary David who, armed with the humblest of home computer slingshots, beat the mega-Goliaths of the information age? In hindsight, experts agree on one thing: The attacks were not the work of a genius. They were executed using tools available to anybody on various hacker Websites. MafiaBoy’s online antics revealed him to be a rank amateur, whose sloppy trail led the police right to his parents’ door. In fact, his actions were more reminiscent of a Goliath than David: Lacking the know-how to penetrate any of the sites he attacked and clumsy and slow on his feet, he only managed to take down easy targets, obviously vulnerable computers from universities and small companies, which he simply instructed to bombard Yahoo with messages.


One can imagine a fifteen-year-old boy behind his bedroom door, in the glow of his computer, finding sweet satisfaction in the protracted “Yes, I heard you!” hurled at Yahoo. He must have screamed that phrase himself a million times when Mom or Dad called him to come to dinner or take out the trash. The attack succeeded with brute force, a lot of nerve, and little sophistication. But this is exactly what makes us wonder, how could this teenager’s actions take out the largest corporations of the new economy? If a mere youth can wreak havoc on the Internet, what could a small group of trained and skilled professionals achieve? How vulnerable are we to such attacks?


1.


The early Christians were nothing more than a renegade Jewish sect. Regarded as eccentric and problematic, they were persecuted by both Jewish and Roman authorities. There is no historical evidence that their spiritual leader, Jesus of Nazareth, ever intended to have an impact beyond Judaism. His ideas were difficult and controversial enough for Jews, and reaching the gentiles seemed particularly hopeless. As a starter, those non-Jews who wanted to follow in his footsteps had to undergo circumcision, had to obey the laws of contemporary Judaism, and were excluded from the Temple—the spiritual center of early Jewish Christianity. Very few walked the path. Indeed, reaching them with the message was almost impossible. In a fragmented and earthbound society news and ideas traveled by foot, and the distances were long. Christianity, like many other religious movements in human history, seemed doomed to oblivion. Despite the odds, close to two billion people call themselves Christian today. How did that happen? How did the unorthodox beliefs of a small and disdained Jewish sect come to form the basis of the Western world’s dominant religion?


Many credit the triumph of Christianity to the message offered by the historical figure we know today as Jesus of Nazareth. Today, marketing experts would describe his message as “sticky”—it resonated and was passed down by generations while other religious movements fizzled and died. But credit for the success of Christianity in fact goes to an orthodox and pious Jew who never met Jesus. While his Hebrew name was Saul, he is better known to us by his Roman name, Paul. Paul’s life mission was to curb Christianity. He traveled from community to community persecuting Christians because they put Jesus, condemned by the authorities as a blasphemer, on the same level as God. He used scourging, ban, and excommunication to uphold the traditions and to force the deviants to adhere to Jewish law. Nevertheless, according to historical accounts, this fierce persecutor of Christians underwent a sudden conversion in the year 34 and became the fiercest supporter of the new faith, making it possible for a small Jewish sect to become the dominant religion in the Western world for the next 2,000 years.


How did Paul’s efforts succeed? He understood that for Christianity to spread beyond Judaism, the high barriers to becoming a Christian had to be abolished. Circumcision and the strict food laws had to be relaxed. He took his message to the original disciples of Jesus in Jerusalem and received the mandate to continue evangelization without demanding circumcision.


But Paul understood that this was not enough: The message had to spread. So he used his firsthand knowledge of the social network of the first century’s civilized world from Rome to Jerusalem to reach and convert as many people as he could. He walked nearly 10,000 miles in the next twelve years of his life. He did not wander randomly, however; he reached out to the biggest communities of his era, to the people and places in which the faith could germinate and spread most effectively. He was the first and by far the most effective salesperson of Christianity, using theology and social networks equally effectively. So should he, or Jesus, or the message be credited for Christianity’s success? Could it happen again?


2.


There are huge differences between MafiaBoy and Paul: MafiaBoy’s was an act of destruction. Paul, despite his initial intentions, became a bridge builder between early Christian communities. But the two have something important in common: Both were masters of the network. Though neither of them thought about it in these terms, the key to their success was the existence of a complex network that offered an effective medium for their actions. MafiaBoy operated on a network of computers—the Internet is the fastest and most effective way to reach the largest number of people at the turn of the third millennium. Paul was a master of first-century social and religious links, the only network at the beginning of the modern era that could carry and spread a faith. Neither of them fully grasped the forces that aided them in their actions. But nearly 2,000 years after Paul we are making the first inroads toward understanding what made Paul and MafiaBoy successful. We now know that the answer lies as much in the structure and topology of the networks on which they operated as in their ability to navigate them.


Paul and MafiaBoy succeeded because we are all connected. Our biological existence, social world, economy, and religious traditions tell a compelling story of interrelatedness. As the great Argentinean author Jorge Luis Borges put it, “everything touches everything.”


3.


“There be dragons there!” wrote the ancient mapmakers, marking off the frightening unknown. As adventurous explorers penetrated every region of the globe, these monster-marked patches gradually disappeared. But there are still lots of dragon-infested areas in our mental map of how the different parts of the world fit together, from the microscopic universe locked within a cell to the unbounded world of the Internet. The good news is that recently scientists have been learning to map our interconnectivity. Their maps are shedding new light on our weblike universe, offering surprises and challenges that could not even be imagined a few years ago. Detailed maps of the Internet have unmasked the Internet’s vulnerability to hackers. Maps of companies connected by trade or ownership have traced the trail of power and money in Silicon Valley. Maps of interactions between species in ecosystems have offered glimpses of humanity’s destructive impact on the environment. Maps of genes working together in a cell have provided insights into how cancer works. But the real surprise has come from placing these maps side by side. Just as diverse humans share skeletons that are almost indistinguishable, we have learned that these diverse maps follow a common blueprint. A string of recent breathtaking discoveries has forced us to acknowledge that amazingly simple and far-reaching natural laws govern the structure and evolution of all the complex networks that surround us.


4.


Have you ever seen a child take apart a favorite toy? Did you then see the little one cry after realizing he could not put all the pieces back together again? Well, here is a secret that never makes the headlines: We have taken apart the universe and have no idea how to put it back together. After spending trillions of research dollars to disassemble nature in the last century, we are just now acknowledging that we have no clue how to continue—except to take it apart further.


Reductionism was the driving force behind much of the twentieth century’s scientific research. To comprehend nature, it tells us, we first must decipher its components. The assumption is that once we understand the parts, it will be easy to grasp the whole. Divide and conquer; the devil is in the details. Therefore, for decades we have been forced to see the world through its constituents. We have been trained to study atoms and superstrings to understand the universe; molecules to comprehend life; individual genes to understand complex human behavior; prophets to see the origins of fads and religions.


Now we are close to knowing just about everything there is to know about the pieces. But we are as far as we have ever been from understanding nature as a whole. Indeed, the reassembly turned out to be much harder than scientists anticipated. The reason is simple: Riding reductionism, we run into the hard wall of complexity. We have learned that nature is not a well-designed puzzle with only one way to put it back together. In complex systems the components can fit in so many different ways that it would take billions of years for us to try them all. Yet nature assembles the pieces with a grace and precision honed over millions of years. It does so by exploiting the all-encompassing laws of self-organization, whose roots are still largely a mystery to us.


Today we increasingly recognize that nothing happens in isolation. Most events and phenomena are connected, caused by, and interacting with a huge number of other pieces of a complex universal puzzle. We have come to see that we live in a small world, where everything is linked to everything else. We are witnessing a revolution in the making as scientists from all different disciplines discover that complexity has a strict architecture. We have come to grasp the importance of networks.


With the Internet dominating our life, the word network is on everybody’s lips these days, featured in company names and popular journal titles. After September 11, witnessing the deadly power of terrorist networks, we had to get used to yet another meaning of the term. Very few people realize, however, that the rapidly unfolding science of networks is uncovering phenomena that are far more exciting and revealing than the casual use of the word network could ever convey. Some of these discoveries are so fresh that many of the key results still circulate as unpublished papers within the scientific community. They open up a novel perspective on the interconnected world around us, indicating that networks will dominate the new century to a much greater degree than most people are yet ready to acknowledge. They will drive the fundamental questions that form our view of the world in the coming era.


This book has a simple aim: to get you to think networks. It is about how networks emerge, what they look like, and how they evolve. It shows you a Web-based view of nature, society, and business, a new framework for understanding issues ranging from democracy on the Web to the vulnerability of the Internet and the spread of deadly viruses.


Networks are present everywhere. All we need is an eye for them. As you move from link to link within this book, you will learn to see society as a complex social network and to grasp the smallness of this great world in which we live. You will come to understand how and why Paul succeeded and how, despite some obvious differences, his social milieu was similar to the one we experience today. You will see the challenges doctors face when they attempt to cure a disease by focusing on a single molecule or gene, disregarding the complex interconnectedness of living matter. You will be reminded that MafiaBoy is not alone in attacking networks. You will come to appreciate how the Internet, often viewed as entirely human in its creation, has become more akin to an organism or an ecosystem, demonstrating the power of the basic laws that govern all networks. You will see how the emergence of terrorism is also ruled by the laws of network formation and how these deadly webs take advantage of the fundamental robustness of nature’s webs. You’ll wonder at the amazing similarities among such diverse systems as the economy, the cell, and the Internet, using one to grasp the other. This will be an eye-opening trip across disciplines that I hope will challenge you to step out of the box of reductionism and explore, link by link, the next scientific revolution: the new science of networks.
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THE SECOND LINK
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The Random Universe


ON SEPTEMBER 18, 1783, IN ST. PETERSBURG Leonhard Euler started the day as usual. He gave a mathematics lesson to one of his grandchildren and took up some calculations on the flight of balloons. Just three months earlier, south of Lyon, the Montgolfier brothers had launched an enormous balloon that rose 6,500 feet into the air and landed safely about a mile away. Euler was working out the mechanics of the balloon’s motion as the Montgolfier brothers were preparing to launch a sheep into the air in front of King Louis XVI in Paris, a flight that took place the next day, on September 19. Euler never heard about the event, however. After lunch, working with his assistants, he made some calculations on the orbit of the recently discovered planet Uranus. The equations introduced by him, capturing the planet’s peculiar orbit, would lead decades later to the discovery of the planet Neptune. Euler did not live to witness that discovery either. About five o’clock in the afternoon, he suffered a brain hemorrhage and uttered, “I am dying,” before losing consciousness. He died that evening, ending the most prolific career in mathematics of all time.


Euler, a Swiss born mathematician who spent his career in Berlin and St. Petersburg, had an extraordinary influence on all areas of mathematics, physics, and engineering. Not only was the importance of his discoveries unparalleled, their sheer quantity is also overwhelming. Opera Omnia, the still incomplete record of Euler’s collected works, currently runs to over seventy-three volumes, six hundred pages each. The last seventeen years of Euler’s life, between his return to St. Petersburg in 1766 and his death at the age of 76, were rather tumultuous. Yet, despite many personal tragedies, about half of his works were written during these years. These include a 775-page treatise on the motion of the moon, an influential algebra textbook, and a three-volume discussion of integral calculus, completed while he continued to publish an average of one mathematics paper per week in the journal of the St. Petersburg Academy. The amazing thing is that he barely wrote or read a single line during this time. Having partially lost his sight soon after returning to St. Petersburg in 1766, Euler was left completely blind after a failed cataract operation in 1771. The thousands of pages of theorems were all dictated from memory.


Three decades earlier, his sight intact, Euler had written a short paper addressing an amusing problem that originated in Königsberg, a town not too far from Euler’s home in St. Petersburg. Königsberg, a flowering city in eastern Prussia, did not suspect in the early eighteenth century the sad and war-torn fate that awaited it as host for one of the fiercest battles of the Second World War. Contemporary etchings show a thriving city on the banks of the Pregel, where a busy fleet of ships and their trade offered a comfortable life to the local merchants and their families. The healthy economy allowed city officials to build not fewer than seven bridges across the river. Most of these connected the elegant island Kneiphof, which was caught between the two branches of the Pregel, with other parts of the city. Two additional bridges crossed the two branches of the river (Figure 2.1). The people of Königsberg, enjoying a time of peace and prosperity, amused themselves with mind puzzles, one of which was: “Can one walk across the seven bridges and never cross the same one twice?” No one was to find such a path until a new bridge was built in 1875.


Almost 150 years before the new bridge, in 1736, Euler offered a rigorous mathematical proof stating that with the seven bridges such a path does not exist. He not only solved the Königsberg problem but in his brief paper inadvertently started an immense branch of mathematics known as graph theory. Today graph theory is the basis for our thinking about networks. During the centuries after Euler it grew into a mature field, to which most great mathematicians contributed. To open the door on the field of networks, let us briefly revisit the reasoning process that led Euler to the introduction of the first graph.
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Figure 2.1 Königsberg Bridges. The layout of Königsberg before 1875, with Kneiphof island (A) and the land area D caught between the two branches of the Pregel River. Solving the Königsberg problem meant finding a route around the city that would require a person to cross each bridge only once. In 1736, Leonhard Euler gave birth to graph theory by replacing each of the four land areas with nodes (A to D) and each bridge with a link (a to g), obtaining a graph with four nodes and seven links. He then proved that on the Königsberg graph, a route crossing each link only once does not exist.


1.


Euler’s proof is simple and elegant, easily understood even by those not trained in mathematics. Nevertheless, it is not the proof that made history but rather the intermediate step that he took to solve the problem. Euler’s great insight lay in viewing Königsberg’s bridges as a graph, a collection of nodes connected by links. For this he used nodes to represent each of the four land areas separated by the river, distinguishing them with letters A, B, C, and D. Next he called the bridges the links and connected with lines those pieces of land that had a bridge between them. He thus obtained a graph whose nodes were pieces of land and links were bridges.


Euler’s proof that in Königsberg there is no path crossing all seven bridges only once was based on a simple observation. Nodes with an odd number of links must be either the starting or the end point of the journey. A continuous path that goes through all bridges can have only one starting and one end point. Thus, such a path cannot exist on a graph that has more than two nodes with an odd number of links. As the Königsberg graph had four such nodes, one could not find the desired path.


For our purpose the most important aspect of Euler’s proof is that the existence of the path does not depend on our ingenuity to find it. Rather, it is a property of the graph. Given the layout of the Königsberg bridges, no matter how smart we are, we will never succeed at finding the desired path. The people of Königsberg finally agreed with Euler, gave up their fruitless search, and in 1875 built a new bridge between B and C, increasing the number of links of these two nodes to four. Now only two nodes (A and D) with an odd number of links remained. It was then rather straightforward to find the desired path. Perhaps the creation of this path was the hidden rationale behind building the bridge?


In retrospect, Euler’s unintended message is very simple: Graphs or networks have properties, hidden in their construction, that limit or enhance our ability to do things with them. For more than two centuries the layout of Königsberg’s graph limited its citizens’ ability to solve their coffeehouse problem. But a change in the layout, the addition of only one extra link, suddenly removed this constraint.


In many ways Euler’s result symbolizes an important message of this book: The construction and structure of graphs or networks is the key to understanding the complex world around us. Small changes in the topology, affecting only a few of the nodes or links, can open up hidden doors, allowing new possibilities to emerge.


Graph theory boomed after Euler with contributions made by mathematical giants such as Cauchy, Hamilton, Cayley, Kirchhoff, and Pólya. They uncovered just about everything that is known about large but ordered graphs, such as the lattice formed by atoms in a crystal or the hexagonal lattice made by bees in a beehive. Until the mid-twentieth century the goal of graph theory was simple: It aimed to discover and catalogue the properties of the various graphs. Famous problems included finding a way to escape from a maze or labyrinth, first solved in 1873, or finding a sequence of moves with a knight on a chess board such that each square is visited only once and the knight returns to its starting point. Some of the more difficult problems have gone unsolved for centuries.


Two centuries passed after Euler’s inspiring work before mathematicians moved from studying the properties of various graphs to asking the quintessential question of how graphs, or, more commonly, networks, came about. Indeed, how do real networks form? What are the laws governing their appearance and structure? These questions, and the first answer, did not come until the 1950s, when two Hungarian mathematicians made a revolution in graph theory.


2.


One afternoon in late 1920s Budapest, a seventeen-year-old youth cantered with a weird gait through the streets and stopped in front of an elegant shoe shop that sold custom-made shoes. With his strangely shaped feet, on which normal shoes would never fit, he could indeed use a cobbler. But new shoes were not the occasion of this visit. After knocking on the store’s door—an act that would have seemed just as odd back then as today—he entered, ignoring the saleswoman at the counter, and went up to a fourteen-year-old boy in the back of the shop.


“Give me a four digit number,” he said.


“2,532,” came the wide-eyed boy’s reply as he stared at the strange creature. The older boy did not let him stare too long, however.


“The square of it is 6,441,024,” he continued. “Sorry, I am getting old and I cannot tell you the cube. How many proofs of the Pythagorean theorem do you know?”


“One,” replied the youngster.


“I know thirty-seven,” and without taking a breath he continued. “Did you know that the points of a straight line do not form a countable set?” After showing the sharp boy Cantor’s proof as evidence, his business at the cobbler’s store finished, he said, “I must run,” and so he did, turning on his heel and galloping out of the store.


Paul Erdős galloped on to become the presiding genius and most famous misfit of the twentieth century. He wrote more than 1,500 mathematics papers before his death in 1996. This output, unparalleled since Euler, contained eight articles published with another Hungarian mathematician, Alfréd Rényi. These eight papers addressed for the first time in history the most fundamental question pertaining to our understanding of our interconnected universe: How do networks form? Their solution laid the foundation of the theory of random networks. This elegant theory so profoundly determined our thinking about networks that we are still struggling to break away from its hold.


3.


Organize a party for a hundred guests who have been selected and invited because they do not know a single other person on the guest list. Offer this group of strangers wine and cheese, and they will immediately start to chat, as human beings’ inborn desire to meet and know each other inevitably brings them together. Soon you will see thirty to forty groups of two or three. Now mention to one guest that the red wine in the unlabeled dark green bottles is a rare twenty-year-old vintage port, far better than that with the red label. But ask that guest to share this information only with his or her new acquaintances. You know that your expensive port is fairly safe, because your friend has only had time to meet two or three people in the room. However, guests will inevitably become bored talking to the same person for too long and move on to join other groups. An outside observer would not notice anything special. Yet there are invisible social links between people who met earlier but now belong to different groups. As a consequence, subtle paths start connecting people who are still strangers to each other. For example, though John has not met Mary yet, they have both met Mike, and so there is a path from John to Mary through Mike. If John knew about the wine, chances are that now Mary knows too, since she could hear it from Mike, who was told by John. As time goes on, the guests will be increasingly interwoven by such intangible links, creating a fine web of acquaintances that includes a sizable portion of the guests. The expensive wine is increasingly endangered as its identity is passed from a tiny group of insiders to more and more chatting groups (Figure 2.2).
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Figure 2.2 The Party. At a party with ten guests, none of whom initially knows one another, social ties form as the guests start chatting in small groups. At first, the groups are isolated from each other (left panel). Indeed, though there are social links (shown as continuous lines) between those in the same group, everyone outside of that group is still a stranger. As time goes on (right panel), three guests move to different groups and a giant cluster emerges. Although not everyone knows everyone else, there is now a single social network that includes all the guests. By following the social links, one can now find a path between any two guests.


Assuming that each person passes on the information to all of her or his new acquaintances, will the reputation of the fine port reach all of the guests before the end of the party? To be sure, if all were to get to know each other, everybody would be pouring the superior wine from the unlabeled bottle. But even if each encounter took only ten minutes, meeting all ninety-nine others would take about sixteen hours. Parties rarely last that long. Thus, you might feel that you could reveal the identity of the wine to your friend and reasonably hope that some would be left at the end of the party.


Paul Erdős and Alfréd Rényi begged to differ. “A mathematician is a machine that turns coffee into theorems,” Erdős used to say, quoting Rényi. A particularly lucky cup of coffee turned into a much quoted theorem: If each person gets to know at least one other guest, then soon everybody will be drinking the reserve port. According to Erdős and Rényi, it would take only thirty minutes to form a single invisible social web that includes all guests in the room. Minutes after you hear the recommendation for the wine, you may find yourself tipping an empty bottle into your expectant glass.


4.


The guests we met at the cocktail party are part of a problem in graph theory, the branch of mathematics pioneered by Euler. The guests are the nodes, and every encounter creates a social link between them. Thus a web of acquaintances—a graph—emerges, a bunch of nodes connected by links. Computers linked by phone lines, molecules in our body linked by biochemical reactions, companies and consumers linked by trade, nerve cells connected by axons, islands connected by bridges are all examples of graphs. Whatever the identity and the nature of the nodes and links, for a mathematician they form the same animal: a graph or a network.


Despite its elegance, simplifying all webs into graphs poses some formidable challenges. While society, the Internet, a cell, or the brain can all be represented by graphs, each is clearly very different from the others. It is hard to imagine much commonality between human society, where we make friends and acquaintances through a combination of random encounters and conscious decisions, and the cell, where the unforgiving laws of chemistry and physics govern all reactions between molecules. There must be a clear difference in the rules that govern the placement of links in the various networks we encounter in nature. Finding a model to describe all of these different systems seems, on its face, an insurmountable challenge.


Yet the ultimate goal of all scientists is to find the simplest possible explanation for very complex phenomena. Erdős and Rényi took on this challenge by proposing an elegant mathematical answer to describe all complex graphs within a single framework. Since different systems follow such disparate rules in building their own networks, Erdős and Rényi deliberately disregarded this diversity and came up with the simplest solution nature could follow: connect the nodes randomly. They decided that the simplest way to create a network was to play dice: Choose two nodes and, if you roll a six, place a link between them. For any other roll of the dice, do not connect these two nodes but choose a different pair and start over. Therefore, Erdős and Rényi viewed graphs and the world they represented as fundamentally random.


“There is an old debate,” Erdős liked to say, “about whether you create mathematics or just discover it. In other words, are the truths already there, even if we don’t yet know them?” Erdős had a clear answer to this question: Mathematical truths are there among the list of absolute truths, and we just rediscover them. Random graph theory, so elegant and simple, seemed to him to belong to the eternal truths. Yet today we know that random networks played little role in assembling our universe. Instead, nature resorted to a few fundamental laws, which will be revealed in the coming chapters. Erdős himself created mathematical truths and an alternative view of our world by developing random graph theory. Not privy to nature’s laws in creating the brain and society, Erdős hazarded his best guess in assuming that God enjoys playing dice. His friend Albert Einstein, at Princeton, was convinced of the opposite: “God does not play dice with the universe.”


5.


Let’s go back to our cocktail party and the exercise in random graph theory. You start with a large number of isolated nodes. Then you randomly add links between the nodes, mimicking the random encounters between the guests. If you add only a few connections, the only consequence of your activity will be that some of the nodes will pair up. If you continue adding links, you will inevitably connect some of these pairs to each other, forming clusters of several nodes. But when you add enough links such that each node has an average of one link, a miracle happens: A unique giant cluster emerges. That is, most nodes will be part of a single cluster such that, starting from any node, we can get to any other by navigating along the links between the nodes. This is the moment when your expensive wine is in danger, since a rumor can reach everyone who belongs to the giant cluster. Mathematicians call this phenomenon the emergence of a giant component, one that includes a large fraction of all nodes. Physicists call it percolation and will tell you that we just witnessed a phase transition, similar to the moment in which water freezes. Sociologists would tell you that your subjects had just formed a community. Though different disciplines may have different terminology, they all agree that when we randomly pick and connect pairs of nodes together in a network, something special happens: The network, after placing a critical number of links, drastically changes. Before, we have a bunch of tiny isolated clusters of nodes, disparate groups of people that communicate only within the clusters. After, we have a giant cluster, joined by almost everybody.


6.


Each of us is part of a large cluster, the worldwide social net, from which no one is left out. We do not know everybody on this globe, but it is guaranteed that there is a path between any two of us in this web of people. Likewise, there is a path between any two neurons in our brain, between any two companies in the world, between any two chemicals in our body. Nothing is excluded from this highly interconnected web of life. Paul Erdős and Alfréd Rényi told us why: It requires only one link per node to stay connected. One acquaintance per person, one link to at least one other neuron for each neuron in the brain, the ability to participate in at least one reaction for each chemical in our body, trade with at least one other company in the business world. One is the threshold. If nodes have less than one connection on average, then our network breaks into tiny noncommunicating clusters. If there is more than one connection per node, that danger becomes remote.


Nature repeatedly and extravagantly exceeds the one-link minimum. Sociologists estimate that we know between 200 and 5,000 people by name. An average neuron is connected to dozens of others, some to thousands. Each company is inevitably linked to hundreds of suppliers and customers; some of the biggest have links to millions. In our body, most molecules take part in far more than a single reaction—some, like water, in hundreds. Thus, real networks not only are connected but are well beyond the threshold of one. Random network theory tells us that as the average number of links per node increases beyond the critical one, the number of nodes left out of the giant cluster decreases exponentially. That is, the more links we add, the harder it is to find a node that remains isolated. Nature does not take risks by staying close to the threshold. It well surpasses it. Consequently, the networks around us are not just webs. They are very dense networks from which nothing can escape and within which every node is navigable. This is why there are no islands of people completely isolated from society at large and why all molecules in our body are integrated into a single complex cellular map. This is why the Apostle Paul’s message reached people he never met and why MafiaBoy made headlines: Along the links their actions easily affected millions.


7.


Erdős and Rényi’s discovery of this very special moment when a giant cluster emerges through a phase or percolation transition was a huge event in graph theory, but not because it made the unbelievable prediction that only one acquaintance is required to form a society. Rather, it was largely because, before Erdős and Rényi, graph theory had not dealt with cocktail parties, social networks, or random graphs. It focused almost exclusively on regular graphs, which contain no ambiguity about their structure. But when it comes to such complex systems as the Internet or the cell, regular graphs are the exception rather than the norm. Erdős and Rényi acknowledged for the first time that real graphs, from social networks to phone lines, are not nice and regular. They are hopelessly complicated. Humbled by their complexity, the two assumed that these networks are random.


In retrospect, it is not surprising that this unlikely pair of mathematicians were the ones to turn around a respectable field of mathematics by injecting randomness into it. Chance and randomness were very much a part of their lives. Though Rényi was seven years younger than Erdős, they knew each other thanks to the friendship between their parents back in Budapest. By the time they started working together, after meeting up in Amsterdam in 1948, both had lived through rather tumultuous times. Subject to the Numerus Clausus laws that limited the number of Jews admitted to university, Rényi had worked in a shipyard after high school. After winning a math and Greek competition, he was allowed to enter the university in 1939. Soon after finishing his mathematical studies he was called to forced labor, from which he somehow escaped.


Erdős and his colleagues, who were familiar with Rényi’s resistance activities during the war, deeply admired and respected him. Rényi had boldly disguised himself in the uniform of the Hungarian fascists, Nyilas, to help his friends escape the concentration camps. According to one story, Rényi entered the Budapest ghetto dressed as a Nyilas soldier and managed to escort his parents out. He also lived for years in Nazi-controlled Budapest using false documents. Only those aware of the realities of the Nazi terror could truly appreciate the courage needed to perform these acts. Not surprisingly, Rényi’s ability to focus on mathematics was highly constrained until the end of the war, when in 1946 he traveled to Leningrad to continue his studies. There his creativity exploded. He not only learned and absorbed number theory in record time, despite his limited Russian language skills, but also proved some fundamental theorems on one of the notoriously difficult problems of number theory, the Goldbach conjecture. Thus, when he met Erdős two years later in Amsterdam, he was no longer the aspiring young mathematician and family friend but a well-known scientist with an international reputation.


Erdős by then had already developed his trademark traveling-mathematician lifestyle. He would show up at his colleagues’ doorsteps and proclaim, “My brain is open,” an invitation to join in his tireless pursuit of mathematical truth. His only permanent job offer came from the University of Notre Dame, in South Bend, Indiana. Arnold Ross, at that time the chairman of the math department, offered Erdős a visiting professorship on very generous terms: He could come and go as he pleased, since he had an assistant who would pick up the lectures where he left them off.


A Catholic liberal arts college, Notre Dame was not the prominent university it would become decades later. Nevertheless it offered Erdős a quiet and comfortable work environment and the opportunity for frequent discussions with his priest colleagues, which Erdős, with his unique perspective on the universe and deity, particularly enjoyed. Once asked about his time there, he remarked tongue-in-cheek, “There are too many plus signs,” a reference to the numerous crucifixes about campus. When Notre Dame eventually offered to turn Erdős’s status into a permanent one, on the same comfortable terms, Erdős politely refused. Perhaps losing the randomness and unpredictability that had characterized his life was too much for him to fathom.


8.


The Amsterdam meeting between Erdős and Rényi was the start of a very close friendship and collaboration that resulted in over thirty joint publications before Rényi’s early death at the age of forty-nine in 1970. Among these publications were the eight legendary papers on graph theory. The first, published more than a decade after the Amsterdam meeting, addressed for the first time the important questions of how graphs form. Their use of randomness to tackle graph theory problems is most evident when we look at how many links nodes have in a graph or network. Regular graphs are unique in that each node has exactly the same number of links. Indeed, in a two-dimensional mesh of perpendicular lines forming a simple square lattice each node has exactly four links, or in a hexagonal lattice of a beehive each node is connected to exactly three others.


Such regularity is clearly absent from random graphs. The premise of the random network model is deeply egalitarian: We place the links completely randomly; thus all nodes have the same chance of getting one—just as in Las Vegas, where supposedly we all have the same chance of hitting the jackpot. At the end of the day, however, only a few of our fellow gamblers walk away richer. Similarly, if we place the links randomly in a graph, some nodes will get more links than others. Some might even have bad luck and get nothing for a while. The random world of Erdős and Rényi can be simultaneously unfair and generous: It can make some poor and others rich. Yet a far-reaching prediction of Erdős and Rényi’s theory tells us that this only appears to be so. If the network is large, despite the links’ completely random placement, almost all nodes will have approximately the same number of links.


One way to see this is to interview all guests as they leave the cocktail party, asking them how many acquaintances they made. When everybody leaves, we can draw a histogram by plotting how many of the guests have one, two, or exactly k new acquaintances. For the random network model of Erdős and Rényi the shape of the histogram was derived and proved exactly in 1982 by one of Erdős’s students, Béla Bollobás, professor of mathematics at the University of Memphis in the United States and Trinity College in the United Kingdom. The result shows that the histogram follows a Poisson distribution, which has some unique properties that will follow us throughout this book. A Poisson distribution has a prominent peak, indicating that the majority of nodes have the same number of links as the average node does. On the two sides of the peak the distribution rapidly diminishes, making significant deviations from the average extremely rare.


Translated back to a society of 6 billion people, a Poisson distribution tells us that most of us have roughly the same number of friends and acquaintances. It predicts that it is exponentially rare to find someone who deviates from the average by having considerably more or fewer links than the average person. Therefore, random graph theory predicts that if we assign social links randomly, we end up with an extremely democratic society, where all of us are average and very few deviate from the norm to be extremely social or utterly asocial types. We obtain a network with a very uniform fabric in which the mean is the norm.


Erdős and Rényi’s random universe is dominated by averages. It predicts that most people have roughly the same number of acquaintances; most neurons connect roughly to the same number of other neurons; most companies trade with roughly the same number of other companies; most Websites are visited by roughly the same number of visitors. As nature blindly throws the links around, in the long run no node is favored or singled out.


9.


The random network theory of Erdős and Rényi has dominated scientific thinking about networks since its introduction in 1959. It created several paradigms that are consciously or unconsciously imprinted on the minds of everyone who deals with networks. It equated complexity with randomness. If a network was too complex to be captured in simple terms, it urged us to describe it as random. Sure enough, society, the cell, communication networks, and the economy are all complex enough to fit the bill.


You may be thinking that there is something fishy about this random universe, in which all nodes are equal. Would I be able to write this book if the molecules in my body decided to react to each other randomly? Would there be nations, states, schools, and churches or any other manifestations of social order if people interacted with each other completely randomly? Would we have an economy if companies selected their consumers randomly, replacing their salespeople with millions of dice? Most of us feel that we do not live in such a random world—that there has to be some order behind these complex systems.


Why, then, would two such unparalleled intellects as Erdős and Rényi choose to model the emergence of networks as a completely random process? The answer is simple: They never planned to provide a universal theory of network formation. They were far more intrigued by the mathematical beauty of random networks than by the model’s ability to faithfully capture the webs nature created around them. To be sure, in their seminal 1959 paper they did mention that “the evolution of graphs may be considered as a rather simplified model of the evolution of certain communication nets (railway, road or electric network systems, etc.).” But, despite this brief journey into the real world, their work in this area was motivated by a deep curiosity about the mathematical depths of the problem rather than by its applications.


Erdős would be the first to agree with us that real networks must have organizing principles that distinguish them from the random network model they introduced in 1959. But for him this would be beside the point. By using the hypothesis of randomness he opened a window to a new world, whose mathematical beauty and consistency was the main driving force behind the subsequent work in graph theory.


Until recently we had no alternative for describing our interlinked universe. Thus random networks came to dominate our ideas on network modeling. Complex real networks were viewed as fundamentally random.


Erdős holds the record for suggesting good problems and making sure that somebody else solved them. Though he never owned more than a few clothes that fit into a small leather suitcase that he always traveled with, he often offered monetary rewards for solutions or proofs to problems that he found interesting—$5 for a problem he considered simple, $500 for a truly difficult one. And he would happily pay if the proof was delivered. Never mind that often a $1 problem turned out to be more difficult than a $500 one. The lucky mathematicians who earned one of his rewards never cashed his checks anyway. Most of them framed them. The reward was a unique recognition by the presiding genius of the century; no cash amount could match its spiritual value.


Let us follow Erdős’s example and ask a question he left untouched. What do real networks look like? Posing a problem in such a sloppy way would never have satisfied him. It is too broad. It may not even have a unique answer. And most likely we can never offer a rigorous proof. Thus it could not possibly be from the Transfinite Book, the ultimate depository in Erdős’s world of all good mathematical proofs and theorems. But though the question might not have won his approval, in the coming chapters, we will see that it makes a huge difference outside the world of mathematics.
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THE THIRD LINK
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Six Degrees of Separation


IN 1912, JUST AS ANNA ERDŐS DISCOVERED she was pregnant with her third child, Paul, the streets of Budapest were abuzz with talk about a new collection of poems and prose by the best Hungarian and international writers. The first edition had sold out before the literary critics could even get to it, and the second printing was also disappearing when the first serious reviews appeared in newspapers around the country. By then Anna Erdős had entered the hospital, given birth to Paul, and gone home, only to discover that her two older daughters were the victims of a scarlet fever epidemic that was tearing through Budapest.


Despite the city’s many personal tragedies, enthusiasm for the new literary phenomenon was unabating. The book’s popularity was rooted in a minor detail: All the poems and short stories were fake. In Igy irtok ti, or This Is How You Write, Frigyes Karinthy, a twenty-five-year-old virtually unknown poet and writer, invented what he called literary caricature. The volume is a collection of poems and short stories that appear to be written by a who’s who of world literature. If you were familiar with the authors, you could easily recognize their styles. Each piece is a cunning parody that, like a distorting mirror, keeps the mimicked author recognizable while changing all the proportions. Karinthy applied his vitriolic and annihilating humor with equal ease on deceased giants and close friends. And his arrow was often deadly: The authors he most venomously parodied are known to us only through his book; their actual works are lost in the unforgiving sink of literary taste and history.


Igy irtok ti is one of the most read books in Hungarian history. It made Karinthy an instant celebrity. Never again did he have to wait for the bus in the bus station—he simply waved to it from wherever he was, and the drivers, with wide smiles, stopped for him. He wrote most of the time behind the expansive glass windows of the Central Café in the heart of Budapest. Passersby often performed a strange dance. As they walked by the window, they suddenly stopped, turned, and peered through the window at the working writer, as if he were an exotic species in a new aquarium.


Almost two decades after Igy irtok ti, in 1929, at about the same time that the seventeen-year-old Erdős was lecturing about the Pythagorean theorem in the shoe store a few streets away from the Central Café, Karinthy published his forty-sixth book, Minden masképpen van (Everything Is Different), a collection of fifty-two short stories. By now he was recognized as the genius of Hungarian literature. Everyone, however, was still waiting for “The Book,” the novel that would define Karinthy and guarantee his place among literature’s immortals. The critics openly voiced concern that Karinthy was selling out his unique talent by writing short stories that drew quick bucks. Karinthy, whose incredibly disordered and chaotic life was spent between coffeehouses and a hectic and noisy home, failed to deliver the long awaited tome. The short story collection was a critical failure and soon sank into obscurity. It has been out of print ever since. I have visited most bookstores and antiquaries in Budapest and cannot find a trace of it. But there is one story, entitled “Láncszemek,” or “Chains,” that deserves our attention.


“To demonstrate that people on Earth today are much closer than ever, a member of the group suggested a test. He offered a bet that we could name any person among earth’s one and a half billion inhabitants and through at most five acquaintances, one of which he knew personally, he could link to the chosen one,” writes Karinthy in “Láncszemek.” And indeed, Karinthy’s fictional character immediately links a Nobel prizewinner to himself, noting that the Nobelist must know King Gustav, the Swedish monarch who hands out the Nobel prize, who in turn is a consummate tennis player and plays occasionally with a tennis champion who happens to be a good friend of Karinthy’s character. Remarking that linking to celebrities is easy, Karinthy’s character demands a more difficult assignment. Next he tries to link a worker in Ford’s factory to himself: “The worker knows the manager in the shop, who knows Ford; Ford is on friendly terms with the general director of Hearst Publications, who last year became good friends with Árpád Pásztor, someone I not only know, but is to the best of my knowledge a good friend of mine—so I could easily ask him to send a telegram via the general director telling Ford that he should talk to the manager and have the worker in the shop quickly hammer together a car for me, as I happen to need one.” Though these short stories have been neglected, Karinthy’s 1929 insight that people are linked by at most five links was the first published appearance of the concept we know today as “six degrees of separation.”


1.


Six degrees was rediscovered almost three decades later, in 1967, by Stanley Milgram, a Harvard professor who turned the concept into a much celebrated, groundbreaking study on our interconnectivity. Amazingly, Milgram’s first paper on the subject occasionally reads like an English translation of Karinthy’s “Láncszemek” rewritten for an audience of sociologists. Milgram, perhaps the most creative practitioner of experimental psychology, is best known for a series of highly debated experiments probing the conflict between obedience to authority and personal conscience. But his intellect was wide-ranging, and he soon became interested in the structure of our social network, a topic that was frequently discussed by sociologists at Harvard and MIT during the late sixties.


Milgram’s goal was to find the “distance” between any two people in the United States. The question driving the experiment was, how many acquaintances would it take to connect two randomly selected individuals? To get started, he first chose two target persons, the wife of a divinity graduate student in Sharon, Massachusetts, and a stock broker in Boston. He picked Wichita, Kansas, and Omaha, Nebraska, as starting points for the study because “from Cambridge, these cities seem vaguely ‘out there,’ on the Great Plains or somewhere.” There was little consensus about how many links it would take to connect people from these remote areas. Milgram himself pointed out in 1969, “Recently I asked a person of intelligence how many steps he thought it would take, and he said that it would require 100 intermediate persons, or more, to move from Nebraska to Sharon.”


Milgram’s experiment entailed sending letters to randomly chosen residents of Wichita and Omaha asking them to participate in a study of social contact in American society. The letter contained a short summary of the study’s purpose, a photograph, and the name and address of and other information about one of the target persons, along with the following four-step instructions:


HOW TO TAKE PART IN THIS STUDY


        1.  ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the next person who receives this letter will know who it came from.


        2.  DETACH ONE POSTCARD. FILL IT OUT AND RETURN IT TO HARVARD UNIVERSITY. No stamp is needed. The postcard is very important. It allows us to keep track of the progress of the folder as it moves toward the target person.


        3.  IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target person and know each other on a first name basis.


        4.  IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POSTCARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or acquaintance, but it must be someone you know on a first name basis.


Milgram had a pressing concern: Would any of the letters make it to the target? If the number of links was indeed around one hundred, as his friend guessed, then the experiment would likely fail, since there is always someone along such a long chain who does not cooperate. It was therefore a pleasant surprise when within a few days the first letter arrived, passing through only two intermediate links! This would turn out to be the shortest path ever recorded, but eventually 42 of the 160 letters made it back, some requiring close to a dozen intermediates. These completed chains allowed Milgram to determine the number of people required to get the letter to the target. He found that the median number of intermediate persons was 5.5, a very small number indeed—and coincidentally, amazingly close to Karinthy’s suggestion. Round it up to 6, however, and you get the famous “six degrees of separation.”


As Thomas Blass, a social psychologist who has devoted the last fifteen years to in-depth research on the life and work of Stanley Milgram, pointed out to me, Milgram himself never used the phrase “six degrees of separation.” John Guare originated the term in his brilliant 1991 play of that title. After an extremely successful season on Broadway, the play was made into a movie with the same title. In the play, Ousa (played by Stockard Channing in the movie), musing about our interconnectedness, tells her daughter, “Everybody on this planet is separated by only six other people. Six degrees of separation. Between us and everybody else on this planet. The president of the United States. A gondolier in Venice. . . . It’s not just the big names. It’s anyone. A native in a rain forest. A Tierra del Fuegan. An Eskimo. I am bound to everyone on this planet by a trail of six people. It’s a profound thought. . . . How every person is a new door opening up into other worlds.”


Milgram’s study was confined to the United States, linking people “out there” in Wichita and Omaha to “over here” in Boston. For Guare’s Ousa, however, six degrees applied to the whole world. Thus a myth was born. Because more people watch movies than read sociology papers, Guare’s version has prevailed in popular thought.


Six degrees of separation is intriguing because it suggests that, despite our society’s enormous size, it can easily be navigated by following social links from one person to another—a network of six billion nodes in which any pair of nodes are on average six links from each other. Perhaps we should be surprised that there is a path between any two people. Yet we saw in the previous chapter that being connected requires very little—barely more than one social link per person. As we all have many more than one link, each of us is a part of the giant network that we call society.


Stanley Milgram awakened us to the fact that not only are we connected, but we live in a world in which no one is more than a few handshakes from anyone else. That is, we live in a small world. Our world is small because society is a very dense web. We have far more friends than the critical one needed to keep us connected. Yet is six degrees something uniquely human, tied somehow to our desire to form social links? Or do other kinds of networks look the same? Answers to these questions surfaced only a few years ago. We now know that social networks are not the only small worlds.


2.


“Suppose all the information stored on computers everywhere were linked. . . . All the best information in every computer at CERN and on the planet would be available to me and anyone else. There would be a single global information space.” This was the dream of Tim Berners-Lee in 1980 while working as a programmer at the European Organization for Nuclear Research, commonly known by its French acronym, CERN, in Geneva, Switzerland. To turn his dream into reality, he wrote a program that allowed computers to share information—to link to each other. By inventing the links, Berners-Lee released a genie whose existence had been unknown to us. In less than ten years the genie turned into the World Wide Web, one of the largest ever human-made networks. It is a virtual network whose nodes are Webpages that have it all: news, movies, gossip, maps, pictures, recipes, biographies, and books. If it can be written, drawn, or photographed, chances are there is already a node on the Web containing it in some form.


The power of the Web is in the links, the uniform resource locators (URLs) that allow us to move with the click of a mouse from one page to another. They allow us to surf, locate, and string together information. These links turn the collection of individual documents into a huge network spun together by mouse clicks. They are the stitches that keep the fabric of our modern information society together. Remove the links, and the genie would spectacularly vanish. Huge inaccessible databases would be left behind, the contemporary ruins of an interconnected world.


How large is the Web today? How many Web documents and links are out there? Until recently no one knew for sure—there’s no single organization to keep track of all the nodes and links. It was Steve Lawrence and Lee Giles, working at the NEC Research Institute at Princeton, who took up this unique challenge in 1998. Their measurements indicated that in 1999 the Web had close to a billion documents—not bad for a virtual society born less than a decade earlier. Considering that it grows much faster than human society, chances are that by the time this book is published there will be more Web documents than people on Earth.


But the real issue isn’t the overall size of the Web. It’s the distance between any two documents. How many clicks does it take to get from the home page of a high-school student in Omaha to the Webpage of a Boston stockbroker? Despite the billion nodes, could the Web be a “small world”? The answer to this question is not irrelevant to anybody who surfs the Web. If Webpages are thousands of clicks from each other, it is hopeless to find any document without a search engine. Finding that the Web was not a small world would also indicate that the networks behind society and the online universe were fundamentally different. If that were the case, to fully understand networks we would need to understand why and how this difference emerges. Therefore, at the end of 1998 I set out with Réka Albert, a Ph.D. student, and Hawoong Jeong, a postdoctoral associate—both working at that time in my research group at the physics department at the University of Notre Dame—to grasp the size of the world behind the Web.

OEBPS/images/titcommon.jpg





OEBPS/images/page11.jpg
by






OEBPS/images/page15.jpg





OEBPS/images/title.jpg
LINKED

How Everything Is Connected
to Everything Else
and What It Means for
Business, Science, and Everyday Life

BASIC BOOKS
A Memberof the Peseus Books Group
York





OEBPS/images/9780465038619.jpg
How Everything Is Connedted to
Everything Else and What It Means for

Business, Science, and Everyday Life

Linked

“Remarkable.... A sweeping look at  new and exciting science.” — Science

Albert-Laszlo Barabasi






