[image: background image]






[image: background image]


FR

ANÇOIS

COTTET

-EMARD

L1/

L2

C

APES

M

A

T

H

S

LES

CLÉS

POUR

RÉSOUDRE

400

EXERCICES

INCONT

OURNABLES







[image: background image]


L’accèsauxressourcesnumériquesassociéesàcetouvrageestpersonneletincessible.Ilestsoumisauxconditionsd’utilisationenvigueuraccessiblesurlesiteDeBoeckSupérieuretpeutêtreinterrompuàtoutmoment,sansgarantiedemaintienoudecompensation.Pourtouteinformationsurnotrefondsetlesnouveautésdansvotredomainedespéciali-sation,consulteznotresiteweb:www.deboecksuperieur.com©DeBoeckSupérieurs.a.,2025RueduBosquet,7-B-1348Louvain-la-NeuveTousdroitsréservéspourtouspays.Ilestinterdit,saufaccordpréalableetécritdel’éditeur,dereproduire(notammentparphotocopie)partiel-lementoutotalementleprésentouvrage,delestockerdansunebanquededonnéesoudelecommuniqueraupublic,sousquelqueformeetdequelquemanièrequecesoit.Dépôtlégal:Bibliothèquenationale,Paris:août2025BibliothèqueroyaledeBelgique,Bruxelles:2025/13647/097











Sommair

e

Présentation5Abréviationscourantes7Accèsenligne8Algèbre1Polynômesetfractionsrationnelles[Enligne]2Structuresetrelationsdebase[Enligne]3Espacesvectoriels114Matrices,systèmeslinéaires,équationsdeSEV215Applicationslinéaires,matrices326Déterminants467Valeursetvecteurspropres,diagonalisation548Polynômesd'endomorphismeoudematrice649Trigonalisationélémentairedesmatrices7310Puissancesetexponentielledematrices8211Formeslinéaires,dualité9212Espaceseuclidiens,produitscalaire10013Isométries,casessentielsdeR2etR3[Enligne]14Espacevectorielhermitien[Enligne]15Formesbilinéairessymétriques,quadratiques11016L'anneauZetlesanalogiesavecK[X]12217Arithmétique:congruences,anneauZ/nZ13318Groupes,groupesﬁnis,groupescycliques14519Permutations1563

































MATHS-Lescléspourrésoudre400exercicesincontournablesAnalyse20TopologieetgrosthéorèmessurR[Enligne]21Lessuitesnumériques16522IntégralegénéraliséedeRiemann17523Sériesnumériques18524Suitesetsériesdefonctions19625Sériesentières20926Intégralesdépendantd'unparamètre21827SériesdeFourier22828Intégralemultiple[Enligne]29Limites,continuité,dérivéespartielles23930Différentielle24831FormuledeTaylor,extrema25832ApplicationsdeRndansRp26833Fonctionsimplicites27934Equationsdifférentiellesdupremierordre28835Equationsa(x)y′′+b(x)y′+c(x)y=d(x)29836SystèmesdifférentielsX′(t)=AX(t)[Enligne]Probabilités37Dénombrements,analysecombinatoire31138Univers,probabilités,probabilitésconditionnelles32239Variablesaléatoiresﬁniesoudiscrètes33540Variablesaléatoirescontinuesàdensité35141Loidesgrandsnombres,TLC,approximation,loilimite[Enligne]42Intervalledeﬂuctuation,deconﬁance36943Testsd'hypothèsesimples38044TestsaveclaloideStudentouduχ2[Enligne]45ChaînesdeMarkovélémentaires[Enligne]4





































Pr

ésentation

Cerecueild’exercices,quiestdestinéàl’annéeL2etàlapréparationauCapesdemathématiques,secomposede45ﬁches(ouchapitres),répartiesenAlgèbrelinéaireetgénérale(19ﬁches),Analyse(16ﬁches)etProbabilités(9ﬁches).Parmielles,10setrouvententièrementdanslescomplémentsenlignequiaccompagnentlelivrepapier.Parailleurs,danschaqueﬁche,uncertainnombred’exercicesontleurcorrigérenvoyéaussienligne,pourquelelecteurnesoitpastoujourstentédetournerlapageetdeliretropvitelecorrigé.Quelquescomplémentsenligne,enplusdecorrigésd’exercices,contiennentdesexemplesconcrètsavecdesdessins(convergenceuniformeparexemple).L’accèsauxcomplémentsenligne,regroupésdanstroisﬁchiersPDF,estexpliquéplusloin,ilesttrèssimple.Les10ﬁchesentièrementenlignecorrespondentsoitàdesrappelssupposésconnusde-puisleL1(topologiedeR,polynômes,relationsbinairesparexemple),soitaucontraireàdescomplémentsàlalimitedesprogrammesdebase(produitscalairehermitien,testsd’hypothèseaveclesloisdeStudentouduχ2parexemple).Lanumérotationdesﬁchesestlogiquemaispeutsurprendre:sachantquelesﬁches13et14sontentièrementenligne,laﬁche12dulivrepapierseraévidemmentsuiviedirectementdelaﬁche15danslelivrepapier,c’esttoutàfaitnormal.L’originalitédel’ouvrageetdesadémarchepédagogiquesetrouvedanslaconceptiondechaqueﬁche,quicommenceparune«feuillederoute»,rédigéedefaçontrèsnovatrice,suiviedesénoncésdesexercicespuisdeleurscorrigés.Lafeuillederoutedechaqueﬁchen’estpasunsimplerappeldesdéﬁnitionsetdesthéorèmes,maisuncahierdeschargesdelabonnecompréhensiondusujet,etdesfaçonsdeprocéder.Enparticulier,etc’estvolontairedansl’espritdel’ouvrage,certainesdéﬁnitionsnesontpasrappelées,c’estaulecteurdelesconnaîtreapriori.Uneoudeuxﬁchesontdes«vraisrappelsdecours»,parexemplecellesursurlesintervallesdeconﬁanceetdeﬂuctuation,lorsqu’ils’agitdenotionsdélicatesavecdesrisquesdeconfusion.Chaqueﬁcheestdiviséeenquatrerubriques.Domainesconcernés:cetterubriquedécritlecontextegénéraldelaﬁche,elleﬁxelecadre.Résultatsfondamentauxutilisables:cetterubriqueremplaceletraditionnelrappeldecoursdétaillé.Certainesdéﬁnitionsouthéorèmesnesontpasexplicitementrappelés,5





MATHS-Lescléspourrésoudre400exercicesincontournablesonaplutôtunelisteexhaustivesousformed’inventaire,detouslesrésultatsdontonabesoinpourrésoudrelesexercices.Elleestsouventdiviséeenplusieurssous-rubriques,parclarté.L’analogueenchirurgieseraitdesortiretlaisseraccessiblel’ensembledesinstrumentsdontonvaavoirbesoinpourl’opération(chosequiestsystématiquementfaite,heureusement).Cequel’onvousdemanderademontrer:ils’agitd’unelisteàpeuprèsexhaustivedetouteslesquestionsquel’énoncévademander,surlesujetconcerné.Iln’yajamaisuneinﬁnitédequestionspossibles,etilestbond’avoirlalistedespluscourantes,pourvoiroùl’onva.Lesquestionsàseposer:c’estlepointleplusoriginaldel’ouvrage,danschaqueﬁche.Quandonestdevantl’énoncé,etavantdeselancertêtebaisséesansréﬂéchir,ondoitseposeruncertainnombredequestions,faireletourdecequel’onconnaît,despointsoùl’onestplusoumoinsàl’aise.Ondoitavoirentêtelalistedestechniquesetrésultatsutilisables,maisaussilerapportentrecesconnaissancesetlecontexteactuel.Répondredanssatêteauxquestionsindiquéespermetdecomplètementcernerlespossibilitésderésolution:lechirurgiensedemandelequeldesinstrumentscorrespondlemieuxàcequ’ilveutfaire,sachantqu’iln’apasd’autrechoixquecequiestaccessibleàportéedemain.Cettefeuillederouteestdoncuneapprocheplusperformantequelesimplerappeldecourstraditionnel.6





Abr

éviations

courantes

Aﬁnd’allégerletexteetdelimiterlenombredepagesdel’ouvragepapier,uncertainnombred’abréviationsvontéventuellementserencontrerdansl’ouvrage,surtoutdanslelivrepapier.Cen’estpastrèsélégantausens«VictorHugo»,maiscelapermetdegagnerdessautsdeligneinutiles,etauﬁnaldespages.i.e.:àsavoir(pouridestenlatin)ssi:sietseulementsiCNS:conditionnécessaireetsuﬃsanteEV:espacevectorielSEV:sous-espacevectorielPC:polynômecaractéristiquev.p.:valeurpropreSEP:sous-espacepropreDL:développementlimitéIG:intégralegénéraliséeIPP:intégrationparpartiesVAC:variationdelaconstanteVAouv.a.:variablealéatoireIlapparaîtparendroitsdesdéveloppementslimitésouasymptotiquesfaisantintervenirunrestenotéε(x)ouη(x)ouε(n):ilestsous-entendu(mêmesicen’estpasécritpourdesraisonstypographiques)quecesquantitéstendentvers0,quecesoitquandxtendvers0ouversuncertainx0clairouquandxountendvers+∞.7
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Accès

en

ligne

Lesouvragespapieretenlignesontdivisésentroisparties,Algèbre(ﬁches1à19),Analyse(ﬁches20à36)etProbabilités(ﬁches37à45).L’ouvrageenlignesecomposedetroisﬁchiersPDF,lepremiercomportantlescomplémentssurchaqueﬁched’algèbre,ledeuxièmeceuxsurchaqueﬁched’analyseetletroisièmeceuxsurchaqueﬁchedeprobabilités.Cesﬁchesenlignesontnumérotéesexactementcommedanslatabledesmatièresprécédente.Ilya10ﬁchescomplètesentièrementnouvellesenligne:ellessontclairementindiquéesdanslesommaire.Ellescomportentlafeuillederoute,lessujetsetlescorrigésdesexercices,exactementcommepourlesﬁchesduvolumepapier,maisavecdelacouleur.Pourles35ﬁchesfaisantpartiesduvolumepapier,lescomplémentsenlignesontessen-tiellementlerappeldessujetsdesexercicesmarqués[Corrigéenligne]dansl’ouvragepapier,etensuiteleurscorrigés.Ilyaaussiquelquesexemplesetdessins,enanalyse.Parexemple,pouravoirlescomplémentsdelaﬁche11d’algèbresurlesformeslinéaires,ontéléchargelePDF«algèbre»,etonregardedanssatabledesmatièresàquellepage(danscePDF)commencelaﬁche11enligne.Pouravoiraccèsàlaﬁche20entièrementenligne«TopologieetgrosthéorèmessurR»,ontéléchargelePDF«analyse»,etonregardedanssatabledesmatièresquelestlenumérodepage(danscePDF)oùcommencelaﬁche20enligne.VoicicommentaccéderauxtroisﬁchiersenligneALGEBRE:parl’URLlienmini.fr/67067-algebreouparleQRCodeANALYSE:parl’URLlienmini.fr/67067-analyseouparleQRCodePROBABILITÉS:parl’URLlienmini.fr/67067-probabilitesouparleQRCodeAttention,compte-tenudecettesimplicitéd’accèsauxtroisPDFenligne,lescodesd’accèsapparaissentuneseulefoisdansl’ouvragepapier,icisurcettepage.8
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Chapitre3

Espaces

vectoriels

Domaines

concer

nés

—MontrerqueEestunespacevectorielouunsous-espacevectoriel(SEV).—EspacevectorielKn[X]despolynômesdedegré≤nsurlecorpsK.—Tableauxrectangulairesdenombres:matrices.—Familledevecteurs:notiondefamillegénératrice,defamillelibre,debase.—Rangd’unefamilledevecteurs.—Dimensiond’unespacevectoriel.—Montrerqu’unefamilleestunebase.—Compléterunefamillelibreenunebase.—TrouverdefaçonélémentairedesbasesdeKn[X]permettantd’obtenirdesrésul-tatspuissantsenalgèbreetenanalyse.—OpérationssurlesSEV.—SommedirectedeSEV.—ProjectionsurunSEVparallèlementàunautre.Résultats

fondamenta

ux

utilisables

—Lacaractérisationd’unsous-espacevectoriel:αx+βy∈Fpourtousscalairesα,βettousx,y∈F.—Pourmontrerqu’unefamilleestlibre,onpartdeki=1αiui=0etonmontrequetouslesαisontnuls.—Siunefamilledevecteursestliée,alorsaumoinsl’undesvecteursestcombinaisonlinéairedesautres.11
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MATHS-Lescléspourrésoudre400exercicesincontournables—Lerangd’unefamilledevecteursestlenombremaximumdevecteurslinéairementindépendantsdanscettefamille.Soncalculrapideetsystématiqueestexposédanslaﬁchesuivante.—Unefamilleestunebasesietseulementsielleestlibreetgénératrice.—Touteslesbasesontlemêmenombredevecteurs,entierquiestladimensiondel’espace.—Endimensionn,toutefamilledeaumoinsn+1vecteursestliée,ettoutefamillegénératriceadmetaumoinsnvecteurs.—Endimensionconnuen,unefamilledenvecteursestunebasessielleestlibreouelleestgénératrice.—E=F⊕GsietseulementsiF∩G={0}etdimE=dimF+dimG.—LasommeF=F1+F2+···+Fkestl’ensembledesvecteursdelaformex1+x2+···+xkoùxi∈Fipourtouti.Cettesommeestdirectesietseulementsil’unedesdeuxconditionssuivantesestvériﬁée(cequiimpliquequel’autrel’estaussi):(i)Larelationx1+x2+···+xk=0impliquequetouslesxisontnuls.(ii)Laréuniond’unebasedeF1,d’unebasedeF2...etd’unebasedeFkestunefamillelibre.—Silafamille{u1,···,um}estlibredansEdedimensionn>m,onpeutlacompléterenunebasedeEavecdesvecteursum+1,···,unbienchoisis.—UnefamilledepolynômesdontlesdegréssontdistinctsestlibredansK[X].—SiE=F⊕G,toutx∈Es’écritdefaçonuniquex=y+zavecy∈Fetz∈G.LevecteuryestlaprojectionorthogonaledexsurFparallèlementàGetzestlaprojectiondexsurGparallèlementàF.Ce

que

l'on

vous

demandera

de

montr

er

—UnepartieFdeEestunSEVdeE.—Trouverlerangd’unefamilledevecteurs:celasefaitmieuxaveclatechniqueexposéeenﬁchesuivante.—Unefamilleestlibreouestgénératriceouestunebase.—Trouverlescomposantesd’unvecteursurunecertainebase.—Trouverladimensiond’unespacevectorieloud’unSEV.—MontrerqueE=F⊕GouF=F1⊕F2···⊕Fk.12
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Chapitre3EspacesvectorielsLes

questions

à

se

poser

—PourmontrerqueEestunespacevectoriel,dois-jemontrerles8propriétésdeladéﬁnition?Est-ilréalistequ’unexercicemedemandedelefaire?A-t-onlapossibilitédefaireplussimple?—Quelssontlesensemblesfondamentauxconnuspourêtredesespacesvectoriels,etdontonconnaîtalorsaprioriladimension?—Alors,enpratique,quelleestlabonnefaçondemontrerqueEestunespacevectoriel?—Quelleestl’horreurànepasdireavecdeuxSEVFetGd’unespacevectorielE?—Commentmontrerqu’unefamilleestlibre?Commentcalculerlerangd’unefa-mille?Commentmontrerqu’unefamilleestgénératrice?—Est-ilplusfaciledemontrerqu’elleestlibreougénératrice?—Commentl’informationsurladimensionaprioriconnuedeEva-t-ellemeper-mettredemontrer«rapidement»qu’unefamilledonnéeestunebase?—Aveclespolynômes,n’ai-jepasunrésultatpuissantfaisantintervenirlesdegrés?—QuesigniﬁesimplementquedeuxSEVsontensommedirecte?—Est-cequecetteconditionsimpleavecdeuxSEVsegénéralisesimplementaveck≥3SEV?—IlyaplusieursCNSdanslecourspourmontrerqueF1,···,Fksontensommedirecte,laquelleestlaplusadaptéeàmonproblème?—JesaisqueF1,···,FksontensommedirectedansE:qu’est-ce-quejepeuxendéduire?—JesaisqueE=F1⊕F2···⊕Fk:quepuis-jeendéduire?CommentfabriquerunebasedeE?13
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MATHS-Lescléspourrésoudre400exercicesincontournablesExer

cices

Quelquesexercicesseplacentdansunespacevectorieldedimensioninﬁnie,maisontravailleuniquementsurdesSEVengendréspardesfamillesﬁniesdepolynômesoudefonctions,etonseratoutdesuiteendimensionﬁnie.Exercice1Danschacunedesquestions,onsedonneunepartieEdeK4déﬁnieparuneconditionliantlescomposantesx,y,z,tduvecteurgénériqueX∈E,etondemandesiEestunespacevectorielounon.1:x+2y−3z+7t=02:x+2y−3z+7t=13:(x−y)(z−t)=04:(x−y)2+3(z−2t)2=0Exercice2Danschaquequestion,onsedonneunefamilleFdevecteursdeKn,etondemandesicettefamilleestlibreounon,quelestsonrangetquelleestladimensionduSEVdeKnqu’elleengendre.LavaleurdensedéduitdesdonnéesdeF.Onseramènerasoitàunsystèmed’équationslinéaires,àdiscuterparlepivotdeGauß,soitenbricolantparsystèmeD,soitàdesconsidérationsgénéralesavecpeudecalcul.1.F:u=(1,1,1),v=(2,1,−1),w=(−1,1,5).2.F:u=(1,1,1),v=(2,1,−1),w=(−1,1,7).3.F:u=(1,1),v=(2,1),w=(−1,7).4.F:u=(3,0,0,0),v=(−5,1,0,0),w=(7,8,0,0),x=(−1,2,9,0).Exercice3OnseplacedansKn[X]avecn≥2,etBestunpolynômededegré1≤b≤n−1.Diresilessous-ensemblesE1,···,E10deKn[X]formésdespolynômesPvériﬁantlaconditionindiquéesontdesSEVdeKn[X]ounon.E1:P(1)=0E2:P(1)=0etP(2)=0E3:P(1)=0ouP(2)=0E4:P2(−1)=4E5:PdivisibleparBE6:PnondivisibleparBE7:P(3)=1etP′(3)=0E8:P(2)=P′(2)=0E9:P(1)+P(2)=0E10:P(1)+P′(3)=014
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Chapitre3EspacesvectorielsExercice4Onestaprioridansl’espacevectorielC(R)desfonctionscontinuessurR.SoitEl’ensembledesfonctionsdelaformex→a+bcos2x+csin2x+dcos2x+esin2x,oùa,b,c,d,edécriventR.1.MontrerqueEestunespacevectorielsurR,etendonnersansaucuncalculladimensionmaximale.2.MontrerquelafamilleF={1,cos2x,sin2x,cos2x,sin2x}estenfaitaumaximumderang3,toujourssansgrandcalcul.3.MontrerqueEesteﬀectivementdedimension3.Exercice5OnseplacedansE=K8[X],etsoitBunpolynômededegré5.1.Montrerquel’ensembleGdesélémentsdeEdivisiblesparBestunSEVdeE.2.MontrerqueE=F⊕GoùF=K4[X].3.EndéduireunebasedeEissuedecettesommedirecte.Exercice6[Corrigéenligne]DansE=R3[X],onappelleFl’ensembledespolynômesdivisiblesparX2+1etGceluidespolynômesdivisiblesparX2+X+7.1.MontrerqueFetGsontdesSEVdeEetdonnerleursdimensions.2.MontrerqueE=F⊕G.3.EndéduireunebasedeEissuedecettesommedirecte.Exercice7SoitB={e1,···,e8}unebased’unespacevectorielEsurK.FabriquerdefaçonsimpleunedécompositiondeEensommedirectetelleque(iln’yapasunicitéengénéral,cen’estpaslaquestion):1.Ilyait8SEVcomposantcettesommedirecte.2.Ilyait4SEVdanscettesommedirecte.3.Ilyait3SEVdanscettesommedirecte.4.Ilyait2SEVdedimensionsdiﬀérentesdanscettesommedirecte.Exercice8Lesdeuxquestionssontindépendantes.15
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MATHS-Lescléspourrésoudre400exercicesincontournables1.DansR8[X],onsedonnelesSEVF1,F2,F3debasesrespectivesF1:{5,X(X−2)(X+3),X7},F2:{3X,X5+X2+3,X8−X4}F3:{X2−6X+2,5X4−X3+6,−X6+X5+3}MontrersansaucuncalculqueR8[X]=F1⊕F2⊕F3.2.VraiouFaux?DansunespacevectorielE,silesSEVF1,F2,···Fksontensommedirecte,alorslaréuniondesbasesdesFiformeunebasedeE.Exercice9[Corrigéenligne]Onseplacedansl’espacevectorielEdesfonctionsréellesdelavariableréelle,quiestdedimensioninﬁnie,chosequel’onvamontrerenquestion1,puisonenregarderaquelquesSEVélémentaires.Touteslesfonctionssontàvaleursréelles.1.SachantqueEcontientRn[X]pourtoutn,justiﬁerqueEnepeutpasêtrededimensionﬁnie.2.Montrerquel’ensembleC(R)desfonctionscontinuessurR,àvaleursréelles,estunSEVdeE.3.a)Idempourl’ensembleC1(R)desfonctionsdérivablesetàdérivéecontinue.b)Idempourl’ensembleCn(R)desfonctionsnfoisdérivablesetàdérivéenèmecontinue.c)IdentiﬁerF=+∞n=1Cn(R).Est-ceunSEVdeE?4.Commentmieuxrédigerlaquestion«l’ensembledesfonctionsfvériﬁantf′′+9f=0estunespacevectoriel»?Vériﬁerquec’estbienvrai.Exercice10[Corrigéenligne]Danscetexercice,onseplacedansl’espacevectorielEdessuites(un)n≥0àvaleurscomplexes,quiestdedimensioninﬁniesurC,chosequin’intervientpasici.Onsedonneuncomplexeadiﬀérentde0etde1etsoitlapartieGdeEforméedessuites(un)géométriquesderaisona,àsavoirvériﬁantun=aun−1pourtoutn≥1.1.MontrerqueGestunespacevectorielsurC.2.Donnerl’expressiondutermegénérald’unesuite(un)appartenantàG.3.EndéduireunebasedeGetsadimension.4.Onsupposedanscettequestionque|a|<1etonconsidèreunesuite(vn)vériﬁantvn=avn−1+boùb=0estdonné.5.a)Formerl’équationtrèssimplevériﬁéeparlalimiteéventuelleℓdelasuite.b)Enintroduisantlasuite(un)déﬁnieparun=vn−ℓ,donnerl’expressiongénéraledevnetmontrerqu’elleconvergebienverslenombreℓsupposé.c)L’ensembleHformédessuitesarithmético-géométriquesvériﬁantpourceaetcebdonnéslarelationvn=avn−1+bpourn≥1,est-ilunespacevectoriel?16
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Chapitre3EspacesvectorielsCor

rigés

Exercice11.Oui.SiX(x,y,z,t)etX′(x′,y′,z′,t′)sontdansE,alorslescomposantes(ax+a′x′,ay+a′y′,az+a′z′,at+a′t′)deaX+a′X′vériﬁentbienlarelationd’appar-tenanceàE.Onpeutaussidirequelarelationliantx,y,z,tpourêtredansEest«linéaire»avec0ausecondmembre.2.Non:X(1,0,0,0)estdansE,mais2Xnel’estpas.Larelationliantx,y,z,tpourêtredansEest«linéaireaupremiermembre»,mais«avec1ausecondmembre»,cen’estpluslinéaire.3.Non:larelationéquivautàx=y(onestdansunplanF)OUz=t(onestdansunautreplanG).LaréuniondedeuxSEVestencoreunespacevectorieluniquementlorsquel’undesdeuxestinclusdansl’autre.Cen’estpaslecasici.Defaçonplusconcrète,X=(1,1,3,4)etY=(2,5,0,0)sontdansE,maisX+Y=(3,6,3,4)nel’estpas,cequiempêcheEd’êtreunespacevectoriel.4.Oui.Ils’agitdel’intersectiondesl’hyperplansx=yetz=2t,cequiestbienunSEVdeE.Exercice21.OnestdansK3avecunefamillede3vecteurs.Elleestlibre(etestdoncunebasedeK3)sietseulementsilarelationau+bv+cw=0impliquea=b=c=0.Onregardelesystèmelinéairea+2b−c=0a+b+c=0a−b+5c=0.Ensoustrayantla1èreéquationauxdeuxautres,onarriveàa+2b−c=0−b+2c=0−3b+6c=0oùla3èmeéquationnesertàrien,puisquec’estlamêmequela2ème.Lesystèmeéquivautdoncàa+2b−c=0−b+2c=0.Onpeutprendrec=1,b=2,a=−3,cequidonnelarelation−3u+2v+w=0:lafamilleestliée,etderang<3.Ilestclairque{u,v}estunefamillelibre,etFestdoncderang2,etengendreunplandansK3.2.Onappliquelemêmeprincipe,maisonarriveàunsystèmede3équationsquidonnec=0,puisb=0,a=0.LafamilleFlibre,etformeunebasedeK3.3.OnestdansK2avecunefamillede3vecteurs:elleestobligatoirementliée,puisquel’onaplusdevecteursqueladimensiondel’espacevectoriel.Lesvecteursuetvsontindépendants,etFestderang2etdoncunebasedeK2.4.L’étudedelarelationau+bv+cw+dx=0(pourétudiersilafamilleestlibreounon)setraduitparlesystèmeévident(aucuncalcul,justeunerecopiedesdonnées)17
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MATHS-Lescléspourrésoudre400exercicesincontournables{3a−5b+7c−d=0,b+8c+2d=0,9d=0}quiadmetdefaçonévidente,aprèsd=0,dessolutionsnonidentiquementnullesena,b,c.LafamilleFestdoncliée,etestaumaximumderang3.Larépartitiondes0enbasdesvecteursu,v,xmontrequ’ilsformentunefamillelibre.Ilenrésultequewestunecombinaisonlinéairedeu,v,x.C’estmêmemieux,puisqueu,v,wviventdanslemêmeplanz=t=0:onvériﬁequew=47/3u+8v.OnaﬁnalementunSEVdedimension3deK4.Onpouvaitaussiremarquerdèsledébutqueles4vecteursviventdansl’hyperplant=0dedimension3,etquelerangdeFestobligatoirement≤3.Exercice3PourchaqueEi,l’idéeestdemontrerquepourtousP,Q∈Eiettousscalairesλ,µ,alorsλP+µQestencoredansEi(CNSlaplusgénéralepourêtreunSEV).1.Ona(λP+µQ)(1)=λP(1)+µQ(1)pardéﬁnitiondelastructured’espacevectorieldespolynômes,etdonc(λP+µQ)(1)=0dèsqueP(1)=Q(1)=0.E1estbienunSEVdeKn[X],etdoncunespacevectoriel.2.E2estl’intersectionduSEVdespolynômesvériﬁantP(1)=0etdeceluidespolynômesvériﬁantP(2)=0:onsaitquel’intersectiondedeuxSEVestencoreunSEV,etE2estbienunespacevectoriel.3.E3estlaréunionduSEVdespolynômesvériﬁantP(1)=0etdeceluidespolynômesvériﬁantP(2)=0:onn’aaucunrésultatsurlaréuniondedeuxSEV,saufdanslescasparticuliersd’inclusion.P=X−1etQ=X−2sontbiendansE3,maisP+Q=2X−3/∈E3:E3n’estpasunespacevectoriel.4.SiPvériﬁeP2(−1)=4,alorsQ=3Pnevériﬁepascettecondition,puisqueQ2(−1)=36.E4n’estpasunespacevectoriel,sinon3PseraitdansE4.5.PestdansE5sietseulementsiP=B×P1,oùP1estunpolynômededegré≤n−b.PourP,Q∈E5,onpeutécrireλP+µQ=B×(λP1+µQ1),etλP+µQestbiendivisibleparB,etrestedansKn[X]:E5estbienunSEVdeKn[X].6.Unespacevectorielcontientl’élémentneutre0,quiesticilepolynômenul,àsavoirunpolynômedivisiblepartoutpolynôme,enparticulierparB:E6necontientpaslepolynômenul,etn’estdoncpasunespacevectoriel.7.E7necontientpaslepolynômenul,etn’estdoncpasunespacevectoriel.8.Ona(λP+µQ)(2)=λP(2)+µQ(2)et(λP+µQ)′(2)=λP′(2)+µQ′(2).SiP,P′,Q,Q′sontnulsenx=2,ilenvademêmedeλP+µQ,etE8estunespacevectoriel.OnpeutaussidirequePetQsontdivisiblespar(X−2)2,etqu’ilenvademêmepourtoutλP+µQ.9.Ona(λP+µQ)(1)+(λP+µQ)(2)=λ[P(1)+P(2)]+µ[Q(1)+Q(2)]=0lorsqueP,Q∈E9:onaunespacevectoriel.10.OnabienunSEVdeKn[X]puisque(λP+µQ)(1)+(λP+µQ)′(3)=λ[P(1)+P′(3)]+µ[Q(1)+Q′(3)]=0pourtousP,Q∈E10ettousscalairesλ,µ.18
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Chapitre3EspacesvectorielsExercice41.L’idéeestdemontrerqueEestunSEVdeC(R),chosequiestclairepuisqu’ils’agitdel’ensembledescombinaisonslinéairesdesvecteursdelafamilleF.LafamilleFestdoncungénérateurà5élémentsdeE:ladimensiondeEestobligatoirement≤5,suivantquelafamilleFestlibre(dimensionégaleà5)ouliée(dimension≤4).2.Latrigonométrieélémentairenousditquecos2x+sin2x=1,cequimontrequelestroisfonctions{1,cos2x,sin2x}sontliées.PourdéﬁnirE,onpeutsanssouciélimi-ner(parexemple)lafonctionsin2xquiestcombinaisonlinéairedesdeuxautres.LadimensiondeEestdoncdéjàaumaximumégaleà4,et{1,cos2x,cos2x,sin2x}estungénérateurdeE.Maisonaaussicos2x=2cos2x−1,cequimontrequelestroisfonctions1,cos2x,cos2xsontliées,etonpeutéliminer(parexemple)cos2xetdirequeEestengendrépar{1,cos2x,sin2x},etestdoncdedimension≤3.3.Çasecompliqueunpeu.PourregardersiB={1,cos2x,sin2x}formeunefamillelibreounon,onpartdelarelationa+bcos2x+csin2x=0,(fonctionnulle,àsavoirégalitéà0pourtoutx),etonétudiesilesconstantesréellesa,b,csontnullesounon.Leplussimpleestdedonneràxquelquesvaleursastucieuses:—•Pourx=0,ilvienta+b=0.Pourx=π/2,ilvienta−b=0,etonendéduita=b=0.—•Ilrestecsin2x=0pourtoutx,àsavoirévidemmentc=0.4.LafamilleBestdonclibre,etelleengendreE:c’estunebasedeE,lequelestdedimension3.Exercice51.UnpolynômeP∈EestdivisibleparBquandils’écritP(X)=B(X)Q(X)oùQestunpolynômetelquedegré(B)+degré(Q)≤8,àsavoirdedegré≤3.PourtousP1=Q1B,P2=Q2BdansGettousscalairesα,β,onaαP1+βP2=B×(αQ1+βQ2)oùledegrédeαQ1+βQ2restebien≤3.OnadoncαP1+βQ2∈G,etGestunSEVdeE.2.a)Premièredémonstration:ladivisioneuclidienneparBpermetd’écriredefaçonuniquetoutpolynômeAsouslaformeA=BQ+Roùdegré(R)≤4,puisquelediviseurBestdedegré5.PourA∈E,onaBQ∈GetR∈F.L’existenceetl’unicitédeladécompositionestladéﬁnitiondelasommedirecteE=F⊕G.b)Secondedémonstration:unebasedeFest{1,X,X2,X3,X4}etFestdedimen-sion5.UnélémentdeGs’écritB(X)(a+bX+cX2+dX3)et{B,XB,X2B,X3B}enestdoncunebase:Gestdedimension4.OnadoncdimF+dimG=9=dimE.Parailleurs,onaclairementF∩G={0}:eneﬀet,unpolynômenonnulappartenantàFestdedegré≤4ets’ilestdivisibleparB,ilestaumoinsdedegré5.C’estimpossible.LesdeuxconditionsF∩G={0}etdimE=dimF+dimGcaractérisentlasommedirecte.19
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MATHS-Lescléspourrésoudre400exercicesincontournables3.OnaunebasedeE=F⊕Genprenantlaréuniond’unebasedeFetd’unebasedeG,àsavoir{1,X,X2,X3,X4,B,XB,X2B,X3B}.Exercice71.EnappelantDiladroiteengendréeparei,onaE=D1⊕D2⊕···⊕D8.2.EnappelantP1leplandebase{e1,e2}etainsidesuitejusqu’àP4leplandebase{e7,e8},onaE=P1⊕P2⊕P3⊕P4.3.ParexempleE1debase{e1,e2,e3},E2debase{e4,e5,e6}etE3debase{e7,e8}.4.ParexempleF1debase{e1,···,e5}etF2debase{e6,e7,e8}.Àchaquefois,leprincipefondamentalestlesuivant:laréuniondesbasesdesSEVformantlasommedirectedoitêtreunebasedeE.Exercice81.Les9polynômesdonnéssonttousdedegrédistincts,etformentdoncunefamillelibre(etdoncunebase)deR8[X],lequelestdedimension9.Ceciprouve(a)quel’énoncéaunsens,àchaquefoisonabienunebasedeFi(b)queF1,F2,F3sontensommedirectepuisquelaréuniondeleursbasesestunefamillelibre(c)queF1⊕F2⊕F3=R8[X]puisquelaréuniondeleurstroisbasesestunebasedeR8[X].L’aﬃrmation(b)estvraie,maisenfaitpeuutilepourconclure.2.C’estfaux!LasommedirectesigniﬁequelaréuniondesbasesdesF1,F2,···,FkestunefamillelibredansE.Maisrienneditqu’il«yaassezdevecteursdanscetteréunion»pourformerunebasedeE.20
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Chapitre4

Matrices,

systèmes

linéair

es,

équations

de

SE

V

L’entierndésignelenombredelignesd’unematriceAoubienlenombred’équationsd’unsystèmelinéaireAX=BetpdésignelenombredecolonnesdeAoulenombred’inconnuesdusystème,etBestunvecteurcolonnededimensionn.Domaines

concer

nés

—Opérationssimplessurlesmatrices,calculdel’inverseparrésolutiond’unsystèmelinéaire.Matricecarrée,triangulaire,diagonale.—Anneaudesmatricescarréesdedimensionn.—Rangd’unematrice,échelonnement:dansunematriceéchelonnée,lenombrede0entêtedeligneaugmentestrictementquandondescenddanslamatrice.—Matriceséquivalentes,semblables,matricesymétrique,transposéetAdeA,ma-tricenilpotente,matriceorthogonale,matricescongruentes.—Composantesd’unvecteursurunebase,matricedechangementdebase.—MéthodedeGauss(aveccombinaisonlinéairedelignes,c’esttrèsvisuel)pourramenerunsystèmelinéaireAX=Bàunsystèmeéchelonné,résolution,nombredesolutions,inconnuesparamètres.—Rangd’unefamilledevecteurs,enextraireunefamillelibremaximale.—Rangd’unsystèmelinéaire.—Equationsindépendantesd’unsous-espacevectoriel.Sous-espacevectorieldéﬁniparunsystèmelinéaireAX=0.Relationentreladimensiond’unSEVetlenombred’équationsindépendantesledéﬁnissant.21
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MATHS-Lescléspourrésoudre400exercicesincontournables—InterprétationgéométriquedessolutionsdusystèmeAX=BoùBestunvecteurnonnul:onestalorsengéométriediteaﬃne,celle«oùunedroiteouunplanouautrenepassepastoujoursparl’origine».Résultats

fondamentaux

utilisables

—Leproduitdematricesn’estengénéralpascommutatif:siABetBAexistent,iln’yaaucuneraisonqueAB=BA.LeproduitABdedeuxmatricesnonnullespeuttrèsbienêtrelamatricenulle.Onat(AB)=tBtAet(AB)−1=B−1A−1.—Bestl’inversedelamatricecarréeAlorsqueAB=BA=Id.Ilsuﬃtdevériﬁerl’unedesdeuxconditionsAB=IdouBA=Id,inutiledevériﬁerlesdeux.—LerangdeA,àsavoirlenombremaximaldecolonnesindépendantesdeA,estaussiégalaunombremaximaldelignesindépendantesdeA,àsavoirrang(A)=rang(tA).Lerangestévidemmentinférieurouégalànetàp.—EchelonnerunematriceA,cequisefaitparlaméthodedupivotdeGauss,permetd’obtenirunematriceoùlenombrede0entêtedeligneaugmentestrictementquandondescend,etayantlemêmerangqueA.Cerangselitinstantanément:ilestégalaunombredelignesnonidentiquementnullesdelaformeéchelonnée.—Oncalculel’inverseA−1d’unematricecarréeA(onan=p)enrésolvantlesys-tèmeAx1...xn=x′1...x′noùlesx′1,···,x′nsont«formelles»etoùlesinconnuessontx1,···,xn.—LarelationV=PV′liantlescomposantesVd’unvecteursuruneanciennebaseBetcellesV′surunenouvellebaseB′,avecPmatricedepassagedeBàB′.Quandonnefaitpasdebêtisedanslavie,onn’ajamaisde«PV».—Pourcalculerlerangd’unefamilleV1,···,Vpendimensionn,ilestpratiquedepartirdusystèmeα1V1+···+αpVp=0(choisirunebaseetonanéquationsetpinconnues)etd’étudiercequisepassequandonl’échelonne.Lerangestégalaunombred’équationsrestantesautresque«0=0».Lafamilleestlibrelorsquelerangestégalàp(lenombredevecteurs).—Dansunsystèmelinéaireànéquationsetpinconnues,laseulechosequel’onpeutaprioridireavantcalculsest:«sin<p(plusd’inconnuesqued’équations)lesystèmeestsoitimpossiblesoitadmetuneinﬁnitédesolutions».—LerangrdusystèmelinéaireAX=BestlerangdelamatriceA,attentionlesecondmembreBn’intervientpasdanscettedéﬁnition.Lesdeuxentiersimpor-tantsdanslesystèmesontcerangretlenombrepd’inconnues.—LepivotdeGaussramènelesystèmeauneformeTX=B′oùTestéchelonnée(presquetriangulaire...)derangr.Lesystèmeadmetdessolutionssietseule-mentsicenouveausystèmenecontientpasd’équationsdelaforme«0=1».Onlevoitdoncàl’oeilnu.22
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Chapitre4Matrices,systèmeslinéaires,équationsdeSEV—Silerangreststrictementinférieuraunombred’équationsn,celasigniﬁequ’ilyan−réquationsquisontsoitinutiles(combinaisonlinéairesdesrautres)soitquirendentlesystèmeimpossible.—Unsystèmeadmettantdessolutionpossèdeunesolutionuniquesietseulementsir=p(lamatriceTestcarréeetinversible).—Unsystèmeadmettantdessolutionspossèdeuneinﬁnitédesolutionsssip>r(plusd’inconnuesquelerang,Testpluslargequehaute).Enfaisantpasserp−rinconnuesbienchoisiesausecondmembre(inconnuesparamètres),onpeutrésoudrelesystèmeenexprimantlesrinconnuesrestantesenfonctiondesincon-nuesparamètres.—L’ensembledessolutionsdusystèmeAX=0derangrestunsous-espacevecto-rieldeKpdedimensionr.Réciproquement,toutSEVdeKpdedimensionrestl’ensembledessolutionsd’unsystèmeAX=0derangr.C’estdoncl’intersectionderhyperplansdeKp,unhyperplandeKpétantunSEVdedimensionp−1,déﬁniparuneuniqueéquationdelaformeα1x1+···+αpxp=0.—Larelationliantladimensiondel’espaceE,celled’unSEVFetlenombred’équationsindépendantescaractérisantFestdimE=dimF+nombred’équationsindépendantesdeF—C’estlogique:lenombrededegrésdelibertédeF(sadimension)estégalaunombretotaldedegrésdeliberté(ladimensiondeE)diminuédunombresdecontraintespourêtredansF(lenombred’équationsindépendantesdécrivantF).Attentionauxmotséquationsindépendantes:unedroitedeR2admetuneunique«équationindépendante»,maisonpeutaussilareprésenterparlesystèmelinéaireformédetroisfoisdesuitecetteéquation!—Endimensionn,pourtrouverunsystèmed’équationscartésiennesduSEVengen-dréparunefamille{V1,···,Vp}libreounon,oncherchelesCNSliantx1,···,xnpourquelesystèmeα1V1+···+αpVp=x1...xnadmettedessolutionsα1,···,αp:onéchelonnecesystèmeparGauß.CesCNSsontdelaforme«0=expressionenx1,···,xn»etellesformentleséquationscartésiennes(indépendantes)duSEV.Ce

que

l'on

vous

demander

a

de

montr

er

—Calculerdessommes,produits,transposéesdematrices,ondoitconnaîtrelesdéﬁnitionsdecesopérations.—Calculerl’inversed’unematricecarrée:ilfautserameneràunsystèmelinéaireetappliquerlepivotdeGausspourlerésoudre.—Calculerlerangd’unematrice,cequisefaitparéchelonnement.23
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MATHS-Lescléspourrésoudre400exercicesincontournables—Calculerlerangd’unefamilledevecteurs:onseramèneàceluidelamatriceobtenueenstockantcesvecteursenligneouencolonnedansunematrice,etenéchelonnant.—Résoudreunsystèmelinéaire,discuters’iladmetdessolutionsounon.Regarderenparticulierlecasoùlesdonnéescontiennentdesparamètres.—IdentiﬁerlanatureduSEVensembledessolutionsdusystèmeAX=0,donnersadimension.—ÉtantdonnéunSEVFdeE,trouverunsystèmed’équationsindépendantesdeFouentrouverunebase.—QuestionsanaloguessurlesystèmeAX=B,avecB=0,en«géométrieaﬃne»oùlesdroites/plans...nepassentpasparl’originecommedanslesespacesvectoriels,maisoùleconceptgéométriquetraditionnelparle«delamêmefaçon».Les

questions

à

se

poser

—LesdimensionsdesmatricesAetBpermettent-ellesdecalculerleproduitABouleproduitBAoulesdeuxouaucun?—JenesaisaprioripassilamatricecarréeAestinversible.Commentvais-jem’enapercevoirdanslatentativederésolutiondusystèmeAX=X′?—Lamatriceest-ellesymétrique,triangulaire,diagonale,orthogonale(AtA=Id)?—Dois-je,pourtrouverlerangd’unefamilledevecteurs,lesstockerenlignesouencolonnesdansunematrice?Réponse:sachantquelepivotdeGaussleplusvisuelsefaitencombinantleslignes,lemieuxestdestockerlesvecteursenlignescarleslignesnonindentiquementnullesdelamatriceéchelonnéenousdonnentvisuellementlesnumérosd’unesous-famillelibremaximaledelafamilleinitialedevecteurs.Maissionveutsimplementlerang(etpasunebaseduSEVengendré),peuimportequ’onstockelesvecteursenligneouencolonne.—Quandj’aifaitlepivotdeGaussetconstatéquelesystèmevaadmettreuneinﬁnitédesolutions,commentchoisirlesinconnues«paramètres»àfairepasser«ausecondmembre»?—QuandlesystèmeaétééchelonnéparGauss,commentpuis-jelerésoudre?—Quandj’airésoluavecdesinconnuesparamètreslesystèmeAX=0déﬁnissantunSEVFdeEcommentai-jesansnouveaucalculunebasedeF?—Essayerdebiencomprendre(parexempleendimensionconcrète3avecdesplans)cequesigniﬁe«solutionunique»,«inﬁnitédesolutions»,«aucunesolution»,etêtrecapabledegénéraliserendimensionsupérieure,àlafoisdanslesespacesvectoriels«oùtoutpasseparl’origine»etengéométrieaﬃne.24
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Chapitre4Matrices,systèmeslinéaires,équationsdeSEVExer

cices

Exercice11.Echelonnerlesmatricessuivantesetdonnerleurrang.Onrappellequel’onpeuttoujourspermuterdeuxlignes,pourcalculerlerang.A=121−1323−2043221−1−15211B=120−1124110321014−135−22.Interpréterlesrésultatsentermede«rangdefamilledevecteurs»(deuxfamillesdevecteursparmatrice,celledeslignesetcelledescolonnes.)Exercice2OnseplacedansK4aveclesfamillesdevecteurs:F1:(1,−1,2,3),(2,1,3,1),(1,2,−1,1);F2:(1,−1,2,3),(2,1,3,1),(1,−4,3,8)1.Pourchaquefamille,étudiersielleestlibreouliéeetdonnersonrang.2.Sielleestliée,trouverunerelationlinéaireliantlesvecteursdelafamille.Exercice3PourchaqueréelθonposeA(θ)=1000cosθ−sinθ0sinθcosθ.1.CalculerleproduitA(θ)A(θ′).2.a)Sansnouveaucalcul,montrerquelesmatricesA(θ)etA(θ′)commutent.b)Sansnouveaucalcul,montrerqueA(θ)estinversibleetdonnersoninverse.3.a)Indentiﬁerθ′telquetA(θ)=A(θ′).b)ÀquelleconditionsurθlamatriceA(θ)est-ellesymétrique?Donnerlesmatricescorrespondantes.4.QuevautleproduitA(θ)tA(θ)?Quelestl’adjectifqualiﬁantlamatriceA(θ)?L’interprétationgéométriqueestdonnéedanslecorrigé.25
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MATHS-Lescléspourrésoudre400exercicesincontournablesExercice41.MontrerqueA=0200002000020000estnilpotente,i.e.qu’ilexistekentiertelqueAk=0.OncalculeraA2,A3,A4···.2.Quevautformellement(I3−A)(I3+A+A2+A3)?Endéduirel’inversedeB=1−20001−20001−20001.Exercice51.TrouverunvecteurdirecteurdeladroitedeR3d’équationscartésiennes{x+2y+z=0,2x−5y+3z=0}.2.TrouverunebaseduSEVdeR4:{x+2y+z−t=0,2x−5y+3z+2t=0}.Quelleestsadimension?Etait-ceprévisibleavantcalcul?Exercice6[Corrigédes2dernierssytèmesenligne]Discuteretrésoudrelessystèmessuivants.Ondonneraàchaquefoislerangdusystèmeetunejustiﬁcation,enfonctiondurang,durésultatobtenu(unicité,impossibilité,inﬁnitédesolutions):x+2y−3z=42x+y+z=9−3x+2y−z=−6x+2y−3z=42x+y+z=9x−4y+11z=6x+2y−3z=42x+y+z=9x−4y+11z=14x+2y−3z=42x+y+z=9x−4y+11z=610x+11y−9z=43Exercice7[Corrigéenligne]SoitlesystèmeS1:x+y+2z−t=82x+y+3z+t=10−3x+4y−z−2t=0.1.Justiﬁerqu’ilnepeutpasadmettreunesolutionunique.2.Appliquerlaméthodedupivotetdonnerlessolutions.Quelestlerangdusystème?26
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Chapitre4Matrices,systèmeslinéaires,équationsdeSEV3.a)Suiteàl’échelonnement,donnerunesous-matricecarréeinversiblederangmaxi-malextraitedelamatrice3×4forméedescoeﬃcientsdupremiermembre.b)Quesepasse-t-ilsil’onchangelesvaleurs(8,10,0)dusecondmembre?Exercice8[Corrigéenligne]DansR3,onconsidèreleplanPdebaseu(1,−1,3)etv(2,1,2).Onchercheuneéquationcartésiennedeceplan.1.Formerlesystèmelinéaireà3équationsaux2inconnuesα,βexprimantquelevecteurX(x,y,z)appartientàP.2.a)Enéchelonnantcesystème,trouverlaCNSliantx,y,zpourqu’iladmetteunesolutionα,βetconclure.b)Lecalculexplicitedeα,βest-ilutile,auvudubutcherché?Pourquoia-t-onunicitédeα,β?3.Onseplacemaintenantdansl’espaceaﬃnededimension3(ontravailleavecdespoints),etonappelleQleplandebaseu,vetpassantparlepointA(−2,7,1).Sansnouveauxcalculs,expliquercommenttrouversonéquationàpartirdecelledeP.Exercice9[Corrigéenligne]OnseplacedansR5etEestleSEVengendréparU1=(1,−1,3,2,1),U2=(2,1,2,0,−3),U3=(0,−3,4,4,5).Onchercheunsystèmed’équationscartésiennesdeE,etonendé-duirasadimension,sanss’occuperderegarderapriorisilesvecteurssontindépendantsounon.1.Formerlesystèmede5équationsaux3inconnuesα,β,γtraduisantquelevecteurX=(x,y,z,t,u)estdansE.2.Echelonnercesystème.3.Endéduireunsystèmed’équationscartésiennesdeEetsadimension.Exercice10[Corrigéenligne]EestleSEVdeR5déﬁnipar:levecteurV(x,y,z,t,u)appartientàEsietseulementsionax−y+3z+2t+u=02x+y+2z−3u=0−x−3y+4z+4t+7u=0.1.Àcestade,peut-ondonnerladimensiondeE?2.Echelonnerlesystèmeetexprimersessolutionsenfonctiond’uncertainnombred’inconnuesparamètres.3.EndéduireunebasedeEetsadimension.4.Reprendrel’exerciceenremplaçantla3èmeéquationparx+5y−5z−6t−9u=0.27
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MATHS-Lescléspourrésoudre400exercicesincontournablesCor

rigés

Exercice11.a)RemplacerL2parL2−2L1,L3parL3−3L1,L4parL4+L1donneA1cidessous.DansA1,remplacerL3parL3−4L2etL4parL4+7L2donneA2:A1=121−130−1−42−20−4−14−1007304,A2=121−130−1−42−20015−4−200−2514−10OntermineenremplaçantdansA2laligneL4parL4+25/15L3etonobtientA3=121−130−1−42−20015−4−200022/3−40/3,quiestbienéchelonnée,lenombrede0entêtedeligneallantencroissantstrictement.Lamatriceinitialeestderang4,puisqu’iln’yaaucunelignenulledansA4.b)LapremièresétapeconduitàB2=120−110013−20−413−20−939−6.LaligneL2,quiadéjàdeux0entête,nepeutpasservirpourfaireapparaîtredes0endeuxièmecolonnedansL3etL4.OnpermuteL3etL2:B2=120−110−413−20013−20−939−6.Onfaitapparaîtreun0endeuxièmecolonnedeL4enremplaçantL4parL4−9/4L2:B3=120−110−413−20013−2003/49/4−3/2.Onmetun0en3èmecolonnedeL4enremplaçantL4parL4−3/4L3,etilvientB4=120−110−413−20013−200000.Ilyaseulementtroislignesnonnulles,etlerangdeBvaut3.2.LamatriceAs’interprêtecommelafamilledeses5vecteurscolonnesdansK4ouaussicommelafamilledeses4vecteurslignesdansK5.Danslesdeuxcas,cesfamillessontderang4,lerangdelamatrice,puisquelerangdeAestégalàceluidesatransposée.MêmeprincipepourB,saufquelesdeuxfamillessontuniquementderang3maintenant.28
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Chapitre4Matrices,systèmeslinéaires,équationsdeSEVExercice21.a)Onétudie,pourlafamilleF1,larelationαV1+βV2+γV3=0etonregardesiα=β=γ=0(famillelibre)ounon(familleliée).Celasetraduitparlesystèmeà4équationset3inconnuesα+2β+γ=0−α+β+2γ=02α+3β−γ=03α+β+γ=0.RemplacerE2parE2+E1(elledevient3β+3γ=0),E3parE3−2E1(elledevient−β−3γ=0)etE4parE4−3E1(elledevient−5β−2γ=0)nousconduitàunsystèmeoùlesnouvelleséquationsE2,E3,E4donnentdefaçonévidentβ=γ=0.Onendéduitα=0.LafamilleF1estlibreetdoncderang3,elleengendreunSEVdedimension3.b)Onétudie,pourlafamilleF2,larelationαV1+βV2+γV3=0etonregardesiα=β=γ=0(famillelibre)ounon(familleliée).Celasetraduitparlesystèmeà4équationset3inconnuesα+2β+γ=0−α+β−4γ=02α+3β+3γ=03α+β+8γ=0.RemplacerE2parE2+E1(elledevient3β−3γ=0),E3parE3−2E1(elledevient−β+γ=0)etE4parE4−3E1(elledevient−5β+5γ=0)nousconduitausystèmeélémentaire{α+2β+γ=0,β=γ}(puisqueE2,E3,E4sontidentiques),etquimaintenantadmetuneinﬁnitédesolutionsavecα=−3γ,β=γ.Lesystèmeestderang2(deuxéquationsindépendantes)etlafamilleF2estliée.Enprenantγ=1,onaβ=1,α=−3,cequisigniﬁeque−3V1+V2+V3=0.Exercice31.Lesformulesd’additiontrigonométriquesdonnentA(θ)A(θ′)=A(θ+θ′).2.a)OnaainsiA(θ)A(θ′)=A(θ′)A(θ),etlesdeuxmatricescommutenttoujours.b)OnaclairementA(0)=I3.OnadoncA(θ)A(θ′)=I3dèsqueθ+θ′=0modulo2π,àsavoirtoutsimplementθ′=−θ[2π].OnaA(θ)−1=A(−θ).3.a)LatransposéedeA(θ)s’obtientenchangeantlesinusensonopposé,àsavoirenchangeantθen−θ:tA(θ)=A(−θ).b)Lamatriceestsymétriquesietseulementsisinθ=sin(−θ)=−sinθ,àsavoirsinθ=0etdoncθ=0ouθ=π.Celadonne1000−1000−1pourθ=πoubienlamatriceidentitéI3pourθ=0.4.LesdeuxquestionsprécédentesmontrentqueA(θ)−1estlatransposéedeA(θ):onaladéﬁnitiond’unematricediteorthogonale(àsavoirreprésentantuneisométriedeR3surunebaseorthonormée):danslecasprésent,ils’agitdelarotationd’angleθdansleplan{−→j,−→k},l’axederotationétant−→ietorientantl’espace.29
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MATHS-Lescléspourrésoudre400exercicesincontournablesExercice41.OnaA2=0040000400000000A3=0008000000000000A4=0.2.C’estuneidentitéremarquablequiseretrouveeneﬀectuantlesproduits:onobtientI3−A4,àsavoirI3.SachantqueI3−A=B,elles’écritB×(I3+A+A2+A3)=I3,àsavoirB−1=I3+A+A2+A3=1248012400120001.Exercice51.RemplacerE2parE2−2E1échelonnelesystèmeen{x+2y+z=0,−9y+z=0},d’oùl’ontirez=9ypuisx=−11y.LevecteurgénériquedeDs’écrit(−11y,y,9y):unvecteurdirecteurest(−11,1,9).2.RemplacerE2parE2−2E1échelonnelesystèmeen{x+2y+z−t=0,−9y+z+4t=0},systèmederang2etonestendimension4:leSEVconsidéréestdedimension4−2=2.Ontiredelasecondeéquationz=9y−4tetlereportdanslapremièreéquationdonnex=−11y+5t.Onécritcecisousformevectoriellexyzt=y−11190+t50−41LesdeuxvecteursdedroiteformentunebaseduSEV.Exercice61.OnremplaceE2parE2−2E1etE3parE3+3E1pourenleverxdesdeuxdernièreséquations,cequidonnex+2y−3z=5−3y+7z=18y−10z=6.PuisonremplaceE3parE3+8/3E2cequidonnex+2y−3z=5−5y+7z=−426/3z=26/3.Ladernièreéquationdonnez=1,lereportdansladeuxièmedonney=2etlereportdanslapremièredonnex=3.2.OnremplaceE2parE2−2E1etE3parE3−E1pourenleverxdesdeuxdernièreséquations,cequidonne(S2):x+2y−3z=5−3y+7z=1−6y+14z=2.Avantdeselancerdans30






Chapitre4Matrices,systèmeslinéaires,équationsdeSEVunenouvelleétapedepivot,onpeutconstateràl’œilnuqueladernièreéquationestlamêmequeladeuxième,àunemultiplicationpar2près.Lesystèmeestéqui-valentàceluidesdeuxpremièreséquationsde(S2).Lesystèmeestderang2avec3inconnues,etiladmetdoncuneinﬁnitédesolutions.Latroisièmeéquationdusystèmeinitialestunecombinaisonlinéairedesdeuxpremières,etnesertàrien.L’ensembledessolutionsdépendd’unparamètre,parexemplez:lasecondeéqua-tiondeS2donney=7/3z−1/3etlereportdanslapremièreéquationdonnex=−5/3z+14/3.L’ensembledessolutionsestladroitedel’espaceaﬃnepassantparlepoint(14/3,−1/3,0)etdevecteurdirecteur(parexemple)(−5,7,3).31
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Chapitre5

Applications

linéair

es,

matrices

EestunespacevectorieldedimensionpsurK,FunE.V.dedimensionnsurK,etfuneapplicationdeEdansF.LegrandcasparticulierestévidemmentE=Favecp=n.LanotationAdésigneraunematriceànlignesetpcolonnes,destinéeàêtrelamatricedefsurunebasedonnéedeEetunebasedonnéedeF.Domaines

concer

nés

—Caractérisationd’uneapplicationlinéaire,noyau,image,injectivité,surjectivité,isomorphisme,automorphisme.Applicationlinéaireréciproque(inverse)lecaséchéant.Compositiond’applicationslinéaires.Sous-espacevectorielstable.—Rangd’uneapplicationlinéaire,théorèmedeladimension.—AnneauL(E)desendomorphismesdeE(applicationslinéairesdeEdanslui-même).—Matriced’uneapplicationlinéairesurdesbasesdonnéesdeEetdeF.Change-mentdebases,dontlafondamentaleA′=P−1AP.—Formeslinéaires,quiaurontquandmêmedroitàuneﬁchespécialeavecladualité,notionconsidéréecommecompliquée(sansvraimentl’être).—Le[àpeuprès]seulcasdedimensioninﬁnieconcerneral’espaceK[X]despo-lynômessurK;maisonpeutnormalementserameneràuncertainKn[X]dedimensionﬁnien+1.—Onpourraaussitravailler,endimensioninﬁnie,dansl’espace[parexemple]desfonctionscontinuessur[0,1],oùilfaudraévidemmenttravaillerdirectementsurl’expressiondef,unebasedel’espaceétanttotalementinaccessibleetingérable.Autrepossibilité:certaineséquationsdiﬀérentiellessimples,maisladémarcheseratrèsbiendétaillée.—Projectionetsymétrie.32
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Chapitre5Applicationslinéaires,matricesRésultats

fondamenta

ux

utilisables

—f(αx+βy)=αf(x)+βf(y)pourmontrerquefestlinéaire.—festinjectivesietseulementsisonnoyauKerf,àsavoirleSEVdeEformédesvecteursxtelsquef(x)=0,estréduitauvecteurnul.AvoirfinjectivenécessitedimF≥dimE,pourqu’ilyait«suﬃsammentdeplace»dansFpourcontenir«unecopieconforme»deE.—Plusgénéralement,larelationf(x1)=f(x2)équivautàx1=x2+zoùz∈Kerf.—festsurjectivesietseulementsiImf=F.AvoirfsurjectivenécessitedimF≤dimE,pourque«FsoitpluspetitqueE».—Théorèmedeladimension:dimE=dim(Kerff)+dim(Imf).—Lorsquen=p(EetFdemêmedimension,cequiestenparticuliervrailorsquefestunendomorphismedeE),festbijective(isomorphisme)sietseulementsielleestinjectiveoubiensurjective,ilsuﬃtdemontrerl’unedesdeuxconditionsseulement,etengénéralc’estKerf={0}quiestdeloinlaplussimple.—ÉtantdonnéesunebaseU={u1,···,up}deEetunebaseV={v1,···,vn}deF,lamatriceAdefsurcesdeuxbasespossèdenlignesetpcolonnes,sapremièrecolonnecontenantlescomposantesdef(u1)surlabaseV,etainsidesuite.CommeEestdedimensionpetFdedimensionn,onabienunematricen×p.—Onaainsiaisémentunebasedel’imageImf,sachantquelescolonnesdeAformentunsystèmegénérateurdeImf(maispasnécessairementunebase!)—LaformuledechangementdebaseA′=P−1APpourunendomorphisme(ouA′=Q−1APpourf:E→F,PétantlamatricedepassageaudépartetQcelleàl’arrivée).—LerangdefestlerangdelamatriceA,matriceécritesurdeuxbasesquelconquesdeEetdeF.—Avecdespolynômes,penseràlarelation«famillelibre»et«degrésdistincts».—LaprojectionsurFparallèlementàG(avecE=F⊕G)estunendomorphismepFdeEvériﬁantp2F=pF.SonnoyauestGetsonimageestF.LasymétrieparrapportàFetparallèlementàGests=pF−pGetellevériﬁes2=Id.—Larelationp2=pcaractériseuneprojectionets2=Idcaractériseunesymétrie.Ce

que

l'on

vous

demander

a

de

montr

er

—Quefestuneapplicationlinéaire.33
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MATHS-Lescléspourrésoudre400exercicesincontournables—Trouverlenoyaudef(résoudrelesystèmeAX=0)et/oul’imagedef(extirperunefamillelibredelafamilledescolonnesdeA)etlerangdef.Etreconscientqueconnaîtrelenoyauoul’imagedonneimmédiatementlerangdef,etdoncladimensiondel’imageoudunoyau.—MontrerquefestunisomorphismedeEsurF,soitpourendéduireladimen-siondeF(égalealorsàcelledeE),soitpoursimplementpouvoirrésoudredeséquationsy=f(x)oùy∈Festdonné.—FairedeschangementsdebasedansEet/ouFetécrirelamatricedefsurcesnouvellesbases.—EnutilisantunisomorphismeentreKn[X]etKn+1,montrerrapidementl’exis-tenceetl’unicitéd’unpolynômededegré≤nvériﬁantdesconditionssursesvaleursoucellesdesadérivéeencertainspoints.Les

questions

à

se

poser

—Est-ilpertinentdeserameneràlamatricedefsurdeuxbases,oubienest-cequejepeuxtravaillerdirectementsurl’expressiondef,enparticulierdanslecasoùl’ontravailleavecdespolynômes.—Ai-jebiencomprisqueparlerdu«noyaudelamatricecarréeA»estunabusdelangage,etqu’ondevraitparler«dunoyaudel’endomorphismedeKndontAestlamatrice»,parexemplesurlabasecanoniquedeKn.Maisquecetabusdelangageestadmissible.—Applicationlinéairederang1:touteslescolonnes(oulignes)delamatricesontproportionnelles.Applicationlinéairederang≥2:ilyaaumoinsdeuxcolonnes(oulignes)nonproportionnelles.Endimension3ou4,commentsesimpliﬁerletravailaveccesdeuxremarques?—Penserquesifestinjective(Kerfréduitauvecteurnul),alorsfréaliseunisomorphismedeEsurl’imageImf.—Avecunecomposéef◦g,quellesconditionssurfet/ougimpliquentquelacomposéeestinjectiveousurjective?34
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Chapitre5Applicationslinéaires,matricesExer

cices

Exercice1Soitn≥2donnéetFl’applicationassociantàunpolynômeP∈Kn[X]lepolynômeF(P)déﬁniparF(P)(X)=P(X+1).1.Dansquelespacevectorielarrive-t-on?MontrerqueFestlinéaireettrouversonnoyau.2.EndéduirequeFestunautomorphismedeKn[X](endomorphismebijectif)etdonnersoninverseF−1.3.Onprendn=3:écrirelamatriceAdeFsurlabase{1,X,X2,X3}.DonnerlavaleurdeA−1sanscalculd’inversiondematrice.Exercice2OnseplacedansE=Kn[X]avecn≥2.PourtoutP∈E,onnoteT(P)lepolynômedéﬁniparT(P)(X)=P(X)+11!P′(X)+12!P′′(X)+···+1n!P(n)(X)1.QuelestledegrédeT(P)parrapportàceluideP?MontrerrapidementqueTestunendomorphismedeE.2.a)CalculerT(1),T(X),T(X2)etsubodorerlavaleurdeT(Xk)pour1≤k≤n.Ledémontrerensuitedirectement(àsavoirsansrécurrence).b)Finalement,quiestlepolynômeT(P),enfonctiondeP?Quelleformulecela-vousrappelle-t-il?Exercice3SoitA=1−13212120−315−5−6−9,quipeutêtreconsidéréecommelamatriced’uneapplicationlinéairefdeKpdansKn.1.Questionsansaucuncalcul:quevalentnetp?L’applicationfpeut-elleêtreinjec-tive?Surjective?Quellessontlesvaleurspossiblesdesonrang?2.a)TrouverKerf:ondonneraladimensionetunebase.b)TrouverImf:ondonneraladimensionetunebase.35
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MATHS-Lescléspourrésoudre400exercicesincontournablesExercice4SoitE=K3[X],etsoienta,b,c,dquatrescalairesdistincts.OnposeP1=(X−b)(X−c)(X−d)(a−b)(a−c)(a−d),P2=(X−a)(X−c)(X−d)(b−a)(b−c)(b−d)P3=(X−a)(X−b)(X−d)(c−a)(c−b)(c−d),P4=(X−a)(X−b)(X−c)(d−a)(d−b)(d−c)1.SoitQ=αP1+βP2+γP3+δP4.Calculerα,β,γ,δenfonctiondesvaleursdeQencertainspointsdeK.2.Quepeut-ondiredelafamille{P1,P2,P3,P4}pourE?3.a)Quepeut-ondiredel’applicationQ∈E→U(Q)=(Q(a),Q(b),Q(c),Q(d))∈K4?b)Endéduirequepourtousscalaires,y1,y2,y3,y4,ilexisteununiquepolynômeQdedegré≤3telqueQ(a)=y1,Q(b)=y2,Q(c)=y3,Q(d)=y4.c)Quelleestl’imageréciproquedelabasecanoniquedeK4parU?Retrouverainsi,d’uneautrefaçon,lerésultatdelaquestion2.4.QuelleestlamatricedeQsurlabaseprécédentedeE(audépart)etlabasecanoniquedeK4(àl’arrivée).Exercice5OnseplacedansE=Kn[X]avecn≥2.PourP∈E,onnoteU(P)=P(X+1)+P(X−1)−2P(X)1.CalculerU(1),U(X),U(X2).Àl’aidedudébutdubinômedeNewton,montrerqueU(Xp)estdedegrép−2pourp≥2.2.VériﬁerqueUestunendomorphismedeEetexprimerledegrédeU(P)enfonctiondudegrédeP.3.TrouverlenoyaudeUetendéduiresonrang.ComparerImUetKn−2[X].4.MontrerqueUestnilpotent,i.e.qu’ilexisteunentiermtelqueUm=0.Onpourraéventuellementdistinguerlescasnpairetnimpair,maiscen’estpasvraimentindispensable.5.Onprendn=4.EcrirelamatriceAdeUsurlabase{1,X,X2,X3,X4}etcalculerA2,A3.Exercice6[Corrigéenligne]OnseplacedansE=Kn[X],pourn≥2.1.L’applicationP→U(P)=X2P′′(X)−3XP′(X)+2P(X)est-elleunendomor-phismedeE?36
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Chapitre5Applicationslinéaires,matrices2.a)D’oùvientletermedeplushautdegrédeU(P)?b)L’applicationprécédenteest-elleinjective?3.PourchaqueQ∈Kn[X],existe-t-ilP∈Kn[X]telqueQ=X2P′′(X)−3XP′(X)+2P(X)?4.Onprendn=3.EcrirelamatricedeUsurlabasecanoniquedeK3[X]etvériﬁerqu’elleestbieninversible.5.ReprendreleplusrapidementpossibleleproblèmeavecV(P)=X2P′′−2XP′+2P:Vest-ilunautomorphisme?Quelestsonrangetsonnoyau?Exercice7OnseplacedansR3,etonconsidèrelaprojectionpsurleplanF:x+2y+z=0parallèlementàladroiteGdevecteurdirecteuru(1,2,1).Ils’agitd’uneapplicationlinéaire(àpeuprèsclairgéométriquement),etonvatrouversamatricesurlabasecanoniquedeR3.PourunvecteurX(x,y,z)onnoterax′,y′,z′lescomposantesdeX′=p(X).1.EcrirelesdeuxrelationsliantXetX′etcaractérisantcetteprojection.2.Endéduirelesrelationsliantx,y,zetx′,y′,z′etdonnerlamatriceA(surlabasecanoniquedeR3)decetteprojection.ComparerA2etA.3.Trouver«unpeuaupif»unebase{v,w}deF,etdonner(sanscalcul,justepardesconsidérationsgéométriques)lamatricedepsurlabase{u,v,w}.4.Vériﬁerlarelation«A′=P−1AP»liantlesdeuxmatricesdepsurnosdeuxbasesdiﬀérentes(lesquelles?):oncommenceraparbienécrireP.Exercice8OnseplacedansR3,etonconsidèrelasymétriesparrapportauplanF:x+2y+z=0etparallèlementàladroiteGdevecteurdirecteuru(1,−2,1).Ils’agitd’uneapplicationlinéaire(àpeuprèsclairgéométriquement),etonvatrouversamatricesurlabasecanoniquedeR3.PourunvecteurX(x,y,z)onnoterax′,y′,z′lescomposantesdeX′=s(X).1.EcrirelesdeuxrelationsliantXetX′etcaractérisantcettesymétrie.2.Endéduirelesrelationsliantx,y,zetx′,y′,z′etdonnerlamatriceA(surlabasecanoniquedeR3)decetteprojection.CalculerA2.Exercice9DansunE.V.Ededimension3surKrapportéàunebase{e1,e2,e3},onsedonnel’endomorphismefdontlamatricesurcettebaseestB=−4−510−2−47−2−36.37






[image: background image]


MATHS-Lescléspourrésoudre400exercicesincontournables1.EcrirelamatriceB′defsurlabase{u1,u2,u3}déﬁnieparu1=e1+e2+e3,u2=2e1+e2+e3,u3=e1−e2.2.Endéduirerapidementlerangdef,sonnoyauetsonimage.Exercice10[Corrigéenligne]Soituunendomorphismenonnuld’unespacevectorieldedimensionn≥2surK.Onnoteu2=u◦uetensuiteuk+1=uk◦u=u◦uk.0.Soitk≥1:montrerqueKer(uk)estinclusdansKer(uk+1).OnnotedpladimensiondeKer(up).1.OnsupposequeKer(uk)=Ker(uk+1),pouruncertaink.a)MontrerqueKer(uk+1)=Ker(uk+2).b)QuepeutonendéduirepourlesKer(um)pourtoutm≥k?2.a)Quellessontlesdeuxpropriétéssimplesdelasuited’entiers{dp}?b)Endéduirequ’elleestconvergente.c)Cettesuitepeut-elleêtrestrictementcroissante?Quesepasse-t-iltôtoutardpourunesuitecroissanted’entiers,maisnonstrictementcroissante,etconver-gente?3.a)Endéduirequ’ilexisteununiqueentierr≥1possédantlapropriétésuivanted1<d2<···<dretdp=drpourtoutp≥r.b)Comparerlesentiersnetr.c)InterprétercesrésultatsurlasuiteKer(u),Ker(u2),Ker(u3),...,Ker(uk),...desnoyaux,entermed’inclusionsstrictesetd’égalités.4.Onsupposemaintenantqueuestnilpotent,i.e.qu’ilexisteunentiermtelqueum=0.a)QuevautKer(um)etdoncKer(ur)?Endéduirequel’entierrprécédentestlepluspetitentiermvériﬁantum=0(appeléindicedenilpotence).b)Soitul’endomophismedeK4dematriceA=0111002300030000surlabasecano-nique.Trouverlesnoyauxdeu,u2,u3,u4...,vériﬁerlesinclusions,etdonnerlavaleurder.Exercice11[Corrigéenligne]1.Montrerqueladonnéed’uneapplicationlinéaireUdeEdedimensionpdansFdedimensionn(surR)équivautàcelledenapplicationslinéairesdeEdansR.OnpourraintroduireunebasedeF.38
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Chapitre5Applicationslinéaires,matrices2.RappelerlaCNSpourquedeuxespacesvectorielssurunmêmecorpsetdedimen-sionsﬁniessoientisomorphes:onconstruiraunisomorphismetrèssimpleentreEetF.Onvamaintenantdémontrer,viaunisomorphisme,lerésultatsuivant:«étantdonnésnpointsA1,···,AnduplandontlesabscissessonttoutesdistinctesetndroitesnonverticalesD1,···,DnoùDipasseparAi,alorsilexisteununiquepolynômePdedegré2n−1dontlegraphepasseparchaqueAi,enyétanttangentàDi».Danslasuite,lesabscissesa1,a2···,andespointssontimposéesetnesontdoncpasdes«variables»potentielles.3.a)Quellessont,pourchaqueai,lesdeuxparamètresréelsquipermettentdedécrireladonnéedesAietDi?b)Établirlarelation,pourchaquei,entrecesparamètresetdesvaleursdupoly-nôme(ouunpolynômeassocié)enx=ai.4.Trouver«unboncandidat»pourunisomorphismeentreR2n−1[X]etR2n,auvuducadreprécédent.5.Montrerquel’onabienunisomorphismeetconclureàl’existenceetl’unicitédeP.Indication:quesigniﬁepourunpolynômelarelationP(a)=P′(a)=0,auniveaudeladivisibilité?Exercice12[Corrigéenligne]Soienta,bdeuxréels.Onseplacedansl’ensembleEdessuites(un)àvaleursréellesvériﬁantlarelationderécurrenceun+2=aun+1+bunpourtoutn≥0.1.Montrer,viaunsous-espacevectoriel,queEestunespacevectorielsurR.Onappellefl’applicationdeEdansR2associantàunesuite(un)lecouple(u0,u1)desesdeuxpremierstermes.2.Montrerquefestuneapplicationlinéaire.3.Montrerquec’estunisomorphismeetendéduireladimensiondeE.4.a)Onsupposea2+4b>0.Montrerqu’ilexistedeuxréelsr1,r2telsquelessuitesgéométriques(rn1)et(rn2)soientdansE.b)EndéduireunebasedeEetl’expressiongénérald’unesuite(un)∈E.39
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rigés

Exercice11.Xket(X+1)ksonttoujoursdemêmedegrék.Plusgénéralement,P(X)etP(X+1)sontdemêmedegréetFarrivedansKn[X]lui-même.Lalinéaritéestclaire:F(αP+βQ)(X)=(αP+βQ)(X+1)=αP(X+1)+βQ(X+1)=[αF(P)+βF(Q)](X),i.e.F(αP+βQ)=αF(P)+βF(Q).IlestclairquelepolynômeP(X+1)estlepolynômenulsietseulementsiP(X)estlepolynômenul,étanttousdeuxdemêmedegré.KerFestréduitaupolynômenuletFestinjective.Attentionauraisonnementsuivant:lepolynômeF(P)estlepolynômenulsietseulementsiP(x+1)=0pourtoutscalairex,i.e.lorsqueP(z)=0pourtoutscalairez,i.e.lorsqueP=0(polynômenul).IlmarcheeﬀectivementsiKcontientuneinﬁnitéd’éléments,etdoncavecRouC.2.Festunendomorphismeinjectifendimensionﬁnie,etestdoncbijectif:c’estunisomorphismedeKn[X]surlui-même,àsavoirunautomorphismedeKn[X].LarelationQ(X)=P(X+1)équivautàP(X)=Q(X−1):F(P)=QéquivautàP(X)=F[P(X−1)].L’endomorphismeF−1estdéﬁniparP→P(X−1).3.Ils’agitdelamatricecontenant(encolonnes)lescomposantesde1,X+1,(X+1)2,(X+1)3surlabase{1,X,X2,X3},soitA=1111012300130001,matricetri-angulairesupérieureavecdescoeﬃcientsnonnulssurladiagonale,etdoncinver-sible.A−1contientlescomposantesde1,−1+X,(−1+X)2,(−1+X)3surlabase{1,X,X2,X3},àsavoirA−1=1−11−101−23001−30001.Exercice21.SiP=0,ilenvademêmepourT(P).DanslecasgénéraloùPestdedegrék,P′estdedegrék−1(ouestnul),P′′estdedegrék−2(ouestnul)...etP(n)estdedegrék−n(ouestnul).Ledegrédelasommeestdoncceluidutermedeplushautdegré,àsavoirP,etT(P)alemêmedegréqueP:ilappartientencoreàEetTestuneapplicationdeEdansE.LadérivationestunendomorphismedeKn[X],etdemêmepourlesdérivéessuccessives.Testdoncunecombinaisonlinéaired’endomorphismesdeKn[X],etestunendomorphismedeKn[X].2.a)OnaclairementT(1)=1,T(X)=X+1etT(X2)=1+2X+X2=(X+1)2.OnpeutimaginerqueT(Xk)=(X+1)k.Onutilise(Xk)′=kXk−1,40
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Chapitre5Applicationslinéaires,matrices(Xk)′′=k(k−1)Xk−2,(Xk)(p)=k(k−1)···(k−p+1)Xk−ppuis(Xk)(k)=k!constante.Ensuite,dek+1àn,ona(Xk)(p)=0.IlvientﬁnalementT(Xk)=Xk+k1!Xk−1+k(k−1)2!Xk−2+···+k(k−1)···(k−p+1)p!Xk−p+···+k!k!Sachantquekp=k(k−1)···(k−p+1)p!,onreconnaitlaformuledubinômedeNewtondéveloppant(X+1)k:onaT(Xk)=(X+1)kpourtoutk≥0.C’estlaformuledeTaylorP(b)=P(a)+(b−a)1!P′(a)+···+(b−a)kk!P(k)(a)aveca=Xetb=X+1pourunpolynômededegrék.Exercice31.Unematriced’applicationlinéaireà3ligneset5colonnescontientencolonneslescomposantes(surlabasedeF)desimagesdesvecteursdebasedeE:onadonc5vecteursdebasedansEet3composantesàl’arrivéedansF,àsavoirE=K5etF=K3,soitn=3,p=5.Commeladimensiond’arrivéeestinférieureàcellededépart,fnepeutpasêtreinjective(pasassezdeplacedansK3pourcollerunecopieconformedeK5).CommelerangdeA,àsavoirladimensiondeImfest≤3(lapluspetitedesdimensionsdeA),Imfestaumaximumdedimension3,etfnepeutdoncpasêtresurjective.Lerangdef,àsavoirceluideA,estlenombremaximumdecolonneslinéairementindépendantesdansA:commeC1etC2sontclairementindépendantes,lerangestaumoinségalà2;commeilest≤3,ilvaut2ou3seulement.2.a)Engénéral,leplussimpleestdecommencerparchercherlenoyaudef,i.e.résoudreAX=0avecX∈K5(espacededépart).Ils’agitd’unsystèmede3équationsà5inconnuesdontlesystèmeéchelonnéparGauß(calculsimplenondétailléici)estéquivalentauxdeuxseuleséquations{x−y+3z+2t+u=0,3y−4z−4t−5u=0}Cesystèmenecomporteplusque2équations(indépendantes),sonrangestégalà2,etlerangdefvaut2,commeladimensiondeImf:ilenrésultequeladimensiondunoyauvaut5−2=3,cequeconﬁrmelarésolution.Lesystèmeserésoutsouslaforme(ontired’abordyenfonctiondez,t,upuisx):xyztu=z−5/34/3100+t−2/34/3010+u2/35/3001UnebasedeKerfestdonc{−5,4,3,0,0),(−2,4,0,3,0),(2,5,0,0,3)}.b)Commefestderang2,l’imageImfestdedimension2:elleestengendréeparlafamilledescolonnesdelamatriceA(ilyena5apriori,maisonnepeuten41
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MATHS-Lescléspourrésoudre400exercicesincontournablestrouverquedeuxquisoientindépendantes).CommeC1etC2sontclairementindépendantes,ImfestleSEVdeK3debase{(1,2,1),(−1,1,5)},parexemple.MaisonpeutprendredeuxcolonnesquelconquesdeA,manifestement.Exercice41.OnaclairementP1(a)=1etP1(b)=P1(c)=P1(d)=0,etlesrésultatsanaloguespourP2,P3,P4.Onendéduitα=Q(a),β=Q(b),γ=Q(c),δ=Q(d).2.L’idéeestderegardersilafamilleestlibreounon,etdanscecasceseraunebasedeE.OnpartdoncdeαP1+βP2+γP3+δP4=0,i.e.onprendQ=0danslaquestion1.Ilvientα=β=γ=δ=0:onabienunefamillelibre,etdoncunebasedeE,quiestdedimension4.3.a)Uestlinéaire,pardéﬁnitiondesstructuresd’espacevectorielaudépartetàl’arrivée.L’idéeestdechercherlenoyau.OncherchedoncQtelqueQ(a)=Q(b)=Q(b)=Q(c)=0.Lepolynômenulestleseuldedegré≤3quis’annuleenquatrepointsdistincts:onaQ=0,etKerUestréduità{0}:Uestinjective.b)CommeEetK4sontdemêmesdimensions,etqueUestinjective,alorselleestnécessairementbijective(isomorphismedeEsurK4).Pourchaqueélément(y1,y2,y3,y4)∈K4,ilexisteunetunseulpolynômeQ∈EtelqueU(Q)=(y1,y2,y3,y4),i.e.Q(a)=y1,Q(b)=y2,Q(c)=y3,Q(d)=y4.c)Q1=U−1(1,0,0,0))(imageréciproquedupremiervecteurdelabasecanoniquedeK4)estl’uniquepolynômededegré≤3telqueQ1(a)=1,Q1(b)=Q1(c)=Q1(d)=0.OnavuaudépartqueP1vériﬁecela,etdoncQ1=P1.IlenvademêmepourlesautresvecteursdelabasecanoniquedeK4:lafamille{P1,P2,P3,P4}estdoncl’imageréciproquedelabasecanoniquedeK4.Onsaitquel’imageréciproqued’unefamillelibreparuneapplicationlinéaireestunefamillelibre.4.OnaU(P1)=(1,0,0,0),U(P2)=(0,1,0,0),U(P3)=(0,0,1,0),U(P4)=(0,0,0,1):Uenvoielekèmevecteurdelabasedépartsurlekèmedelabasearrivée:lamatriceest«l’identité».Exercice51.U(P)estunpolynôme,pasdesouci.OnaclairementU(1)=0,U(X)=(X+1)+(X−1)−2X=0,puisU(X2)=(X+1)2+(X−1)2−2X=2.Plusgénéralement,pourp≥2,U(Xp)commence(Newton)parXp+pXp−1+p(p−1)2Xp−2+Xp−pXp−1+p(p−1)2Xp−2−2Xp+···àsavoircommenceparp(p−1)Xp−2+···:U(Xp)estunpolynômededegrép−2pourp≥2.42
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Chapitre5Applicationslinéaires,matrices2.UestclairementuneapplicationlinéairedeKn[X]dansaprioriK[X].MaiscommeU(P)estsoitlepolynômenul,soitdedegré2demoinsqueP,U(P)restedansKn[X].UestdoncuneapplicationlinéairedeKn[X]danslui-même.Notons(pourp≥2)P(X)=apXp+ap−1Xp−1+···+a2X2+a1X+a0:onaU(P)(X)=apU(Xp)+ap−1U(Xp−1)+···+2a2,d’aprèslaquestionprécédente.C’estlasommed’unpolynômededegrép−2etdepolynômesdontlesdegréssontstrictementinférieursàp−2:cettesommeestdedegréexactementégalàp−2.Enrésumé,U(P)=0siPestdedegré≤1etestdedegrép−2sinon,ennotantpledegrédeP.3.LaquestionprécédentemontrequeU(P)=0sietseulementsiPestdedegré≤1:KerU=K1[X](quiestbienunSEVdeKn[X]),etestdedimension2.CommeKn[X]estdedimensionn+1,lethéorèmedeladimensionditqueUestderangn+1−2=n−1.MaisonvientaussidemontrerqueU(P)estdansKn−2[X],puisqueledegrép−2deU(P)est≤n−2.CommeKn−2[X]estdedimensionn−1,ilenrésultequel’imageImUestexactementKn−2[X],SEVdeKn[X].4.UenvoieKn[X]dansKn−2[X].LemêmeprincipeimpliquequeU2vadiminuerledegrédePde4unités,etenvoiedoncKn[X]dansKn−4[X]etainsidesuite:chaqueapplicationdeUdiminueledegréde2unités.•Pourn=2mpair:auboutdemitérationsdeU,onarrivedansKn−2m[X](lesconstantes),cequisigniﬁeUm+1(P)estlepolynômenul.OnaUm+1=0.•Pourn=2m+1impair:auboutdemitérationsdeU,onarrivedansKn−2m[X]=K1[X].OnavuqueUenvoiealorsPsur0:onadenouveauUm+1=0.•Uestdoncnilpotent,etlepluspetitentierrtelqueUr=0estr=m+1oùmestdéﬁniparn=2moun=2m+1.5.OnaU(1)=U(X)=0,U(X2)=2,U(X3)=6X,U(X4)=2+12X2etA=00202000600000120000000000,A2=00002400000000000000000000etA3=0commeprévu.Exercice71.LevecteurprojetéX′estdansF,etladiﬀérenceX′−XestdansG.Celasetraduitparl’existenced’unréelλetlesdeuxconditions«géométriquesélémentaires»:x′+2y′+z′=0,x′−x1=y′−y2=z′−z1=λ2.La2èmerelationdonneλ=−x+2y+z6etlereportdonnex′=5x−2y−z6,y′=−2x+2y−2z6,z′=−x−2y+5z643
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