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Preface to the seventh edition




Since the publication of the sixth edition of this text in 2010 the importance of the proper application of statistical methods to chemical and biochemical measurements has continued to grow, as has the number and sophistication of the methods themselves. Enormous amounts of information on such methods, along with critical comparative assessments and examples of their application, are freely available from numerous websites. In this new edition we have tried to reflect some of these developments, while retaining from previous editions a pragmatic and, as far as possible, non-mathematical approach to statistical calculations. Many of the changes and additions have been made in response to readers and reviewers of the previous edition, and we are very grateful to them for their guidance.

Most importantly, the addition of a third author has allowed us to expand significantly the parts of Chapter 4 that deal with uncertainty estimation, through the Guide to the Estimation of Uncertainty in Measurement (GUM), and the validation of analytical methods. These topics are especially relevant in areas such as food analysis, forensic sciences and medical and environmental analysis, and are critical to the maintenance of the quality of analytical measurements. Other areas where the text has been more modestly expanded include the application of Bayesian methods, which are now increasingly being used in many areas (Chapter 3); testing for normality of distribution (Chapter 3); the estimation of limits of detection in calibration experiments (Chapter 5); the use of robust statistical methods (Chapter 6); and some additional material on experimental designs (Chapter 7). Major developments have also occurred in the application of multivariate methods (Chapter 8) but the constraints of space and the complexity of the methods have persuaded us to leave those topics untouched.

As in previous editions we have provided both worked examples and exercises for the reader. The former have again been implemented using Excel® or Minitab®, these being the programs perhaps most widely used in education and by practising scientists. Both are repeatedly updated; and add-ins (some free, others not) for Excel now provide a great number of advanced calculation methods.

Finally, we thank the Royal Society of Chemistry for permission to use data from papers published in The Analyst, and also the patient and expert staff at Pearson Education, especially Janey Webb, Agnibesh Das and Payal Rana.

James N. Miller

Jane C. Miller

Robert D. Miller

August 2017








Preface to the first edition




To add yet another volume to the already numerous texts on statistics might seem to be an unwarranted exercise, yet the fact remains that many highly competent scientists are woefully ignorant of even the most elementary statistical methods. It is even more astonishing that analytical chemists, who practise one of the most quantitative of all sciences, are no more immune than others to this dangerous, but entirely curable, affliction. It is hoped, therefore, that this book will benefit analytical scientists who wish to design and conduct their experiments properly, and extract as much information from the results as they legitimately can. It is intended to be of value to the rapidly growing number of students specialising in analytical chemistry, and to those who use analytical methods routinely in everyday laboratory work.

There are two further and related reasons that have encouraged us to write this book. One is the enormous impact of microelectronics, in the form of microcomputers and handheld calculators, on statistics: these devices have brought lengthy or difficult statistical procedures within the reach of all practising scientists. The second is the rapid development of new ‘chemometric’ procedures, including pattern recognition, optimisation, numerical filter techniques, simulations and so on, all of them made practicable by improved computing facilities. The last chapter of this book attempts to give the reader at least a flavour of the potential of some of these newer statistical methods. We have not, however, included any computer programs in the book – partly because of the difficulties of presenting programs that would run on all the popular types of microcomputer, and partly because there is a substantial range of suitable and commercially available books and software.

The availability of this tremendous computing power naturally makes it all the more important that the scientist applies statistical methods rationally and correctly. To limit the length of the book, and to emphasise its practical bias, we have made no attempt to describe in detail the theoretical background of the statistical tests described. But we have tried to make it clear to the practising analyst which tests are appropriate to the types of problem likely to be encountered in the laboratory. There are worked examples in the text, and exercises for the reader at the end of each chapter. Many of these are based on the data provided by research papers published in The Analyst. We are deeply grateful to Mr. Phil Weston, the Editor, for allowing us thus to make use of his distinguished journal. We also thank our colleagues, friends and family for their forbearance during the preparation of the book; the sources of the statistical tables, individually acknowledged in the appendices; the Series Editor, Dr. Bob Chalmers; and our publishers for their efficient cooperation and advice.

J. C. Miller

J. N. Miller

April 1984
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Glossary of symbols








	a
	–
	intercept of regression line



	b
	–  
	gradient of regression line



	c
	–
	number of columns in two-way ANOVA



	C
	–
	correction term in two-way ANOVA



	C
	–
	used in Cochran’s text for homogeneity of variance



	d
	–
	difference between paired vaues



	F
	–
	the ratio of two variances



	G
	–
	used in Grubbs’ test for outliers



	h
	–
	number of samples in one-way ANOVA



	k
	–
	coverage factor in uncertainty estimates



	μ
	–
	arithmetic mean of a population



	M
	–
	number of minus signs in Wald–Wolfowitz runs test



	n
	–
	sample size



	N
	–
	number of plus signs in Wald–Wolfowitz runs test



	N
	–
	total number of measurements in two-way ANOVA



	v
	–
	number of degrees of freedom



	P(r)
	–
	probability of r




	Q
	–
	Dixon’s Q, used to test for outliers



	r
	–
	product–moment correlation coefficient



	r
	–
	number of rows in two-way ANOVA



	r
	–
	number of smallest and largest observations omitted in trimmed mean calculations



	
R2

	–
	coefficient of determination



	
R'2

	–
	adjusted coefficient of determination



	rs
	–
	Spearman rank correlation coefficient



	S
	–
	standard deviation of a sample



	
s2

	–
	variance of a sample



	
sy/x

	–
	standard deviation of y-residuals



	sb
	–
	standard deviation of slope of regression line



	sa
	–
	standard deviation of intercept of regression line



	s(y/x)w
	–
	standard deviation of y-residuals of weighted regression line



	[image: equation]
	–
	standard deviation of x-value estimated using regression line



	
sB

	–
	standard deviation of blank



	[image: equation]
	–
	standard deviation of extrapolated x-value




	[image: equation]
	–
	standard deviation of x-value estimated by using weighted regression line



	σ
	–
	standard deviation of a population



	[image: equation]
	–
	measurement variance



	[image: equation]
	–
	sampling variance



	t
	–
	quantity used in the calculation of confidence limits and in significance testing of mean (see Section 2.4)



	T
	–
	grand total in ANOVA



	
T1 and T2  
	–
	test statistics used in the Wilcoxon rank sum test



	u
	–
	standard uncertainty



	U
	–
	expanded uncertainty



	w
	–
	range



	wi
	–
	weight given to point on regression line
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	–
	arithmetic mean of a sample



	
x0

	–
	
x-value estimated by using regression line



	
x0

	–
	outlier value of x




	[image: equation]
	–
	pseudo-value in robust statistics



	
xE

	–
	extrapolated x-value



	[image: equation]
	–
	arithmetic mean of weighted x-values



	
X2

	–
	quantity used to test for goodness-of-fit



	ŷ
	–
	
y-values predicted by regression line



	
y0
	–
	signal from test material in calibration experiments



	[image: equation]
	–
	arithmetic mean of weighted y-values



	
yB

	–
	signal from blank



	z
	–
	standard normal variable














Chapter 1









Introduction





Major topics covered in this chapter



	Errors in analytical measurements

	Gross, random and systematic errors

	Precision, repeatability, reproducibility, bias, accuracy, trueness

	Planning experiments

	Statistical calculations








1.1 Analytical problems

Analytical scientists face both qualitative and quantitative problems. For example, the presence of boron in distilled water is very damaging in the manufacture of electronic components, so we might be asked: ‘Does this distilled water sample contain any boron?’ The comparison of soil samples in forensic science provides another qualitative problem: ‘Could these two soil samples have come from the same site?’ Other problems are single- or multi-component quantitative ones: ‘How much albumin is there in this sample of blood serum?’ ‘This steel sample contains small amounts of chromium, tungsten and manganese – how much of each?’

Modern analytical chemistry is almost always a quantitative science, as a numerical result will generally be much more valuable than a qualitative one. Only by finding how much boron is present in a water sample can we decide whether its level is worrying, or how it might be reduced. Sometimes only a quantitative result has any value: almost all samples of blood serum contain albumin, so the only question is – how much? Two soil samples might be compared using particle size analysis, in which the proportions of the soil particles falling within a number, say ten, of particle-size ranges are determined. Each sample would then be characterised by these ten pieces of data, which can be used (see Chapter 8) to provide a quantitative rather than just a qualitative assessment of their similarity.






1.2 Errors in quantitative analysis

Since quantitative methods will be the norm in an analytical laboratory, we must accept that the errors that occur in such methods are crucially important. Our guiding principle will be that no quantitative results are of any value unless they are accompanied by some estimate of the errors inherent in them. (This principle naturally applies to any field of study in which numerical experimental results are obtained.) Several examples illustrate this idea, and they also introduce some types of statistical problem that we shall meet and solve in later chapters.

Suppose we synthesise an analytical reagent which we believe to be entirely new. We study it using a spectrometric method and it gives a value of 104 (normally our results will be given in proper units, but in this hypothetical example we use purely arbitrary units). On checking the reference books, we find that no compound previously discovered has given a value above 100 when studied by the same method in the same experimental conditions. So have we really discovered a new compound? The answer clearly depends on the errors associated with that experimental value of 104. If further work suggests that the result is correct to within 2 units, i.e. the true value probably lies in the range 104 ± 2, then a new compound has probably been discovered. But if the error may amount to 10 units (i.e. 104 ± 10), then it is quite likely that the true value is actually less than 100, in which case a new discovery is far from certain. So our knowledge of the experimental errors is crucial (in this and every other case) to the correct interpretation of the results. Statistically this example involves the comparison of our experimental result with an assumed or reference value: this topic is studied in detail in Chapter 3.

Analysts commonly perform several replicate determinations in the course of a single experiment. (The value and significance of such replicates is discussed in detail in the next chapter.) Suppose we perform a titration four times and obtain values of 24.69, 24.73, 24.77 and 25.39 ml. All four values are different, because of the errors and variations inherent in the measurements, and the fourth value (25.39 ml) is substantially different from the other three. Can this fourth value be safely rejected, so that the mean result is reported as 24.73 ml, the mean of the other three readings? In statistical terms, is the value 25.39 ml an outlier? The major topic of outlier rejection is discussed in detail in Chapters 3 and 6.

Another frequent problem involves the comparison of two (or more) sets of results. Suppose we measure the vanadium content of a steel sample by two separate methods. With the first method the average value obtained is 1.04%, with an estimated error of 0.07%, while for the second method the average value is 0.95%, with an error of 0.04%. Several questions then arise. Are the two average values significantly different, or are they indistinguishable within the limits of the experimental errors? Is one method significantly less error-prone than the other? Which of the mean values is actually closer to the truth? Again, Chapter 3 discusses these and related questions.

Many instrumental analyses are based on graphical methods. Instead of making repeated measurements on the same sample, we perform a series of measurements on a small group of standards containing known analyte concentrations covering a considerable range. The results yield a calibration graph that is then used to estimate by interpolation the concentrations of test samples (‘unknowns’) studied by the same procedure. All the measurements on the standards and on the test samples will be subject to errors, so we must assess the errors involved in drawing the calibration graph, and the error in the concentration of a single sample determined using the graph. We can also estimate the limit of detection of the method, i.e. the smallest quantity of analyte that can be detected with a given degree of confidence. These and related methods are described in Chapter 5.

These examples show just a few of the problems arising from experimental errors in quantitative analysis. We must next study the various types of error in more detail.






1.3 Types of error

Experimental scientists distinguish three types of error – gross, random and systematic errors. Gross errors are so serious that there is no alternative to abandoning the experiment and making a completely fresh start. Examples include a complete instrument breakdown, accidentally dropping or discarding a crucial sample, or discovering during the course of the experiment that a supposedly pure reagent was in fact badly contaminated. Such errors (which occur even in the best laboratories!) are normally easily recognised.

We can make the distinction between random and systematic errors by studying a real experimental situation. Four students (A–D) each perform an analysis in which exactly 10.00 ml of exactly 0.1 M sodium hydroxide is titrated with exactly 0.1 M hydrochloric acid. Each student performs five replicate titrations, with the results shown in Table 1.1.

Student A’s results have two characteristics. First, they are all very close to each other; all the results lie between 10.08 and 10.12 ml. In everyday terms we would say that the results are highly repeatable. Their second feature is that they are all too high: in this experiment (rather unusually) we know that the correct result should be exactly 10.00 ml. Evidently two entirely separate types of error have occurred. First, there are random errors – these cause replicate results to differ from one another, so that the individual results fall on both sides of the average value (10.10 ml in this case). Random errors affect the precision, or repeatability, of an experiment. In the case of student A the random errors are evidently small, so we say that the results are precise. In addition, however, there are systematic errors – these cause all the results to be in error in the same direction (in this case they are all too high). The total systematic error (in a given experiment there may be several sources of systematic error, some positive and others negative; see Chapter 2) is called the bias of the measurement. (The opposite of bias, or lack of bias, is sometimes referred to as trueness of a method: see Section 4.15.) The random and systematic errors here are easily distinguished using the experimental results, and may also have quite distinct causes in terms of techniques and equipment (see Section 1.4). The data obtained by student B are in direct contrast to those of student A. The average of B’s five results (10.01 ml) is very close to the true value, so there is no evidence of bias, but the spread of the results is very large, indicating poor precision, i.e. substantial random errors. Comparison of these results with those of student A shows clearly that random and systematic errors can occur independently of one another. This is also shown by the data of students C and D. Student C’s work has poor precision (range 9.69–10.19 ml) and the average result (9.90 ml) is (negatively) biased. Student D has achieved both precise (range 9.97–10.04 ml) and unbiased (average 10.01 ml) results. The distinction between random and systematic errors is summarised in Table 1.2, and in Fig. 1.1 as a series of dot-plots. This simple graphical method of displaying data, in which individual results are plotted as dots on a linear scale, is often used in exploratory data analysis (EDA, also called initial data analysis, IDA: see Chapters 3 and 6).



Table 1.1 Data demonstrating random and systematic errors

[image: Table 1.1 Data demonstrating random and systematic errors]





Table 1.2 Random and systematic errors






	Random errors
	Systematic errors




	Affect precision – repeatability or reproducibility
	Produce bias – an overall deviation of a result from the true value even when random errors are very small




	Cause replicate results to fall on either side of an average value
	Cause all results to be affected in one sense only, all too high or all too low




	Can be estimated using replicate measurements
	Cannot be detected simply by using replicate measurements




	Can be minimised by good technique but not eliminated
	Can be corrected, e.g. by using standard methods and materials




	Caused by both humans and equipment
	Caused by both humans and equipment











[image: Figure 1.1 Bias and precision: dot-plots of the data in Table 1.1.]

Figure 1.1 Bias and precision: dot-plots of the data in Table 1.1.





In many analytical experiments the most important question is – how far is our result from the true value of the concentration or amount that we are trying to measure? This is expressed as the accuracy of the experiment. Accuracy is defined by the International Organization for Standardization (ISO) as ‘the closeness of agreement between a test result and the accepted reference value’ of the analyte. The accuracy of a single result may thus be affected by both random and systematic errors. The accuracy of an average result also has contributions from both error sources: even if systematic errors are absent, the average result will probably not equal the reference value exactly, because of the occurrence of random errors (see Chapters 2 and 3). The results from student B demonstrate this. Four of B’s five measurements show significant inaccuracy, i.e. are well removed from the true value of 10.00. But the average of the results (10.01) is very accurate, so it seems that the inaccuracy of the individual results is due largely to random errors and not to systematic ones. By contrast, all of student A’s individual results, and the resulting average, are inaccurate: given the good precision of A’s work, it seems that these inaccuracies are due to systematic errors. Note that, contrary to the implications of many dictionaries, accuracy and precision have entirely different meanings in the study of experimental errors.



In summary, precision describes random error, bias describes systematic error and the accuracy, i.e. closeness to the true value of a single measurement or a mean value, incorporates both types of error.





Another important area of terminology is the difference between reproducibility and repeatability. We can illustrate this using the students’ results again. In the normal way each student would do the five replicate titrations in rapid succession, taking only an hour or so. The same set of solutions and the same glassware would be used throughout, the same preparation of indicator would be added to each titration flask, and the temperature, humidity and other laboratory conditions would remain much the same. In such cases the precision for each student would be the within-run precision: this is called the repeatability. Suppose, however, that for some reason the titrations were performed by each student on five different occasions in different laboratories, using different pieces of glassware and different batches of indicator. It would not be surprising to find a greater spread of the results in this case. The resulting data would reflect the between-run precision of the method, i.e. its reproducibility.




	
Repeatability describes the precision of within-run replicates.

	
Reproducibility describes the precision of between-run replicates.

	The reproducibility of a method is normally expected to be poorer (i.e. with larger random errors) than its repeatability.







One further lesson may be learned from the titration experiments. Obviously the data obtained by student C are unacceptable, and those of student D are the best. Sometimes, however, two methods may be available for a particular analysis, one of which is believed to be precise but biased, and the other imprecise but without bias. In other words we may have to choose between the types of results obtained by students A and B respectively. Which type of result is preferable? A dogmatic answer to this question is impossible: in practice the choice between the methods will often be based on their costs, ease of automation, speed, and so on. But we must realise that a method substantially free from systematic errors may still, if it is very imprecise, give an average value that is (by chance) a long way from the correct value. On the other hand a precise but biased method (e.g. student A) can be converted into one that is both precise and unbiased (e.g. student D) if the systematic errors can be discovered and hence removed. Random errors can never be eliminated, though by careful technique we can minimise them, and by making repeated measurements we can measure them and evaluate their significance. Systematic errors can often be removed by careful checks on our experimental technique and equipment. This distinction between the two major types of error is further explored in the next section.

When a laboratory is supplied with a sample and requested to determine the concentrations of one of its constituents, it will estimate, or perhaps know from previous experience, the extent of the major random and systematic errors occurring. The customer supplying the sample may well want this information incorporated in a single statement, giving the range within which the true concentration is reasonably likely to lie. This range, which should be given with a probability (e.g. ‘it is 95% probable that the concentration lies between … and …’), is called the uncertainty of the measurement. Uncertainty estimates are now very widely used in analytical chemistry and are discussed in more detail in Chapter 4.






1.4 Random and systematic errors in titrimetric analysis

The students’ titration experiments showed that random and systematic errors can occur independently of one another, and thus presumably arise at different stages of an experiment. A complete titrimetric analysis can be summarised by the following steps:



	Making up a standard solution of one of the reactants. This involves (a) weighing a weighing bottle or similar vessel containing some solid material, (b) transferring the solid material to a standard flask and weighing the bottle again to obtain by subtraction the weight of solid transferred (weighing by difference), and (c) filling the flask up to the mark with water (assuming that an aqueous titration is to be used).

	Transferring an aliquot of the standard material to a titration flask by filling and draining a pipette properly.

	Titrating the liquid in the flask with a solution of the other reactant, added from a burette. This involves (a) filling the burette and allowing the liquid in it to drain until the meniscus is at a constant level, (b) adding a few drops of indicator solution to the titration flask, (c) reading the initial burette volume, (d) adding liquid to the titration flask from the burette until the end point is adjudged to have been reached, and (e) measuring the final level of liquid in the burette.




So the titration involves some ten separate steps, the last seven of which are normally repeated several times, giving replicate results. In principle, we should examine each step to evaluate the random and systematic errors that might occur. In practice, it is simpler to examine separately those stages which utilise weighings (steps 1(a) and 1(b)), and the remaining stages involving the use of volumetric equipment. (It is not intended to give detailed descriptions of the techniques used in the various stages. Similarly, methods for calibrating weights, glassware, etc. will not be given.) The tolerances of weights used in the gravimetric steps, and of the volumetric glassware, may contribute significantly to the experimental errors. Specifications for these tolerances are issued by such bodies as the British Standards Institute (BSI) and the American Society for Testing and Materials (ASTM). If a weight or a piece of glassware is within the tolerance limits, but not of exactly the correct weight or volume, a systematic error will arise. Thus, if the standard flask actually has a volume of 249.95 ml, this error will be reflected in the results of all the experiments based on the use of that flask. Repetition will not reveal the error: in each replicate the volume will be assumed to be 250.00 ml when it is actually less.

Weighing procedures are normally associated with very small random errors. In routine laboratory work a ‘four-place’ balance is commonly used, and the random error involved should not be greater than ca. 0.0002 g (the next chapter describes the terms used to express random errors). Since the quantity being weighed is normally about 1 g or more, the random error as a percentage of that weight is not more than 0.02%. A good standard material for volumetric analysis should (amongst other properties) have as high a formula weight as possible, to minimise these random weighing errors when a solution of a specified molarity is being made up.

Systematic errors in weighings can be significant, arising from adsorption of moisture on the surface of the weighing vessel; corroded or contaminated weights; and the buoyancy effect of the atmosphere, acting to different extents on objects of different density. Simple experimental precautions can be taken to minimise these systematic weighing errors. Weighing by difference (see above) cancels systematic errors arising from moisture and other contaminants on the surface of the bottle. (See also Section 2.12.) If such precautions are taken, the errors in the weighing steps will be small, and in most volumetric experiments weighing errors will probably be negligible compared with the volumetric ones. Hence gravimetric methods are usually used for the calibration of items of volumetric glassware, by weighing (in standard conditions) the water that they contain or deliver; and standards for top-quality calibration experiments (Chapter 5) are made up by weighing rather than volume measurements.

Most of the random errors in volumetric procedures arise in the use of volumetric glassware. In filling a 250 ml standard flask to the mark, the error (i.e. the distance between the meniscus and the mark) might be about ±0.03 cm in a flask neck of diameter ca. 1.5 cm. This corresponds to a volume error of about 0.05 ml – only 0.02% of the total volume of the flask. The error in reading a burette (the conventional type graduated in 0.1ml divisions) is perhaps 0.01–0.02 ml. Each titration involves two such readings (the errors of which are not simply additive – see Chapter 2); if the titration volume is ca. 25 ml, the percentage error is again very small. The experiment should be arranged so that the volume of titrant is not too small (say not less than 10 ml), otherwise such errors may become appreciable. (This precaution is analogous to choosing a standard compound of high formula weight to minimise the weighing error.) Even though a volumetric analysis involves several steps, each involving a piece of volumetric glassware, the random errors should evidently be small if the experiments are performed with care. In practice a good volumetric analysis should have a relative standard deviation (see Chapter 2) of not more than about 0.1%. Until fairly recently such precision was not normally attainable in instrumental analysis methods, and it is still not very common.
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Student  Results (ml) Average (ml) Comment

A 1008 1011 1009 1010 1012 10.10 Precise, biased

B 9.88 1014 1002 9.80 10.21 10.01 Imprecise, unbiased
c 1019 979 969 1005 978  9.90 Imprecise, biased
D 10.04 9.98 1002 9.97 10.04 10.01 Precise, unbiased






