

 [image: The figure shows the cover page of a book titled Modern Systems Analysis and Design, tenth edition, global edition, written by Joseph S. Valacich and Joey F. George.]

 The cover picture is of a red ladybug on a black motherboard. The Pearson logo is at the lower left corner of the page, and an icon of the globe with the text GLOBAL EDITION is at the upper right corner of the page.

Modern Systems Analysis and Design

TENTH EDITION, GLOBAL EDITION

Joseph S. Valacich

University of Arizona

Joey F. George

Iowa State University

 [image: Pearson logo]

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Dubai • Singapore • Hong Kong Tokyo • Seoul • Taipei • New Delhi • Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

		
			
				
					
						
							
								
									
										
											Product Management: Yajnaseni Das, Paromita Banerjee, Kajori Chattopadhyay, and Shreya Sharma

									

									
										
											Content Production: Nitin Shankar

									

									
										
											Product Marketing: Joanne Dieguez and Ellie Nicholls

									

									
										
											Rights and Permissions: Anjali Singh and Ashish Vyas

									

									
										
											Cover and Chapter Opening Image: eamesBot/Shutterstock

									

									
										
											Multi-use Interior Images: Fast food icon by MriMan/Shutterstock and cupboard icon by Ihar Yanouski/Shutterstock.

									

									
										Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.

									

									
										
											Pearson Education Limited
										

										KAO Two

										KAO Park

										Hockham Way

										Harlow, Essex

										CM17 9SR

										United Kingdom

										and Associated Companies throughout the world

									

									
										
											Visit us on the World Wide Web at: www.pearson.com/uk

									

									
										© Pearson Education Limited 2025

									

									
										The rights of Joseph Valacich, Joey George, and Jeffrey Hoffer to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

									

									
										Authorized adaptation from the United States edition, entitled Modern Systems Analysis and Design, Tenth Edition, ISBN 978-0-13-818019-5, by Joseph Valacich, Joey George, and Jeffrey Hoffer published by Pearson Education © 2025.

									

									
										All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

									

									
										Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect, or consequential damages or any damages whatsoever resulting from loss of use, data, or profits, whether in an action of contract, negligence, or other tortious action, arising out of or in connection with the use or performance of information available from the services.

									

									
										The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

									

									
										Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

									

									
										PEARSON, ALWAYS LEARNING and PEARSON ETEXTBOOK are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

									

									
										Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors.

									

									
										This eBook may be available as a standalone product or integrated with other Pearson digital products like MyLab and Mastering. This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.

									

									
										
											ISBN 10 (Print): 1-292-46851-3

									

									
										
											ISBN 13 (Print): 978-1-292-46851-8

									

									
										
											ISBN 13 (Channel Partner eBook): 978-1-292-73656-3

									

									
										
											British Library Cataloguing-in-Publication Data
										

									

									
										A catalogue record for this book is available from the British Library

									

									
										
									

								

							

						

					

				

			

		

		
			
				

			

		

	

To my family. Thanks for the love and support.

—Joe

To my parents, John and Loree George.

—Joey

 Preface

Description

Modern Systems Analysis and Design, Tenth Edition, Global Edition, covers the concepts, skills, methodologies, techniques, tools, and perspectives essential for systems analysts to successfully develop information systems. The primary target audience is upper-division undergraduates in a management information systems (MIS) or computer information systems curriculum; a secondary target audience is MIS majors in MBA and MS programs. Although not explicitly written for the junior college and professional development markets, this book can also be used by these programs.

We have over 65 years of combined teaching experience in systems analysis and design and have used that experience to create this newest edition of Modern Systems Analysis and Design. We provide a clear presentation of the concepts, skills, and techniques that students need to become effective systems analysts who work with others to create information systems for businesses. We use the systems development life cycle (SDLC) model as an organizing tool throughout the book to provide students with a strong conceptual and systematic framework. The SDLC in this edition has five phases and a circular design.

With this text, we assume that students have taken an introductory course on computer systems and have experience designing programs in at least one programming language. We review basic system principles for those students who have not been exposed to the material on which systems development methods are based. We also assume that students have a solid background in computing literacy and a general understanding of the core elements of a business, including basic terms associated with the production, marketing, finance, and accounting functions.

New to the Tenth Edition

The following features are new to the Tenth Edition:

	
Organization. We have reduced the number of chapters from 14 to 12 by dropping the old Chapter 12, “Designing Distributed and Internet Systems,” and by combining Chapters 13 and 14 on implementation and maintenance into a single chapter. We no longer include the appendices on object-oriented systems analysis and design (OOSAD) and the Unified Modeling Language (UML). However, the contents of what had been Appendix 7C on Business Process Modeling Notation have been moved into the body of Chapter 7 and the other four appendices are available at the instructor resource center. The goals in the reorganization were to eliminate dated content and to streamline the book to better fit the reading habits of today’s undergraduate students without sacrificing essential content.

	
Dropped material. In our efforts to keep the book current and to streamline it, the coverage of some things was dropped from this edition. The following sections have been dropped from individual chapters: OOSAD in Chapter 1, reuse in Chapter 2, Joint Application Design (JAD) in Chapter 6, and website maintenance and the section on the role of automated development tools in maintenance from what is now Chapter 12 (they had been in Chapter 14 on maintenance). Based on feedback we received from current users of the ninth edition, we also dropped the end-of-chapter case featuring Petrie Electronics.

	
Updated content. Throughout the book, the content in each chapter has been updated where appropriate. For example, we have updated the section “Agile in Practice” in Chapter 1 and expanded our coverage of multiple topics in Chapter 2. Chapter 12 includes an updated section on data breaches and an enhanced example of systems implementation failure. All screenshots come from current versions of leading software products. We have also made a special effort to update our reference lists, purging out-of-date material and including current references. Throughout the book, figures, tables, and related content have been updated and refreshed.

	
Updated illustrations of technology. Screen captures have been updated throughout the text to show examples using the latest versions of programming and Internet development environments (including the latest versions of Visual Studio, Visio, and Microsoft Office) and user interface designs. Many references to Websites are provided for students to stay current with technology trends that affect the analysis and design of information systems.

Themes of Modern Systems Analysis and Design

	
 Systems development is firmly rooted in an organizational context. The successful systems analyst requires a broad understanding of organizations, organizational culture, and organizational operations.

	
 Systems development is a practical field. Coverage of current practices as well as accepted concepts and principles is essential in a textbook.

	
 Systems development is a profession. Standards of practice, a sense of continuing personal development, ethics, and a respect for and collaboration with the work of others are general themes in the textbook.

	
 Systems development has significantly changed with the explosive growth in databases, data-driven systems architectures, the Internet, and agile methodologies. Systems development and database management can be and should be taught in a highly coordinated fashion. The text is compatible with the Hoffer, Ramesh, and Topi database text Modern Database Management, Thirteenth Edition, also published by Pearson. The proper linking of these two textbooks is a strategic opportunity to meet the needs of the IS academic field.

	
 Success in systems analysis and design requires not only skills in methodologies and techniques, but also project management skills for managing time, resources, and risks. Thus, learning systems analysis and design requires a thorough understanding of the process as well as the techniques and deliverables of the profession.

Given these themes, this textbook emphasizes the following:

	A business rather than a technology perspective;

	the role, responsibilities, and mindset of the systems analyst as well as the systems project manager rather than those of the programmer or business manager; and

	the methods and principles of systems development rather than the specific tools or tool-related skills of the field.

Distinctive Features

The following are some of the distinctive features of Modern Systems Analysis and Design:

	
 This book is organized in parallel to the Hoffer, Ramesh, and Topi database text, Modern Database Management, Thirteenth Edition (2021), which will facilitate consistency of frameworks, definitions, methods, examples, and notations to better support systems analysis and design and database courses adopting both texts. Even with the strategic compatibilities between this text and Modern Database Management, each of these books is designed to stand alone as a market leader.

	
 The grounding of systems development in the typical architecture for systems in modern organizations, including database management and Web-based systems.

	
 A clear linkage of all dimensions of systems description and modeling—process, decision, and data modeling—into a comprehensive and compatible set of systems analysis and design approaches. Such a broad coverage is necessary so that students understand the advanced capabilities of the many systems development methodologies and tools that are automatically generating a large percentage of code from design specifications.

	
 Extensive coverage of oral and written communication skills, including systems documentation, project management, team management, and a variety of systems development and acquisition strategies (e.g., life cycle, prototyping, object orientation, process management, reengineering, and agile methodologies).

	
 Consideration of standards for the methodologies of systems analysis and the platforms on which systems are designed.

	
 Discussion of systems development and implementation within the context of change management, conversion strategies, and organizational factors in systems acceptance.

	
 Careful attention to human factors in systems design that emphasize usability in both traditional and mobile user interface contexts.

Pedagogical Features

The pedagogical features of Modern Systems Analysis and Design reinforce and apply the key content of the book.

Two Illustrative Fictional Cases

The text features two fictional cases, described in the following text.

Pine Valley Furniture (PVF): In addition to demonstrating an electronic business-to-consumer shopping Website, several other systems development activities from PVF are used to illustrate key points. PVF is introduced in Chapter 3 and revisited throughout the book. As key systems development life cycle concepts are presented, they are applied and illustrated with this descriptive case. For example, in Chapter 5 we explore how PVF plans a development project for a customer tracking system. A margin icon identifies the location of the case segments.

 PINE
VALLEY
FURNITURE

 [image: The Pine Valley Furniture logo.]

Hoosier Burger (HB): This second illustrative case is introduced in Chapter 7 and revisited throughout the book. HB is a fictional fast-food restaurant in Bloomington, Indiana. We use this case to illustrate how analysts would develop and implement an automated food-ordering system. A margin icon identifies the location of the case segments.

 Hoosier Burger

 [image: An illustration shows a meal containing a burger, french fries, and a cold drink in a paper bottle.]

End-of-Chapter Material

We developed an extensive selection of end-of-chapter materials that are designed to accommodate various learning and teaching styles.

	
Chapter Summary. Reviews the major topics of the chapter and previews the connection of the current chapter with future ones.

	
Key Terms. In the etext, the key terms pop out with the definitions and in the print book they appear as glossary at the end of the book.

	
Match the Following. Designed as a self-test feature, students can attempt the matching activities at the end of each objective and at the end of the chapter.

	
Review Questions. Test students’ understanding of key concepts.

	
Problems and Exercises. Test students’ analytical skills and require them to apply key concepts.﻿

	
Field Exercises. Give students the opportunity to explore the practice of systems analysis and design in organizations.

	
Margin Term Definitions. Each key term and its definition appear in the margin. Glossaries of terms and acronyms appear at the back of the book.

	
Multiple Choice Questions. Test students’ conceptual clarity.

	
References. References are located at the end of each chapter. The total number of references in this text amounts to over 100 books, journals, and Websites that can provide students and faculty with additional coverage of topics.

Using This Text

As stated earlier, this book is intended for mainstream systems analysis and design courses. It may be used in a one-semester course on systems analysis and design or over two quarters (first in a systems analysis and then in a systems design course). Because this book text parallels Modern Database Management, chapters from this book and from Modern Database Management can be used in various sequences suitable for your curriculum. The book will be adopted typically in business schools or departments, not in computer science programs. Applied computer science or computer technology programs may also adopt the book.

The typical faculty member who will find this book most interesting is someone who

	has a practical rather than technical or theoretical orientation;

	has an understanding of databases and the systems that use databases; and

	uses practical projects and exercises in their courses.

More specifically, academic programs that are trying to better relate their systems analysis and design and database courses as part of a comprehensive understanding of systems development will be especially attracted to this book.

The outline of the book generally follows the systems development life cycle, which allows for a logical progression of topics; however, it emphasizes that various approaches are used in practice, so what appears to be a logical progression often is a more cyclic process. Part One provides an overview of systems development and previews the remainder of the book. Part One also introduces students to the many sources of software that they can draw on to build their systems and to manage projects. The remaining three parts provide thorough coverage of the five phases of a generic systems development life cycle, interspersing coverage of alternatives to the SDLC as appropriate. Some chapters may be skipped depending on the orientation of the instructor or the students’ background. For example, Chapter 3 (“Managing the Information Systems Project”) can be skipped or quickly reviewed if students have completed a course on project management. Chapter 4 (“Identifying and Selecting Systems Development Projects”) can be skipped if the instructor wants to emphasize systems development once projects are identified or if there are fewer than 15 weeks available for the course. Chapters 8 (“Structuring System Data Requirements”) and 9 (“Designing Databases”) can be skipped or quickly scanned (as a refresher) if students have already had a thorough coverage of these topics in a previous database or data structures course. Finally, the maintenance aspects of Chapter 12 (“System Implementation and Maintenance”) can be skipped if the topic is beyond the scope of your course.

Because the material is presented within the flow of a systems development project, it is not recommended that you attempt to use the chapters out of sequence, with a few exceptions: Chapter 9 (“Designing Databases”) can be taught after Chapters 10 (“Designing Forms and Reports”) and 11 (“Designing Interfaces and Dialogues”), but Chapters 10 and 11 should be taught in sequence.

Instructor Resources

At the Instructor Resource Center, www.pearson.com/en-gb, instructors can easily register to gain access to a variety of instructor resources available with this text in downloadable format. If assistance is needed, our dedicated technical support team is ready to help with the media supplements that accompany this text. Visit http://support.pearson.com/getsupport for answers to frequently asked questions and toll-free user support phone numbers.

The following supplements are available with this text:

	Instructor’s Manual

	Test Bank

	TestGen® Computerized Test Bank

	PowerPoint Presentation

Acknowledgments

The authors have been blessed by considerable assistance from many people on all aspects of preparation of this text and its supplements. We are, of course, responsible for what eventually appears between the covers, but the insights, corrections, contributions, and prodding of others have greatly improved our manuscript. Over the years, dozens of people have reviewed the various editions of this textbook. Their contributions have stimulated us, frequently prompting us to include new topics and innovative pedagogy. We greatly appreciate the efforts of the many faculty and practicing systems analysts who have reviewed this text.

We extend a special note of thanks to Jeremy Alexander, who was instrumental in conceptualizing and writing the PVF WebStore feature that appears in Chapters 4 through 12. The addition of this feature has helped improve those chapters.

We are also indebted to our undergraduate and Masters students, who have given us many helpful comments as they worked with drafts of this text, and our thanks go to Fred McFadden (University of Colorado, Colorado Springs), Mary Prescott (University of South Florida), Ramesh Venkataraman (Indiana University), and Heikki Topi (Bentley University) for their assistance in coordinating this text with its companion book, Modern Database Management, also by Pearson Education.

Finally, we have been fortunate to work with a large number of creative and insightful people at Pearson, who have added much to the development, format, and production of this text. We have been thoroughly impressed with their commitment to this text and to the IS education market. These people include: Jenifer Niles (Manager, Commercial Product Management), Rudrani Mukherjee (Senior Content Producer) at Pearson, and Harish Srinivas at Integra. The writing of this text has involved thousands of hours of time from the authors and from all of the people who have contributed over the years. Although our names will be visibly associated with this book, we know that much of the credit goes to dozens of individuals and organizations for any success it might achieve. It is important for the reader to recognize all the individuals and organizations that have been committed to the preparation and production of this book.

Joseph S. Valacich, Tucson, Arizona

Joey F. George, Morgan Hill, California

Acknowledgments for the Global Edition

Pearson would like to acknowledge and thank the following for the Global Edition:

Contributors

Sahil Raj, Punjabi University

Petter Terenius, Uppsala University

Reviewers

Michael Chau, Hong Kong University

Eddren Law Yi Feng, Universiti Tenaga Nasional

Nash Milic, American University of Sharjah

Bernd Schenk, University of Liechtenstein

Yuen Yee Yen, Multimedia University

 [image: The figure shows a red ladybug on a black motherboard.]

Part One

Foundations for Systems Development

Chapter 1

The Systems Development Environment

Chapter 2

The Origins of Software

Chapter 3

Managing the Information Systems Project

Overview Part One: Foundations for Systems Development

You are beginning a journey that will enable you to build on every aspect of your education and experience. Becoming a systems analyst is not a goal; it is a path to a rich and diverse career that will allow you to exercise and continue to develop a wide range of talents. We hope that this introductory part of the text helps open your mind to the opportunities of the systems analysis and design field and to the engaging nature of systems work.

Chapter 1 shows you what systems analysis and design is all about and how it has evolved over the past several decades. As businesses and systems have become more sophisticated and more complex, there has been an increasing emphasis on speed in systems analysis and design. Systems development began as an art, but most businesspeople soon realized this was not a tenable long-term solution to developing systems to support business processes. Systems development became more structured and more like engineering, and managers stressed the importance of planning, project management, and documentation. The focus of systems analysis and design then shifted to agile development. The evolution of systems analysis and design and the current focus on agility are explained in Chapter 1. It is also important, however, that you remember that systems analysis and design exists within a multifaceted organizational context that involves other organizational members and external parties. Understanding systems development requires an understanding not only of each technique, tool, and method but also of how these elements complement and support each other within an organizational setting.

As you read this book, you’ll also discover that the systems analysis and design field is constantly adapting to new situations due to a strong commitment to constant improvement. Our goal in this book is to provide you with a mosaic of the skills needed to work effectively in any environment where you may find yourself, armed with the knowledge to determine the best practices for that situation and argue for them effectively.

Chapter 2 presents an introduction to the many sources from which software and software components can be obtained. Back when systems analysis and design was an art, all systems were written from scratch by in-house experts. Businesses had little choice. Now in-house development is rare, so it becomes crucial that systems analysts understand the software industry and the many different sources of software. Chapter 2 provides an initial map of the software industry landscape and explains most of the many choices available to systems analysts.

Chapter 3 addresses a fundamental characteristic of life as a systems analyst: working within the framework of projects with constrained resources. All systems-related work demands attention to deadlines, working within budgets, and coordinating the work of various people. The very nature of the systems development life cycle (SDLC) implies a systematic approach to a project, which is a group of related activities leading to a final deliverable. Projects must be planned, started, executed, and completed. The planned work of the project must be represented so that all interested parties can review and understand it. In your job as a systems analyst, you will have to work within the schedule and other project plans, and thus it is important to understand the management process controlling your work.

 [image: The figure shows a red ladybug on a black motherboard.]

Chapter 1

The Systems Development Environment

Learning Objectives

After studying this chapter, you should be able to

		
1.1define information systems analysis and design;

		
1.2describe the information systems development life cycle (SDLC); and

		
1.3describe the agile methodologies, eXtreme Programming, and Scrum.

Introduction

The world runs on information systems. Information systems form the foundation for every major organizational activity and industry, from retail to healthcare to manufacturing to logistics. Systems consist of computer hardware, software, networks, and the people who oversee their operation and the people who use them. Information systems analysis and design is the complex, challenging, and stimulating organizational process that a team of business and systems professionals uses to develop and maintain information systems. Although advances in information technology continually give us new capabilities, the analysis and design of information systems is driven from an organizational perspective. An organization might consist of a whole enterprise, specific departments, or individual work groups. Organizations can respond to and anticipate problems and opportunities through innovative use of information technology. Information systems analysis and design is therefore an organizational improvement process. Systems are built and rebuilt for organizational benefits. Benefits result from adding value during the process of creating, producing, and supporting the organization’s products and services. Thus, the analysis and design of information systems is based on your understanding of the organization’s objectives, structure, and processes as well as your knowledge of how to exploit information technology for advantage.

Information systems support almost everything organizations do, whether the systems are developed for internal use, for exchanges with business partners, or for interactions with customers. Networks, especially the Internet and the World Wide Web, are crucial for connecting organizations with their partners and their customers. The overwhelming majority of business use of the Web is business-to-business applications. These applications run the gamut of everything businesses do, including transmitting orders and payments to suppliers, fulfilling orders and collecting payments from customers, maintaining business relationships, and establishing electronic marketplaces where businesses can shop online for the best deals on resources they need for assembling their products and services. Regardless of the technology involved, understanding the business and how it functions is the key to successful systems analysis and design, even in the fast-paced, technology-driven environment that organizations find themselves in today.

With the challenges and opportunities of dealing with rapid advances in technology, it is difficult to imagine a more exciting career choice than information technology (IT), and systems analysis and design is a big part of the IT landscape. Furthermore, analyzing and designing information systems will give you the chance to understand organizations at a depth and breadth that might take many more years to accomplish in other careers.

An important (but not the only) result of systems analysis and design is application software, software designed to support a specific organizational function or process, such as inventory management, payroll, or market analysis. In addition to application software, the total information system includes the hardware and systems software on which the application software runs, documentation and training materials, the specific job roles associated with the overall system, controls, and the people who use the software along with their work methods. Although we will address all of these various dimensions of the overall system, we will emphasize application software development—your primary responsibility as a systems analyst.

In the early years of computing, analysis and design was considered an art or a craft. Rapid growth in the need for systems in the 1970s resulted in a highly structured approach to systems analysis and design. While the structured approach is still in use, current approaches focus on rapid and constant software delivery, managed by small teams of talented developers. This approach, called agile development, has become standard for most organizations that develop systems. In fact, 94% of companies report that they practice agile in their systems development efforts (Digital.ai, 2021). Our goal is to help you develop the knowledge and skills needed to understand and follow structured and agile processes. Central to analysis and design (and to this book) are various methodologies, techniques, and tools that have been developed, tested, and widely used over the years to assist people like you during systems analysis and design.

Methodologies are comprehensive, multiple-step approaches to systems development that will guide your work and influence the quality of your final product—the information system. A methodology adopted by an organization will be consistent with its general management style (e.g., an organization’s orientation toward consensus management will influence its choice of systems development methodology). Most methodologies incorporate several development techniques.

Techniques are particular processes that you, as an analyst, will follow to help ensure that your work is well thought out, complete, and comprehensible to others on your project team. Techniques provide support for a wide range of tasks, including gathering information to determine what your system should do, planning and managing the activities in a systems development project, diagramming the system’s logic, and designing the system’s interface and outputs.

Tools are typically computer programs that make it easy to use and benefit from techniques and to faithfully follow the guidelines of the overall development methodology. To be effective, techniques and tools must both be consistent with an organization’s systems development methodology. Techniques and tools must make it easy for systems developers to conduct the steps called for in the methodology. These three elements—methodologies, techniques, and tools—work together to form an organizational approach to systems analysis and design (see Figure 1-1).

 Figure 1-1
 An organizational approach to systems analysis and design is driven by methodologies, techniques, and tools.

 [image: A triangular model shows methodologies as books, tools as a wrench, cutter, and other such equipment, and techniques as a photograph of a man working on something.]

 (Sources: Top: Shutterstock; Left: Benchart/Shutterstock; Right: Lifestyle Graphic/Shutterstock)

Although many people in organizations are responsible for systems analysis and design, in most organizations the systems analyst has the primary responsibility. When you begin your career in systems development, you will most likely begin as a systems analyst or as a business analyst. The primary role of a systems analyst is to study the problems and needs of an organization in order to determine how people, methods, and information technology can best be combined to bring about improvements in the organization. A systems analyst helps system users and other business managers define their requirements for new or enhanced information services. As such, a systems analyst is an agent of change and innovation.

In the rest of this chapter, we will examine the systems approach to analysis and design. You will learn how systems analysis and design has changed over the decades as computing has become more central to business. You will learn about the systems development life cycle, which provides the basic overall structure of the systems development process and of this book. This chapter ends with a discussion of some of the methodologies, techniques, and tools created to support the systems development process. We consider both the structured and the agile approaches to systems analysis and design.

A Modern Approach to Systems Analysis and Design

The analysis and design of computer-based information systems began in the 1950s. Since then, the development environment has changed dramatically, driven by organizational needs as well as by rapid changes in the technological capabilities of computers. In the 1950s, development focused on the processes the software performed. Because computer power was a critical resource, efficiency of processing became the main goal. Computers were large, expensive, and not very reliable. Emphasis was placed on automating existing processes, such as purchasing or payroll, often within single departments. All applications had to be developed in machine language or assembly language, and they had to be developed from scratch because there was no software industry. Because computers were so expensive, computer memory was also at a premium, so system developers conserved as much memory as possible for data storage.

The first procedural, or third-generation, computer programming languages did not become available until the beginning of the 1960s. Computers were still large and expensive, but the 1960s saw important breakthroughs in technology that enabled the development of smaller, faster, less expensive computers—minicomputers—and the beginnings of the software industry. Most organizations still developed their applications from scratch using their in-house development staff. Systems development was more an art than a science. This view of systems development began to change in the 1970s, however, as organizations started to realize how expensive it was to develop customized information systems for every application. Systems development came to be more disciplined as many people worked to make it more like engineering. Early database management systems, using hierarchical and network models, helped bring discipline to the storage and retrieval of data. The development of database management systems helped shift the focus of systems development from processes first to data first.

The 1980s were marked by major breakthroughs in computing in organizations, as microcomputers became key organizational tools. The software industry expanded greatly as more and more people began to write off-the-shelf software for microcomputers. Developers began to write more and more applications in fourth-generation languages, which, unlike procedural languages, instructed a computer on what to do instead of how to do it. Computer-aided software engineering (CASE) tools were developed to make systems developers’ work easier and more consistent. As computers continued to get smaller, faster, and cheaper and as the operating systems for computers moved away from line prompt interfaces to windows- and icon-based interfaces, organizations moved to applications with more graphics. Organizations developed less software in-house and bought relatively more from software vendors. The systems developer’s job went through a transition from builder to integrator.

The systems development environment of the late 1990s focused on systems integration. Developers used visual programming environments, such as Visual Basic, to design the user interfaces for systems that run on client/server platforms. The database, which may be relational or object-oriented, and which may have been developed using software from firms such as Oracle, resided on the server. In many cases, the application logic resided on the same server. Alternatively, an organization may have decided to purchase its entire enterprise-wide system from companies such as SAP AG or Oracle. Enterprise-wide systems are large, complex systems that consist of a series of independent system modules. Developers assemble systems by choosing and implementing specific modules. Starting in the middle years of the 1990s, more and more systems development efforts focused on the Internet, especially the Web.

Today there is continued focus on developing systems for the Internet and for firms’ intranets and extranets. More and more, systems implementation involves a three-tier design, with the database on one server, the application on a second server, and client logic located on user machines. Another important development is the move to wireless system components. Wireless devices can access Web-based applications from almost anywhere. Finally, the trend continues toward assembling systems from programs and components purchased off the shelf. In many cases, organizations do not develop the application in-house. They don’t even run the application in-house, choosing instead to use the application on a per-use basis by accessing it through the cloud.

Developing Information Systems and the Systems Development Life Cycle

Whether they rely on structured or agile approaches, or on a hybrid, most organizations find it beneficial to use a standard set of steps, called a systems development methodology, to develop and support their information systems. Like many processes, the development of information systems often follows a life cycle. For example, a commercial product follows a life cycle in that it is created, tested, and introduced to the market. Its sales increase, peak, and decline. Finally, the product is removed from the market and replaced by something else. The systems development life cycle (SDLC) is a common methodology for systems development in many organizations; it features several phases that mark the progress of the systems analysis and design effort. Every textbook author and information systems development organization uses a slightly different life-cycle model, with anywhere from 3 to almost 20 identifiable phases.

The life cycle can be thought of as a circular process in which the end of the useful life of one system leads to the beginning of another project that will develop a new version or replace an existing system altogether (see Figure 1-2). At first glance, the life cycle appears to be a sequentially ordered set of phases, but it is not. The specific steps and their sequence are meant to be adapted as required for a project, consistent with management approaches. For example, in any given SDLC phase, the project can return to an earlier phase if necessary. Similarly, if a commercial product does not perform well just after its introduction, it may be temporarily removed from the market and improved before being reintroduced. In the SDLC, it is also possible to complete some activities in one phase in parallel with some activities of another phase. Sometimes the life cycle is iterative; that is, phases are repeated as required until an acceptable system is found. Some people consider the life cycle to be a spiral, in which we constantly cycle through the phases at different levels of detail (see Figure 1-3). However conceived, the systems development life cycle used in an organization is an orderly set of activities conducted and planned for each development project. The skills required of a systems analyst apply to all life-cycle models. Software is the most obvious end product of the life cycle; other essential outputs include documentation about the system and how it was developed, as well as training for users.

 Figure 1-2
 Systems development life cycle

 [image: A cyclic flow diagram consists of the five orders of Planning, analysis, design, implementation, and maintenance. Arrows indicate transitions between phases.]

 Figure 1-3
 Evolutionary model

 [image: A diagram illustrates the systems development life cycle as a spiral evolutionary process.]

 The spiral S D L C diagram consists of five following phases—planning, analysis, design, implementation, and maintenance. An arrow indicates the clockwise direction of the transitions between these phases, starting at the planning stage from the center of the spiral, or its first iteration, and completing the spiral at the maintenance stage on its fourth iteration. A go, no-go axis is directed across the center of the spiral. It separates the planning and analysis phases as well as the implementation and maintenance phases.

Every medium-to-large corporation and every custom software producer will have its own specific life cycle or systems development methodology in place. Even if a particular methodology does not look like a cycle, you will probably discover that many of the SDLC steps are performed and SDLC techniques and tools are used. Learning about systems analysis and design from the life-cycle approach will serve you well no matter which systems development methodology you use.

When you begin your first job, you will likely spend several weeks or months learning your organization’s SDLC and its associated methodologies, techniques, and tools. In order to make this book as general as possible, we follow a generic life-cycle model, as described in more detail in Figure 1-4. Notice that our model is circular. We use this SDLC as one example of a methodology but, more important, as a way to arrange the topics of systems analysis and design. Thus, what you learn in this book you can apply to almost any life cycle you might follow, regardless of the approach it is based on. As we describe this SDLC throughout the book, you will see that each phase has specific outcomes and deliverables that feed important information to other phases. At the end of each phase, a systems development project reaches a milestone, and as deliverables are produced, they are often reviewed by parties outside the project team. In the rest of this section, we provide a brief overview of each SDLC phase. At the end of the section, we summarize this discussion in a table that lists the main deliverables or outputs from each SDLC phase.

 Figure 1-4
 SDLC-based guide to this book

 [image: A diagram illustrates S D L C based guide to this book.]

 The S D L C-based guide to this book consists of five phases starting at the top, with each phase corresponding to the following chapters within this book. The planning phase, chapters 4 through 5. Analysis phase, chapters 6 through 8. Design phase, chapters 9 through 12. The implementation phase, chapter 13. Maintenance phase, chapter 14. Arrows indicate transitions between these phases.

The first phase in the SDLC is planning. In this phase, someone identifies the need for a new or enhanced system. In larger organizations, this recognition may be part of a corporate and systems planning process. Information needs of the organization as a whole are examined, and projects to meet these needs are proactively identified. The organization’s information system needs may result from requests to deal with problems in current procedures, from the desire to perform additional tasks, or from the realization that information technology could be used to capitalize on an existing opportunity. These needs can then be prioritized and translated into a plan for the information systems department, including a schedule for developing new major systems. In smaller organizations (as well as in large ones), determination of which systems to develop may be affected by ad hoc user requests submitted as the need for new or enhanced systems arises as well as from a formalized information planning process. In either case, during project identification and selection, an organization determines whether resources should be devoted to the development or enhancement of each information system under consideration. The outcome of the project identification and selection process is a determination of which systems development projects should be undertaken by the organization, at least in terms of an initial study.

Two additional major activities are also performed during the planning phase: the formal, yet still preliminary, investigation of the system problem or opportunity at hand and the presentation of reasons why the system should or should not be developed by the organization. A critical step at this point is determining the scope of the proposed system. The project leader and initial team of systems analysts also produce a specific plan for the proposed project the team will follow using the remaining SDLC steps. This baseline project plan customizes the standardized SDLC and specifies the time and resources needed for its execution. The formal definition of a project is based on the likelihood that the organization’s information systems department is able to develop a system that will solve the problem or exploit the opportunity and determine whether the costs of developing the system outweigh the benefits it could provide. The final presentation of the business case for proceeding with the subsequent project phases is usually made by the project leader and other team members to someone in management or to a special management committee with the job of deciding which projects the organization will undertake.

The second phase in the SDLC is analysis. During this phase, the analyst thoroughly studies the organization’s current procedures and the information systems used to perform organizational tasks. Analysis has two subphases. The first is requirements determination. In this subphase, analysts work with users to determine what the users want from a proposed system. The requirements determination process usually involves a careful study of any current systems, manual and computerized, that might be replaced or enhanced as part of the project. In the second part of analysis, analysts study the requirements and structure them according to their interrelationships and eliminate any redundancies. The output of the analysis phase is a description of (but not a detailed design for) the alternative solution recommended by the analysis team. Once the recommendation is accepted by those with funding authority, the analysts can begin to make plans to acquire any hardware and system software necessary to build or operate the system as proposed.

The third phase in the SDLC is design. During design, analysts convert the description of the recommended alternative solution into logical and then physical system specifications. Analysts aid in the design of all aspects of the system, from input and output screens to reports, databases, and computer processes. That part of the design process that is independent of any specific hardware or software platform is referred to as logical design. Theoretically, the system could be implemented on any hardware and systems software. The idea is to make sure that the system functions as intended. Logical design concentrates on the business aspects of the system and tends to be oriented to a high level of specificity.

In a traditional structured approach, once the overall high-level design of the system is worked out, the analysts begin turning logical specifications into physical ones. This process is referred to as physical design. As part of physical design, analysts design the various parts of the system to perform the physical operations necessary to facilitate data capture, processing, and information output. This can be done in many ways, from creating a working model of the system to be implemented to writing detailed specifications describing all the different parts of the system and how they should be built. In many cases, the working model becomes the basis for the actual system to be used. During physical design, the analyst team must determine many of the physical details necessary to build the final system, from the programming language the system will be written in, to the database system that will store the data, to the hardware platform on which the system will run. Often the choices of language, database, and platform are already made by the organization or by the client, and at this point these information technologies must be taken into account in the physical design of the system. In a structured approach, the final product of the design phase is the physical system specifications in a form ready to be turned over to programmers and other system builders for construction. In an agile approach, which you will read more about in the following sections, logical and physical design become part of the same iterative process, and detailed specifications are replaced with multiple working releases of the software.

The fourth phase in the SDLC is implementation. In a structured process, the physical system specifications, whether in the form of a detailed model or as detailed written specifications, are turned over to programmers as the first part of the implementation phase. During implementation, analysts turn system specifications into a working system that is tested and then put into use. Implementation includes coding, testing, and installation. During coding, programmers write the programs that make up the system. During testing, programmers and analysts test individual programs and the entire system in order to find and correct errors. Following an agile approach, programs are tested as soon as they are written, leading to functional software in a short period of time. During installation, the new system becomes part of the daily activities of the organization. Application software is installed, or loaded, on existing or new hardware, and users are introduced to the new system and trained. Testing and installation should be planned for as early as the project initiation and planning phase; both testing and installation require extensive analysis in order to develop exactly the right approach.

Implementation activities also include initial user support such as the finalization of documentation, training programs, and ongoing user assistance. Note that documentation and training programs are finalized during implementation; documentation is produced throughout the life cycle, and training (and education) occurs from the inception of a project. Implementation can continue for as long as the system exists because ongoing user support is also part of implementation. Despite the best efforts of analysts, managers, and programmers, however, installation is not always a simple process. Many well-designed systems have failed because the installation process was faulty. Even a well-designed system can fail if implementation is not well managed. Because the project team usually manages implementation, we stress implementation issues throughout this book.

The fifth and final phase in the SDLC is maintenance. When a system (including its training, documentation, and support) is operating in an organization, users sometimes find problems with how it works and often think of better ways to perform its functions. Also, the organization’s needs with respect to the system change over time. In maintenance, programmers make the changes that users ask for and modify the system to reflect evolving business conditions. These changes are necessary to keep the system running and useful. In a sense, maintenance is not a separate phase but a repetition of the other life-cycle phases required to study and implement the needed changes. One might think of maintenance as an overlay on the life cycle rather than as a separate phase. The amount of time and effort devoted to maintenance depends a great deal on the performance of the previous phases of the life cycle. There inevitably comes a time, however, when an information system is no longer performing as desired, when maintenance costs become prohibitive, or when an organization’s needs have changed substantially. Such problems indicate that it is time to begin designing the system’s replacement, thereby completing the loop and starting the life cycle over again. Often the distinction between major maintenance and new development is not clear, which is another reason maintenance often resembles the life cycle itself.

The SDLC is a highly linked set of phases whose products feed the activities in subsequent phases. Table 1-1 summarizes the outputs or products of each phase based on the in-text descriptions. The chapters on the SDLC phases will elaborate on the products of each phase as well as on how the products are developed.

 Table 1-1﻿
 Products of SDLC Phases

	Phase

	Products, Outputs, or Deliverables

	Planning

	Priorities for systems and projects; an architecture for data, networks, and selection hardware, and information systems management are the result of associated systems

	Detailed steps, or work plan, for project

	Specification of system scope and planning and high-level system requirements or features

	Assignment of team members and other resources

	System justification or business case

	Analysis

	Description of current system and where problems or opportunities exist, with a general recommendation on how to fix, enhance, or replace current system

	Explanation of alternative systems and justification for chosen alternative

	Design

	Functional, detailed specifications of all system elements (data, processes, inputs, and outputs)

	Technical, detailed specifications of all system elements (programs, files, network, system software, etc.)

	Acquisition plan for new technology

	Implementation

	Code, documentation, training procedures, and support capabilities

	Maintenance

	New versions or releases of software with associated updates to documentation, training, and support

Throughout the SDLC, the systems development project itself must be carefully planned and managed. The larger the systems project, the greater the need for project management. Several project management techniques have been developed over the past decades, and many have been made more useful through automation. Chapter 3 contains a more detailed treatment of project planning and management techniques. Next, we will discuss some of the criticisms of the SDLC and present alternatives developed to address those criticisms.

The Heart of the Systems Development Process

The SDLC provides a convenient way to think about the processes involved in systems development and the organization of this book. The different phases are clearly defined, their relationships to one another are well specified, and the sequencing of phases from one to the next, from beginning to end, has a compelling logic. In many ways, though, the SDLC is fiction. Although almost all systems development projects adhere to some type of life cycle, the exact location of activities and the specific sequencing of steps can vary greatly from one project to the next. Current practice combines the activities traditionally thought of as belonging to analysis, design, and implementation into a single process. Instead of systems requirements being produced in analysis, systems specifications being created in design, and coding and testing being done at the beginning of implementation, current practice combines all of these activities into a single analysis–design–code–test process (Figure 1-5). These activities are the heart of systems development, as we suggest in Figure 1-6. This combination of activities is typical of current practices in agile methodologies. Two well-known instances of agile methodologies are eXtreme Programming and Scrum, although there are other variations. We will introduce you to agile, eXtreme Programming, and Scrum, but first it is important that you learn about the problems with the traditional SDLC. You will read about these problems next. Then you will read about the agile approach, eXtreme Programming, and Scrum.

 Figure 1-5
 Analysis–design–code–test loop

 [image: A diagram illustrates the analysis design code test loop as a circular process. It consists of four phases starting at the top: analysis, design, code, and test. Arrows indicate transitions between these phases.]

 Figure 1-6
 Heart of systems development

 [image: A diagram illustrates the heart of systems development within a systems development life cycle.]

 The heart of systems development within the S D L C diagram is represented by a shaded region, which encompasses analysis, design, and partial implementation phases to indicate a combination of their respective activities into a single process. A systems development life cycle consists of five following phases starting at the top—planning, analysis, design, implementation, and maintenance. Arrows indicate transitions between these phases. Two arrows in opposite directions are shown between the analysis and design phases.

The Traditional Waterfall SDLC

There are several criticisms of the traditional life-cycle approach to systems development; one relates to the way the life cycle is organized. To better understand these criticisms, it is best to see the form in which the life cycle has traditionally been portrayed, the so-called waterfall (Figure 1-7). Note how the flow of the project begins in the planning phase and from there runs “downhill” to each subsequent phase, just like a stream that runs off a cliff. Although the original developer of the waterfall model, W. W. Royce, called for feedback between phases in the waterfall, this feedback came to be ignored in implementation (Martin, 1999). It became too tempting to ignore the need for feedback and to treat each phase as complete unto itself, never to be revisited once finished.

 Figure 1-7
 Traditional waterfall SDLC

 [image: A flow diagram shows planning leads to analysis, followed by logical design, physical design, implementation, and maintenance.]

Traditionally, one phase ended and another began once a milestone had been reached. The milestone usually took the form of some deliverable or prespecified output from the phase. For example, the design deliverable is the set of detailed physical design specifications. Once the milestone had been reached and the new phase initiated, it became difficult to go back. Even though business conditions continued to change during the development process and analysts were pressured by users and others to alter the design to match changing conditions, it was necessary for the analysts to freeze the design at a particular point and go forward. The enormous amount of effort and time necessary to implement a specific design meant that it would be very expensive to make changes in a system once it was developed. The traditional waterfall life cycle, then, had the property of locking users into requirements that had been previously determined, even though those requirements might have changed.

Yet another criticism of the traditional waterfall SDLC is that the role of system users or customers was narrowly defined (Kay, 2002). User roles were often relegated to the requirements determination or analysis phases of the project, where it was assumed that all of the requirements could be specified in advance. Such an assumption, coupled with limited user involvement, reinforced the tendency of the waterfall model to lock in requirements too early, even after business conditions had changed.

In addition, under the traditional waterfall approach, nebulous and intangible processes such as analysis and design are given hard-and-fast dates for completion, and success is overwhelmingly measured by whether those dates are met. The focus on milestone deadlines, instead of on obtaining and interpreting feedback from the development process, leads to too little focus on doing good analysis and design. The focus on deadlines leads to systems that do not match users’ needs and that require extensive maintenance, unnecessarily increasing development costs. Finding and fixing a software problem after the delivery of the system is often far more expensive than finding and fixing it during analysis and design (Griss, 2003). The result of focusing on deadlines rather than on good practice is unnecessary rework and maintenance effort, both of which are expensive. According to some estimates, maintenance costs account for 40% to 70% of systems development costs (Dorfman and Thayer, 1997). Given these problems, people working in systems development began to look for better ways to conduct systems analysis and design.

Agile Methodologies

Many approaches to systems analysis and design have been developed over the years. In February 2001, many of the proponents of these alternative approaches met in Utah (U.S.) and reached a consensus on several of the underlying principles their various approaches contained. This consensus turned into a document they called “The Agile Manifesto” (Table 1-2). According to Fowler (2003), the agile methodologies share three key principles: (1) a focus on adaptive, rather than predictive, methodologies, (2) a focus on people rather than roles, and (3) a focus on self-adaptive processes.

 Table 1-2
 The Agile Manifesto

 	The Manifesto for Agile Software Development

	Seventeen anarchists agree:

	
We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

	Individuals and interactions over processes and tools.

	Working software over comprehensive documentation.

	Customer collaboration over contract negotiation.

	Responding to change over following a plan.

That is, while we value the items on the right, we value the items on the left more. We follow the following principles:

	Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

	Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage.

	Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

	Businesspeople and developers work together daily throughout the project.

	Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.

	The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.

	Working software is the primary measure of progress.

	Continuous attention to technical excellence and good design enhances agility.

	Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.

	Simplicity—the art of maximizing the amount of work not done—is essential.

	The best architectures, requirements, and designs emerge from self-organizing teams.

	At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas (www.agileAlliance.org)

 (Source: http://agilemanifesto.org/ © 2001, the above authors. This declaration may be freely copied in any form, but only in its entirety through this notice.)

The agile methodologies group argues that software development methodologies adapted from engineering generally do not fit with real-world software development (Fowler, 2003). In engineering disciplines, such as civil engineering, requirements tend to be well understood. Once the creative and difficult work of design is completed, construction becomes very predictable. In addition, construction may account for as much as 90% of the total project effort. For software, on the other hand, requirements are rarely well understood, and they change continually during the lifetime of the project. Construction may account for as little as 15% of the total project effort, with design constituting as much as 50%. Applying techniques that work well for predictable, stable projects, such as bridge building, tend not to work well for fluid, design-heavy projects such as writing software, say the agile methodology proponents. What is needed are methodologies that embrace change and that are able to deal with a lack of predictability. One mechanism for dealing with a lack of predictability, which all agile methodologies share, is iterative development (Martin, 1999). Iterative development focuses on the frequent production of working versions of a system that have a subset of the total number of required features. Iterative development provides feedback to customers and developers alike.

The agile methodologies’ focus on people is an emphasis on individuals rather than on the roles that people perform (Fowler, 2003). The roles that people fill, of systems analyst or tester or manager, are not as important as the individuals who fill those roles. Fowler argues that the application of engineering principles to systems development has resulted in a view of people as interchangeable units instead of a view of people as talented individuals, each bringing something unique to the development team.

The agile methodologies promote a self-adaptive software development process. As software is developed, the process used to develop it should be refined and improved. Development teams can do this through a review process, often associated with the completion of iterations. The implication is that, as processes are adapted, one would not expect to find a single monolithic methodology within a given corporation or enterprise. Instead, one would find many variations of the methodology, each of which reflects the particular talents and experience of the team using it.

Agile methodologies are not for every project. Fowler (2003) recommends an agile or adaptive process if your project involves

	unpredictable or dynamic requirements,

	responsible and motivated developers, and

	customers who understand the process and will get involved.

A more engineering-oriented, predictable process may be called for if the development team exceeds 100 people or if the project is operating under a fixed-price or fixed-scope contract. In fact, whether a systems development project is organized in terms of agile or more traditional methodologies depends on many different considerations. If a project is considered to be high-risk and highly complex and has a development team made up of hundreds of people, then more traditional methods will apply. Less risky, smaller, and simpler development efforts lend themselves more to agile methods. Other determining factors include organizational practice and standards and the extent to which different parts of the system will be contracted out to others for development. Obviously, the larger the proportion of the system that will be outsourced, the more detailed the design specifications will need to be so that subcontractors can understand what is needed. Although not universally agreed upon, the key differences between these development approaches are listed in Table 1-3, which is based on work by Boehm and Turner (2004). These differences can be used to help determine which development approach would work best for a particular project.

 Table 1-3
 Five Critical Factors That Distinguish Agile and Traditional Approaches to Systems Development

	Factor

	Agile Methods

	Traditional Methods

	Size

	Well matched to small products and teams. Reliance on tacit knowledge limits scalability.

	Methods evolved to handle large products and teams. Hard to tailor down to small projects.

	Criticality

	Untested on safety-critical products. Potential difficulties with simple design and lack of documentation.

	Methods evolved to handle highly critical products. Hard to tailor down to products that are not critical.

	Dynamism

	Simple design and continuous refactoring are excellent for highly dynamic environments but a source of potentially expensive rework for highly stable environments.

	Detailed plans and Big Design Up Front, excellent for highly stable environment but a source of expensive rework for highly dynamic environments.

	Personnel

	Requires continuous presence of a critical mass of scarce experts. Risky to use non-agile people.

	Needs a critical mass of scarce experts during project definition but can work with fewer later in the project, unless the environment is highly dynamic.

	Culture

	Thrives in a culture where people feel comfortable and empowered by having many degrees of freedom (thriving on chaos).

	Thrives in a culture where people feel comfortable and empowered by having their roles defined by clear practices and procedures (thriving on order).

 (Source: Boehm, Barry; Turner, Richard, Balancing Agility and Discipline: A Guide for the Perplexed, 1st Ed., © 2004. Reprinted and electronically reproduced by permission of Pearson Education, Inc. New York, NY.)

Many different individual methodologies come under the umbrella of agile methodologies. Fowler (2003) lists the Crystal family of methodologies, Adaptive Software Development, Scrum, Feature Driven Development, and others as agile methodologies. eXtreme Programming is discussed next, followed by a discussion of Scrum.

OEBPS/images/077873de8883e34438c76145c79227f2.png
Techniques

Methodologies

OEBPS/xhtml/toc.xhtml

		 Modern Systems Analysis and Design, Tenth Edition, Global Edition

		
			Table of Contents

			
						
					Cover
					
								Cover
						

					

				

						
					Front Matter
					
								Title Page
						

								Copyright Page
						

								Dedication
						

								Preface
						

								Acknowledgments
						

					

				

						
					Part One: Foundations for Systems Development
					
								Overview: Foundations for Systems Development
						

					

				

						
					Chapter 1: The Systems Development Environment
					
								Introduction: The Systems Development Environment
						

								A Modern Approach to Systems Analysis and Design
						

								Developing Information Systems and the Systems Development Life Cycle
						

								The Heart of the Systems Development Process
						

								Agile Methodologies
						

								Our Approach to Systems Development
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 2: The Origins of Software
					
								Introduction: The Origins of Software
						

								Systems Acquisition
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 3: Managing the Information Systems Project
					
								Introduction: Managing the Information Systems Project
						

								Pine Valley Furniture Company Background
						

								Managing the Information Systems Project
						

								Representing and Scheduling Project Plans
						

								Using Project Management Software
						

								Summary
						

								Key Terms
						

								Test Your Knowledge﻿
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Part Two: Planning
					
								Overview: Planning
						

					

				

						
					Chapter 4: Identifying and Selecting Systems Development Projects
					
								Introduction: Identifying and Selecting Systems Development Projects
						

								Identifying and Selecting Systems Development Projects
						

								Corporate and Information Systems Planning
						

								Electronic Commerce Applications: Identifying and Selecting Systems Development Projects
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 5: Initiating and Planning Systems Development Projects
					
								Introduction: Initiating and Planning Systems Development Projects
						

								Initiating and Planning Systems Development Projects
						

								The Process of Initiating and Planning is Development Projects
						

								Assessing Project Feasibility
						

								Building and Reviewing the Baseline Project Plan
						

								Electronic Commerce Applications: Initiating and Planning Systems Development Projects
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Part Three: Analysis
					
								Overview: Analysis
						

					

				

						
					Chapter 6: Determining System Requirements
					
								Introduction: Determining System Requirements
						

								Performing Requirements Determination
						

								Traditional Methods for Determining Requirements
						

								Radical Methods for Determining System Requirements
						

								Requirements Determination Using Agile Methodologies
						

								Electronic Commerce Applications: Determining System Requirements
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 7: Structuring System Process Requirements
					
								Introduction: Structuring System Process Requirements
						

								Process Modeling with Data Flow Diagrams
						

								Data Flow Diagramming Mechanics
						

								An Example DFD
						

								Using Data Flow Diagramming in the Analysis Process
						

								Business Process Modeling
						

								Basic Notation
						

								Business Process Example
						

								Modeling Logic with Decision Tables
						

								Electronic Commerce Application: Process Modeling with Data Flow Diagrams
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 8: Structuring System Data Requirements
					
								Introduction: Structuring System Data Requirements
						

								Conceptual Data Modeling
						

								Gathering Information for Conceptual Data Modeling
						

								Introduction to E-R Modeling
						

								Conceptual Data Modeling and the E-R Model
						

								Representing Supertypes and Subtypes
						

								Business Rules
						

								Role of Packaged Conceptual Data Models: Database Patterns
						

								Electronic Commerce Application: Conceptual Data Modeling
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Part Four: System Design, Implementation, and Maintenance
					
								Overview: System Design, Implementation, and Maintenance
						

					

				

						
					Chapter 9: Designing Databases
					
								Introduction: Designing Databases
						

								Database Design
						

								Normalization
						

								Transforming E-R Diagrams into Relations
						

								Merging Relations
						

								Logical Database Design for Hoosier Burger
						

								Physical File and Database Design
						

								Physical Database Design for Hoosier Burger
						

								Electronic Commerce Application: Designing Databases
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 10: Designing Forms and Reports
					
								Introduction: Designing Forms and Reports
						

								Designing Forms and Reports
						

								Formatting Forms and Reports
						

								Assessing Usability
						

								Electronic Commerce Applications: Designing Forms and Reports for Pine Valley Furniture’s WebStore
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 11: Designing Interfaces and Dialogues
					
								Introduction: Designing Interfaces and Dialogues
						

								Designing Interfaces and Dialogues
						

								Interaction Methods and Devices
						

								Designing Interfaces
						

								Designing Dialogues
						

								Designing Interfaces and Dialogues in Graphical Environments
						

								Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley Furniture’s WebStore
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Chapter 12: System Implementation and Maintenance
					
								Introduction: System Implementation and Maintenance
						

								System Implementation
						

								Software Application Testing
						

								Installation
						

								Documenting the System
						

								Training and Supporting Users
						

								Organizational Issues in Systems Implementation
						

								Electronic Commerce Application: System Implementation and Operation for Pine Valley Furniture’s WebStore
						

								Project Closedown
						

								Maintaining Information Systems
						

								Conducting Systems Maintenance
						

								Electronic Commerce Application: Maintaining an Information System for Pine Valley Furniture’s WebStore
						

								Summary
						

								Key Terms
						

								Questions, Problems, and Exercises
						

								References
						

					

				

						
					Glossary
				

			

		
	

OEBPS/images/4c22154b61f472a257262f7c3b1cc3de.jpg
Modern Systems
Analysis and Design

TENTH EDITION

Joseph S. Valacich | Joey F. George

OEBPS/images/81a1d366f273244fa78c1dd4ad2c6157.jpeg
Pearson

OEBPS/images/1e18980823794a7eedbd87b8a3ffa439.png

OEBPS/images/715d7e4cd3fc2f1f25f67a87681c20c6.png
Analysis

Logical
Design

Physical
Design

Implementation L

Maintenance

OEBPS/images/efc89ec4d20ce33e43d59e197d7d1397.png
Chapters 4-5

Planning

Chapter 12 | Maintenance Analysis Chapters 6-8

Implementation

Chapter 12 Chapters 9-11

OEBPS/images/04690443c497a9e7774d0d454c67058b.png
Maintenance Analysis

Implementation

OEBPS/images/ab69e62d7406878490108782807b2182.jpg

OEBPS/images/dc2e805bb8f8cf31ee8728280fbdbe1a.png
Design

Implementation

Go/No Go Axis

Analysis

Maintenance

Planning

OEBPS/images/af30c36201cbe41f77b3cd4b91eca064.png
Analysis

OEBPS/images/c23c7fcf34a8e61227d078ed8b98281a.png
Planning

Maintenance Analysis

Implementation

OEBPS/images/20f70f446fe8c68c63253f9fd63e8597.jpg

