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In Loving Memory of Karen




Los ríos no llevan agua,




el sol las fuentes secó . . .




¡Yo sé dónde hay una fuente




que no ha de secar el sol!




La fuente que no se agota




es mi propio corazón . . .




—V. Ruiz Aguilera (1862)




The rivers bear no water,




the sun dried up the springs . . .




I know of a source that the




sun cannot deplete!




The source that springs




forever is the beating




of my heart . . .







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          List of Aha! Moment Essays







Chapter 1:




	
Nature’s Ultimate Optimizers, or How Bees Construct
 Honeycombs! 



	First-Ever Algorithm Programmer—Ada Lovelace.


	The Value of Data . . . or How a Car Dealership Embraced

 “Analytics” Long before the PC Era!


	Feeding the Dispossessed . . . or How World Food Programme
 (WFP) is Harnessing Analytics, OR, and Data Mining to Eradicate
 World Hunger!


	AI to the Rescue . . . or How Stephen Hawking Regained Voice!











Chapter 3:



	The Birth of Optimization, or How George B. Danzig Developed
 the Simplex Method.










Chapter 5:




	
A Brief History of the Transportation Model. 


	By Whatever Name, NW Rule Boasts Elegant Simplicity!











Chapter 6:




	
It Is Said that a Picture Is Worth a Thousand Words! 


	In “Praise” of Google Maps, or How I Got Lost Trying to Reach a
 Pre-Wedding Picnic!











Chapter 7:




	
Early-On Implementations of the Simplex Algorithm, or How the
 Product Form of the Inverse Came About



	Satisficing versus Maximizing, or How Long to Age Wine!











Chapter 9:



	
Seminal Development of Dantzig-Fulkerson-Johnson Cut. 










Chapter 10:



	
Earliest Decision-Making Heuristic—The Franklin Rule. 










Chapter 11:




	Earliest Mathematical Model in Archaeology, or How TSP
 “Seriates” Ancient Egyptian Graves


	TSP Computational Experience—Culminating with Leonardo da
 Vinci’s Mona Lisa Reproduction











Chapter 12:



	Solving the Marriage Problem . . . with Dynamic
 Programming!










Chapter 13:



	EOQ History, or Giving Credit where Credit Is Due!










Chapter 14:



	The Rise and Fall of People Express . . . or How American Airlines
 Pioneered Yield Management.










Chapter 15:




	Mark Twain Gives “Statistics” a Bum Rap!


	Win or Lose? . . . or How the Monty Hall Problem Caused a
 “Bayesian” Stir in the US!


	The Futile Two-Year Search for Lost Flight AF447 . . . and
 How Bayesian Inference Saved the Day!


	An Eighteenth-Century Lottery that Yields Infinite Expected
 Payoff, or Does It?


	Cooperation Should Be the Name of the Game!











 Chapter 16:



	Spammers Go Markovian!










Chapter 18:




	
Perception of Waiting, and the Cultural Factor!



	
The Last Will Be First . . . , or How to Move Queues More
 Rapidly! 











Chapter 19:




	Are We Living in a Computer Simulation?


	
Birth of the Monte Carlo Method . . . or How the Atomic
 Bomb was developed! 











Chapter 21:



	
Fibonacci Sequence Golden Ratio, ϕ, and the Quest for
 Intelligent Design! 










Appendix E:



	
Teaching (Probability) by Example: The Birthday Challenge! 









        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
What’s New in the Eleventh Edition




In previous editions, concern about the size of the hard copy prompted the inconvenient practice of placing a sizeable chunk of text material in a companion website. In the new era of e-publishing, such concern is not a factor. The eleventh edition, comprising 22 chapters and 6 appendixes, provides in one location all the material from the tenth edition and its companion website, plus a significant amount of new material. The digital format should facilitate future on-demand updating of the text.




The first ten editions of Operations Research: An Introduction concentrated on classical operations research (OR) algorithms. Analytics, artificial intelligence (AI), and machine learning (ML)—the newcomers on the decision-making scene—match OR in importance, in the sense that they all seek sound decisions, albeit from different perspectives: OR employs (mostly) mathematical models in search of the optimum (or near optimum) solution. The new fields are driven by the analysis of data for the purpose of uncovering unknown trends and relationships that will strengthen and streamline the decision-making process. Because AI and ML applications strongly rely on OR-style optimization, it is natural and timely that such applications be introduced in traditional OR courses.




Coincidental with my decision to introduce the new topics in the eleventh edition was the announcement in December 2018 by the Institute for Operation Research and the Management Science (INFORMS) to change the name of its applications-oriented flagship journal Interfaces  to Journal of Applied Analytics “to reach a wider audience . . . [of] professionals who identify with a journal whose title includes [the word Analytics].”




This edition maintains the time-proven pedagogical features of the first ten editions:





	
                  All algorithmic details are explained through carefully chosen numerical examples that contribute to one’s intuition regarding the general problem. Theorems and proofs are used only when needed to maintain continuity.

              

	
                  The focal points that unify algorithms within an optimization area (e.g., LP) are stressed to provide insight into the functionality of each algorithm. For example, the plethora of available simplex method algorithms may give the impression that they are fundamentally different when, in fact, they all are based on the idea of seeking extreme- or corner-point solutions.

              

	
                  The premises of certain classical algorithms that date back to the infancy days of OR are “challenged” with the presentation of algorithmic details that can enhance computational efficiency. For example, a generalized artificial-variable-free simplex algorithm is shown to apply any linear problem (LP) that starts both nonoptimal and infeasible.

              

	
                  Algorithm “exchangeability” in solving OR problems from distinct optimization areas is presented where applicable throughout the text. The goal is to give the user more options for solving problems numerically. For example, two-person zero-sum games and networks can be reformulated and solved as LPs.

              

	
                  The Aha! Moment (first introduced in the tenth edition) essays present math-free stories, anecdotes, OR issues, and teaching methodologies that delve into OR history and provide an appreciation of fundamental OR concepts.

              

	
                  The TORA software is a cornerstone in understanding the algorithmic details. Its user manual is embedded directly in the software where and when needed during execution. TORA offers a unique interactive mode that allows the user to decide on the next calculation step, with instant feedback provided. If the input is correct, all (usually tedious) pertinent calculations are carried out, thus relieving the user of the burden of doing them manually; else, an appropriate error message is posted.

              

	
                  Excel spreadsheets complementing TORA are used throughout the book; and, as in TORA, they engage the user interactively with immediate yes/no feedback regarding the user’s choice of the next computational step. The spreadsheets automatically self-refresh when new input data is entered. The software can be found on the text’s companion website at https://media.pearsoncmg.com/intl/ge/abp/resources/index.html.

              

	
                  The commercial software AMPL and Solver are used to provide examples throughout the text. AMPL syntax is available in Appendix C.

              






The following material highlights the specific changes/additions made to the eleventh edition.




	
                  New Chapters

              





	
	
Chapter 1: Overview of OR, Analytics, AI, and ML in Decision-Making


	
Chapter 8: Stochastic Linear Programming


	
Chapter 14: Yield Management









	
                  New Sections

              





	
	
Section 3.4.3: New Two-Phase Method with No Artificial Variables


	
Section 3.6.5: The 100% Rule of LP Sensitivity Analysis


	
Section 4.4.2: Generalized Simplex Algorithm


	
Section 4.5.4: Concurrent Changes in Feasibility and Optimality


	
Section 4.6: Transition from Textbook to Commercial Software Treatment of Sensitivity Analysis


	
Section 9.2.3: Benders’ Decomposition Algorithm


	
Section 15.3: Bayes’ Probabilities with ML Applications









	
                  Completely Revised Chapter

              





		
Chapter 19: Discrete-Event and Monte Carlo Simulations








	
                  Revised Sections

              





	
	
Section 3.6: Sensitivity Analysis


	
Section 4.5: Post-Optimal Analysis


	
Section 11.4.2: Reversal Heuristic


	
Section 12.1: Recursive Nature of Dynamic Programming (DP) Computations


	
Section 12.1.1 Recursive Equation and Principle of Optimality.


	
Section 16.4: Ergodic (Regular) Markov Chain


	
Section 21.1.1: Direct Search Method









	
                  New Case Studies

              





		A new case on analytics in the new Chapter 22









	
                  New Aha! Moment Essays

              





		Four in Chapter 1, one in Chapter 6, one in Chapter 14, two in Chapter 15, two in Chapter 19, and one in Chapter 21









	
                  Consolidated Chapters from the Tenth Edition

              






		
Chapter 5: Transportation Model and Its Variants 10th—Chapter 5 + Appendix to Section 22.1 (Transshipment Model)




	
	
Chapter 6: Network Model 10th—Chapter 6 + Section 22.1 (Minimum-Cost Capacitated Flow Problem)


	
Chapter 7: Advanced Linear Programming 10th—Chapter 7 + Chapter 8 (Goal Programming) + Section 22.2 (Decomposition Algorithm) + Section 22.3 (Karmarkar Interior-Point Method)


	
Chapter 12: Dynamic Programming 10th—Chapter 12 (Deterministic Dynamic Programming) + Chapter 24 (Probabilistic Dynamic Programming)


	
New Chapter 13: Inventory Modeling 10th—Chapter 13 (Inventory Modeling) + Chapter 16 (Probabilistic Inventory Models)


	
New Chapter 16: Markov Chains 10th—Chapter 17 (Markov Chains)


	
New Chapter 17: Markovian Decision Process 10th—Chapter 25 (Markovian Decision Process)


	
New Chapter 22: Case Analysis 10th—Chapter 26 + one new case










	
                  Renamed Appendices

              





	
	New Appendix E: 10th—Chapter 14 (Review of Basic Probability)


	New Appendix F: 10th—Chapter 23 (Forecasting Models)









	
                  General Editing

              





	
                  The entire text has been edited to streamline the presentations and to remove outdated material. Another no-less-important goal of the new edition is to ensure gender neutrality and to eliminate the annoying editorial “we” throughout the text.

              





	
                  Solutions Manual

              





	
                  Lastly, and by popular demand, I am happy to report that the Solutions Manual is now available in neatly typewritten format.

              





	
                  Resources for Instructors

All instructor resources are available for download at www.pearson.com/uk. If you are in need of a login and password for this site, please contact your local Pearson representative. The instructor resources include the following material: the Solutions Manual in PDF format and PowerPoint slides of all the figures and tables in the text.
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Chapter 1


Overview of OR, Analytics, AI, and ML in Decision-Making








 
Real-life Application—Crowdsourcing Analytics and OR Expertise . . . Two Studies with Different Outcomes


Crowdsourcing, a word first coined in 2006, solicits the expertise of online community and outside sources worldwide to receive needed services, in place of adopting the traditional in-house group of experts. This real-life application, combining the use of analytics and OR tools, contrasts two experiences carried out by two global companies in different businesses: Netflix and Syngenta. One experience ended up in failure and the other in resounding success. Details of the study are given in Case 1, Chapter 22.








        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.1 Introduction


This chapter introduces four prominent decision-making tools: OR, analytics, AI, and ML. These tools can be defined briefly as follows:







 
OR deals with use of mathematical modeling to reach the best decision for analyzing operational systems subject to constrained resources.


Analytics is rooted in extracting new information from raw data using statistical analysis and other techniques for the purpose of reaching sound decision.


AI develops algorithms that use big data experiences to mimic human intelligence with the ultimate goal of automating complex tasks naturally performed by human beings.


ML, an important branch of AI, utilizes data analysis to automate the development of predictive models for the purpose of teaching machines how to make sound decisions with minimal or no human intervention.









The definitions emphasize that mathematical modeling is the cornerstone of OR solutions. In analytics, AI, and ML, decision-making is data driven. Effectively, in OR the decision problem is translated into a (solvable) mathematical model representing a goal to be achieved subject to a set of restrictions; and in analytics, AI, and ML, analysis is data-driven, with the goal of discovering relationships that lead to informed decisions.











        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.2 Two Distinct Approaches for Making Decisions




OR seeks the allocation of constrained (limited) resources to competing activities for the purpose of optimizing a stated objective, such as maximizing profit or minimizing cost. It utilizes a mathematical model that expresses the objective and the constraints in terms of variables representing the unknowns of the decision situation. The resulting model is then solved numerically to determine the best values of the variables that optimize the objective function of the model. For example, in a product mix situation involving the use of limited raw materials, the variables are defined as the number of units to be manufactured of each product. A plausible objective in this situation is to maximize the revenue from producing the mix. The constraints ensure that the quantities produced are feasible within raw materials availability.




In recent years, massive amounts of data about all aspects of life are generated in multitudes of formats (e.g., text, numeric, image, video, and audio), buoyed by the internet, the smart phone, and other technological advances. The unprecedented advances in computations and the affordability of cloud computing make it possible to analyze available data into useful decision-making relationships, such as trends and correlations. Examples demonstrating the diversity of situations where analytics, AI, and ML applications include the following:





	Credit card companies reduce fraud losses by analyzing the purchasing habits of its card holders.


	
                  Amsterdam, the bicycle capital of the world, eases traffic and reduces pollution by opportunely placing bike hubs in areas where they are most needed.

              

	
                  Internet book-sellers increase sales by suggesting new titles based on patrons’ reading habits and preferences.

              

	
                  Trucking companies reduce road accidents by training drivers based on analyzing accident-causing data (e.g., driver fatigue, lane departure, and weather-related road conditions).

              

	
                  Virtual assistants, such as Alexa, Bixby, Cortana, and Siri, use AI to answer questions at any time, saving time and effort in fetching needed information.

              

	
                  Computer interface allows disabled humans to regain lost physical functions.

              

	
                  Virtual tutor expedites learning by answering questions and providing meaningful feedback to students.

              

	
                  Cars equipped with ML-based warning devices (e.g., lane departures and rear-end collisions) make road driving safer and reduce fatalities and material losses.

              

	
                  ML-based apps identify and quarantine harmful or time-wasting spam emails.

              






In each of the preceding examples, the scope of the decision situation is so broad that it is impossible to represent them as traditional OR mathematical models. Yet, as conveyed by the italicized texts in these illustrations, analytics, AI, and ML embody a sense of implicit optimization (based on analyzing data) that is no less viable than the explicit OR optimization (based on mathematical modeling).







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.3 OR Mathematical Modeling




The first activities of OR started in England during World War II when teams of British scientists (ranging from pure and social sciences to engineering) set out to make learned decisions about the best utilization of war materiel. Following the end of the war, the ideas advanced in military operations were adapted to optimize operations in the civilian sector.




This section outlines how a mathematical model is developed and solved.







        

      

    


      
        
          
1.3.1 Elements of a Mathematical Model


Two simple decision situations are used to introduce the elements of OR mathematical modeling. The associated models happen to be exact representations of reality. The goal for the time being is to concentrate on the basics of mathematical modeling without the distraction of discussing model approximation.







 
Example 1.3-1 (Ticket Purchasing)


A businessperson has a 5-week commitment traveling between Fayetteville (FYV) and Denver (DEN). Weekly departure from Fayetteville occurs on Mondays for return on Wednesdays. A regular roundtrip ticket costs $400, but a 20% discount is granted when the roundtrip dates span a weekend. A one-way ticket in either direction costs 75% of the regular price. How should the tickets be bought for the 5-week period?


The model is constructed by answering three questions:



	
1.What are the decision alternatives?



	
2.Under what restrictions is the decision made?


	
3.What is an appropriate objective criterion for evaluating the alternatives?





The answer to the first question can include three plausible alternatives:



Alternative 1: Buy five regular FYV-DEN-FYV for departure on Monday and return on Wednesday of the same week.

Alternative 2: Buy one FYV-DEN for week 1, four DEN-FYV-DEN spanning weekends, and one return DEN-FYV for week 5.

Alternative 3: Modify Alternative 2 so that each roundtrip ticket would span a weekend by buying one FYV-DEN-FYV for Monday of week 1 and Wednesday of week 5 and four DEN-FYV-DEN to cover the remaining travel legs.



The travel restriction in all three alternatives is to leave FYV on each Monday for return on Wednesday of the same week over a span of 5 weeks.


A logical criterion for evaluating the proposed alternatives is the price paid for all tickets. The alternative yielding the smallest cost is the optimum (best).1 Specifically,


Alternative 1 cost=5×400=$2000Alternative 2 cost=.75×400+4×(.8×400)+.75×400=$1880Alternative 3 cost=5×(.8×400)=$1600 


Alternative 3 is the cheapest and hence is the optimum solution.


Remarks.


Though OR models are designed to optimize a specific objective criterion subject to a set of constraints, the quality of the optimum solution depends on the accuracy of the model in representing the real system. In the present ticket purchasing model, if all the relevant alternatives for purchasing the tickets were not identified, then the resulting solution would be optimum only relative to the alternatives represented in the model. To be specific, identifying alternative 3 may be a bit “tricky” and hence can be overlooked. Should that happen, the resulting solution would be suboptimal because it would call for purchasing the tickets for $1880, per alternative 2.


Though the tickets example illustrates the three main components of the OR model— alternatives, objective criterion, and constraints—situations differ in the details of how each component is developed and how the resulting model is solved, as the following example demonstrates.








 
Example 1.3-2 (Garden Fence)


Imagine that you have a specified amount of construction material to fence a rectangular backyard vegetable garden of perimeter L ft. How should the fence be constructed to maximize the enclosed area (presumably to maximize the garden yield)?


In contrast with the tickets example, where the number of alternatives is finite (=3), the present example theoretically boasts an infinite number of alternatives; meaning, the width and height of the rectangle can each assume infinity of values between 0 and L2. In this regard, the width and the height are continuous variables.


The fence problem can be translated into a mathematical model in the following manner: For a specified perimeter, the width and height are the unknown variables whose values are determined by solving the following exact model:


Maximize area=width×height


subject to


(width+height)=perimeter2width ≥0, height ≥0


The constraints width≥0 and height≥0 are nonnegativity conditions and are assumed to hold in this situation because the dimensions of the rectangle cannot be negative. There are situations, however, where the variables may assume positive, zero, or negative values (e.g., temperature), in which case the variables become unrestricted in sign.


Though all mathematical programming languages (e.g., AMPL) allow self-documentation by using explicit naming (such as area, width, height, and perimeter), it is more convenient in textbook setting to use compact algebraic symbols.


Define


w=width of the rectangle in fth=height of the rectangle in ftz=area in ft2


Given the perimeter of the fence is 100 ft, the complete mathematical model can then be presented as


Maximize z=wh


subject to


w+h=50w,h≥0


Calculus can be used to find the optimum solution of this model. Given w=50−h, then z=wh=(50−h)h=50h−h2. Using calculus, the necessary condition yields


dzdh=50−2h=0⇒h=25


This condition is sufficient because z is concave (see Chapter 20), yielding the optimum solution h=25 ft, with w=50−h=25 ft with z=625  ft2. The answer asserts that a square of side L2 provides the maximum garden area.2









The format of the mathematical model developed for the Fence Problem is typical of the way OR models are presented pictorially. Of course, the objective function can be either maximized or minimized depending on the nature of the decision situation (e.g., profit is maximized, and cost is minimized). Figure 1.1 provides the general layout of the OR mathematical model.



Figure 1.1

Layout of OR mathematical model
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                          <table>   <tbody>       <tr><td></td>       <td><p>OR Mathematical Model</p></td></tr>     <tr>       <td>Optimize (maximize or minimize) Objective</td>     </tr>     <tr>       <td>subject to</td>     </tr>     <tr>         <td></td>       <td>Constraints</td>     </tr>   </tbody> </table>      
    
          

        

A solution is feasible if it satisfies all the constraints. It is optimal if, in addition to being feasible, it yields the best (maximum or minimum) value of the objective function.







 

Aha! Moment. Nature’s Ultimate Optimizers, or How Bees Construct Honeycombs!3



Every time I come across an image of a honeycomb, I am in awe of the perfect hexagonal design of the compartments “architected” and constructed by nearly 50,000 worker bees per hive to store honey. But why hexagons? This question has intrigued mathematicians for over 2000 years. In 36 BC, the Roman scholar Marcus Terentius Varro hypothesized that a hexagonal design is the optimum way to divide a surface into equal areas with minimum total perimeter. Varro’s proposal, dubbed the honeycomb conjecture, remained just that – a conjecture – until 1999, when it was proven by American mathematician Thomas C. Hales while at the University of Michigan.


Why are hexagons optimal? The answer lies in economizing three variables: space usage, amount of wax used, and volume of the cell. Space economy dictates compactness of the cells with no unused gaps in the structure. Among all equal-sided two-dimensional geometric shapes, only triangles, squares, and hexagons meet this criterion. Of these three shapes, the hexagon is the best because, as mathematically proven by Hales, it produces the smallest total perimeter, hence uses the least amount of wax (the triangle is the worst).4 Moreover, a hexagon-based cell has the largest storage volume among the three shapes. An additional bonus is that in architecture the hexagon is the strongest shape known under pressure.


Remarkably, bees further optimize the honeycomb structure by scaling the size of each hexagonal cell to match the size of the colony bees!








        

      

    


      
        
          
1.3.2 Solving the Mathematical Model


In practice, OR does not offer a “one-size-fits-all” method for solving all mathematical models. Instead, the type and complexity of the mathematical model dictate the nature of the solution method. An oddity of most OR techniques is that solutions are not generally obtained in (formula-like) closed forms. Instead, they are determined by an algorithm, defined by Merriam-Webster Dictionary as A step-by-step procedure for solving a problem or accomplishing some end. It provides a set of computational rules that are applied repetitively to the problem, with each repetition (called iteration) moving the answer closer to the optimum value. Because the computations in each iteration are typically tedious and voluminous, in most algorithms the use of computers is imperative.


The most prominent (and oldest) OR algorithm is linear programming, designed for models with linear objective and constraint functions. Other algorithms include integer programming where variables must assume integer values, dynamic programming in which the original model is decomposed into smaller (more computationally-manageable) subproblems, network programming in which the problem are modeled as a network, and nonlinear programming in which functions of the model are nonlinear. These algorithms are but a few of the arsenal of OR solution methods.


Some mathematical models may be so complex that it is impossible to solve them by available optimization algorithms. In such cases, it may be necessary to settle for a good solution using heuristics or metaheuristics: a collection of intelligent search rules of thumb that move the solution point advantageously toward the optimum, but not necessarily achieving optimality.







 

Aha! Moment: First Ever Algorithm Programmer—Ada Lovelace.5



Though the first conceptual development of an algorithm is attributed to the founder of algebra Muhammad Ibn-Musa Al-Khwarizmi (born c. 780 in Khwarazm, Uzbekistan, died c. 850 in Baghdad, Iraq)6, it was British Ada Lovelace (1815–1852) who developed the first computer algorithm. And when speaking of computers, it is the mechanical Difference and Analytical Engines pioneered and designed by British mathematician Charles Babbage (1791–1871).7


Lovelace had keen interest in mathematics. As a teenager, she visited Babbage home and was fascinated by his invention and its potential uses in doing more than just arithmetic operations. Collaborating with Babbage, she translated into English an article that provided the design details of the Analytical Engine. The article was based on lectures Babbage presented in Italy. In the translated article, Lovelace appended her own notes (which turned out to be longer than the original article and included some corrections of Babbage’s design ideas). One of her notes detailed the first-ever algorithm, that of computing Bernoulli numbers on the yet-to-be-completed Analytical Engine. She even predicted that Babbage machine would have the potential to manipulate symbols (not just numbers) and to create complex music scores.


In Lovelace’s honor, the computer language Ada (developed for the United States Department of Defense) was named after her. The annual mid-October Ada Lovelace Day is an international celebration of women in science, technology, engineering, and mathematics (STEM). And those of us who visited St. James Square in London may recall the blue plaque that reads “Ada Countess of Lovelace (1815–1852) Pioneer of Computing.”








        

      

    


      
        
          
1.3.3 Proxy Optimization – Queuing, Simulation, and Monte Carlo Models




Queuing theory, one of the oldest techniques in OR, provides probability-based models (where arrivals and/or service times at a service facility are typically random) that deal with the phenomenon of waiting, an every-day experience where servers attend to customers (see Chapter 18). In the familiar sense, customers and servers are real human beings. They also can be automated versions of a customer (e.g., telephone calls arriving at a telephone exchange) or a server (e.g., a bank ATM machine).




Faster service (requiring hiring more servers) is desirable from customer’s standpoint (less wait) but could be economically costly for the facility operator, and vice versa. Hence is the need for a compromise design of a service facility that both the customer and the server can live with. To that end, queuing, models provide statistical measures, such as the average waiting time and the average utilization of a server, that assess “compromise” solutions from the (conflicting) standpoints of both the customer and the server.




Simulation modeling deals with the waiting phenomenon as well. It differs from queuing in that it uses the computer to mimic the actions associated with the time events of arrival at and departure from a service facility. As new events occur, pertinent data are collected for the purpose of computing desired measures of performance for the system (see Chapter 19). In a way, simulation may be regarded as the next best thing to observing a real system. Unlike queuing models where mathematical restrictions could limit their applicability in practice, simulation modeling is flexible because it can represent (just about) any waiting line situation. The disadvantage is that a simulation model takes time and effort to develop and their execution on the computer could be lengthy. Additionally, simulation is basically a statistical experiment whose observations must be interpreted statistically, expressing the output in descriptive statistics, such as averages, standard deviations, and confidence intervals, among others.




Monte Carlo method, a forerunner to present-day simulation, is a class of computational algorithms that uses random sampling to obtain numerical estimates of mostly deterministic parameters such as estimating the constant π (≅3.14159), matrix inversion, or the value of a hard to evaluate integrals of complex mathematical functions. The final estimate is usually presented as confidence intervals and histograms.




Queuing, simulation, and Monte Carlo optimization is not explicit in the sense used in OR. Rather, it is in line with the implicit sense used in analytics, AI, and ML, alluded to earlier in this chapter. Their measures of performance play a proxy role in “what-if” experimentation for the purpose of designing efficient service facilities (see Problem 1-13).







        

      

    


      
        
          
1.3.4 OR Is More Than Just Mathematics




Mathematical modeling is a cornerstone of OR. Yet, “commonsense” non-mathematical approaches can sometimes lead to simpler but effective solutions. Six illustrations are presented here in support of this argument.





	
1.The stakes were high when United Parcel Service (UPS) unrolled in 2004 its ORION software (based on the sophisticated Traveling Salesperson Algorithm—see Chapter 11) to provide its drivers with tailored daily delivery itineraries. The software generally proposed shorter routes than those presently taken by the drivers, with potential savings of millions of dollars a year in fuel cost. For their part, the drivers resented the notion that a machine can “best” them, given their long years of experience on the job. Faced with this human dilemma, ORION developers resolved the issue simply placing a visible banner on the itinerary sheets that read “Beat the Computer.” At the same time, they kept ORION-generated routes intact. The drivers took the challenge to heart, with some of them beating computer suggested route. ORION was no longer “putting them down.” Instead, they regarded the software as complementing their intuition and experience.8




	
2.Travelers arriving at the Intercontinental Airport in Houston, Texas, complained about the long wait for their baggage after landing. Authorities increased the number of baggage handlers in hope of alleviating the problem, but complaints persisted. In the end, a decision was made to simply move arrival gates farther away from baggage claim area, forcing the passengers to walk longer distances before reaching the baggage area. The complaints disappeared because the extra walking allowed ample time for the luggage to be delivered to the carousel area.9




	
3.In a study of the check-in counters at a large British airport, a U.S.−Canadian consulting team used queuing theory to investigate and analyze the situation. Part of the solution recommended the use of well-placed signs urging passengers within 20 minutes of departure time to advance to the head of the queue and request priority service. The solution was not successful because the passengers, being mostly British, were “conditioned to strict queuing behavior.” Hence, they were reluctant to move ahead of others waiting in the queue.10




	
4.In a steel mill in India, ingots were first produced from iron ore and then used in the manufacture of steel bars and beams. The manager noticed a long delay between the ingots production and their transfer to the next manufacturing phase (where end products were produced). Ideally, to reduce reheating cost, manufacturing should start soon after the ingots had left the furnaces. Initially the problem was perceived as a line-balancing situation, which could be resolved either by reducing the output of ingots or by increasing the manufacturing capacity. Instead, the OR team used simple charts to summarize the output of the furnaces during the three shifts of the day. They discovered that during the third shift starting at 11:00 P.M., most of the ingots were produced between 2:00 and 7:00 A.M. Investigation revealed that third-shift operators, having hours to spare to meet their quota, preferred to get long periods of rest at the start of the shift and then make up for lost production during morning hours. The problem was solved by “leveling out” both the number of operators and the production schedule of ingots throughout the shift.




	
5.Responding to complaints of slow elevator service in a large office building, the OR team initially perceived the situation as a waiting-line problem that might require the use of mathematical queuing analysis or simulation. After studying the behavior of the people waiting for the service, the psychologist on the team suggested installing full-length mirrors at the entrance to the elevators. The complaints disappeared as people were kept occupied watching themselves and others while waiting for the elevator.


	
6.Departments in a production facility share the use of three trucks to transport material. Requests initiated by a department are filled on a first-come-first-serve basis. Some departments complained of long wait for service, and demanded adding a fourth truck to the pool. Ensuing simple tallying of the usage of the trucks showed modest daily utilization, eliminating the need for a fourth truck. Further investigations revealed that the trucks were parked in an obscure parking lot out of the line of vision for the departments. A requesting supervisor, lacking a sighting of the trucks, assumed that no trucks were available and hence did not initiate a request. The problem was solved by installing two-way radio communication between the truck lot and each department.11









Four conclusions can be drawn from these illustrations:





	
1.The OR team should explore the possibility of using “different” ideas to resolve situations. The (common-sense) solutions proposed for the UPS problem (using Beat the Computer banner to engage drivers), the Houston airport (moving arrival gates away from the baggage claim area), and the elevator problem (installing mirrors) are rooted in human psychology rather than in mathematical modeling. This is the reason OR teams may generally seek the expertise of individuals trained in social science and psychology, a point that was recognized and implemented by the first OR team in Britain during World War II.


	
2.Before jumping to the use of sophisticated mathematical modeling, a bird’s eye view of the situation should be adopted to uncover possible nontechnical reasons that led to the problem in the first place. In the steel mill situation, this was achieved by using only simple charting of the ingots production to discover the imbalance in the third-shift operation; and that was all that was needed to resolve the issue. A similar simple observation in the case with the transport tucks situation also led to a simple solution of the problem.


	
3.An OR study should not start with a bias toward using a specific mathematical tool before the use of the tool is justified. For example, because linear programming (Chapter 2 and beyond) is a successful technique, there may be a tendency to use it as the modeling tool of choice. Such an approach may lead to a mathematical model far removed from the real situation. It is thus imperative to analyze available data, initially using the simplest possible techniques, to understand the essence of the problem. Once the problem is defined, a decision can be made regarding the most appropriate solution tool. In the steel mill problem, simple charting of the ingots production was all that was needed to clarify the situation.


	
4.Solutions are rooted in people and not in technology. Any solution that does not take human behavior into consideration is apt to fail. Even though the solution of the British airport problem may have been mathematically sound, the fact that the consulting team was unaware of the cultural differences between the United States and Britain (Americans and Canadians tend to be less formal) resulted in an un-implementable recommendation. The same viewpoint can, in a way, be expressed in the UPS case.










        

      

    

              
                
                  
                  
      
        
          Intuitively, and without evaluating the alternatives, alternative 1 is the most expensive and alternative 3 is the cheapest.






        

      

    


      
        
          This situation paraphrases a classic mathematical problem solved by the famed Greek “father of geometry” Euclid (born c. 300 BC in Alexandria, Egypt). In those days, algebra (developed c. 800 AD) was unknown, and Euclid relied on geometric axioms to prove that among all rectangles of a fixed perimeter, a square shape yields the largest area. Problem 1-3 is a brainteaser based on Euclid’s geometric proof.
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          Lack of funding, among other factors, prevented Babbage during his lifetime from building fully working machines. It was only in 1991 that the London Science Museum built a complete Difference Engine No. 2 using the same materials and technology available to Babbage, thus vindicating his design ideas. There is currently an ongoing long-term effort to construct a fully working Analytical Engine funded entirely by public contributions. It is impressive that modern-day computers are based on the same principal components (memory, CPU, input, and output) advanced by Babbage 100 years earlier.
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1.4 Analytics Modeling


Unlike OR, which is driven by mathematical optimization models, analytics is rooted in analyzing data. In fact, some proponents of analytics predict that “the most important raw material of the twenty-first century is data. Data are the new oil.”12 And just as crude oil must be refined into useful end products, raw data must be transformed to uncover patterns and trends for making better decisions.







 
Aha! Moment. The Value of Data . . . or How a Car Dealership Embraced “Analytics” Long before the PC Era!


Years ago, in the 70’s, I visited a car dealership to buy a car and ended up chatting with the owner. What impressed me most was the way the owner decided which radio stations to select for advertising. Over the years, in pre-PC era, the dealership collected and updated data about the radio stations customers listened to, not by using questionnaires, but by instructing the shop mechanics to scan the radios of cars brought to service for the area stations customers had preselected as favorites. Collected data was tallied to decide which radio stations should be targeted for advertising. When asked about the secret of the dealership success, the owner’s standard response was “I advertise smart,” without divulging details.


I remember thinking that the owner was a shrewd businessperson for recognizing the power of data in making better decisions, in effect employing a variation of present-day analytics at a time when such a tool (and computers) were practically nonexistent.








        

      

    


      
        
          
1.4.1 Elements of the Analytics Model


The following example is a simplified but instructive application of the analytics model.







 
Example 1.4-1 (Credit Card Fraud Prevention)


One of the earliest successful applications of analytics deals with credit card fraud. I recall years ago receiving a midnight telephone call from my credit card company inquiring if my daughter was authorized to withdraw cash against my account. I knew that the transaction was fraudulent because my daughter was only 3 years old at the time. I was curious, though, to learn how the company was alerted to the possibility of a fraud. I was told that their system continually looks for patterns/trends and search for anomalies based on my card use history (i.e., raw data) to classify and update my purchasing habits, and that withdrawing cash from my account was not one of them.









The example above reveals the essence of analytics: Raw data, represented by past credit card transactions is processed in two phases: In Phase 1, the data is explored to uncover patterns and trends that describe past purchasing behavior. Phase 2 then uses the transformed data to predict if a future purchase deviates from past purchasing habits, raising a red flag and, if warranted, taking appropriate corrective actions.


In some situations, the complete analytics model can include a third phase, based on the results from phases 1 and 2, to prescribe a good, if not OR-optimum, decision for the problem.


Figure 1.2 summarizes the three phases of the analytics model.



Figure 1.2

Phases of the Analytics Model
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1.4.2 Data Relevance in Analytics




Although analytics thrives on analyzing lots of data, the golden rule is that volume is no substitute for quality; meaning, collected data must be relevant to the decision situation. Thus, it is necessary to identify the type and amount of raw data to be collected.




How is data relevance ascertained? In some situations, the answer may be immediately obvious. For example, in the credit card fraud situation (Example 1.1-1), card transactions (e.g., purchases) provide the main raw data needed to develop the analytic model. In other more complex situations (e.g., reduction of the number of large-trucks road accidents), the type of data needed for developing the analytics model is not as obvious. One approach calls for reverse-scanning of the phases of the analytics model; that is,




Goal  → Causes  → Effects  →  Data




The idea is that the goal of the decision situation is impacted by the causes that necessitate making the decision in the first place. Next, the causes are manifested in terms of effects, which then reveal the type of data needed for the decision situation.




A simplified illustration deals with increasing revenues in concession stands in a theme park:





Goal: Improved revenues

Causes: Location, menu, hours of operation, and weather.

Effects → data: (Proximity to park entrance/exit or to specific park themes) → (types of food/drinks/ snacks served, business hours for the stand, quantities sold, seasonal weather conditions).








        

      

    


      
        
          
1.4.3 Example Applications


This section presents two representative applications: The first demonstrates a decision situation that uses phases 1 and 2 only of the analytics model, and the second illustrates how, per phase 3, an additional OR algorithm is used to reach an optimum decision.


Large Trucks Road accidents


Drivers of large trucks are subject to fatigue, distraction, adverse road conditions, and other unexpected events that could result in road accidents. Statistics in the United States indicate that the cost of accidents involving large trucks exceeded $100 billion in 2014. How can the cost of accidents involving large trucks be reduced?


The OR mathematical model (e.g., the garden fence problem of Example 1.3-1) and the present situation share the common economic goal of improving their respective outcomes: The former optimizes an objective function and the latter reduces the cost of accidents. But this is about the extent of the “similarities” between the two modeling situations; in the sense that the OR concepts of using an objective and dealing with limited resources are not well-defined in the truck accident case. Instead, relevant data about how, why, where, and when accidents occur are analyzed via appropriate analytics with the goal of taking corrective actions to reduce road accidents.


The development of the analytics model for large trucks road accidents involves three aspects:



	
1.Relevance of data.


	
2.Descriptive analytics.



	
3.Predictive analytics.





Data Relevance


Application of the reverse scanning scheme (Section 1.4.2) determines a list of the key causes and effects given in Table 1.1.



Table 1.1

List of causes and effects in large truck accidents




          
          
              
                        [image: The table provides the list of causes and effects in large truck accidents.] 
              

          

          a According to published statistics, driver behavior is responsible for approximately 80% of road accidents.



          
                          <table><tbody><tr><th scope="xxdoublequotesxxcolxxdoublequotesxx">Causesª</th><th scope="xxdoublequotesxxcolxxdoublequotesxx">Effects</th></tr><tr><td>Driver behavior</td><td>Fatigue, emotional stress, distraction, sudden acceleration, speeding, hard braking, swerves, lane departures, excessive fuel consumption</td></tr><tr><td>Road conditions</td><td>Maintenance, upgrades, road curves, slopes, and rest areas</td></tr><tr><td>Engine condition</td><td>Periodic/preventive maintenance</td></tr><tr><td>Weather conditions</td><td>Inclement weather, poor visibility</td></tr></tbody></table>      
    
          

        

The effects column in Table 1.1 points to the data needed to analyze the current situation. Safety infractions provide a type of data needed to analyze and make predictions about driver behavior, and records of engine maintenance and travel routes reveal information about engine/road maintenance. Weather forecast provide the data needed to predict the “drivability” condition of the roads.


Descriptive Phase


Some of the data (such as hard braking, swerving, and fuel consumption) is gathered and transmitted in real time using onboard telematics, enriched by video feeds from cameras facing both the road and truck interior. Other data (such as weather, engine maintenance, and road conditions) is collected from other sources. Whatever the source, the data is tested for reliability and validity to weed out incorrect or incomplete sets before being incorporated in the decision process.


Prediction Phase


An important goal of analyzing data is to recommend ways to reduce accidents by concentrating on drivers in need of attention based on history of safety infractions, including real-time monitoring, and/or providing coaching opportunities. For this purpose, raw data is analyzed using appropriate statistical tools that can be as simple as comparing alternatives using percentages, averages, and histograms. In some situations, analytics modeling employs advanced statistical analysis aimed at revealing hidden correlations. For example, one such study reveals that “The segment of drivers seen as most likely to be in a collision also consume over 7.5 percent more fuel.”13


Regardless of the level (simple or advanced) at which data is analyzed, the use of an appropriate software handling large sets of data is indispensable. The most widely available system is the Excel spreadsheet, with statistical tools ranging from basic descriptive statistics to regression, hypothesis testing, sampling, and experimental design. Another popular (and free) software is the open source R programming language.


Inventory Balancing—Analytics with Embedded Prescriptive OR Model


Retailers aspire to stock the right item at the right place for the right time. When a retailer operates multiple stores, seasonal items sell at different rates in different locations. Toward the end of the season, some locations may end up with surplus inventory and others may run out of stock. Both situations are undesirable because they entail lost revenue: Surplus inventory is usually heavily discounted for quick sales and shortages mean lost sales and potential customer dissatisfaction. A plausible remedy for this situation is to even out (or balance) end-of season inventory positions in the different locations by moving items from low-demand outlets to high-demand ones. The proposed movement of merchandise among stores involves the additional cost of shipping and handling, giving rise to a companion optimization situation that calls for minimizing the associated transportation costs.


Inventory control is one of the oldest OR models (see Chapter 13). The basis of the mathematical model is that both surplus and shortage do occur in business operation, hence the objective in most cases is to determine the optimum inventory level that minimizes the sum of the conflicting costs of surplus and shortage inventories.


In the current inventory-balancing situation, the problem is more involved, requiring a two-step analysis:



	
Step 1: Prediction of which stores will have surplus and which will experience shortage as the season nears an end.


	
                  Step 2: Determination of the most economical plan to transport units from surplus to shortage locations.

              




The first step is rooted in forecasting analytics (phases 1 and 2 in Figure 1.2). It uses historical demand data to develop a forecasting model (see Appendix F) to predict demand. This prediction is the basis for projecting end-of-season surplus or shortage amounts at each location.


Step 2 is a classical OR model known as the transportation model (Chapter 5). It deals with attempting to satisfy requests at destinations subject to availabilities at sources, shipping units from sources (surplus stores) to destinations (shortage stores). Associated with each transportation route from a source to a destination is a unit transportation cost. The goal is to transport the inventory item from sources to destinations at the least possible cost.







 
Example 1.4-2


The following data for a hypothetical 5-store situation is used to demonstrate the development of the OR model in Step 2:
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Data in the second row are computed from analytics forecasting models. The surplus and shortage rows are then computed from data in the first two rows.


Figure 1.3 summarizes the resulting transportation model. Stores 1, 3, and 5 are shipping sources, whereas stores 2 and 4 are the receiving destinations. The arrows between the sources and the destinations represent possible delivery routes, with each route dictating a specific transportation cost per transported unit. A source may distribute its supply amount among multiple destinations and a destination may fulfill its demand from multiple sources. Either way, the selected delivery schedule is optimum, as explained in Section 5.3 (Chapter 5).



Figure 1.3

Representation of the transportation model in Example 1.4-2
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Aha! Moment. Feeding the Dispossessed . . . or How World Food Programme (WFP) Is Harnessing Analytics, OR, and Data Mining to Eradicate World Hunger!14



The 2019 statistics asserts that, on a daily basis, nearly 690 million people around the world go to bed hungry and are at risk of malnutrition. The UN-sponsored WFP was created in 1961 at the behest of U.S. President Dwight D. Eisenhower. It is the world’s largest humanitarian organization focused on responding to emergencies (caused by conflict, climate shocks, or pandemics), combatting hunger and malnutrition no matter the cause, and empowering self-reliance and building resilience in needy communities through proper training and cash infusion. The mission is supported worldwide by more than 20,000 workers, 5,600 all-terrain vehicles and trucks, 30 ships, and 100 planes.


The source of funding for WFP operations is the (voluntary) contributions from governments of the world, corporations, and private donors. Collected funds fall about 40% short of meeting demand, a situation that is exacerbated by the high uncertainty and variability that typify WFP’s worldwide services.


With the acute shortfall in funding, WFP embarked over a decade ago on developing an automated decision-making system that harnesses the proven powers of Analytics, Operations Research, and Data Mining. The goal is to “stretch the dollar,” by efficiently availing resources where and when needed. Throughout the development of the new system, WPF sought the help of top minds in analytics, OR, and data science through collaborations with the private sector and academia. The following table provides a brief summary of the components of the WFP system:
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The implementation of WFP’s digital transformation has, so far, yielded $150 million in cost savings, enough to feed 2 million needy people for an entire year. The new system is now a cornerstone in WFP’s goal “to close the hunger gap and eventually eradicate it by 2030.” With this remarkable success, the WFP project proved worthy of winning the 2021 prestigious Franz Edelman Award that “recognizes and rewards outstanding example of operations research, management science, and advanced analytics.”
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1.5 Artificial Intelligence (AI)




AI is “the science of training machines to perform human tasks.” To appreciate the essence of AI, consider two pertinent factors: (1) the computer possesses superior memory and computational speed unmatched by humans, and (2) the human brain commands superiority in multi-tasking, problem solving, reasoning, and learning capabilities that current computers do not, as of yet, possess. A compromise goal calls for augmenting the power of the human brain with the memory and speed capabilities of the computer. The result is an AI-driven software that mimics human brain functions.15







        

      

    


      
        
          
Big data


AI thrives on good data, lots of it, to train machines to learn from experiences. The bulk of big data, mostly an unstructured mix of text, image, email, and video, is gathered on a massive scale from many sources (e.g., internet search, social network, web log, smartphone, GPS device, among others). Hidden in this data is useful information (e.g., correlations and trends) awaiting discovery using appropriate algorithms. Here are two illustrative examples:



	
1.In 2017 Stanford University researchers developed algorithms to classify and count the types of street-parked vehicles (sedan or pickup) using millions of archived images from Google Street View and additional public information. The researchers discovered a strong correlation between the types of cars parked on the street and (who would have thought?) the political leaning of a neighborhood.16 Just think how useful such information is in election campaigns!



	
2.In 2021, University of Arkansas Fayetteville geoscience researchers (in collaboration with five other universities) published an article on how “[t]he coronavirus disease 2019 (COVID-19) has exposed and, to some degree, exacerbated social inequity in the United States. The study reveals a correlation between demographic/socioeconomic variables and home-dwelling time derived from large-scale mobile phone location tracking data at the U.S. census block group (CBG) in the twelve most populated Metropolitan Statistical Areas (MSAs) and further investigates the contribution of these variables to the disparity in home-dwelling time that reflects the compliance with stay-at-home orders . . .”17






While data is the cornerstone of AI-based algorithms, it also carries the risk of being abused, whether intentionally or by accident. So much so, that a 2018 ruling by the United States Supreme Court regarding individual privacy asserted that “. . . [mere tracking of] the location of a cellphone . . . achieves near perfect surveillance, as if . . . an ankle monitor [is attached] to the phone’s user,”18 An example of alleged abuse of internet privacy, published in the New York Times, is that “Cambridge Analytica, a political data firm . . ., gained access to private information on more than 50 million Facebook users. The firm offered tools that could identify the personalities of American voters and influence their behavior.”19 Such privacy infringement, while it may jeopardize the integrity of elections in a democracy, pales in comparison with currently ongoing R&D to use AI-based software in harmful ways. For example, already-available facial-recognition apps could be used malevolently to:



	
1.“. . . identify activists at a protest or [a] stranger on the subway, revealing not just their names but where they lived, what they did and whom they knew, . . .[and digging up] secrets about people to blackmail them or [in the case of ruthless dictatorships] throw them in jail.”20



	
2.“. . . design [a] machine gun with facial-recognition software [as a weapon of mass destruction].”21






AI versus the games of Chess and Go


The first noteworthy efforts in applying AI began in 1985 when IBM started the Deep Blue project, a dedicated chess-playing machine. Though in 1996 Deep Blue was defeated by world champion Garry Kasparov, a heavily upgraded Deep Blue made history defeating Kasparov in 1997. Kasparov accused IBM of cheating, claiming that “Deep Blue’s playing was too human to be that of a machine.”22


Appreciable progress in AI was claimed when Google developed AlphaGo to play the highly complex ancient Chinese board game named Go with about 100,000 potential opening moves. Unlike the limited chess moves (about 20), Go has near-infinite number of positions. The program learned to improve its play strategies, not through hard coding as in Deep Blue, but by (1) initially examining millions of archived Go matches, (2) playing matches against itself, and (3) inventing (and reusing) new moves that were not previously recorded. In 2016, AlphaGo defeated 18-time grandmaster, Lee Sedol, four games to one.


The Go experience is claimed to usher a new era of AI. Google’s latest AlphaGo Zero, an improved version AlphaGo, is claimed by Google to be a milestone in machine development toward acquiring human general intelligence. The new system is currently being extended from the “modest” goal of beating Go grandmasters to “working out how proteins fold, a massive scientific challenge that could give drug discovery a sorely needed shot in the arm.”23


How useful is AI in improving human lives? Here is a representative list of where AI can make a difference:



	
• Car driver-assist system enhances road safety (e.g., lane departure and collision warnings), eventually leading to self-driving cars.




	
                  • Effective traffic laws enforcement in big cities enhances public safety and reduces congestion.

              

	
                  • Detection of fraudulent activities in financial institutions safeguards the integrity of patrons’ accounts.

              

	
                  • Detection of data cyberattacks prevents payments of ransoms to criminal hackers.

              

	
                  • Automated customer support systems using chat functionality disseminate information efficiently.

              

	
                  • Computer vision can identify a malignant tumor.

              

	
                  • Brain-computer interface allows humans to regain ability to speak.

              

	
                  • Creation of a national registry of digitized health records is a cornerstone in providing national health care system.

              





Items in this list translate to gaining economic advantages in different operational environments, a result that is consistent with the goal of optimizing operations.







 
Example 1.5-1 (AI-based Personalized Learning)24



Since time immemorial, the traditional teaching paradigm in the classroom is based a one-size-fits-all lesson plans developed by one person, the teacher. From the standpoint of imparting knowledge, this paradigm likely aims at meeting the learning needs of middle-of-the-road student, leaving out those in the lower tier who need special help to stay afloat and those at the top echelon who can get bored for not being academically challenged. Though the teacher usually tries to fill in the needs of those who need additional attention, time limitation precludes offering adequate help for everyone. The result is a high dropout rate, especially among those left behind academically.


The adverse impact of a middle-of-the-road teaching paradigm presents a problem: Students transitioning to college level who test low in basic skills (reading, writing, and mathematics) are usually placed in remedial classes that do not count toward completing their degree requirements. These remedial classes are once again of the one-size-fits-all variety and do not take into account the level of help each student needs; a waste of time and an added financial burden that contributed to a high dropout rate, especially among incoming first-year students. Interestingly, statistics shows that remedial-class students who did use on-line personalized learning resources to make up for their academic deficiencies fared much better in completing their degrees.


Advances in computers and AI are edging toward transforming education in the classroom into personalized learning experience where progress is made at one’s own pace, one student at a time. The aim is to automate the learning process using appropriate AI-based software, called virtual tutor, that tailors lesson plans to match the student academic need. This is achieved by first administering tests that determine the levels of strength and weakness of the student and devising individual lesson plans accordingly. The virtual tutor will then monitor the student progress until the subject matter is mastered, signaling an upward movement to a more advanced level. The (human) teacher will continue to play a role, offering special assistance where needed.


The development of the virtual tutor is still in its infancy. Google has developed a software in 2014 called Classroom “that helps students and teachers organize assignments, boost collaboration, and foster better communication.” But it appears that Classroom does not (yet) have the “smart” AI capabilities of the virtual tutor.


Investors are pouring in funds to make personalized learning a reality in schools. It is estimated that the effort will bear fruit in 10 to 15 years because old habits advocating one teacher per classroom are hard to break.








 

Aha! Moment. AI to the Rescue . . . or How Stephen Hawking Regained Voice!25,26



World-renowned theoretical physicist and cosmologist Stephen Hawking (1942−2018), diagnosed with ALS at the young age of 21, lost his voice irreversibly in 1985 following an invasive tracheotomy. Despite the physical disability, not only was Hawking able to speak through a special keyboard connected to a laptop, but he also was prolific in writing books (including A Brief History of Time that sold over 10 million copies), preparing lectures and speeches, browsing the internet, connecting with people through Skype and composing emails, thanks to an AI-enabled computer tailored to his needs. Following the surgery, Hawking composed sentences by lifting his eyebrows when a spelling flash card showed the intended letter at the painfully slow pace of two words per minute (one can only imagine how it must have felt like for one of the world’s smartest scientists to disseminate his thoughts and ideas at such a slow pace!).


In 1986, a California-based company, Word Plus, provided Hawking with a software loaded on Apple II computer and linked to a speech synthesizer produced by another company, Speech Plus, which improved his rate of composing texts to15 words per minute. The synthesizer gave him an iconic, semi-robotic Americanized accent that legally became his copyrighted trademark. (In 2014, Hawking, attending a charity function at St. James’s Palace, was asked teasingly by Queen Elizabeth II if he still had “that American voice.” He quipped back saying “Yes, it is copyrighted actually.”)27


In 1997, Hawking contacted Intel asking for help because his “speech input is very, very slow.” The company responded with software upgrades, incorporating a virtual keyboard on the PC screen that continually scanned the characters and could be stopped as needed using a mouse-like hand clicker. But in 2008, the onslaught of the disease rendered his thumb too weak for the purpose. Though the clicker was replaced with a low infrared beam switch attached to his glasses and operated by tensing his cheek muscle, his word input dropped to one or two words per minute. Subsequent software upgrades helped improve Hawking’s input speech, but not to a level he was happy with. Some 15 years since the project was started in 1997, Intel communication system was greatly improved to Hawking’s liking, at long last!


In 2014, Hawking had one last request: The CallText 5010 speech synthesizer was last upgraded in 1986 and Hawking had never switched to a newer technology because he identified with the Americanized voice as his own. But now, some 30 years later, the hardware was apt to fail, and with it would come the end of his globally-recognized AI-voice.


The short story is that a three-person team, led by the engineer who wrote 20,000 lines of the CallText code in 1986, managed to gather enough information about the old code that allowed them to develop a PC-compatible software that emulated the voice the 30-year old synthesizer produced, thus preserving Hawking’s beloved Americanized voice for the ages.28


A closing remark: Stephen Hawking’s success in life was in essence AI-enabled. Ironically, though, “[he] cautioned against an extreme form of AI, in which thinking machines would take off on their own, modifying themselves and independently designing and building ever more capable systems. Humans, bound by the slow pace of biological evolution, would be tragically outwitted.”29








        

      

    

              
                
                  
                  
      
        
          Some argue that it is only a matter of time for AI-based thinking machines to build superior systems that exceed human capabilities, as later discussion in this section reveals.






        

      

    


      
        
          https://news.stanford.edu/2017/11/28/neighborhoods-cars-indicate-political-leanings/






        

      

    


      
        
          Xiao Huang., Staying at Home Is a Privilege: Evidence from Fine-Grained Mobile Phone Location Data in the United States during the COVID-19 Pandemic. https://www.tandfonline.com/doi/full/10.1080/24694452.2021.1904819






        

      

    


      
        
          The Government Uses ‘Near Perfect Surveillance’ Data on Americans, https://www.nytimes.com/2020/02/07/opinion/dhs-cell-phone-tracking.html
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          For an audio comparison of how successful the emulator is, scroll down to the bottom of the following San Francisco Chronicle report: https://www.sfchronicle.com/bayarea/article/The-Silicon-Valley-quest-to-preserve-Stephen-12759775.php
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1.6 Machine Learning (ML)




ML is an important branch of AI. It teaches machines to mimic specific human mental capabilities with the goal of automating decision-making without human supervision. The field is advancing rapidly, not only replacing mundane human chores but also improving the quality of making decisions. Here are three example applications:





	
1.In days long gone, fax transmittal of millions of patient medical records among tens of thousands of healthcare providers was processed by human operators. Currently, the chore is automated using ML software that automatically discards junk-mail faxes and simultaneously reduces the filing time of patient records by 50%.


	
2.In the next two decades ML-based medical software is predicted to diagnose efficiently and more accurately over 80% of lab work (e.g., blood test, X-ray, MRI) currently performed by medical professionals.


	
3.Consumer credit score in the US is the weighted sum of individual scores based on information obtained from banks, employers, retailers, debt payment history, and others, with a maximum score of 850. In the past, the common practice by lenders was to automatically deny loans for applicants with credit scores below 620. Currently, for the same below-620 applicants, machine learning models are used to detect improvement trends of the ability to repay a loan during the past 24-month history. The result is a better predictor of creditworthiness with benefits to both the consumer and the lender.










        

      

    


      
        
          
Training and Testing ML Algorithms


An essential component of ML is the availability of a validated (large) dataset of example applications, each consisting of the input parameters together with the corresponding expected output. The dataset is then split 80:20 into two (non-overlapping) sets to form the training set and test set.The first is used to train the computer and the second to make sure the training experience is a success:30



	
                  The training phase develops an ML algorithm based on the training dataset to teach the computer how to manipulate the input parameters to produce the known output.

              

	
                  The testing phase starts after the training phase is completed. It uses the test set, which by design is unknown to the computer, to assess how well the algorithm has been trained, in that how successful the trained computer is in ending up with answers given with the test dataset.

              




Missteps in training are addressed before the ML algorithm is released to predict the output of unknown situations. The knowledge acquired from cycles of training-testing experiences is used to “tweak” the training and test sets, in turn leading to more accurate predictions.


ML algorithms, though fueled by big data, are mostly driven by the well-known Bayes’ theorem relating the conditional probabilities of events A and B:


P(A | B)⏞Posterior=P(A)⏞PriorP(B | A) ⏞LikelihoodP(B)⏟Normalization 


In a nutshell, the theorem provides a way to revise the initial prior probability, P(A), to new posterior probability, P(A|B), based on new evidence B represented by the likelihood probability, P(B|A). The revision is repeated as new evidence B becomes available, with each new revision updating current prior P(A) equal to the last computed posterior P(A|B).







 
Example 1.6-1


You arrived in a town and are looking for a good meal before retiring for the night. Not knowing the town, you start with a guesstimate prior probability of 50% chance (event A) that any restaurant will offer a good meal. Next, you surmise from past travel experience that a full parking lot (event B) of a restaurant translates to an 80%-chance that the place offers good meals. Available data estimates that only 55% of the town restaurants have full parking lots. How would this evidence change your initial 50-50 estimate?


The prior probability is P(A)=  .5, the likelihood probability P(B | A) =  ·8, and P(B)=  .55. Thus


P(A | B)⏞Posterior=.5×.8.55=.73⇒revised P(A)=.73


The revised P(A) shows that full parking lots boosts the probability of offering good meals from the initial guesstimate of .5 to the new favorable probability of .73. Other evidence (such as restaurant ratings) can be used to revise new P(A)= .73 to higher or lower values depending on their associated probabilities.









The simple example above does not do justice about how powerful the Bayes’ formula is in resolving serious issues. To cite one example, for two years the search for the flight recorder of Air France AF447 (lost on the Atlantic on June 1, 2009) using air and sea armadas from France, United States, and Brazil was fruitless until the US consultancy firm, Metron, Inc., was contracted to focus the search using the Bayes’ formula. Impressively, the blackbox was located at 14,000 feet on the ocean floor six days from the start of the Bayes-based search.


Detailed algorithms demonstrating the use of Bayes’ formula in AI and ML (including medical diagnostics and spam email filters) are explained more fully in Section 15.3.







        

      

    

              
                
                  
                  
      
        
          I like the following analogy because it succinctly clarifies the difference between training and test data: “To use an analogy, let’s say you teach a child to multiply by letting the kid train on the small multiplication table, i.e., everything from 1×1 to 9×9. Next, you test whether the kid is able to perform the same multiplications. The result is a success. The kid gets it right almost every time. What’s the problem here? You don’t know if the kid understands multiplication at all, or has simply memorized the table! So, what you would do instead is test the kid on multiplications like 11×12, that are outside of the table. This is exactly why it is necessary to test machine learning models on data previously “unseen” by the machine. Otherwise, there is no way of knowing whether the algorithm has learned a generalizable pattern or has simply memorized the training data.” For authorship credit on the source of this quote, scroll down to Håkon Hapnes Strand, Data Scientist in: https://www.quora.com/In-machine-learning-what-s-the-purpose-of-splitting-data-up-into-test-sets-and-training-sets
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1-1.﻿In the tickets example,


	
(a)﻿provide an infeasible alternative.


	
(b)identify a fourth feasible alternative and determine its cost.






1-2.In the garden fence problem, assume perimeter L  =50  ft, and let x be the width of the rectangle. Compute the garden area in x-increments of 10 ft.; i.e., x =10,20,30,40. Can this approach be used to determine the optimum solution? Explain.


1-3.(Brain teaser: Euclidean geometry proof) Consider a square of perimeter 4L. Next, construct a rectangle with its lower left corner coinciding with the square’s. The perimeter of the rectangle is also 4L, with base L + x,  0< x<L. Using only geometry, prove that the area of the rectangle is less than the area of the square for all 0< x<L, hence conclude that the square yields the largest area among all rectangular shapes with the same perimeter as the square. Note: No fair using any algebra for solving this problem. Remember, algebra was developed centuries after Euclid passed!


*1-4.(Brain teaser) The corner points of a square are designated ass A, B, C, and D. A circle passes through corner points C and D and touches the midpoint of side AB. Develop a mathematical model that determines which of the two geometric figures has the larger perimeter.


1-5.Determine the optimal solution of the garden fence problem. (Hint: Use the constraint to express the objective function in terms of one variable, then use differential calculus.)



1-6.Amrita, Jian, John, and Karim are standing on the east bank of a river and wish to cross to the west side using a canoe. The canoe can hold at most two people at a time. Amrita, being the most athletic, can row across the river in 1 minute. Jian, John, and Karim would take 3, 6, and 9 minutes, respectively. If two people are in the canoe, the slower person dictates the crossing time. The objective is for all four people to be on the other side of the river in the shortest time possible.


	
(a)Define the criterion for evaluating the alternatives (remember, the canoe is the only mode of transportation, and it cannot be shuttled empty).


	
*(b)What is the shortest time for moving all four people to the other side of the river?






1-7.In a baseball game, Naomi is the pitcher and Jamal is the batter. Suppose that Naomi can throw either a fast or a curve ball at random. If Jamal correctly predicts a curve ball, he can maintain a .400 batting average; else, if Naomi throws a curve ball and Jamal prepares for a fast ball, his batting average is kept down to .200. On the other hand, if Jamal correctly predicts a fast ball, he gets a .250 batting average; else, his batting average is only .150.






	
(a)Define the alternatives for this situation.


	
(b)Define the objective function for the problem and discuss how it differs from the familiar optimization (maximization or minimization) of a criterion.








1-8.During the construction of a house, six joists of 24 feet each must be trimmed to the correct length of 23 feet. The operations for cutting a joist involve the following sequence:
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Three persons are involved: Two loaders must work simultaneously on operations 1, 2, and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on which untrimmed joists are placed in preparation for cutting, and each pair can hold up to three side-by-side joists. Suggest a good schedule for trimming the six joists.


1-9.An upright symmetrical triangle is divided into four layers: The bottom layer consists of four (equally spaced) dots, designated as A, B, C, and D. The next layer includes dots E, F, and G, and the following layer has dots H and I. The top layer has dot J. You want to invert the triangle (the bottom layer has one dot, while the top layer has four) by moving the dots around as necessary.






	
(a)Identify two feasible solutions.


	
(b)Determine the smallest number of moves needed to invert the triangle.









1-10.(Brain teaser) You have five chains, each consisting of four solid links. You need to make a bracelet by connecting all five chains. It costs 2 cents to break a link and 3 cents to re-solder it.


	
(a)Identify two feasible solutions and evaluate them.



	
*(b)Determine the cheapest cost for making the bracelet.






*1-11.(Brain teaser) The squares of a rectangular board of 11 rows and 9 columns are numbered sequentially 1 through 99 with a hidden monetary reward between 0 and 50 dollars assigned to each square. A game using the board requires the player to choose a square by selecting any two digits and then subtracting the sum of its two digits from the selected number. The player then receives the reward assigned the selected square. What monetary values should be assigned to the 99 squares to minimize the player’s reward (regardless of how many times the game is repeated)? To make the game interesting, the assignment of $0 to all the squares is not an option.


1-12.(Brain teaser) You have 10 identical cartons each holding 10 water bottles. All bottles weigh 10 oz. each, except for one defective carton in which each of the 10 bottles weighs 9 oz. only. A scale is available for weighing. Of course, weighing the cartons randomly one at a time will eventually locate the defective carton. The challenge is to develop a mathematical model that will determine the defective carton by using the scale exactly once.


*1-13.A queueing study in a department store reveal the following information about the percent of idleness and customer waiting time as a function of the of the number of cashiers:
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The store manager wants to keep the average waiting time below 5 minutes and simultaneously maintain the percentage of idleness to below 15%. Is this goal achievable with the present data? Explain


1-14.(Loan risk) Financial institutions use predictive models to decide whether to grant loans. The goal is to reduce the risk of issuing bad loans. The overall objective is to compute a score representing the credit risk of the loan seeker. With this goal in mind, what types of data are needed to develop the predictive model?


1-15.(Employee turnover) Turnover is costly to employers and efforts must be made to keep it in check. For that to happen, employers must learn how to achieve this goal based on facts in the form of pertinent data that relates to the work experience of the employees during their tenure the company.






	
(a)What specific information (data) should be sought after and how should it be gathered and maintained.


	
(b)How should the collected data be analyzed for the purpose of reducing turnover in the company?







1-16.(Police Patrolling) The scarcest resource in a police department is its cadre of officers. Smart use of this limited resource depends on identifying critical areas of police jurisdictions where the presence of law enforcement agents is most needed. Analytics based on manipulating data can improve the chances of the being present at the right place at the right time.





	
(a)Suggest a goal for the analytics model.



	
(b)Specify the type and source of data needed.


	
(c)What type of information should be gleaned from the analytic model?








1-17.(New York City traffic congestion) A 2017 study estimates that New York City traffic, particularly in Lower Manhattan, traffic crawls at less than 5 miles per hour, down 28% from five years ago. Faced with this alarming traffic congestion, the city is implementing two programs in highly-congested selected areas (e.g., Lower Manhattan) that it hopes will alleviate the problem: (1) Pricing proposal areas during weekday business hours that charges $2 to $5 for taxis, $11.52 for cars, and $25.43 for trucks. Congestion pricing acts as a disincentive to drivers and has been implemented with notable success in London, Stockholm, and Singapore since the 1970s. (2) Voluntary shift of business deliveries from normal business hours to 7:00 P.M.−6:00 A.M. off-hours when traffic is light and ample parking is available. Assess the two proposals from the standpoint of improving traffic congestion.


1-18.In Example 1.4-2, consider the unit transportation costs ($) among the five stores as given in the following table:
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Find two different feasible solutions per the transportation model in Figure 1-3 and compare the costs.


1-19.Repeat Problem 1-18 using the same cost table and the following raw data:
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1-20.Some of us may remember a police car lurking on a side of the road, engine running, and a radar gun trained on passing traffic. And if one is caught speeding, the ensuing process of issuing an infraction (or ticket) may take 20 minutes, during which time other speeding cars would zip by with no chance of being caught because the officer is busy. For good measure, the human-cop experience of enforcing traffic laws is not effective, nor is it efficient.


The scenario above is much worse in the nightmarish traffic conditions in big cities. In New York City, 2014 statistics shows that its 3000 traffic enforcement agents issued 7 million traffic violations, an average of one ticket (1.12 to be exact) per agent per working hour. In terms of enforcing traffic laws, this is obviously not enough to address the problem effectively.


Suggest a descriptive AI-based system to automate enforcing traffic using video cameras as a central part of the system.


*1-21.In Example 1.6-1, suppose instead that the restaurant rating is 70% and the probability of having equal rating among all restaurant in town estimated at .4. Given the guesstimate initial probability of .5 that any restaurant in town will offer a good meal, how would the ratings evidence change the prior 50-50 estimate?


1-22.Example 1.6-1 revises the 50-50 guesstimate (prior) probability based on the parking lot observation, yielding a posterior probability which may then be used as prior probability for a succeeding observation. Suppose that the succeeding observation is represented by the statistics given in Problem 1-21. Revise the posterior probability based on the two combined observations (parking lot then ratings) and comment on the effect of the second observation on the decision to find a restaurant that offers good meals.








        

      

    

              
                
                  
                  
      
        
          Appendix B gives the solution to all asterisk-prefixed problems presented in this book.
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Chapter 2


Modeling with Linear Programming









 
Real-Life Application—Frontier Airlines Purchases Fuel Economically


The fueling of an aircraft can take place at any of the stopovers along a flight route. Fuel price varies among the stopovers, and potential savings can be realized by “tankering” (loading) extra fuel at a cheaper location for use on subsequent flight legs. The drawback is that the extra weight of tankered fuel will result in higher burn of gasoline. Linear programming (LP) and heuristics are used to determine the optimum amount of tankering that balances the cost of excess burn against the savings in fuel cost. The study, carried out in 1981, resulted in net savings of about $350,000 per year. With the cost of fuel ranging from 15 to 20% of the total operating cost, airlines are using LP-based tankering software to purchase fuel. Details of the study are given in Case 2, Chapter 22.








        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
2.1 Two-Variable LP Model


This section deals with the graphical solution of a two-variable LP. Though two-variable problems rarely exist in practice, the exposition provides concrete foundations for the development of the simplex method algorithm (Chapter 3) for solving very large LP problems.







 
Example 2.1-1 (The Reddy Mikks Company)


Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and M2 based on the following data:



          
          
              
                        [image: The table provides data about the Raw materials, M 1 and M 2 to produce interior and exterior paints.] 
              

          

          

          
                          <table><tbody><tr><th scope=xxdoublequotesxxcolxxdoublequotesxx rowspan=xxdoublequotesxx2xxdoublequotesxx></th><th scope=xxdoublequotesxxcolxxdoublequotesxx>Tons of raw material per ton of </th></tr><tr><th></th><th scope=xxdoublequotesxxcolxxdoublequotesxx> Exterior paint</th><th scope=xxdoublequotesxxcolxxdoublequotesxx> Interior paint</th><th scope=xxdoublequotesxxcolxxdoublequotesxx> Maximum daily availability (tons)</th></tr><tr><td>Raw material, M 1</td><td>6</td><td>4</td><td>24</td></tr><tr><td>Raw material, M 2</td><td>1</td><td>2</td><td>6</td></tr><tr><td>Profit per ton ($1000)</td><td>5</td><td>4</td><td></td></tr></tbody></table>      
    
          

        

The demand for interior paint is limited to 2 tons/day. Simultaneously, interior paint production cannot exceed that of exterior paint by more than 1 ton.


Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior paints that maximizes the total daily profit.


All OR models, LP included, consist of three basic components (see Section 1.3):



	
1.The decision variables to be determined.


	
2.The objective (goal) to be optimized (maximized or minimized).


	
3.The constraints to be satisfied.





The proper definition of the decision variables is an essential first step in the development of the model. Once done, the task of constructing the objective function and the constraints becomes more straightforward.


To define the variables, ask the question: What are the unknowns of the decision problem? In the Reddy Mikks problem, the answer entails determining the daily production amounts of exterior and interior paints. Thus, the variables of the model can be defined as:


x1=Tons of exterior paint produced dailyx2=Tons of interior paint produced daily


The objective (goal) of Reddy Mikks is to maximize (i.e., increase as much as possible) the total daily profit of both paints. The two components of the total daily profit are expressed in terms of the variables x1 and x2 as:


Profit from exterior paint=5x1(thousand)dollarProfit from interior paint=4x2(thousand)dollars


Letting z represent the total daily profit (in thousands of dollars), the objective (or goal) of the Reddy Mikks model becomes


Maximize z=5x1+4x2


The next step is to construct the constraints that restrict raw material usage and product demand. The raw material restrictions are expressed verbally as


(Usage of a raw materialby both paints)≤(Maximum raw materialavailability)


The daily usage of raw material M1 is 6 tons per ton of exterior paint and 4 tons per ton of interior paint. Thus,


Usage of raw material M1 by both paints=6x1+4x2 tons/day


In a similar manner,


Usage of raw material M2 by both paints=1x1+2x2 tons/day


The maximum daily availabilities of raw materials M1 and M2, 24 and 6 tons, define the respective right-hand side (RHS) for the two constraints; thus yielding


6x1+4x2≤24(Raw material M1)x1+2x2≤6(Raw material M2)


One of the restrictions on product demand stipulates that the daily production of interior paint cannot exceed that of exterior paint by more than 1 ton, which translates to


x2−x1≤1   (Market limit)


The other restriction limits the daily demand of interior paint to 2 tons—that is,


x2≤2   (Demand limit)


An implicit (or “understood-to-be”) restriction requires (all) the variables, x1 and x2, to assume zero or positive values only. The restrictions, expressed as x1≥0 and x2≥0, are known as nonnegativity constraints.


The complete Reddy Mikks model is


Maximize z=5x1+4x2


subject to


6x1+4x2≤240(1)x1+2x2≤060(2)−x1+x2≤010(3)x2≤020(4)x1,x2≥000(5)


Any values of x1 and x2 that satisfy all five constraints constitute a feasible solution. Otherwise, the solution is infeasible. For example, the solution x1=3 tons per day and x2=1 ton per day is feasible because it does not violate any of the five constraints; a result that is confirmed by substituting out (x1=3,x2=1) in the LHS of each constraint. In constraint (1), 6x1+4x2=6×3+4×1=22, which is less than its RHS (=24). Constraints 2 to 5 are checked in a similar manner (verify!). Conversely, the solution x1=4 and x2=1 is infeasible because it does not satisfy at least one constraint. For example, in constraint (1), 6×4+4×1=28, which is larger than the RHS (=24).


The solution of the LP model seeks the optimum: the best feasible values of the variables, x1 and x2, that maximize the total profit z. The graphical method in Section 2.2 and its algebraic generalization in Chapter 3 show how the optimum can be determined in a finite number of steps (even though, as will be explained subsequently, the solution space has an infinite number of feasible points).








        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
2.2 Graphical LP Solution




The graphical solution includes two steps:





	
1.Determination of the feasible solution space.


	
2.Determination of the optimum solution from among all the points in the solution space.







The presentation uses two examples to show how maximization and minimization objective functions are handled.







        

      

    


      
        
          2.2.1 Solution of a Maximization Model






 
Example 2.2-1


This example solves the Reddy Mikks model of Example 2.1-1.



	
Step 1. Determination of the Feasible Solution Space:




	The initial task in determining the solution space is to depict the two variables on an X-Y chart, with the horizontal axis representing x1 and the vertical axis representing x2. This representation will partition the graph space into four quadrants, of which the first quadrant (the one above the x1-axis and to the right of the x2-axis) is of interest because it is the only quadrant that satisfies the nonnegativity constraints (5), x1≥0 and x2≥0. Figure 2.1 does just that.






Figure 2.1

Feasible space of the Reddy Mikks model




          
          
              
                        [image: The figure illustrates a feasible solution region enclosed by four straight lines and two axes on the coordinate plane.] 
              

          

          

          
                          <p>The graph contains four straight lines and the origin is labeled "A". The horizontal axis is labeled x subscript 1, and ranges from 0 to 6, in increments of 1 unit. The vertical axis is labeled x subscript 2, and ranges from 0 to 6, in increments of 1 unit. Line 1 starts from (0, 6), falls linearly toward the lower right, and intersects the horizontal axis at B (4, 0). Line 2 starts from (0, 3), falls linearly toward the lower right, intersects Line 1 at C, and then intersects the horizontal axis at (6, 0). Line 4 is a horizontal line, passes through (0, 2), and remains constant toward the right, intersects Line 2 at D, and then intersects Line 1. An arrow from the Line 1 points toward the lower left. An arrow from the Line 2 points toward the lower left. An arrow from the Line 3 points toward the lower right. An arrow from the Line 4 points downward. The vertical axis is marked 5, and an arrow from the vertical axis points toward the right. The horizontal axis is marked 6, and an arrow from the horizontal axis points upward. The area enclosed by four lines and two axes is shaded and labeled solution space.</p>      
    
          

        

	To account for constraints (1) through (4), first replace each inequality with an equation, and then graph the resulting straight line by locating two distinct points. For example, after replacing 6x1+4x2≤24 with the straight line 6x1+4x2=24, two distinct points are determined conveniently by setting x1=0 to obtain x2= 244 =6 and then by setting x2=0 to obtain x1= 246 =4. Thus the line 6x1+4x2=24 passes through (0, 6) and (4, 0), as shown by line (1) in Figure 2.1.




	Next, consider the direction (> or <) of the inequality. It divides the first quadrant into two half-spaces, one on each side of the graphed line. Only one of these two halves satisfies the inequality. To determine the feasible half-space, first designate any point not lying on the straight line as a reference point. The half-space containing the reference point is the feasible side. Computationally, it is convenient to use the origin, (0, 0), as a reference point because the LHS always equals zero. To demonstrate, substitution of (x1, x2)=(0,0) in constraint 6x1+4x2≤24 yields zero LHS (6×0+4×​0=0), which is less than 24. Thus, the half-space containing (0, 0) is feasible for inequality (1), as the direction of the arrow in Figure 2.1 indicates.1





	Application of the reference-point procedure to all the constraints of the model produces the constraints shown in Figure 2.1 (verify!). The feasible solution space is the area in the first quadrant that satisfies all constraints simultaneously, including the nonnegativity constraints. In Figure 2.1, all points within or on the boundary of the area ABCDEF define such a space. All points outside this area are infeasible.





	
Step 2. Determination of the Optimum Solution:




	The number of solution points in the feasible space ABCDEF in Figure 2.1 is infinite, thus precluding the use of “exhaustive enumeration” and pointing to the need for a systematic procedure to determine the optimum (feasible) point.





	First, the direction in which the profit function z=5x1+4x2 increases must be determined by assigning arbitrary increasing values to z (recall that z is maximized). For example, for z=10 and z=15, the two lines 5x1+4x2=10 and 5x1+4x2=15 identify the direction in which z increases, as depicted in Figure 2.2. Moving in that direction, the search stops at feasible point C because any further increase in z is infeasible. Thus, point C is the optimum solution.





Figure 2.2

Optimum solution of the Reddy Mikks model




          
          
              
                        [image: The figure illustrates a feasible solution region enclosed by four straight lines and two axes on the coordinate plane.] 
              

          

          

          
                          <p>The graph contains four straight lines and the origin is labeled “A”. The horizontal axis is labeled x subscript 1, and ranges from 0 to 6, in increments of 1 unit. The vertical axis is labeled x subscript 2, and ranges from 0 to 3, in increments of 1 unit. Line segment B C starts from B (4, 0), rises linearly toward the upper left till C. Line segment B C is labeled 1. Line segment C D rises linearly toward the upper left till D, and labeled 2. Line segment D E is horizontal and E is on the left side of D. Line segment E F decreases toward the lower left till F (0, 1) on the vertical axis., and intersects the horizontal axis at B (4, 0). The region “A” B C D E F is shaded. Three parallel dashed lines are labeled z equals 10, z equals 15, and z equals 21. Line z equals 10 intersects the horizontal axis at (2, 0) and the line segment E F. Line z equals 15 intersects the horizontal axis at (3, 0) and the line segment D E. Line z equals 21 intersects passes through point C. An arrow towards the upper right from the line z equals 10 to the line z equals 21 is labeled increasing z. The arrow points to Maximize z equals 5 x subscript 1 plus 4 subscript 2. The line segment C D is labeled x subscript 1 plus 2 x subscript 2 less than or equal to 6. The line segment B C is labeled 6 x subscript 1 plus 4 x subscript 2 less than or equal to 24. Point C is labeled Optimum: x subscript 1 equals 3 tons. x subscript 2 equals 1.5 tons. z equals 21000 dollars.</p>      
    
          

        

The values of x1 and x2 are determined algebraically by recognizing that optimum C is the intersection of lines (1) and (2), thus leading to solving the following two simultaneous equations:


6x1+4x2=24x1+2x2=6


The solution is x1=3 and x2=1.5 with z=5×3+4×1.5=21, calling for a daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The associated daily profit is $21,000.


Remarks.‌‌‌‌‌ In practice, a typical LP can include thousands of variables and constraints. Of what good then is the study of a two-variable LP? The answer is that the graphical solution provides a key result: The optimum solution of an LP, when it exists, is always associated with a corner point of the solution space, thus limiting the search for the optimum from an infinite number of feasible points to a finite number of (feasible) corner points. This powerful result is the basis for the development of the general algebraic simplex method presented in Chapter 3.


To reinforce the assertion that the optimum is always associated with a corner point, the table below provides different objective functions for the Reddy Mikks model and their associated optimum corner points. Notice how the change in the objective function allowed visiting all the corner points of the solution space.



          
          
              
                        [image: The table provides Objective function of Reddy Mikks model file tora Ex2.2-1.txt corresponding to optimum corner point.] 
              

          

          

          
                          <table><tbody><tr><th scope="xxdoublequotesxxcolxxdoublequotesxx">Objective function of Reddy Mikks model file toraEx2.2-1.txt</th><th scope="xxdoublequotesxxcolxxdoublequotesxx">Optimum corner point in Figure 2.2</th></tr><tr><td><math><mi>z</mi><mo>=</mo><mn>5</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>x</mi><mn>2</mn></msub></math></td><td>B</td></tr><tr><td><math><mi>z</mi><mo>=</mo><mn>5</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>4</mn><msub><mi>x</mi><mn>2</mn></msub></math></td><td>C</td></tr><tr><td><math><mi>z</mi><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>3</mn><msub><mi>x</mi><mn>2</mn></msub></math></td><td>D</td></tr><tr><td><math><mi>z</mi><mo>=</mo><mo>−</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>x</mi><mn>2</mn></msub></math></td><td>E</td></tr><tr><td><math><mi>z</mi><mo>=</mo><mo>−</mo><mn>2</mn><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>x</mi><mn>2</mn></msub></math></td><td>F</td></tr><tr><td><math><mi>z</mi><mo>=</mo><mo>−</mo><msub><mi>x</mi><mn>1</mn></msub><mo>−</mo><msub><mi>x</mi><mn>2</mn></msub></math></td><td>A</td></tr></tbody></table>      
    
          

        

TORA is convenient for verifying the optimum corner points listed in the table above: Load file toraEx2.2-1.txt. Click View/Modify Input Data to modify the objective coefficients and re-solve the problem graphically.








        

      

    


      
        
          2.2.2 Solution of a Minimization Model






 
Example 2.2-2 (Diet Problem)


Ozark Farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and soybean meal with the following compositions:



          
          
              
                        [image: The table provides the composition for a mixture of corn and soyabean meal.] 
              

          

          

          
                          <table><tbody><tr><th></th><th scope="xxdoublequotesxxcolxxdoublequotesxx"> Ib per Ib of feedstuff</th></tr><tr><th scope="xxdoublequotesxxcolxxdoublequotesxx"> Feedstuff</th><th scope="xxdoublequotesxxcolxxdoublequotesxx"> Protein</th><th scope="xxdoublequotesxxcolxxdoublequotesxx"> Fiber</th><th scope="xxdoublequotesxxcolxxdoublequotesxx">Cost ($/Ib)</th></tr><tr><td>Corn</td><td>.09</td><td>.02</td><td>.30</td></tr><tr><td>Soybean meal</td><td>.60</td><td>.06</td><td>.90</td></tr></tbody></table>      
    
          

        

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. The goal is to determine the minimum-cost feed mix per day.


The decision variables of the model are


x1=lb of corn in the daily mixx2=lb of soybean meal in the daily mix


The objective is to minimize the total daily cost (in dollars) of the feed mix—that is,


Minimize z=.3x1+.9x2


The constraints represent the daily amount of the mix and the dietary requirements. Ozark Farms needs at least 800 lb of feed a day—that is,


x1+x2≥800


The amount of protein included in x1 lb of corn and x2 lb of soybean meal is (.09x1+.6x2) lb. This quantity should equal at least 30% of (x1+x2) lb, the total feed mix—that is,


.09x1+.6x2≥.3(x1+x2)


In a similar manner, the fiber requirement of at most 5% is represented as


.02x1+.06x2≤.05(x1+x2)


Traditionally, the constraints are simplified by moving the terms in x1 and x2 to the LHS of each inequality, leaving only a constant on the RHS. The complete model is


Minimize  z=.3x1+.9x2


subject to


x1+.30x2≥800.21x1−.30x2≤0.03x1−.01x2≥0x1,x2≥0


Figure 2.3 provides the graphical solution of the model. The second and third constraints happen to pass through the origin. Thus, unlike in the Reddy Mikks model of Example 2.2-1, the determination of the feasible half-spaces of these two constraints requires using a reference point other than (0, 0) [e.g., (100, 0) or (0, 100)].



Figure 2.3

Graphical solution of the diet model




          
          
              
                        [image: The figure illustrates a feasible solution region enclosed by four straight lines on the coordinate plane.] 
              

          

          

          
                          <p>The graph contains four straight lines and the origin is labeled O. The horizontal axis is labeled x subscript 1, and ranges from 0 to 1500, in increments of 500 units. The vertical axis is labeled x subscript 2, and ranges from 0 to 1500, in increments of 500 units. The first line labeled x subscript 1 plus x subscript 2 greater than or equal to 800, starts from (0, 800), decreases toward the lower right, and intersects the horizontal axis at (800, 0). The second line labeled 0.03 x subscript 1 minus 0.01x subscript 2 is greater than or equal to 0, starts from the origin, rises toward the upper right, and intersects the first line. The third line labeled 0.21 x subscript 1 minus 0.3 x subscript 2 less than or equal to 0, starts from the origin, rises toward the upper right, and intersects the first line. The third line is below the second line. The fourth dashed line is labeled minimize z equals 0.3 x subscript 1 plus 0.9 x subscript 2. The fourth line starts from (0, 1500), falls toward the lower right, and intersects the second and third lines. An arrow points downward from the fourth line. The region enclosed by the four lines is shaded. The intersection of the first and third line is labeled optimum: x subscript 1 equals 476 pounds, x subscript 2 equals 329.4 pounds, z equals 437.64 dollars.</p>      
    
          

        

Solution


The model minimizes the value of the objective function by reducing z in the direction shown in Figure 2.3. The optimum solution is the intersection of the two lines x1+x2=800 and .21x1−.3x2=0, which yields x1=470.6 lb of corn and x2=329.4 lb of soybean meal. The minimum cost of the feed mix is z=.3×470.6+.9×329.4=$437.64 per day.


Remarks.


One may wonder why the constraint x1+x2≥800 cannot be replaced with x1+x2=800 because, as the thinking may go, it is not optimum to produce more than the minimum quantity. Although the solution of the present model does satisfy the equation constraint, a more complex model may impose additional diet restrictions that would require mixing more than the minimum amount. More importantly, the weak inequality (≥), by definition, subsumes the equality case; meaning that the equation (=) constraint will hold if feasibility allows it. The general conclusion for any OR model is that the decision maker should not “preguess” the solution by imposing the equality restriction a priori.








        

      

    

              
                
                  
                  
      
        
          The use of the origin as a reference point works well provided (0,0) does not lie on the straight line. For such cases, any other reference point will do, albeit it requires additional computations. (see Example 2.2-2).






        

      

    



                  

                

              


          
            
      
        
          
2.3 Computer Solution with Solver and AMPL




In practice, where typical LP models can involve thousands of variables and constraints, computer is the only viable venue for solving LP problems. This section presents two commonly used software systems: Excel Solver and AMPL. Solver is particularly appealing to spreadsheet users. AMPL is an algebraic modeling language that, like all higher-order programming languages, requires more expertise. Nevertheless, AMPL, and similar languages,2 offers great modeling flexibility. Although the presentation in this section concentrates on LPs, both AMPL and Solver can handle integer and nonlinear problems, as will be shown in later chapters.







        

      

    


      
        
          
2.3.1 LP Solution with Excel Solver




In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.4 shows the layout of the data for the Reddy Mikks model (file solverRM1.xls). The top of the figure includes four types of information: (1) input data cells (B5:C9 and F6:F9), (2) cells representing the variables and the objective function (B13:D13), (3) algebraic definitions of the objective function and the LHS of the constraints (cells D5:D9), and (4) cells that provide (optional) explanatory names or symbols. Solver requires the first three types only. The fourth type enhances readability but serves no other purpose. The relative positioning of the four types of information on the spreadsheet (as suggested in Figure 2.4) is convenient for proper cell cross-referencing in Solver, and its use is recommended.





Figure 2.4

Defining the Reddy Mikks model with Excel Solver (file solverRM1.xls)






          
          
              
                        [image: The figure illustrates the screenshots of Reddy Mikks Model and two other windows labeled Solver Parameters and Add Constraints.] 
              

          

          

          
                          <p>Reddy Mikks Model is a table of 9 Columns and 13 rows in Excel. Rows 1: Reddy Micks Mode. Row 2: Column “A” to F, Input data. Column G, Cell. Column H and I, Formula. Column J, Copy to. Row 3: Column B, x subscript 1. Column C, x subscript 2. Column G, D 5. Column H and I, equal B 5 asterisk B dollar 13 plus C 5 asterisk C dollar 13. Column J, D 6 colon D 9. Row 4: Column B, Exterior. Column C, Interior. Column D, Totals. Column F, Limits. Column G, D 13. Column H, equals D 5.</p><p>Row 5: Column “A”, Objective. Column B, 5. Column C, 4. Column D, 21.</p><p>Row 6: Column “A”, Raw material 1. Column B, 6. Column C, 4. Column D, 24. Column E, less than or equal to. Column F, 24.</p><p>Row 7: Column “A”, Raw material 2. Column B, 1. Column C, 2. Column D, 6. Column E, less than or equal to. Column F, 6,</p><p>Row 8: Column “A”, Market Limit. Column B, negative 1. Column C, 1. Column D, negative 1.5. Column E, less the or equal to. Column F, 1, Row 9: Column “A”, Demand Limit. Column B, 0. Column C, 1. Column D, 1.5. Column E, less than or equal to. Column F, 2,</p><p>Row 10: Column B, greater than or equal to 0. Column C, greater than or equal to.</p><p>Row 11: Column “A”, Output results.</p><p>Row 12: Column B, x subscript 1. Column C, x subscript 2. Column D, z.</p><p>Row 13: Column “A”, Solution. Column B, 3. Column C, 1.5. Column D, 21.</p><p>A pop up window named Solver Parameters has following contents.</p><p>Line 1: Set Target Cell: and a textbox contains Dollar D Dollar 5.</p><p>Line 2: Equal to: Radio button selected Max. Radio button unselected Min. Radio button unselected Value of: Textbox contains 0.</p><p>Line 3: By Changing Cells: Textbox contains Dollar B Dollar 13: Dollar C Dollar 13.</p><p>Line 4: Subject to the Constraints: Textbox contains Dollar B Dollar 13 colon Dollar C Dollar 13 greater than or equal to 0. Dollar D Dollar 6 colon Dollar D Dollar 9 less than or equal to Dollar F Dollar 6 colon Dollar F Dollar 9. Four buttons are labeled Guess, Add, Change, and Delete. On the right side five buttons are labeled Solve, Close, Options, Reset All, and Help.</p><p>Another pop up window titled Add Constraint has following contents.</p><p>Line 1: Cell Reference: and an empty textbox. Drop down menu contains less than or equal to, equal to, greater than or equal to, int, and bin. Constraint: and empty textbox. Four buttons are labeled OK, Cancel, Add, and Help.</p>      
    
          

        



How does Solver link to the spreadsheet data? First, “algebraic” definitions of the objective function and the LHS of the constraints are constructed using the input data (cells B5:C9 and F6:F9) and the objective function and variables (cells B13:D13). Next, the resulting formulas are placed appropriately in cells D5:D9, as the following table shows:
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Actually, it is only necessary to enter the formula for cell D5 and then copy it into cells D6:D9. To do so correctly, make sure to use fixed referencing of the cells representing x1 and x2 (i.e., $B$13 and $C$13, respectively).





The explicit formulas just described are impractical for large LPs. Instead, the formula in cell D5 can be written compactly as




=SUMPRODUCT(B5:C5,$B$13:$C$13)




The new formula can then be copied into cells D6:D9.




All the elements of the LP model are now in place. To execute the model, click Solver from the spreadsheet menu bar3 to access Solver Parameters dialogue box (shown in the middle of Figure 2.4). Next, update the dialogue box as follows:





	Set Target Cell: $D$5



	Equal To: ﻿﻿⊙Max



	By Changing Cells: $B$13:$C$13








This information tells Solver that the LP variables (cells $B$13 and $C$13) are determined by maximizing the objective function in cell $D$5.




To set up the constraints, click Add in the dialogue box to display the Add Constraint box (bottom of Figure 2.4) and then enter the LHS, inequality type, and RHS of the constraints as4




$D$6:$D$9 ≤ $F$6:$F$9




For the nonnegativity restrictions, click Add once again and enter




$B$13:$C$13≥0




Solver allows imposing time and iterations limits during execution as shown in Figure 2.5. To change these limits, click Options in the Solver Parameters box to access Solver Options. In general, the default settings in Figure 2.5 need not be changed. However, the default precision of .000001 may be too high for some problems, and Solver may return the message “Solver could not find a feasible solution.” In such cases, less precision (i.e., larger value) needs to be specified. If the message persists, then the problem is most likely infeasible.





Figure 2.5

Solver options dialogue box






          
          
              
                        [image: The figure illustrates a Solver options dialogue box.] 
              

          

          

          
                          <p>The menu options at the top of the window are All Methods, GRG Nonlinear, and Evolutionary. The window has twelve lines as follow.</p><p>Line 1: Constraint Precision: 0.000001.</p><p>Line 2: Square bulletin Use Automatic Scaling.</p><p>Line 3: Square bulletin Show Iteration Results.</p><p>Line 4: Solving with Integer Constraints.</p><p>Line 5: Square bulletin Ignore Integer Constraints.</p><p>Line 6: Integer Optimality (percentage): 5.</p><p>Line 7: Solving Limits.</p><p>Line 8: Max Time (Seconds): 100.</p><p>Line 9: Iterations: 100.</p><p>Line 10: Evolutionary and Integer Constratints:</p><p>Line 11: Max Subproblems: 5000.</p><p>Line 12: Max Feasible Solutions: 5000.</p><p>At bottom right of the window two boxes labeled Ok and Cancel are placed.</p>      
    
          

        



Descriptive Excel range names can be used to enhance readability. A range is created by highlighting the desired cells, typing the range name in the top left box of the sheet, and then pressing Return. Figure 2.6 (file solverRM2.xls) provides the details with a summary of the range names used in the model. The model should be contrasted with the file solverRM1.xls to see how ranges are used in the formulas.





Figure 2.6

Use of range names in Excel Solver (file solverRM2.xls)






          
          
              
                        [image: The figure illustrates the screenshots of Reddy Mikks Model and a window labeled Solver Parameters.] 
              

          

          

          
                          <p>Reddy Mikks Model is a table of 9 Columns and 13 rows in Excel. Rows 1: Reddy Micks Mode. Row 2: Column “A” to F, Input data. Column G, Range name. Column H, Cells.</p><p>Row 3: Column B, x subscript 1. Column C, x subscript 2. Column G, Units Produced. Column H, B 13 colon C 13.</p><p>Row 4: Column B, Exterior. Column C, Interior. Column D, Totals. Column F, Limits. Column G, Units Profit. Column H, B 5 colon C 5.</p><p>Row 5: Column “A”, Objective. Column B, 5. Column C, 4. Column D, 21. Column G, Totals. Column H, D 6 colon D 9.</p><p>Row 6: Column “A”, Raw material 1. Column B, 6. Column C, 4. Column D, 24. Column E, less than or equal to. Column F, 24. Column G, Limits. Column H, F 6 colon F 9.</p><p>Row 7: Column “A”, Raw material 2. Column B, 1. Column C, 2. Column D, 6. Column E, less than or equal to. Column F, 6, Column G, Total Profit. Column H, D 5.</p><p>Row 8: Column “A”, Market Limit. Column B, negative 1. Column C, 1. Column D, negative 1.5. Column E, less the or equal to. Column F, 1, Row 9: Column “A”, Demand Limit. Column B, 0. Column C, 1. Column D, 1.5. Column E, less than or equal to. Column F, 2,</p><p>Row 10: Column B, greater than or equal to 0. Column C, greater than or equal to.</p><p>Row 11: Column “A”, Output results.</p><p>Row 12: Column B, x subscript 1. Column C, x subscript 2. Column D, z.</p><p>Row 13: Column “A”, Solution. Column B, 3. Column C, 1.5. Column D, 21.</p><p>A pop up window named Solver Parameters has following contents.</p><p>Line 1: Set Target Cell: and a textbox contains Total Profit.</p><p>Line 2: Equal to: Radio button selected Max. Radio button unselected Min. Radio button unselected Value of: Textbox contains 0.</p><p>Line 3: By Changing Cells: Textbox contains Units Produced.</p><p>Line 4: Subject to the Constraints: Textbox contains Totals less than or equal to Limits. Units produced greater than or equal to 0. Four buttons are labeled Guess, Add, Change, and Delete. On the right side five buttons are labeled Solve, Close, Options, Reset All, and Help.</p>      
    
          

        



To solve the problem, click Solve on Solver Parameters. A new dialogue box, Solver Results, then gives the status of the solution. If the model setup is correct, the optimum value of z will appear in cell D5 and the values of x1 and x2 will occupy cells B13 and C13, respectively. For convenience, cell D13 exhibits the optimum value of z by entering the formula = D5 in cell D13, thus displaying the entire optimum solution in contiguous cells.




If a problem has no feasible solution, Solver will issue the explicit message “Solver could not find a feasible solution.” If the optimal objective value is unbounded (not finite), Solver will issue the somewhat cryptic message “The Set Cell values do not converge.” In either case, the message indicates that there is something wrong with the formulation of the model, as will be discussed in Section 3.5.




The Solver Results dialogue box provides the opportunity to request further details about the solution, including the sensitivity analysis report, as will be discussed in Section 3.6.4.




The solution of the Reddy Mikks by Solver is straightforward. Setting up other more complex models may require a “bit of ingenuity.” A class of LP models that falls in this category deals with network optimization, as will be demonstrated in Chapter 6.
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