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Table 4.3

Steps in the Node-Voltage Method and the Mesh-Current Method




          
          
          
          
            
              
              
	

	Node-Voltage Method

	Mesh-Current Method





	
Step 1

Identify nodes/meshes


	Identify the essential nodes by circling them on the circuit diagram.

	Identify the meshes by drawing directed arrows inside each mesh.




	
Step 2

Label node voltages/mesh currents

Recognize special cases


	
Pick and label a reference node; then label the remaining essential node voltages.


	
                  If a voltage source is the only component in a branch connecting the reference node and another essential node, label the essential node with the value of the voltage source.

              

	
                  If a voltage source is the only component in a branch connecting two nonreference essential nodes, create a supernode that includes the voltage source and the two nodes on either side.

              




	
Label each mesh current.


	
                  If a current source is in a single mesh, label the mesh current with the value of the current source.

              

	
                  If a current source is shared by two adjacent meshes, create a supermesh by combining the two adjacent meshes and temporarily eliminating the branch that contains the current source.

              







	
Step 3

Write the equations


	
Write the following equations:


	
                  A KCL equation for any supernodes;

              

	
                  A KCL equation for any remaining essential nodes where the voltage is unknown;

              

	
                  A constraint equation for each dependent source that defines the controlling variable for the dependent source in terms of the node voltages;

              

	
                  A constraint equation for each supernode that equates the difference between the two node voltages in the supernode to the voltage source in the supernode.

              




	
Write the following equations:


	
                  A KVL equation for any supermeshes;

              

	
                  A KVL equation for any remaining meshes where the current is unknown;

              

	
                  A constraint equation for each dependent source that defines the controlling variable for the dependent source in terms of the mesh currents;

              

	
                  A constraint equation for each supermesh that equates the difference between the two mesh currents in the supermesh to the current source eliminated to form the supermesh;

              







	
Step 4

Solve the equations


	Solve the equations to find the node voltages.

	Solve the equations to find the mesh currents.




	
Step 5

Solve for other unknowns


	Use the node voltage values to find any unknown voltages, currents, or powers.

	Use the mesh current values to find any unknown voltages, currents, or powers.




            

          

          
        







Analyzing a Circuit with an Ideal OP AMP



	
                  Check for a negative feedback path. If it exists, assume the op amp operates in its linear region.

              

	
                  Write a KCL equation at the inverting input terminal.

              

	
                  Solve the KCL equation and use the solution to find the op amp’s output voltage.

              

	
                  Compare the op amp’s output voltage to the power supply voltages to determine if the op amp is operating in its linear region or if it is saturated.

              










General Method for Natural and Step Response of RL and RC Circuits



	
                  Identify the variable X(t), which is the inductor current for RL circuits and capacitor voltage for RC circuits.

              

	
                  Calculate the initial value X0 by analyzing the circuit to find x(t) for t<0.

              

	
                  Calculate the time constant τ; for RL circuits τ=L/R and for RC circuits τ=RC, where R is the equivalent resistance connected to the inductor or capacitor for t≥0.

              

	
                  Calculate the final value Xf by analyzing the circuit to find x(t) as t→∞; for the natural response, Xf=0.

              

	
                  Write the equation for x(t), x(t)=Xf+(X0−Xf) e−t/τ, for t≥0.

              

	
                  Calculate other quantities of interest using x(t).

              











Table 8.2

Equations for Analyzing the Natural Response of Parallel RLC Circuits




          
          
          
          
            
              
              

	Characteristic equation

	s2+1RCs+1LC=0




	Neper, resonant, and damped frequencies

	α=12RC    ω0=1LC    ωd=ω02−α2




	Roots of the characteristic equation

	s1=−α+α2−ω02,s2=−α−α2−ω02




	α2>ω02: overdamped

	[image: table attributes columnalign center center left center center columnspacing 0.3em 0.3em 0.4em end attributes row cell v left parenthesis t right parenthesis end cell equals cell A subscript 1 e to the power of s subscript 1 t end exponent plus A subscript 2 e to the power of s subscript 2 t end exponent comma t greater or equal than 0 end cell blank blank row cell v left parenthesis 0 to the power of plus right parenthesis end cell equals cell A subscript 1 plus A subscript 2 table attributes columnalign center center columnspacing 0.3em end attributes row equals cell V subscript 0 end cell end table end cell blank blank row cell fraction numerator d v left parenthesis 0 to the power of plus right parenthesis over denominator d t end fraction end cell equals cell s subscript 1 A subscript 1 plus s subscript 2 A subscript 2 equals 1 over C open parentheses fraction numerator negative V subscript 0 over denominator R end fraction minus I subscript 0 close parentheses end cell blank blank end table]




	α2<ω02: underdamped

	[image: table attributes columnalign right center left center center columnspacing 0.3em 0.3em 0.4em end attributes row cell v left parenthesis t right parenthesis end cell equals cell B subscript 1 e to the power of negative alpha t end exponent   text cos  end text omega subscript d t plus B subscript 2 e to the power of negative alpha t end exponent   text sin  end text omega subscript d t comma t greater or equal than 0 end cell blank blank row cell v left parenthesis 0 to the power of plus right parenthesis end cell equals cell B subscript 1 table attributes columnalign left left columnspacing 0.3em end attributes row equals cell straight V subscript 0 end cell end table end cell blank blank row cell fraction numerator d v left parenthesis 0 to the power of plus right parenthesis over denominator d t end fraction end cell equals cell negative alpha B subscript 1 plus omega subscript d B subscript 2 equals 1 over C open parentheses fraction numerator negative V subscript 0 over denominator R end fraction minus I subscript 0 close parentheses end cell blank blank end table]




	α2=ω02: critically damped

	v(t)=D1te−αt+D2e−αt,t≥0v(0+)=D2=V0dv(0+)dt=D1−αD2=1C(−V0R−I0)




            

          

          
        

(Note that the equations for [image: v left parenthesis t right parenthesis comma v open parentheses 0 to the power of plus close parentheses], and dv(0+)/dt assume that the reference direction for the current in every component is in the direction of the reference voltage drop across that component.)








Natural Response of a Parallel RLC Circuit



	
                  Determine the initial capacitor voltage (V0) and inductor current (I0) from the circuit.

              

	
                  Determine the values of α and ω0 using the equations in Table 8.2.

              

	
                  If α2>ω02, the response is overdamped and v(t)=A1es1t+A2es2t,t≥0;

 If α2<ω02, the response is underdamped and v(t)=B1e−αt cos ωdt+B2e−αt sin ωdt,t≥0; 

If α2=ω02, the response is critically damped and v(t)=D1te−αt+D2te−αt,t≥0.

              

	
                  If the response is overdamped, calculate s1 and s2 using the equations in Table 8.2;

If the response is underdamped, calculate ωd using the equation in Table 8.2.

              

	
                  If the response is overdamped, calculate A1 and A2 by simultaneously solving the equations in Table 8.2;

If the response is underdamped, calculate B1and B2 by simultaneously solving the equations in Table 8.2;

If the response is critically damped, calculate D1 and D2 by simultaneously solving the equations in Table 8.2.

              

	
                  Write the equation for v(t) from Step 3 using the results from Steps 4 and 5; find any desired branch currents.

              









        

      

    


      
        
          

Table 8.3

Equations for Analyzing the Step Response of Parallel RLC Circuits






          
          
          
          
            
              
              

	Characteristic equation

	s2+1RCs+1LC=ILC




	Neper, resonant, and damped frequencies

	α=12RC    ω0=1LC    ωd=ω02−α2




	Roots of the characteristic equation

	s1=−α+α2−ω02,s2=−α−α2−ω02




	α2>ω02: overdamped

	iL(t)=If+A'1es1t+A'2es2t,t≥0iL(0+)=If+A'1+A'2=I0diL(0+)dt=s1A'1+s2A'2=V0L




	α2<ω02: underdamped

	iL(t)=If+B'1e−αtcosωdt+B'2e−αtsinωdt,t≥0iL(0+)=If+B'1=I0diL(0+)dt=−αB'1+ωdB'2=V0L




	α2=ω02: critically damped

	iL(t)=If+D'1te−αt+D'2e−αt,t≥0iL(0+)=If+D'2=I0diL(0+)dt=D'1−αD'2=V0L




            

          

          
        



(Note that the equations for iL(t),iL(0+), and diL(0+)/dt assume that the reference direction for the current in every component is in the direction of the reference voltage drop across that component.)







        

      

    


      
        
          
Step Response of a Parallel RLC Circuit



	
                  Determine the initial capacitor voltage (V0), the initial inductor current (I0), and the final inductor current (If) from the circuit.

              

	
                  Determine the values of α and ω0 using the equations in Table 8.3.

              

	
                  If α2>ω02, the response is overdamped and iL(t)=If+A1'es1t+A2'es2t,  t≥0+;

If α2<ω02, the response is underdamped and iL(t)=If+D'1te−αt+D'2e−αt,   t≥0+;

If α2=ω02, the response is critically damped and iL(t)=If+D1'te−αt+D2'e−αt,   t≥0+.

              

	
                  If the response is overdamped, calculate s1 and s2 using the equations in Table 8.3;

If the response is underdamped, calculate ωd using the equation in Table 8.3.

              

	
                  If the response is overdamped, calculate A1′and A2′ by simultaneously solving the equations in Table 8.3;

If the response is underdamped, calculate B1′and B2′ by simultaneously solving the equations in Table 8.3;

If the response is critically damped, calculate D1′ and D2′ by simultaneously solving the equations in Table 8.3.

              

	
                  Write the equation for [image: inline style i subscript L open parentheses t close parentheses] from Step 3 using the results from Steps 4 and 5; find the inductor voltage and any desired branch currents.

              









        

      

    


      
        
          

Table 8.4

Equations for Analyzing the Natural Response of Series RLC Circuits







          
          
          
          
            
              
              

	Characteristic equation

	s2+RL s+1LC=0




	Neper, resonant, and damped frequencies

	α=R2L    ω0=1LC    ωd=ω02−α2




	Roots of the characteristic equation

	s1=−α+α2−ω02,   s2=−α−α2−ω02




	α2>ω02: overdamped

	i(t)=A1es1t+A2es2t, t≥0i(0+)=A1+A2=I0di(0+)dt=s1A1+s2A2=1L(−RI0−V0)




	α2<ω02: underdamped

	i(t)=B1e−αt cosωdt+B2e−αt sinωdt,    t≥0i(0+)=B1=I0di(0+)dt=−αB1+ωdB2=1L(−RI0−V0)




	α2=ω02: critically damped

	i(t)=D1te−αt+D2e−αt,    t≥0i(0+)=D2=I0di(0+)dt=D1−αD2=1L(−RI0−V0)




            

          

          
        

(Note that the equations for i(t),i(0+), and di(0+)/dt assume that the reference direction for the current in every component is in the direction of the reference voltage drop across that component.)








        

      

    


      
        
          
Natural Response of a Series RLC circuit



	
                  Determine the initial capacitor voltage (V0) and inductor current (I0) from the circuit.

              

	
                  Determine the values of α and ω0 using the equations in Table 8.4.

              

	
                  If α2>ω02, the response is overdamped and i(t)=A1es1t+A2es2t,   t≥0;

If α2<ω02, the response is underdamped and i(t)=B1e−αtcosωdt+B2e−αtsinωdt,  t≥0;

If α2=ω02, the response is critically damped and i(t)=D1te−αt+D2e−αt,   t≥0.

              

	
                  If the response is overdamped, calculate s1 and s2 using the equations in Table 8.4;

If the response is underdamped, calculate ωd using the equation in Table 8.4.

              

	
                  If the response is overdamped, calculate A1 and A2 by simultaneously solving the equations in Table 8.4;

If the response is underdamped, calculate B1 and B2 by simultaneously solving the equations in Table 8.4;

If the response is critically damped, calculate D1 and D2 by simultaneously solving the equations in Table 8.4.

              

	
                  Write the equation for i(t) from Step 3 using the results from Steps 4 and 5; find any desired component voltages.

              









        

      

    


      
        
          

Table 8.5

Equations for Analyzing the Step Response of Series RLC Circuits






          
          
          
          
            
              
              

	Characteristic equation

	s2+RLs+1LC=VLC




	Neper, resonant, and damped frequencies

	α=R2L    ω0=1LC    ωd=ω02−α2




	Roots of the characteristic equation

	s1=−α+α2−ω02,   s2=−α−α2−ω02




	α2>ω02: overdamped

	vC(t)=Vf+A'1es1t+A'2es2t,  t≥0vC(0+)=Vf+A'1+A'2=V0dvC(0+)dt=s1A'1+s2A'2=I0C




	α2<ω02: underdamped

	vC(t)=Vf+B'1e−αt  cosωdt+B'2e−αt  sinωdt,   t≥0vC(0+)=Vf+B'1=V0dvC(0+)dt=−αB'1+ωdB'2=I0C




	α2=ω02: critically damped

	vC(t)=Vf+D'1te−αt+D'2e−αt,  t≥0vC(0+)=Vf+D'2=V0dvC(0+)dt=D'1−αD'2=I0C




            

          

          
        



(Note that the equations for vC(t), vC(0+), and dvC(0+)/dt assume that the reference direction for the current in every component is in the direction of the reference voltage drop across that component.)







        

      

    


      
        
          
Step Response of a Series RLC Circuit



	
                  Determine the initial capacitor voltage (V0), the initial inductor current (I0), and the final inductor current (If) from the circuit.

              

	
                  Determine the values of α and ω0 using the equations in Table 8.5.

              

	
                  If α2>ω02, the response is overdamped and vc(t)=Vf+A'1es1t+A'2es2t,   t≥0+;

If α2<ω02, the response is underdamped and vc(t)=Vf+B'1e−αtcosωdt+B'2e−αtsinωdt,   t≥0+;

If α2=ω02, the response is critically damped and vc(t)=Vf+D'1te−αt+D'2e−αt,  t≥0+.

              

	
                  If the response is overdamped, calculate s1 and s2 using the equations in Table 8.5;

If the response is underdamped, calculate ωd using the equation in Table 8.5.

              

	
                  If the response is overdamped, calculate A′1 and A′2 by simultaneously solving the equations in Table 8.5;

If the response is underdamped, calculate B′1 and B′2 by simultaneously solving the equations in Table 8.5;

If the response is critically damped, calculate D′1 and D′2 by simultaneously solving the equations in Table 8.5.

              

	
                  Write the equation for vC(t) from Step 3 using the results from Steps 4 and 5; find the capacitor current and any desired component voltages.

              









        

      

    


      
        
          

Table 12.3

Four Useful Transform Pairs




          
          
          
          
            
              
              
	Pair Number

	Nature of Roots

	F(s)

	f(t)





	1

	Distinct real

	Ks+a

	Ke−atu(t)




	2

	Repeated real

	K(s+a)2

	Kte−atu(t)




	3

	Distinct complex

	Ks+α−jβ+K*s+α+jβ

	2|K|e−αtcos(βt+θ)u(t)




	4

	Repeated complex

	K(s+α−jβ)2+K*(s+α+jβ)2

	2t|K|e−αtcos(βt+θ)u(t)




            

          

          
        




Table 13.1

Summary of the s-Domain Equivalent Circuits




          
          
              
                        [image: A table summarizes the s-Domain equivalent circuits for a resistor, inductor, and a capacitor in time and frequency domains.] 
              

          

          

          
                          The table consist of two column and three rows. Heading of the columns are: First column, Time Domain. Second column, Frequency domain. The row entries are: 

Row 1: First column, A resistor, R is connected across the terminals a and b. i is the current flowing downwards through the resistor. v equal R i. Second column, A resistor, R is plotted across the terminals a and b. I is the current flowing downwards through the resistor. v equal R I.

 Row 2: First column, An inductor L is connected across two terminals a and b. i is the current flowing downward through the inductor with initial current I subscript 0. v equal L di over dt, i equals 1 over L integral 0 to t v d x plus I subscript 0. Second column, A inductor, s L with two terminal a with positive end and a negative terminal of the voltage source L I subscript 0 and positive terminal is along with terminal b of the inductor where the voltage across the inductor is V and I is the current flowing downwards through the inductor with initial current I subscript 0. v equals s L I minus L i subscript 0. The equivalent circuit of the above circuit is : In between the a and b terminal an inductor, s L and a current source I subscript 0 over s is connected parallel. The voltage across the two terminals is V. Current I is flowing downwards. I equals V over s L baseline plus I subscript 0 over s.

 Row 3: First column, A capacitor, C is connected across the terminal a and b. The voltage across the capacitor is v and i is the current flowing downwards through the inductor with initial voltage V subscript 0. i equals C d v over dt, v equals 1 over C integral 0 to t i d x plus V subscript 0. Second column, A capacitor, 1 over s C with two terminal a with positive end and a negative terminal of the voltage source V subscript 0 over s and the negative terminal is along with terminal b of the inductor where the voltage across the inductor is V and I is the current flowing downwards through the capacitor. V equals 1 over s C baseline plus V subscript 0 over s. The equivalent circuit of the above circuit is: In between the a and b terminal a capacitor , 1 over s C and a voltage source C V subscript 0 is connected parallel. The voltage across the two terminals is V. Current I is flowing downwards. 
      
    
          

        







Laplace Transform Method



	
                  Determine the initial conditions for inductors and capacitors.

              

	
                  Laplace-transform independent voltage and current functions using Tables 12.1 and 12.2.

              

	
                  Transform symbolic time-domain voltages and currents into s-domain symbols.

              

	
                  Transform remaining circuit components into the s domain using Table 13.1.

              

	
                  Analyze the s-domain circuit using resistive circuit analysis techniques; represent the resulting s-domain voltages and currents as ratios of polynomials in s.

              

	
                  Use the initial- and final-value theorems to check the s-domain voltages and currents.

              

	
                  Inverse-Laplace-transform the s-domain voltages and currents using partial fraction expansion and Table 12.3.

              









        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Preface




The Twelfth Edition, Global Edition, of Electric Circuits represents a planned, incremental revision focusing on the Assessment Problems and the end-of-chapter Problems. The fundamental goals of the text are unchanged. These goals are:




	
	
                  To build new concepts and ideas on concepts previously presented. This challenges students to see the explicit connections among the many circuit analysis tools and methods.

              

	
                  To develop problem-solving skills that rely on a solid conceptual foundation. This challenges students to examine many different approaches to solving a problem before writing a single equation.

              

	
                  To introduce realistic engineering experiences at every opportunity. This challenges students to develop the insights of a practicing engineer and exposes them to practice of engineering.

              











        

      

    


      
        
          
Why This Edition?




The Twelfth Edition, Global Edition, of Electric Circuits incorporates the following new and revised elements:




	
	
                  End-of-chapter problems — Problem solving is fundamental to the study of circuit analysis. Having a wide variety of problems to assign and work is a key to success in any circuits course. Therefore, nearly all of the existing existing end-of-chapter problems were revised, and some new end-of-chapter problems were added. The only problems that were not altered are those asking you to derive or prove a particular result.

              

	
                  Assessment Problems — After most subsections in a chapter, one or two assessment problems give you a chance to reflect on the new material and apply it to solve a problem. Every assessment problem is new to the Twelfth edition and comes with answers to all parts of the problem posed. Many of the assessment problems have interactive video solutions available in Mastering, which guide you through the solution and ask you to participate in the problem-solving process.

              

	
                  Mastering Engineering is an online tutorial and assessment program that provides students with personalized feedback and hints and instructors with diagnostics to track students’ progress. With the Twelfth Edition, Global edition, Mastering Engineering will offer new enhanced end-of- chapter problems with hints and feedback, Coaching Activities, and Adaptive Follow-Up assignments. Visit www.masteringengineering.com for more information.

              

	
                  We have eliminated the Selected Answers appendix that has appeared in previous editions. Some instructors may not wish to assign problems whose solutions are readily available to students at the back of the text. Since instructors have the complete solutions available to them, they are free to supply answers to select problems they assign if they wish. Providing the reader with answers to problems discourages them from checking their own answers using an alternate analysis technique or comparing their answers to known circuit behavior.

              











        

      

    


      
        
          
Hallmark Features




Analysis Methods




Students encountering circuit analysis for the first time can benefit from step-by-step directions that lead them to a problem’s solution. These directions are compiled into a collection of analysis methods, and many of the examples in the text use these analysis methods. Some of the analysis methods that are used most often can be found inside the book’s covers for easy reference. 




Chapter Problems




Users of Electric Circuits have consistently praised the breadth, depth, variety, and sheer number of Chapter Problems. In the Twelfth Edition, there are nearly 1200 end-of-chapter problems, organized at the end of each chapter by section. 




Practical Perspectives




The Twelfth Edition continues using Practical Perspectives to introduce the chapter. They provide real-world circuit examples, taken from real-world devices. Every chapter begins by describing a practical application of the material that follows. After presenting that material, the chapter revisits the Practical Perspective, performing a quantitative circuit analysis using the newly introduced chapter material. End-of-chapter problems directly related to the Practical Perspective application are identified for easy reference. These problems provide additional opportunities for solving real-world problems using the chapter material. 




Assessment Problems




Each chapter begins with a set of chapter objectives. At key points in the chapter, you are asked to stop and assess your mastery of a particular objective by solving one or more assessment problems. The answers to the assessment problems are given at the conclusion of each problem, so you can check your work. If you can solve the assessment problems for a given objective, you have mastered that objective. The Student Study area of Mastering includes interactive video solutions for many of the assessment problems. If you want more practice, several end-of-chapter problems that relate to the objective are suggested at the conclusion of the assessment problems. 




Examples




Every chapter includes numeric examples illustrating the concepts presented in the text. There are nearly 200 examples in this text that apply a particular concept, often employ an Analysis Method, and exemplify good problem-solving skills. 




Checking the Results of Analysis




You are encouraged to check analysis results to verify that they make sense. There are many different ways to check results and examples of these checks are included throughout the text, the assessment problems, and the end-of-chapter problems. Don’t rely on comparing your results with some known answer, and instead check your own answer by solving the problem in a different way or comparing your answer with known circuit behavior. 




Fundamental Equations and Concepts




Throughout the text, you will see fundamental equations and concepts set apart from the main text. This is done to help you focus on some of the key principles in electric circuits and to help you navigate through the important topics.




Integration of Computer Tools




Computer tools can assist in the learning process by providing a visual representation of a circuit’s behavior, validating a calculated solution, reducing the computational burden of more complex circuits, and iterating toward a desired solution using parameter variation. This computational support is often invaluable in the design process. The Twelfth Edition, Global Edition, supports PSpice and Multisim, both popular computer tools for circuit simulation and analysis. Chapter problems suited for exploration with PSpice and Multisim are marked accordingly. 




Design Emphasis




The Twelfth Edition, Global Edition, emphasizes the design of circuits in many ways. First, many of the Practical Perspective discussions focus on the design aspects of the circuits. The accompanying Chapter Problems continue discussing design issues in these practical examples. Second, design-oriented Chapter Problems have been labeled explicitly, enabling students and instructors to identify those problems with a design focus. Third, identifying problems suited to PSpice or Multisim exploration suggests design opportunities using these software tools. Fourth, some problems in nearly every chapter ask you to choose realistic circuit component values in achieving a desired circuit design. Once such a problem has been analyzed, the student can build and test the circuit in a laboratory, comparing the analysis with the measured performance of the actual circuit. 




Accuracy




All text and problems in the Twelfth Edition, Global Edition, have undergone our strict hallmark accuracy checking process, to ensure the most error-free book possible.







        

      

    


      
        
          
Resources for Students




Mastering Engineering—Mastering Engineering provides tutorial homework problems designed to emulate the instructor’s office hour environment, guiding students through engineering concepts with self-paced individualized coaching. These in-depth tutorial homework problems provide students with feedback specific to their errors and optional hints that break problems down into simpler steps. Visit www.pearson.com/mastering/engineering for more information.




Learning Catalytics—Learning Catalytics is an interactive student response tool that encourages team-based learning by using students’ smartphones, tablets, or laptops to engage them in interactive tasks and thinking. Visit www.learningcatalytics.com for more information.




Student Workbook—This resource teaches students techniques for solving problems presented in the text. Organized by concepts, this is a valuable problem-solving resource for students. The Student Workbook is available in Mastering.




Introduction to Multisim and Introduction to PSpice Manuals—There are several powerful circuit simulators available free or at low cost to students. Circuit simulation is an excellent tool for exploring a circuit in depth and for visualizing the behavior of a circuit. The Multisim and PSpice manuals introduce these two popular simulators using examples tied directly to the main text. These manuals are available in Mastering.







        

      

    


      
        
          
Resources for Instructors




All instructor resources are available for download at https://www.pearson.com/en-gb.html. If you are in need of a login and password for this site, please contact your local Pearson representative.




Instructor Solutions Manual—Fully worked-out solutions to Assessment Problems and end-of-chapter problems.




PowerPoint lecture images—All figures from the text are available in PowerPoint for your lecture needs. An additional set of full lecture slides with embedded assessment questions are available upon request.




Mastering Engineering—This online tutorial and assessment program allows you to integrate dynamic homework with automated grading and personalized feedback. MasteringEngineering allows you to easily track the performance of your entire class on an assignment-by-assignment basis, or the detailed work of an individual student. For more information visit www.masteringengineering.com.




Learning Catalytics—This “bring your own device” student engagement, assessment, and classroom intelligence system enables you to measure student learning during class, and adjust your lectures accordingly. A wide variety of question and answer types allows you to author your own questions, or you can use questions from a library available in the system. For more information visit www.learningcatalytics.com or click on the Learning Catalytics link inside Mastering Engineering.




Introduction to Multisim and Introduction to PSpice Manuals—These manuals, available in Mastering, are excellent resources for those wishing to integrate PSpice or Multisim into their classes.







        

      

    


      
        
          
Prerequisites




In writing the first 12 chapters of the text, we have assumed that the reader has taken a course in elementary differential and integral calculus. We have also assumed that the reader has had an introductory physics course, at either the high school or university level, that introduces the concepts of energy, power, electric charge, electric current, electric potential, and electromagnetic fields. In writing the final six chapters, we have assumed the student has had, or is enrolled in, an introductory course in differential equations.







        

      

    


      
        
          
Course Options




The text has been designed for use in a one-semester, two-semester, or a three-quarter sequence.




	
	
                  Single-semester course: After covering Chapters 1–4 and Chapters 6–10 (omitting Sections 7.7 and 8.5) the instructor can develop the desired emphasis by covering Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits), Chapters 13 and 14 (Laplace methods), or Chapter 18 (Two-Port Circuits).

              

	
                  Two-semester sequence: Assuming three lectures per week, cover the first nine chapters during the first semester, leaving Chapters 10–18 for the second semester.

              

	
                  Academic quarter schedule: Cover Chapters 1–6 in the first quarter, Chapters 7–12 in the second quarter, and Chapters 13–18 in the third quarter.

              








Note that the introduction to operational amplifier circuits in Chapter 5 can be omitted with minimal effect on the remaining material. If Chapter 5 is omitted, you should also omit Section 7.7, Section 8.5, Chapter 15, and those assessment problems and end-of-chapter problems that pertain to operational amplifiers.




There are several appendixes at the end of the book to help readers make effective use of their mathematical background. Appendix A presents several different methods for solving simultaneous linear equations; complex numbers are reviewed in Appendix B; Appendix C contains additional material on magnetically coupled coils and ideal transformers; Appendix D contains a brief discussion of the decibel; Appendix E is dedicated to Bode diagrams; Appendix F is devoted to an abbreviated table of trigonometric identities that are useful in circuit analysis; and an abbreviated table of useful integrals is given in Appendix G. Appendix H provides tables of common standard component values for resistors, inductors, and capacitors, to be used in solving many end-of-chapter problems.
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Chapter 1


Circuit Variables








Chapter Objectives



	
1.Understand and be able to use SI units and the standard prefixes for powers of 10.




	
2.Know and be able to use the definitions of voltage and current.



	
3.Know and be able to use the definitions of power and energy.



	
4.Be able to use the passive sign convention to calculate the power for an ideal basic circuit element given its voltage and current.












Electrical engineering is an exciting and challenging profession for anyone who has a genuine interest in, and aptitude for, applied science and mathematics. Electrical engineers play a dominant role in developing systems that change the way people live and work. Satellite communication links, cell phones, computers, televisions, diagnostic and surgical medical equipment, robots, and aircraft represent systems that define a modern technological society. As an electrical engineer, you can participate in this ongoing technological revolution by improving and refining existing systems and by discovering and developing new systems to meet the needs of our ever-changing society.


This text introduces you to electrical engineering using the analysis and design of linear circuits. We begin this chapter by presenting an overview of electrical engineering, some ideas about an engineering point of view as it relates to circuit analysis, and a review of the International System of Units. We then describe generally what circuit analysis entails. Next, we introduce the concepts of voltage and current. We continue by discussing the ideal basic element and the need for a polarity reference system. We conclude the chapter by describing how current and voltage relate to power and energy.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          

Practical Perspective


Balancing Power





One of the most important skills you will develop is the ability to check your answers for the circuits you design and analyze using the tools developed in this text. A common method used to check for valid answers is to calculate the power in the circuit. The linear circuits we study have no net power, so the sum of the power associated with all circuit components must be zero. If the total power for the circuit is zero, we say that the power balances, but if the total power is not zero, we need to find the errors in our calculation.




As an example, we will consider a simple model for distributing electricity to a typical home. (Note that a more realistic model will be investigated in the Practical Perspective for Chapter 9.) The components labeled a and b represent the source of electrical power for the home. The components labeled c, d, and e represent the wires that carry the electrical current from the source to the devices in the home requiring electrical power. The components labeled f, g, and h represent lamps, televisions, hair dryers, refrigerators, and other devices that require power.





          
          
              
                        [image: A photograph shows the exterior view of a well-lit suburban house.] romakoma/Shutterstock

 
              

          

          

          
            
          

        




          
          
              
                        [image: The figure illustrates a circuit model for electricity distribution in a typical home.] 
              

          

          

          
                          The components present in the model are labeled “a”, b, c, d, e, f, g, and h. Each component is enclosed within a square box. One end of component c at the top is connected to one end of component “a” and the other end of c is connected to one end of components f and h. The other end of component “a” is connected to one end of components d and b. The other end of component f is connected to the other end of component d and one end of component g. The other end of components h and g are connected to one end of component e. The other end of e is connected to other end of component b.
      
    
          

        




          
          
              
                        [image: A photograph of a kitchen furnished with electrical devices including a refrigerator, a microwave oven, and a dishwasher.] MasterPhoto/Shutterstock

 
              

          

          

          
            
          

        




          
          
              
                        [image: A photograph shows a television monitor and a table lamp placed on a stand that holds various decorative items in its lower rack.] Olga Yastremska/123RF

 
              

          

          

          
            
          

        



Once we have introduced the concepts of voltage, current, power, and energy, we will examine this circuit model in detail, and use a power balance to determine whether the results of analyzing this circuit are correct.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.1 Electrical Engineering: An Overview




The electrical engineering profession focuses on systems that produce, transmit, and measure electric signals. Electrical engineering combines the physicist’s models of natural phenomena with the mathematician’s tools for manipulating those models to produce systems that meet practical needs. Electrical systems pervade our lives; they are found in homes, schools, workplaces, and transportation vehicles everywhere. We begin by presenting a few examples from each of the five major classifications of electrical systems:




	
	
                  communication systems

              

	
                  computer systems

              

	
                  control systems

              

	
                  power systems

              

	
                  signal-processing systems

              









Then we describe how electrical engineers analyze and design such systems.




Communication systems are electrical systems that generate, transmit, and distribute information. Well-known examples include television equipment, such as cameras, transmitters, receivers, and monitors; radio telescopes, used to explore the universe; satellite systems, which return images of other planets and our own; radar systems, used to coordinate plane flights; and telephone systems.




Figure 1.1 depicts the major components of a modern telephone system that supports mobile phones, landlines, and international calling. Inside a telephone, a microphone turns sound waves into electric signals. These signals are carried to local or mobile exchanges, where they are combined with the signals from tens, hundreds, or thousands of other telephones. The form of the signals can be radio waves traveling through air, electrical signals traveling in underground coaxial cable, light pulses traveling in fiber-optic cable, or microwave signals that travel through space. The combined signals are broadcast from a transmission antenna to a receiving antenna. There the combined signals are separated at an exchange, and each is routed to the appropriate telephone, where an earphone acts as a speaker to convert the received electric signals back into sound waves. At each stage of the process, electric circuits operate on the signals. Imagine the challenge involved in designing, building, and operating each circuit in a way that guarantees that all of the hundreds of thousands of simultaneous calls have high-quality connections.





Figure 1.1

A telephone system.






          
          
              
                        [image: The figure illustrates the major components of a modern telephone system supporting mobile phones, landlines, and international calling.] 
              

          

          

          
                          A private telephone is connected to a telephone box, that connects to three telephone poles. The poles communicate with the local exchange, that is further connected to a main exchange. Several main exchanges communicate with each other through fiber optic cables. A cell phone is connected to a cell tower. Several cell towers, each having its own cells, are connected to a mobile exchange, that further communicates with the main exchange through optic cables. The main exchange of a region is connected to an international exchange, that in turn communicates with another international exchange through an undersea cable, and also through a communication satellite.
      
    
          

        



Computer systems use electric signals to process information ranging from word processing to mathematical computations. Systems range in size and power from simple calculators to personal computers to supercomputers that perform such complex tasks as processing weather data and modeling chemical interactions of complex organic molecules. These systems include networks of integrated circuits—miniature assemblies of hundreds, thousands, or millions of electrical components that often operate at speeds and power levels close to fundamental physical limits, including the speed of light and the thermodynamic laws.




Control systems use electric signals to regulate processes. Examples include the control of temperatures, pressures, and flow rates in an oil refinery; the fuel–air mixture in a fuel-injected automobile engine; mechanisms such as the motors, doors, and lights in elevators; and the locks in the Panama Canal. The autopilot and autolanding systems that help to fly and land airplanes are also familiar control systems.




Power systems generate and distribute electric power. Electric power, which is the foundation of our technology-based society, usually is generated in large quantities by nuclear, hydroelectric, solar, and thermal (coal-, oil-, or gas-fired) generators. Power is distributed by a grid of conductors that crisscross the country. A major challenge in designing and operating such a system is to provide sufficient redundancy and control so that failure of any piece of equipment does not leave a city, state, or region completely without power.




Signal-processing systems act on electric signals that represent information. They transform the signals and the information contained in them into a more suitable form. There are many different ways to process the signals and their information. For example, image-processing systems gather massive quantities of data from orbiting weather satellites, reduce the amount of data to a manageable level, and transform the remaining data into a video image for the evening news broadcast. A magnetic resonance imaging (MRI) scan is another example of an image-processing system. It takes signals generated by powerful magnetic fields and radio waves and transforms them into a detailed, three-dimensional image such as the one shown in Fig. 1.2, which can be used to diagnose disease and injury.





Figure 1.2

An MRI scan of an adult knee joint.






          
          
              
                        [image: The figure illustrates an M R I scan of an adult&#x2019;s knee joint.] Science History Images/Alamy Stock Photo

 
              

          

          

          
                          The scan shows the Femur on top and the Tibia at the bottom, with the joint being cushioned by the Meniscus. The Patella or Knee cap is identified at the knee joint, covered by the Patellar tendon.
      
    
          

        



Considerable interaction takes place among the engineering disciplines involved in designing and operating these five classes of systems. Thus, communications engineers use digital computers to control the flow of information. Computers contain control systems, and control systems contain computers. Power systems require extensive communications systems to coordinate safely and reliably the operation of components, which may be spread across a continent. A signal-processing system may involve a communications link, a computer, and a control system.




A good example of the interaction among systems is a commercial airplane, such as the one shown in Fig. 1.3. A sophisticated communications system enables the pilot and the air traffic controller to monitor the plane’s location, permitting the air traffic controller to design a safe flight path for all of the nearby aircraft and enabling the pilot to keep the plane on its designated path. An onboard computer system manages engine functions, implements the navigation and flight control systems, and generates video information screens in the cockpit. A complex control system uses cockpit commands to adjust the position and speed of the airplane, producing the appropriate signals to the engines and the control surfaces (such as the wing flaps, ailerons, and rudder) to ensure the plane remains safely airborne and on the desired flight path. The plane must have its own power system to stay aloft and to provide and distribute the electric power needed to keep the cabin lights on, make the coffee, and activate the entertainment system. Signal-processing systems reduce the noise in air traffic communications and transform information about the plane’s location into the more meaningful form of a video display in the cockpit. Engineering challenges abound in the design of each of these systems and their integration into a coherent whole. For example, these systems must operate in widely varying and unpredictable environmental conditions. Perhaps the most important engineering challenge is to guarantee that sufficient redundancy is incorporated in the designs, ensuring that passengers arrive safely and on time at their desired destinations.





Figure 1.3

Interacting systems on a commercial aircraft.






          
          
              
                        [image: The figure illustrates the schematic diagram for the interacting systems on a commercial aircraft.] 
              

          

          

          
                          The electrical and communication systems that are connected to the aircraft parts are as follows: Electrical distribution controls the wings, Starter generator controls the left engine, Ice protection on the left wing, Primary and Secondary controls marked on the right wing, Primary controls on the tail, Environmental control marked behind the cockpit, Engine systems controlling the right engine , Landing gear , Air traffic communications, flight control and navigation marked near the cockpit.
      
    
          

        



Although electrical engineers may be interested primarily in one area, they must also be knowledgeable in other areas that interact with this area of interest. This interaction is part of what makes electrical engineering a challenging and exciting profession. The emphasis in engineering is on making things work, so an engineer is free to acquire and use any technique from any field that helps to get the job done.







        

      

    


      
        
          
Circuit Theory




An electric circuit is a mathematical model that approximates the behavior of an actual electrical system. Since electric circuits are found in every branch of electrical engineering, they provide an important foundation for learning how to design and operate systems such as those just described. The models, the mathematical techniques, and the language of circuit theory will form the intellectual framework for your future engineering endeavors.




Note that the term electric circuit is commonly used to refer to an actual electrical system as well as to the model that represents it. In this text, when we talk about an electric circuit, we always mean a model, unless otherwise stated. It is the modeling aspect of circuit theory that has broad applications across engineering disciplines.




Circuit theory is a special case of electromagnetic field theory: the study of static and moving electric charges. But applying generalized field theory to the study of electric signals is cumbersome and requires advanced mathematics. Consequently, a course in electromagnetic field theory is not a prerequisite to understanding the material in this text. We do, however, assume that you have had an introductory physics course in which electrical and magnetic phenomena were discussed.




Three basic assumptions permit us to use circuit theory, rather than electromagnetic field theory, to study a physical system represented by an electric circuit.





	
                  Electrical effects happen instantaneously throughout a system. We can make this assumption because we know that electric signals travel at or near the speed of light. Thus, if the system is physically small, electric signals move through it so quickly that we can consider them to affect every point in the system simultaneously. A system that is small enough so that we can make this assumption is called a lumped-parameter system.

              

	
                  The net charge on every component in the system is always zero. Thus, no component can collect a net excess of charge, although some components, as you will learn later, can hold equal but opposite separated charges.

              

	
                  There is no magnetic coupling between the components in a system. As we demonstrate later, magnetic coupling can occur within a component.

              






That’s it; there are no other assumptions. Using circuit theory provides simple solutions (of sufficient accuracy) to problems that would become hopelessly complicated if we were to use electromagnetic field theory. These benefits are so great that engineers sometimes specifically design electrical systems to ensure that these assumptions are met. The importance of assumptions 2 and 3 becomes apparent after we introduce the basic circuit elements and the rules for analyzing interconnected elements.




Let’s take a closer look at assumption 1. The question is, “How small does a physical system have to be to qualify as a lumped-parameter system?” To get a quantitative answer to this question, remember that electric signals propagate as waves. If the wavelength of the signal is large compared to the physical dimensions of the system, we have a lumped-parameter system. The wavelength λ is the velocity divided by the repetition rate, or frequency, of the signal; that is, λ=c/f. The frequency f is measured in hertz (Hz). For example, power systems in the United States operate at 60 Hz. If we use the speed of light (c=3×108    m/s) as the velocity of propagation, the wavelength is 5×106 m. If the power system of interest is physically smaller than this wavelength, we can represent it as a lumped-parameter system and use circuit theory to analyze its behavior. How do we define smaller? A good rule is the rule of 1/10th: If the dimension of the system is less than 1/10th the dimension of the wavelength, you have a lumped-parameter system. Thus, as long as the physical dimension of the power system is less than 5×105 m (which is about 310 miles), we can treat it as a lumped-parameter system.




Now consider a communication system that sends and receives radio signals. The propagation frequency of radio signals is on the order of 109 Hz, so the wavelength is 0.3 m. Using the rule of 1/10th, a communication system qualifies as a lumped-parameter system if its dimension is less than 3 cm. Whenever any of the pertinent physical dimensions of a system under study approaches the wavelength of its signals, we must use electromagnetic field theory to analyze that system. Throughout this text we study circuits derived from lumped-parameter systems.







        

      

    


      
        
          
Problem Solving




As a practicing engineer, you will not be asked to solve problems that have already been solved. Whether you are improving the performance of an existing system or designing a new system, you will be working on unsolved problems. As a student, however, you will read and discuss problems with known solutions. Then, by solving related homework and exam problems on your own, you will begin to develop the skills needed to attack the unsolved problems you’ll face as a practicing engineer.




Let’s review several general problem-solving strategies. Many of these pertain to thinking about and organizing your solution strategy before proceeding with calculations.





	
                  Identify what’s given and what’s to be found. In problem solving, you need to know your destination before you can select a route for getting there. What is the problem asking you to solve or find? Sometimes the goal of the problem is obvious; other times you may need to paraphrase or make lists or tables of known and unknown information to see your objective.

On one hand, the problem statement may contain extraneous information that you need to weed out before proceeding. On the other hand, it may offer incomplete information or more complexities than can be handled by the solution methods you know. In that case, you’ll need to make assumptions to fill in the missing information or simplify the problem context. Be prepared to circle back and reconsider supposedly extraneous information and/or your assumptions if your calculations get bogged down or produce an answer that doesn’t seem to make sense.

              

	
                  Sketch a circuit diagram or other visual model. Translating a verbal problem description into a visual model is often a useful step in the solution process. If a circuit diagram is already provided, you may need to add information to it, such as labels, values, or reference directions. You may also want to redraw the circuit in a simpler, but equivalent, form. Later in this text you will learn the methods for developing such simplified equivalent circuits.

              

	
                  Think of several solution methods and decide on a way of choosing among them. This course will help you build a collection of analytical tools, several of which may work on a given problem. But one method may produce fewer equations to be solved than another, or it may require only algebra instead of calculus to reach a solution. Such efficiencies, if you can anticipate them, can streamline your calculations considerably. Having an alternative method in mind also gives you a path to pursue if your first solution attempt bogs down.

              

	
                  Calculate a solution. Your planning up to this point should have helped you identify a good analytical method and the correct equations for the problem. Now comes the solution of those equations. Paper-and-pencil, calculator, and computer methods are all available for performing the actual calculations of circuit analysis. Efficiency and your instructor’s preferences will dictate which tools you should use.

              

	
                  Use your creativity. If you suspect that your answer is off base or if the calculations seem to go on and on without moving you toward a solution, you should pause and consider alternatives. You may need to revisit your assumptions or select a different solution method. Or you may need to take a less conventional problem-solving approach, such as working backward from a solution. This text provides answers to all of the Assessment Problems and many of the Chapter Problems so that you may work backward when you get stuck. In the real world, you won’t be given answers in advance, but you may have a desired problem outcome in mind from which you can work backward. Other creative approaches include allowing yourself to see parallels with other types of problems you’ve successfully solved, following your intuition or hunches about how to proceed, and simply setting the problem aside temporarily and coming back to it later.

              

	
                  Test your solution. Ask yourself whether the solution you’ve obtained makes sense. Does the magnitude of the answer seem reasonable? Is the solution physically realizable? Are the units correct? You may want to rework the problem using an alternative method to validate your original answer and help you develop your intuition about the most efficient solution methods for various kinds of problems. In the real world, safety-critical designs are always checked by several independent means. Getting into the habit of checking your answers will benefit you both as a student and as a practicing engineer.

              






These problem-solving steps cannot be used as a recipe to solve every problem in this or any other course. You may need to skip, change the order of, or elaborate on certain steps to solve a particular problem. Use these steps as a guideline to develop a problem-solving style that works for you.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.2 The International System of Units


Engineers use quantitative measures to compare theoretical results to experimental results and compare competing engineering designs. Modern engineering is a multidisciplinary profession in which teams of engineers work together on projects, and they can communicate their results in a meaningful way only if they all use the same units of measure. The International System of Units (abbreviated SI) is used by all the major engineering societies and most engineers throughout the world; hence we use it in this text.


The SI units are based on seven defined quantities:


	
	
                  length

              

	
                  mass

              

	
                  time

              

	
                  electric current

              

	
                  thermodynamic temperature

              

	
                  amount of substance

              

	
                  luminous intensity

              






These quantities, along with the basic unit and symbol for each, are listed in Table 1.1. Although not strictly SI units, the familiar time units of minute (60 s), hour (3600 s), and so on are often used in engineering calculations. In addition, defined quantities are combined to form derived units. Some quantities, such as force, energy, power, and electric charge, you already know through previous physics courses. Table 1.2 lists the derived units used in this text.



Table 1.1

The International System of Units (SI)




          
          
          
          
            
              
              
	Quantity

	Basic Unit

	Symbol





	Length

	meter

	m




	Mass

	kilogram

	kg




	Time

	second

	s




	Electric current

	ampere

	A




	Thermodynamic temperature

	degree kelvin

	K




	Amount of substance

	mole

	mol




	Luminous intensity

	candela

	cd




            

          

          
        

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)



Table 1.2

Derived Units in SI




          
          
          
          
            
              
              
	Quantity

	Unit Name (Symbol)

	Formula





	Frequency

	hertz (Hz)

	s−1




	Force

	newton (N)

	kg⋅m/s2




	Energy or work

	joule (J)

	N⋅m




	Power

	watt (W)

	J/s




	Electric charge

	coulomb (C)

	A⋅s




	Electric potential

	volt (V)

	J/C




	Electric resistance

	ohm  (Ω)

	V/A




	Electric conductance

	siemens (S)

	A/V




	Electric capacitance

	farad (F)

	C/V




	Magnetic flux

	weber (Wb)

	V⋅s




	Inductance

	henry (H)

	Wb/A




            

          

          
        

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)


In many cases, the SI unit is either too small or too large to use conveniently. Standard prefixes corresponding to powers of 10, as listed in Table 1.3, are then applied to the basic unit. Engineers often use only the prefixes for powers divisible by 3; thus centi, deci, deka, and hecto are used rarely. Also, engineers often select the prefix that places the base number in the range between 1 and 1000. Suppose that a time calculation yields a result of 10−5 s, that is, 0.00001 s. Most engineers would describe this quantity as 10 μs, that is, 10×10−6  s, rather than as 0.01 ms or 10,000 ns.



Table 1.3

Standardized Prefixes to Signify Powers of 10




          
          
          
          
            
              
              
	Prefix

	Symbol

	Power





	atto

	a

	10−18




	femto

	f

	10−15




	pico

	p

	10−12




	nano

	n

	10−9




	micro

	μ

	10−6




	milli

	m

	10−3




	centi

	c

	10−2




	deci

	d

	10−1




	deka

	da

	10




	hecto

	h

	102




	kilo

	k

	103




	mega

	M

	106




	giga

	G

	109




	tera

	T

	1012




            

          

          
        

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)


Example 1.1 illustrates a method for converting from one set of units to another and also uses power-of-10 prefixes.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Example 1.1: Using SI Units and Prefixes for Powers of 10


If a signal can travel in a cable at 80% of the speed of light, what length of cable, in inches, represents 1 ns?


Solution


First, note that 1 ns=10−9 s. Also, recall that the speed of light c=3×108  m/s. Then, 80% of the speed of light is 0.8c=(0.8)(3×108)=2.4×108 m/s. Using a product of ratios, we can convert 80% of the speed of light from meters per second to inches per nanosecond. The result is the distance in inches traveled in 1 nanosecond:


2.4 × 108    meters1   second·1   second109    nanoseconds·100   centimeters1   meter·1  inch2.54    centimeters=9.45 inches/nanosecond


Therefore, a signal traveling at 80% of the speed of light will cover 9.45 inches of cable in 1 nanosecond.








Assessment Problems


Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10



	
1.1Assume a data file travels through a fiber-optic cable at 95% the speed of light. How long does it take the signal to get from Boston to Chicago if the distance is approximately 950 miles?


	
Answer: 5.36 ms.


	
1.2How tall, in miles, is a stack of $100 bills that totals $1 trillion? Assume the thickness of a $100 bill is 0.11 mm.


	
Answer:  683.51  miles.






SELF-CHECK: Also try Chapter Problems 1.1, 1.2, and 1.5.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.3 Circuit Analysis: An Overview




We look broadly at engineering design, specifically the design of electric circuits, before becoming involved in the details of circuit analysis. This overview provides you with a perspective on where circuit analysis fits within the whole of circuit design. Even though this text focuses on circuit analysis, we try to provide opportunities for circuit design where appropriate.





All engineering designs begin with a need ①, as shown in Fig. 1.4. This need may come from the desire to improve on an existing design, or it may be something brand new. A careful assessment of the need results in design specifications, which are measurable characteristics of a proposed design. Once a design is proposed, the design specifications ② allow us to assess whether or not the design actually meets the need.



Figure 1.4

A conceptual model for electrical engineering design.




          
          
              
                        [image: The figure illustrates a conceptual model for an electrical engineering design.] 
              

          

          

          
                          The model has six steps labeled from 1 through 6 as follows:

Step 1: Need, Step 2: Design specifications. This step points to Step 3, 4, and 6 labeled Concept, Circuit model, and Physical prototype, respectively. An input labeled Physical insight directs to Step 3, Concept. This serves as an input for Step 4, Circuit model that in turn is the input for Step 6, Physical prototype. Step 5, Circuit analysis inputs for Circuit model along with iterative inputs Refinement based on analysis and Refinement based on measurements from Step 6. Laboratory measurements and Refinement based on measurements are the inputs for Step 6, Physical prototype. The output from Physical prototype is the Circuit that meets design specifications.
      
    
          

        




A concept ③ for the design comes next. The concept derives from a complete understanding of the design specifications coupled with an insight into the need, which comes from education and experience. The concept may be realized as a sketch, as a written description, or as some other form. Often the next step is to translate the concept into a mathematical model. A commonly used mathematical model for electrical systems is a circuit model ④.




The elements that make up the circuit model are called ideal circuit components. An ideal circuit component is a mathematical model of an actual electrical component, like a battery or a light bulb. The ideal circuit components used in a circuit model should represent the behavior of the actual electrical components to an acceptable degree of accuracy. The tools of circuit analysis ⑤, the focus of this text, are then applied to the circuit. Circuit analysis uses mathematical techniques to predict the behavior of the circuit model and its ideal circuit components. A comparison between the desired behavior, from the design specifications, and the predicted behavior, from circuit analysis, may lead to refinements in the circuit model and its ideal circuit elements. Once the desired and predicted behaviors are in agreement, a physical prototype ⑥ can be constructed.




The physical prototype is an actual electrical system, constructed from actual electrical components. Measurements determine the quantitative behavior of the physical system. This actual behavior is compared with the desired behavior from the design specifications and the predicted behavior from circuit analysis. The comparisons may result in refinements to the physical prototype, the circuit model, or both. This iterative process, in which models, components, and systems are continually refined, usually produces a design that accurately satisfies the design specifications and thus meets the need.




Circuit analysis clearly plays a very important role in the design process. Because circuit analysis is applied to circuit models, practicing engineers try to use mature circuit models so that the resulting designs will meet the design specifications in the first iteration. In this text, we use models that have been tested for at least 40 years; you can assume that they are mature. The ability to model actual electrical systems with ideal circuit elements makes circuit theory extremely useful to engineers.




Saying that the interconnection of ideal circuit elements can be used to quantitatively predict the behavior of a system implies that we can describe the interconnection with mathematical equations. For the mathematical equations to be useful, we must write them in terms of measurable quantities. In the case of circuits, these quantities are voltage and current, which we discuss in Section 1.4. The study of circuit analysis involves understanding the behavior of each ideal circuit element in terms of its voltage and current and understanding the constraints imposed on the voltage and current as a result of interconnecting the ideal elements.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.4 Voltage and Current


The concept of electric charge is the basis for describing all electrical phenomena. Let’s review some important characteristics of electric charge.



	
                  Electric charge is bipolar, meaning that electrical effects are described in terms of positive and negative charges.

              

	
                  Electric charge exists in discrete quantities, which are integer multiples of the electronic charge, 1.6022×10−19C.

              

	
                  Electrical effects are attributed to both the separation of charge and charges in motion.

              




In circuit theory, the separation of charge creates an electric force (voltage), and the motion of charge creates an electric fluid (current).


The concepts of voltage and current are useful from an engineering point of view because they can be expressed quantitatively. Whenever positive and negative charges are separated, energy is expended. Voltage is the energy per unit charge created by the separation. We express this ratio in differential form as








Definition of Voltage


(Equation 1.1)



v=dwdq,








where


v=the voltage in volts,w=the energy in joules,q=the charge in coulombs.


The electrical effects caused by charges in motion depend on the rate of charge flow. The rate of charge flow is known as the electric current, which is expressed as








Definition of Current


(Equation 1.2)


i=dqdt,








where


i=the current in amperes,q=the charge in coulombs,t=the time in seconds.


Equations 1.1 and 1.2 define the magnitude of voltage and current, respectively. The bipolar nature of electric charge requires that we assign polarity references to these variables. We will do so in Section 1.5.


Although current is made up of discrete moving electrons, we do not need to consider them individually because of the enormous number of them. Rather, we can think of electrons and their corresponding charge as one smoothly flowing entity. Thus, i is treated as a continuous variable.


One advantage of using circuit models is that we can model a component strictly in terms of the voltage and current at its terminals. Thus, two physically different components could have the same relationship between the terminal voltage and terminal current. If they do, for purposes of circuit analysis, they are identical. Once we know how a component behaves at its terminals, we can analyze its behavior in a circuit. However, when developing component models, we are interested in a component’s internal behavior. We might want to know, for example, whether charge conduction is taking place because of free electrons moving through the crystal lattice structure of a metal or whether it is because of electrons moving within the covalent bonds of a semiconductor material. These concerns are beyond the realm of circuit theory, so in this text we use component models that have already been developed.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.5 The Ideal Basic Circuit Element


An ideal basic circuit element has three attributes.



	
                  It has only two terminals, which are points of connection to other circuit components.

              

	
                  It is described mathematically in terms of current and/or voltage.

              

	
                  It cannot be subdivided into other elements.

              




Using the word ideal implies that a basic circuit element does not exist as a realizable physical component. Ideal elements can be connected in order to model actual devices and systems, as we discussed in Section 1.3. Using the word basic implies that the circuit element cannot be further reduced or subdivided into other elements. Thus, the basic circuit elements form the building blocks for constructing circuit models, but they themselves cannot be modeled with any other type of element.


Figure 1.5 represents an ideal basic circuit element. The box is blank because we are making no commitment at this time as to the type of circuit element it is. In Fig. 1.5, the voltage across the terminals of the box is denoted by v, and the current in the circuit element is denoted by i. The plus and minus signs indicate the polarity reference for the voltage, and the arrow placed alongside the current indicates its reference direction. Table 1.4 interprets the voltage polarity and current direction, given positive or negative numerical values of v and i. Note that algebraically the notion of positive charge flowing in one direction is equivalent to the notion of negative charge flowing in the opposite direction.



Figure 1.5

An ideal basic circuit element.




          
          
              
                        [image: The figure illustrates an ideal basic circuit element.] 
              

          

          

          
                          A rectangle with two terminals are marked 1 and 2 at its left and right end, respectively. The voltage on the circuit is labeled v, with positive and negative polarities at 1 and 2, respectively. The current labeled i flows through the terminal 1.
      
    
          

        


Table 1.4

Interpretation of Reference Directions in Fig. 1.5




          
          
          
          
            
              
              
	

	Positive Value

	Negative Value





	v

	voltage drop from terminal 1 to terminal 2

	voltage rise from terminal 1 to terminal 2




	

	or

	or




	

	voltage rise from terminal 2 to terminal 1

	voltage drop from terminal 2 to terminal 1




	i

	positive charge flowing from terminal 1 to terminal 2

	positive charge flowing from terminal 2 to terminal 1




	

	or

	or




	

	negative charge flowing from terminal 2 to terminal 1

	negative charge flowing from terminal 1 to terminal 2




            

          

          
        

Assigning the reference polarity for voltage and the reference direction for current is entirely arbitrary. However, once you have assigned the references, you must write all subsequent equations to agree with the chosen references. The most widely used sign convention applied to these references is called the passive sign convention, which we use throughout this text.








Passive Sign Convention


Whenever the reference direction for the current in an element is in the direction of the reference voltage drop across the element (as in Fig. 1.5), use a positive sign in any expression that relates the voltage to the current. Otherwise, use a negative sign.








We apply this sign convention in all the analyses that follow. Our purpose for introducing it even before we have introduced the different types of basic circuit elements is to emphasize that selecting polarity references is not a function either of the basic elements or the type of interconnections made with the basic elements. We apply and interpret the passive sign convention for power calculations in Section 1.6.


Example 1.2 illustrates one use of the equation defining current.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Example 1.2: Relating Current and Charge


No charge exists at the left terminal of the element in Fig. 1.5 for t<0. At t=0, a 5 A current begins to flow into the left terminal.



	
                  Derive the expression for the charge accumulating at the left terminal of the element for t>0.

              

	
                  If the current is stopped after 10 seconds, how much charge has accumulated at the left terminal?

              




Solution


	
                  From the definition of current given in Eq. 1.2, the expression for charge accumulation due to current flow is

              



q(t)=∫0ti(x)dx.


Therefore,


[image: q open parentheses t close parentheses equals integral subscript 0 superscript t 5 d x equals 5 x vertical line subscript 0 superscript t equals 5 t minus 5 open parentheses 0 close parentheses equals 5 t back space     back space back space   text C   for    end text t greater than 0 text. end text]


	
                  The total charge that accumulates at the left terminal in 10 seconds due to a 5 A current is q(10)=5(10)=50   C.

              









Assessment Problems


Objective 2—Know and be able to use the definitions of voltage and current


	
1.3 The current at the terminals of the element in Fig. 1.5 is




i=0,t<0;i=250te−2000t  mA,t≥0.



	
                  Find the expression for the charge accumulating at the left terminal.

              

	
                  Find the charge that has accumulated at t=1 ms.

              




	Answer:




	
	62.5(1−2000te−2000t−e−2000t) nC;


	37.12 nC.







	
1.4In electronic circuits it is not unusual to encounter currents in the microampere range. Assume a 75μA current, due to the flow of electrons. What is the average number of electrons per second that flow past a fixed reference cross section that is perpendicular to the direction of flow?




	
Answer:  4.681×1014  elec/s.





SELF-CHECK: Also try Chapter Problems 1.9 and 1.10.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
1.6 Power and Energy


Power and energy calculations are important in circuit analysis. Although voltage and current are useful variables in the analysis and design of electrically based systems, the useful output of the system often is nonelectrical (e.g., sound emitted from a speaker or light from a light bulb), and this output is conveniently expressed in terms of power or energy. Also, all practical devices have limitations on the amount of power that they can handle. In the design process, therefore, voltage and current calculations by themselves are not sufficient to determine whether or not a design meets its specifications.


We now relate power and energy to voltage and current and at the same time use the power calculation to illustrate the passive sign convention. Recall from basic physics that power is the time rate of expending or absorbing energy. (A water pump rated 75 kW can deliver more liters per second than one rated 7.5 kW.) Mathematically, energy per unit time is expressed in the form of a derivative, or








Definition of Power


(Equation 1.3)


p=dwdt,








where


p=the power in watts,w=the energy in joules,t=  the time in seconds. 


Thus, 1 W is equivalent to 1 J/s.


The power associated with the flow of charge follows directly from the definition of voltage and current in Eqs. 1.1 and 1.2, or


p=dwdt=(dwdq)(dqdt)                              ,


so








Power Equation


(Equation 1.4)


p=υi,








where


p=the power in watts,v=the voltage in volts,i=the current in amperes.


Equation 1.4 shows that the power associated with a basic circuit element is the product of the current in the element and the voltage across the element. Therefore, power is a quantity associated with a circuit element, and we have to determine from our calculation whether power is being delivered to the circuit element or extracted from it. This information comes from correctly applying and interpreting the passive sign convention (Section 1.5).


If we use the passive sign convention, Eq. 1.4 is correct if the reference direction for the current is in the direction of the reference voltage drop across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign. In other words, if the current reference is in the direction of a reference voltage rise across the terminals, the expression for the power is


p=−vi.


The algebraic sign of power is based on charge movement through voltage drops and rises. As positive charges move through a drop in voltage, they lose energy, and as they move through a rise in voltage, they gain energy. Figure 1.6 summarizes the relationship between the polarity references for voltage and current and the expression for power.



Figure 1.6

Polarity references and the expression for power.




          
          
              
                        [image: The figure contains four parts labeled (&#x201C;a&#x201D;), (b), (c), and (d) that illustrate the relationship between the polarity references for voltage and current and the expression for power.] 
              

          

          

          
                          The circuit element is depicted by a rectangle with two terminals marked 1 and 2 at its left and right end, respectively. The voltage on the circuit is labeled v, with polarities marked at each end. The current labeled i flows through the circuit.

Part (“a”): The power in the circuit element is labeled p equals v i. The voltage across the terminals is labeled v, with polarities at 1 and 2 marked positive and negative, respectively. The current labeled i flows into the circuit through the terminal 1.

Part (b): The power in the circuit is labeled p equals negative v i. The voltage across the terminals is labeled v, with polarities at 1 and 2 marked positive and negative, respectively. The current labeled i flows through the terminal 2.

Part (c): The power in the circuit is labeled p equals negative v i. The voltage across the terminals is labeled v, with polarities at 1 and 2 marked negative and positive, respectively. The current labeled i flows through the terminal 1.

Part (d): The power in the circuit element is labeled p equals v i. The voltage across the terminals is labeled v, with polarities at 1 and 2 marked negative and positive, respectively. The current labeled i flows into the circuit through the terminal 2.
      
    
          

        

We can now state the rule for interpreting the algebraic sign of power:








Interpreting Algebraic Sign of Power



	
                  If the power is positive (that is, if p>0), power is being delivered to the circuit element represented by the box.

              

	
                  If the power is negative (that is, if p<0), power is being extracted from the circuit element.

              









Example 1.3 shows that the passive sign convention generates the correct sign for power regardless of the voltage polarity and current direction you choose.






Example 1.4 illustrates the relationship between voltage, current, power, and energy for an ideal basic circuit element and the use of the passive sign convention.






        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Example 1.3: Using the Passive Sign Convention


	
                  Suppose you have selected the polarity references shown in Fig. 1.6(b). Your calculations for the current and voltage yield the following numerical results:

              



i=4   A   and      v=−10 V.


Calculate the power associated with the circuit element and determine whether it is absorbing or supplying power.


	
                  Your classmate is solving the same problem but has chosen the reference polarities shown in Fig. 1.6(c). Her calculations for the current and voltage show that

              



i=−4 A    and    v =10 V.


What power does she calculate?


Solution


	
                  The power associated with the circuit element in Fig. 1.6(b) is

              



p=−(−10)(4)=40     W.


Thus, the circuit element is absorbing 40 W.


	
                  Your classmate calculates that the power associated with the circuit element in Fig. 1.6(c) is

              



p=−(10)(−4)=40  W.


Using the reference system in Fig. 1.6(c) gives the same conclusion as using the reference system in Fig. 1.6(b)—namely, that the circuit element is absorbing 40 W. In fact, any of the reference systems in Fig. 1.6 yields this same result.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Example 1.4: Relating Voltage, Current, Power, and Energy


Assume that the voltage and current at the terminals of the element in Fig. 1.5 are


  v = 0,i=0,t < 0;v = 10e−5000  kV,i=20e−5000tA,t ≥ 0.



	
                  Calculate the power supplied to the element at 1 ms.

              

	
                  Calculate the total energy (in joules) delivered to the circuit element.

              




Solution


	
                  Since the current is entering the + terminal of the voltage drop defined for the element in Fig. 1.5, we use a “+” sign in the power equation.

              



p=vi=(10,000e−5000t)(20e−5000t)=200,000e−10,000t  W.


p(0.001)=200,000e−10,000(0.001)=200,000e−10=200,000(45.4×10−6)=9.08 W.


	
                  From the definition of power given in Eq. 1.3, the expression for energy is

              



w(t)=∫0tp(x)dx.


To find the total energy delivered, integrate the expresssion for power from zero to infinity. Therefore,


wtotal=∫0∞200,000e−10,000x dx=200  ,  000e−10,000x−10,  000|0∞=−20e−∞−(−20e−0)=0+20=20   J.


Thus, the total energy supplied to the circuit element is 20 J.








Assessment Problems


Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign convention


	
1.5Assume that a 50 V voltage drop occurs across an element from terminal 1 to terminal 2 and that a current of 250 mA enters terminal 2.





	Specify the values of v and i for the polarity references shown in Fig. 1.6(a)–(d).


	Calculate the power associated with the circuit element.


	Is the circuit element absorbing or delivering power?





Answer:


	
Figure 1.6(a):  v=50  V,i=-250  mA;






	
Figure 1.6(b): v=50  V,i=250  mA; 


	
Figure 1.6(c): v=-50  V,i=-250  mA; 


	
Figure 1.6(d): v=−50  V,i=250  mA; 






	12.5 W;


	delivering.





	
1.6The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 mA for 40 continuous hours. During that time the voltage will drop from 1.5 V to 1.0 V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 40 h interval?




Answer: 1620 J.


	
                  1.7 The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t≥0, they are

              



v=15e−250t V,t≥0;i=40e−250t mA,t≥0.



	Calculate the power supplied to the element at 10 ms.


	Calculate the total energy delivered to the circuit element.





Answer: (a) 4.04 mW; (b) 1.2 mJ.


SELF-CHECK: Also try Chapter Problems 1.12, 1.19, and 1.24.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Practical Perspective




Balancing Power





A circuit model for distributing power to a typical home is shown in Fig. 1.7, with voltage polarities and current directions defined for all of the circuit components. Circuit analysis gives values for all of these voltages and currents, as summarized in Table 1.5. To determine whether or not the values given are correct, calculate the power associated with each component. Use the passive sign convention in the power calculations, as shown in the following:


pa=vaia=(120)(−10)=−1200  W, pb=−vbib=−(120)(9)=−1080  W,  pc=vcic=(10)(10)=100  W,pd=−vdid=−(10)(1)=−10  W, pe=veie=(−10)(−9)=90  W, pf=−vfif=−(−100)(5)=500  W, pg=vgig=(120)(4)=480  W, ph=vhih=(−220)(−5)=1100  W. 






Figure 1.7

Circuit model for power distribution in a home, with voltages and currents defined.






          
          
              
                        [image: The figure illustrates the circuit model for power distribution in a home, with voltages and currents defined for each component.] 
              

          

          

          
                          The components in the circuit are labeled from “a” to h. Each component is enclosed within a square box. The positive end of component c is connected to the positive end of component “a” and the negative end of component c is connected to negative ends of the components f and h. The negative end of component “a” is connected to negative end of component d and the positive end of component b. The positive end of f is connected to the positive ends of the components d and g. The negative end of component g and the positive end of component h are connected to the negative end of component e. The positive end of e is connected to negative end of b. The voltages across “a”, b, c, d, e, f, g, and h are labeled v subscript “a”, v subscript b, v subscript c, v subscript d, v subscript e, v subscript f, v subscript g, and v subscript h, respectively. The current labeled i subscript c, i subscript “a”, i subscript h, i subscript g, and i subscript e flows from the positive end to the negative end of components c, “a”, h, g, and e, respectively. The current labeled i subscript b, i subscript d, i subscript f flows from the negative end to positive end of b, d, and f, respectively.
      
    
          

        




Table 1.5

Voltage and Current Values for the Circuit in Fig. 1.7






          
          
          
          
            
              
              
	Component

	v (V)

	i (A)





	a

	120

	−10




	b

	120

	9




	c

	10

	10




	d

	10

	1




	e

	−10

	−9




	f

	−100

	5




	g

	120

	4




	h

	−220

	−5




            

          

          
        



The power calculations show that components a, b, and d are supplying power, since the power values are negative, while components c, e, f, g, and h are absorbing power. Now check to see if the power balances by finding the total power supplied and the total power absorbed.




psupplied=pa+pb+pd=−1200−1080−10=−2290  W;pabsorbed=pc+pe+pf+pg+ph   =100+90+500+480+1100=2270  W;   psupplied+pabsorbed=−2290+2270=−20  W.




Something is wrong—if the values for voltage and current in this circuit are correct, the total power should be zero! There is an error in the data, and we can find it from the calculated powers if the error exists in the sign of a single component. Note that if we divide the total power by 2, we get −10 W, which is the power calculated for component d. If the power for component d is +10 W, the total power would be 0. Circuit analysis techniques from upcoming chapters can be used to show that the current through component d should be −1 A, not +1 A as given in Table 1.5.




SELF-CHECK: Assess your understanding of the Practical Perspective by trying Chapter Problems 1.36 and 1.37.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Summary




	
                  The International System of Units (SI) enables engineers to communicate in a meaningful way about quantitative results. Table 1.1 summarizes the SI units; Table 1.2 presents some useful derived SI units. (See here)

              





	
                  A circuit model is a mathematical representation of an electrical system. Circuit analysis, used to predict the behavior of a circuit model, is based on the variables of voltage and current. (See here)

              





	
Voltage is the energy per unit charge created by charge separation and has the SI unit of volt. (See here)






v=dw/dq




	
Current is the rate of charge flow and has the SI unit of ampere. (See here)






i=dq/dt





	The ideal basic circuit element is a two-terminal component that cannot be subdivided; it can be described mathematically in terms of its terminal voltage and current. (See Section 1.5)


	The passive sign convention uses a positive sign in the expression that relates the voltage and current at the terminals of an element when the reference direction for the current through the element is in the direction of the reference voltage drop across the element. (See Passive Sign Convention of Section1.5)







	
                  Power is energy per unit of time and is equal to the product of the terminal voltage and current; it has the SI unit of watt. (See Definition of Power of Section 1.6)

              





p=dw/dt=vi




	The algebraic sign of power is interpreted as follows:







		If p>0, power is being delivered to the circuit or circuit component.




		If p<0, power is being extracted from the circuit or circuit component. (See Power Equation of Section 1.6)












        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          

Problems


Section 1.2





	
1.1A $20 bill weighs 1 g and is 6.14 inches long.







	
a. If you laid $20 bills end to end, how much money would you need to circle the Earth at the equator? Assume the distance of the equator is 40,075 km.


	
b. What is the weight of the bills in part (a), in tons?







	
1.2Files can be downloaded using a broadband connection at a rate of 50×106 bits per second (50 Mbps). Using a fiber-optic cable, the download speed increases to 2 Gbps.







	
a. The pdf files for this text total about 65.5×106 bytes (65.5 MB). There are 8 bits in a byte. How long does it take to download these files using a broadband connection?


	
b. How long does it take to download the files from part (a) using a fiber-optic cable?


	
c. The Library of Congress digital collection totals about 74 TB. How long does it take to download these files using a broadband connection?


	
d. How long does it take to download the files from part (c) using a fiber-optic cable?







	
1.3A 40-inch monitor contains 4800×2160 picture elements, or pixels. Each pixel is represented in 32 bits of memory. A byte of memory is 8 bits.







	
a. How many megabytes (MB) of memory are required to store the information displayed on the monitor?


	
b. To display a video on the monitor, the image must be refreshed 30 times per second. How many terabytes (TB) of memory are required to store a 2 hr video?


	
c. For the video described in part (a), how fast must the image data in memory be moved to the monitor? Express your answer in gigabits per second (Gb/s).








	
1.4Each frame of a movie file is played at a resolution of  960×640 picture elements (pixels). Each pixel requires 4 bytes of memory. Videos are displayed at the rate of 40 frames per second. If the size of this file is 64 gigabytes, how long is the video clip? 






	
1.5There are approximately 520 million passenger vehicles registered in the United States. Assume that the battery in an average vehicle stores 480 watt-hours (Wh) of energy. Estimate (in gigawatt-hours) the total energy stored in US passenger vehicles.


	
1.6The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 mA for 40 continuous hours. During that time the voltage will drop from 1.5 V to 1.0 V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 40 h interval?











        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Section 1.4




	
1.7The current at the terminals of the element in Fig. 1.5 is






i=0,t=0;i=20e−5000t  A,t≥0.




	Calculate the total charge (in microcoulombs) entering the element at its left terminal.






	
                  1.8There is no charge at the left terminal of the element in Fig. 1.5 for t<0. At t=0 a current of 25e−1000t  mA enters the left terminal.

              






	
a. Derive the expression for the charge that accumulates at the left terminal for t>0.


	
b. Find the total charge that accumulates at the left terminal.


	
c. If the current is stopped at t=1 ms, how much charge has accumulated at the left terminal?







	
                  1.9The current entering the left terminal of Fig. 1.5 is

              





i=100 cos  2500t mA.




	Assume the charge at the left terminal is zero at the instant the current is passing through its maximum value. Find the expression for q(t).






	
                  1.10How much energy is imparted to an electron as it flows through a 1.5 V battery from the positive to the negative terminals? Express your answer in joules.

              





	
                  1.11The expression for the charge entering the left terminal of Fig. 1.5 is

              





[image: q equals 1 over alpha squared minus open parentheses t over alpha plus 1 over alpha squared close parentheses e to the power of negative alpha t end exponent space text C end text text. end text]




	Find the maximum value of the current entering the terminal if α=0.03679   s−1.










        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
Sections 1.5–1.6


	
1.12The references for the voltage and current at the terminals of a circuit element are as shown in Fig. 1.6(c). The numerical values for v and i are 80 V and −4  A.





	
a. Calculate the power at the terminals and state whether the power is being absorbed or delivered by the element in the box.


	
b. Given that the current is due to electron flow, state whether the electrons are entering or leaving terminal 2.


	
c. Do the electrons gain or lose energy as they pass through the element in the box?






	
1.13Repeat Problem 1.12 with a current of 4   A.


	
1.14When a car has a dead battery, it can often be started by connecting the battery from another car across its terminals. The positive terminals are connected together as are the negative terminals. The connection is illustrated in Fig. P1.14. Assume the current i in Fig. P1.14 is measured and found to be 25 A.






	
a. Which car has the dead battery?


	
b. If this connection is maintained for 1 min, how much energy is transferred to the dead battery?





Figure P1.14



          
          
              
                        [image: The figure illustrates the batteries of two cars, &#x201C;A&#x201D; and B, connected to each other.] 
              

          

          

          
                          The cars are parked facing each other with their hoods open, and two wires connecting the positive and the negative terminals of their batteries. Both the cars have 12 Volts battery. A current labeled i flows from the car “A” to B between the positive terminals.
      
    
          

        

	
1.15Two electric circuits, represented by boxes A and B, are connected as shown in Fig. P1.15. The reference direction for the current i in the interconnection and the reference polarity for the voltage v across the interconnection are as shown in the figure. For each of the following sets of numerical values, calculate the power in the interconnection and state whether the power is flowing from A to B or vice versa.





	
a. i=8 A, v=40 V




	
b. i=-2A,v=-10 V




	
c. i=2A,v=-50 V




	
d. i=-10 A,v=20 V








Figure P1.15



          
          
              
                        [image: The figure illustrates a connection diagram of two electric circuits labeled A and B.] 
              

          

          

          
                          Both the circuits are represented by the square boxes. The left box labeled A has two terminals at the right side and the right box labeled B has two terminals at the left side. A line is drawn between the upper terminals of the boxes A and B. Another line is drawn between the lower terminals of the boxes A and B. A rightward arrow labeled i is pointed along the line between the upper terminals of the boxes. A potential difference v is marked between these lines with the positive terminal at the top and the negative terminal at the bottom.
      
    
          

        


	
1.16One 9 V battery supplies 150 mA to a boom box. How much energy does the battery supply in 3 h?


	
1.17A high-voltage direct-current (dc) transmission line between two industrial buildings is operating at 800 kV and carrying 1800 A, as shown in Fig. P1.17. Calculate the power, in megawatts, at the Building X end of the line and state the direction of power flow.





Fig. P1.17



          
          
              
                        [image: The figure illustrates a circuit showing the power distribution between building X and building Y.] 
              

          

          

          
                          Two blocks labeled building X and building Y are connected by two parallel wires. The voltage across the two wires is labeled 800-kilo volt, with the polarities positive at the top wire and negative at the bottom wire. A current labeled 1.8-kilo Amperes flows from building X through the top wire toward building Y.
      
    
          

        

	
1.18The voltage and current at the terminals of the circuit elements in Fig 1.5 are zero for t<0. For t≤0, they are




v=3e-50t V,i=5e-50t mA.



	
a. Calculate the power supplied to the element at 5 ms.


	
b. Calculate the total energy delivered to the circuit element.












PSPICE/MULTISIM




	
1.19The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t≥0 they are




v = 100e−500t V,i = 20−20e−500tmA.



	
a. Find the maximum value of the power delivered to the circuit.


	
b. Find the total energy delivered to the element.












PSPICE/MULTISIM




	
1.20The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0  and t>50 s. In the interval between 0 and 50 s, the expressions are




v=t(1-0.030t) V,0<t<50 s;i=4-0.3t A,0 t<50 s.



	
a. At what instant of time is the maximum power delivered to the element?


	
b. What is the power at the time found in part (a)?


	
c. At what instant of time is the power being extracted from the circuit element the maximum?


	
d. What is the power at the time found in part (c)?


	
e. Calculate the net energy delivered to the circuit at 0, 10, 20, 30, 40 and 50 s.












PSPICE/MULTISIM




	
1.21The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t≥0, they are





	
a. At what instant of time is the maximum power delivered to the element?


	
b. Find the maximum power in watts.


	
c. Find the total energy delivered to the element in microjoules.







v = (4000t + 3.2)e-1200t V, i = (160t + 0.26)e-1200t A.








	
1.22The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t≥0 they are




v=e−500t−e−1500t  V,i=30−40e−500t+10e−1500t  mA.



	
a. Find the power at t=1 ms.


	
b. How much energy is delivered to the circuit element between 0 and 1 ms?


	
c. Find the total energy delivered to the element.











PSPICE/MULTISIM




	
1.23The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t ≥ 0, they are




v  =(1600t+1)e-800t V,t≥0;i  =50e-800t mA,t≥0.



	
a. Find the time when the power delivered to the circuit element is maximum.



	
b. Find the maximum value of p in milliwatts.


	
c. Find the total energy delivered to the circuit element in microjoules.
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                  1.24The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero for t<0. For t ≥ 0, they are

              



v=500e-120t sin 250t V,i=6e-150t sin 250t A.



	
a. Find the power absorbed by the element at t=20 ms.


	
b. Find the total energy absorbed by the element.












PSPICE/MULTISIM




	
1.25The voltage and current at the terminals of the circuit element in Fig. 1.5 are




v=260 cos 850πt V, i=9 sin 850πt A.



	
a. Find the maximum value of the power being delivered to the element.


	
b. Find the maximum value of the power being extracted from the element.


	
c. Find the average value of p in the interval 0≤t≤3 ms.


	
d. Find the average value of p in the interval 0≤t≤16.525 ms.












PSPICE/MULTISIM




	
1.26The voltage and current at the terminals of an automobile battery during a charge cycle are shown in Fig. P1.26.





	
a. Calculate the total charge transferred to the battery.


	
b. Calculate the total energy transferred to the battery.





Figure P1.26



          
          
              
                        [image: The figure contains two parts that illustrate the graph of voltage and current at the terminals of an automobile battery during a charge cycle.] 
              

          

          

          
                          Graph (1): The horizontal axis labeled t (kilo seconds)ranges from 5 to 25 in increments of 5 units. The vertical axis labeled v (Volts) ranges from 5 to 15 in increments of 5 units. The graph consists of a line that starts at (0, 10), moves toward the upper right until the point (20, 15), and then remains constant toward the right. Dashed lines are drawn from the point (20, 15) towards the respective points on the horizontal and vertical axes.

Graph (2): The horizontal axis labeled t (kilo seconds), ranges from 5 to 25 in increments of 5 units. The vertical axis is labeled i (Amperes), and ranges from 10 to 30 in increment of 10 units. A line on the graph starts at (0, 30), moves toward the lower right until the point (15, 20), and then moves with a steeper slope, and ends at (20, 0). Dashed lines are drawn from the point (15, 20) are drawn toward the respective points on the horizontal and vertical axes.
      
    
          

        








PSPICE/MULTISIM




	
1.27Repeat Problem 1.26 if the current during a charge cycle is shown in Fig. P1.27.




Figure P1.27



          
          
              
                        [image: The figure illustrates the graph of current with respect to time.] 
              

          

          

          
                          The horizontal axis is labeled t (k s) and ranges from 5 to 25 in increments of 5 units. The vertical axis is labeled i (A) and ranges from 4 to 20 in increments of 4 units. The line is drawn through the following points: (0, 20), (5, 14), (15, 8), and (20, 0). The dashed lines drawn from the points (5, 14), and (15, 8) are extended toward the respective points on the horizontal and vertical axes.
      
    
          

        








	
1.28An industrial battery is charged over a period of several hours at a constant voltage of 120 V. Initially, the current is 20 mA and increases linearly to 30 mA in 10 ks. From 10 ks to 20 ks, the current is constant at 30 mA. From 20 ks to 30 ks the current decreases linearly to 10 mA. At 30 ks the power is disconnected from the battery.







	
a. Sketch the current from t=0 to t=30 ks.


	
b. Sketch the power delivered to the battery from t=0 to t=30 ks.


	
c. Using the sketch of the power, find the total energy delivered to the battery.








	
1.29The voltage and current at the terminals of the circuit element in Fig. 1.5 are shown in Fig. P1.29.





	
a. Sketch the power versus t plot for 0≤t≤80  ms.


	
b. Calculate the energy delivered to the circuit element at t=10,30, and 80 ms.








Figure P1.29





          
          
              
                        [image: The figure consists of two parts that illustrate the current-voltage graph with respect to time.] 
              

          

          

          
                          Graph (1): The horizontal axis is labeled t (m s) and ranges from 10 to 80 in increments of 10 units. The vertical axis is labeled i (m A) and ranges from negative 250 to 250 in increments of 250 units. The graph consists of a line drawn through the following points: (0, 0), (10, 250), (20, 0), (30, negative 250), (40, negative 250), (50, 0), (60, 250), and (80, 250).

Graph (2): The horizontal axis labeled t (m seconds), ranges from 10 to 80 in increments of 10 units. The vertical axis is labeled v (Volts), ranges from negative 8 to 8 in increments of 8 units. The graph consists of square waveform drawn through the following points: (0, 8), (10, 8), (10, 0), (10, negative 8), (30, negative 8), (30, 0), (40, 0), (40, 8), (60, 8), (60, 0), and (80, 0).
      
    
          

        



	
1.30The numerical values for the currents and voltages in the circuit in Fig. P1.30 are given in Table P1.30. Find the total power developed in the circuit.






Figure P1.30





          
          
              
                        [image: The figure illustrates a circuit diagram of six elements labeled a, b, c, d, e, and f.] 
              

          

          

          
                          All the elements are represented by small rectangle boxes. The element labeled a is shown on the left side. One end of the element a is connected to one end of the element b. The other end of the element b is connected to a node. One end of element e is connected to this node and the other end of element e is connected to one end of the element f. The other end of the element f is connected to the second node. One end of element c is connected to this node and the other end of element c is connected to the other end of the element a. The element d is connected between the first and second nodes. The voltage drop across the element a is labeled v subscript a with the positive polarity on the top and the negative polarity on the bottom and the current flow from elements a to b is labeled i subscript b. The voltage drop across the element b is labeled v subscript b with the positive polarity on the left and the negative polarity on the right. The voltage drop across the element d is labeled v subscript d with the positive polarity on the bottom and the negative polarity on the top and the current flow from the first node to the element d is labeled i subscript d. The voltage drop across the element e is labeled v subscript e with the positive polarity on the right and the negative polarity on the left and the current flow from elements f to e is labeled i subscript e. The voltage drop across the element f is labeled v subscript f with the positive polarity on the top and the negative polarity on the bottom and the current flow from elements e to f is labeled i subscript f. The voltage drop across the element c is labeled v subscript c with the positive polarity on the right and the negative polarity on the left and the current flow from elements a to c is labeled i subscript c. The current flow from elements c to a is labeled i subscript a.
      
    
          

        



Table P1.30





          
          
          
          
            
              
              
	Element

	Voltage (V)

	Current (mA)





	a

	40﻿

	-4




	b

	−24

	−4




	c

	-16

	4﻿




	d

	-80

	-1.5




	e

	40﻿

	2.5﻿




	f

	120﻿

	-2.5




            

          

          
        



	
1.31The numerical values of the voltages and currents in the interconnection seen in Fig. P1.31 are given in Table P1.31. Does the interconnection satisfy the power check?






Figure P1.31





          
          
              
                        [image: The figure illustrates a circuit consisting of eight components, with voltages and currents marked for each component.] 
              

          

          

          
                          The elements present in the circuit are eight components labeled a, b, c, d, e, f, g, and h. Each component is enclosed within a square box. The positive ends of a, d, and g are connected together. The negative ends of a and b are connected to the positive end of c. The negative ends of d, c, and f and the positive end of e are connected together. The negative end of g and the positive end of h are connected to the positive end of f. The positive end of b are connected to the negative ends of e and h. The voltage across a, b, c, d, e, f, g, and h are labeled v subscript a, v subscript b, v subscript c, v subscript d, v subscript e, v subscript f, v subscript g, and v subscript h, respectively. The current labeled i subscript a, i subscript e, and i subscript h flows from the positive end to the negative end of components a, e, and h. The current labeled i subscript b, i subscript c, i subscript d, i subscript f, and i subscript g flows from the negative end to the positive end of components b, c, d, f, and g.
       
    
          

        



Table P1.31





          
          
          
          
            
              
              
	Element

	Voltage (V)

	Current (mA)





	a

	40

	-4




	b

	-24

	-4




	c

	−16

	4﻿




	d

	−80

	-1.5




	e

	40﻿

	2.5﻿




	f

	120﻿

	−2.5




            

          

          
        



	
1.32The numerical values of the voltages and currents in the interconnection seen in Fig. P1.32 are given in Table P1.32. Does the interconnection satisfy the power check?






Figure P1.32





          
          
              
                        [image: The figure illustrates a circuit consisting of seven components, with voltages and currents marked for each component.] 
              

          

          

          
                          The elements present in the circuit are seven components labeled a, b, c, d, e, f, and g. Each component is enclosed within a square box. The positive ends of d and e are connected to the negative ends of b and a. The positive end of b is connected to the negative ends of f and c. The positive ends of a, c, and g are connected together. The negative ends of d, e, and g and the positive end of f are connected together. The voltage across a, b, c, d, e, f, and g are labeled v subscript a, v subscript b, v subscript c, v subscript d, v subscript e, v subscript f, and v subscript g, respectively. The current labeled i subscript a, i subscript b, and i subscript d flows from the positive end to the negative end of components a, b, and d. The current labeled i subscript c, i subscript e, i subscript f, and i subscript g flows from the negative end to the positive end of components c, e, f, and g.
       
    
          

        



Table P1.32





          
          
          
          
            
              
              
	Element

	Voltage (V)

	Current (mA)





	a

	−160

	−10




	b

	−100

	−20




	c

	−60

	6




	d

	800

	−50




	e

	800

	−20




	f

	−700

	14




	g

	640

	−16




            

          

          
        




	
1.33The current and power for each of the interconnected elements in Fig. P1.33 are measured. The values are listed in Table P1.33.





	
a. Show that the interconnection satisfies the power check.


	
b. Identify the elements that absorb power.


	
c. Find the voltage for each of the elements in the interconnection, using the values of power and current and the voltage polarities shown in the figure.








Figure P1.33





          
          
              
                        [image: The figure illustrates a circuit model consisting of six components, with voltages and currents marked for each component.] 
              

          

          

          
                          The components in the circuit are labeled from "a" to f. Each component is enclosed within a square box. The negative end of component"a" is connected to the positive end of component d and the positive end of component f. The positive end of component "a" is connected to the positive end of component c and the negative end of component b. The negative end the component d is connected to the negative end of component c and the positive end of component e. The positive end of component b is connected to the negative end of component e and the negative end of component f. The voltage across the components "a", b, c, d, e, and f are labeled v subscript "a", v subscript b, v subscript c, v subscript d, v subscript e, and v subscript f, respectively. The current labeled i subscript c, i subscript b, and i subscript f flows from the positive end to the negative end of components c, b, and f. The current labeled i subscript "a", i subscript d, and i subscript f flows from the negative end to the positive end of components "a", d, and f.
       
    
          

        



Table P1.33





          
          
          
          
            
              
              
	Element

	Power (mW)

	Current (mA)





	a

	−918

	−51




	b

	−810

	45




	c

	−12

	−6




	d

	400

	−20




	e

	224

	−14




	f

	1116

	31




            

          

          
        




	
1.34Assume you are an engineer in charge of a project and one of your subordinate engineers reports that the interconnection in Fig. P1.34 does not pass the power check. The data for the interconnection are given in Table P1.34.





	
a. Is the subordinate correct? Explain your answer.


	
b. If the subordinate is correct, can you find the error in the data?








Figure P1.34





          
          
              
                        [image: The figure illustrates a circuit diagram of eight elements labeled a, b, c, d, e, f, g, and h.] 
              

          

          

          
                          All the elements are represented by small rectangle boxes. The elements labeled b and c are connected horizontally from left to right. The first node is placed at the left of the element b, the second node is placed between the connection of elements b and c, and the third node is placed at the right of the element c. The element a is shown above the second node. One end of element a is connected to the first node and the other end is connected to the third node. The one end of the element d is connected to the first node and the other end is connected to one end of element g. The other end of the element g is connected to the element h through the fourth node. The other end of the element h is connected to the one end of the element f and the other end of the element f is connected to the third node. The element e is connected between the second and fourth nodes. The voltage drop across element a is labeled v subscript a with the positive polarity on the right and the negative polarity on the left and the current flow through element a from the first to third nodes is labeled i subscript a. The voltage drop across element b is labeled v subscript b with the positive polarity on the right and the negative polarity on the left and the current flow through element b from the second to first nodes is labeled i subscript b. The voltage drop across element c is labeled v subscript c with the positive polarity on the left and the negative polarity on the right and the current flow through element c from the second node to the third node is labeled i subscript c. The voltage drop across element d is labeled v subscript d with the positive polarity on the top and the negative polarity on the bottom and the current flow through element d, which is directed to the first node is labeled i subscript d. The voltage drop across element e is labeled v subscript e with the positive polarity on the bottom and the negative polarity on the top and the current flow through element e from the fourth node to the second node is labeled i subscript e. The voltage drop across element f is labeled v subscript f with the positive polarity on the top and the negative polarity on the bottom and the current flow through element f from the third node is labeled i subscript f. The voltage drop across element g is labeled v subscript g with the positive polarity on the right and the negative polarity on the left and the current flow through element g from the fourth node is labeled i subscript g. The voltage drop across element h is labeled v subscript h with the positive polarity on the right and the negative polarity on the left and the current flow through element h from the fourth node is labeled i subscript h.
      
    
          

        



Table P1.34





          
          
          
          
            
              
              
	Element

	Voltage (V)

	Current (A)





	a

	46.16

	6.0




	b

	14.16

	4.72




	c

	-32.0

	-6.4




	d

	22.0

	1.28




	e

	-33.6

	−1.68




	f

	66.0

	0.4




	g

	2.56

	1.28




	h

	−0.4

	0.4




            

          

          
        




	
1.35The voltage and power values for each of the elements shown in Fig. P1.35 are given in Table P1.35.





	
a. Show that the interconnection of the elements satisfies the power check.


	
b. Find the value of the current through each of the elements using the values of power and voltage and the current directions shown in the figure.








Figure P1.35





          
          
              
                        [image: The figure illustrates a circuit model consisting of six components, with voltages and currents marked for each component.] 
              

          

          

          
                          The components present in the circuit are labeled “a” to f. Each component is enclosed within a square box. The negative end of “a” is connected to the positive end of b and the negative end of d. The positive end of “a” is connected to the positive end of c, positive end of e, and the negative end of f. The positive end of d is connected to the negative end of e and the positive end of f. The negative end of b is connected to the negative end of c. The voltages across “a”, b, c, d, e, and f are labeled v subscript “a”, v subscript b, v subscript c, v subscript d, v subscript e, and v subscript f. A current labeled i subscript d, i subscript e, and i subscript f flows from positive end to negative end of d, e, and f. A current labeled i subscript “a”, i subscript b, and i subscript c flows from negative end to positive end of “a”, b, and c.
      
    
          

        



Table P1.35





          
          
          
          
            
              
              
	Element

	Power (W)

	Voltage (kV)





	a

	750 supplied

	−3




	b

	1600 absorbed

	4




	c

	400 supplied

	1




	d

	150 absorbed

	1




	e

	800 supplied

	−4




	f

	200 absorbed

	4




            

          

          
        







PRACTICAL PERSPECTIVE



	
1.36Show that the power balances for the circuit in Fig. 1.7, using the voltage and current values given in Table 1.5, with the value of the current for component d changed to −1 A.










PRACTICAL PERSPECTIVE




	
1.37Suppose there is no power lost in the wires used to distribute power in a typical home.





	
a. Create a new model for the power distribution circuit by modifying the circuit shown in Fig. 1.7. Use the same names, voltage polarities, and current directions for the components that remain in this modified model.


	
b. The following voltages and currents are calculated for the components:











        

      

    


      
        
          

          
          
          
          
            
              
              

	va=120  V

	ia=−8       A




	vb=120  V

	ib=8  A




	vf=−120  V

	if=6  A




	vg=120   V

	ig=6  A 




	vh=−240  V

	




            

          

          
        



	If the power in this modified model balances, what is the value of the current in component h?
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Chapter 2


Circuit Elements








Chapter Objectives



	
﻿1. Understand the symbols for and the behavior of the following ideal basic circuit elements: independent voltage and current sources, dependent voltage and current sources, and resistors.


	
﻿2.Be able to state Ohm’s law, Kirchhoff’s current law, and Kirchhoff’s voltage law, and be able to use these laws to analyze simple circuits.


	﻿3. Know how to calculate the power for each element in a simple circuit and be able to determine whether or not the power balances for the whole circuit.











There are five ideal basic circuit elements:


	
	
                  voltage sources

              

	
                  current sources

              

	
                  resistors

              

	
                  inductors

              

	
                  capacitors

              






In this chapter, we discuss the characteristics of the first three circuit elements—voltage sources, current sources, and resistors. Although this may seem like a small number of elements, many practical systems can be modeled with just sources and resistors. They are also a useful starting point because of their relative simplicity; the mathematical relationships between voltage and current in sources and resistors are algebraic. Thus, you will be able to begin learning the basic techniques of circuit analysis with only algebraic manipulations.


We will postpone introducing inductors and capacitors until Chapter 6, because their use requires that you solve integral and differential equations. However, the basic analytical techniques for solving circuits with inductors and capacitors are the same as those introduced in this chapter. So, by the time you need to begin manipulating more difficult equations, you should be very familiar with the methods of writing them.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          

Practical Perspective


Heating with Electric Radiators





You want to heat your small garage using a couple of electric radiators. The power and voltage requirements for each radiator are 1200 W, 240 V. But you are not sure how to wire the radiators to the power supplied to the garage. Should you use the wiring diagram on the left or the one on the right? Does it make any difference?




Once you have studied the material in this chapter, you will be able to answer these questions and determine how to heat the garage. The Practical Perspective at the end of this chapter guides you through the analysis of two circuits based on the two wiring diagrams shown below.





          
          
              
                        [image: A photograph of an electric radiator.] limbi007/123RF

 
              

          

          

          
            
          

        




          
          
              
                        [image: The figure illustrates a wiring diagram for two radiators.] 
              

          

          

          
                          The elements present in the circuit are an independent voltage source labeled 240 volts and two radiators. The radiators are enclosed within a box. The voltage source and the two radiators are connected in parallel.
      
    
          

        






        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          
2.1 Voltage and Current Sources


An electrical source is a device capable of converting nonelectric energy to electric energy and vice versa. For example, a discharging battery converts chemical energy to electric energy, whereas a charging battery converts electric energy to chemical energy. A dynamo is a machine that converts mechanical energy to electric energy and vice versa. For operations in the mechanical-to-electric mode, it is called a generator. For transformations from electric to mechanical energy, it is called a motor. Electric sources either deliver or absorb electric power while maintaining either voltage or current. This behavior led to the creation of the ideal voltage source and the ideal current source as basic circuit elements.



	An ideal voltage source is a circuit element that maintains a prescribed voltage across its terminals regardless of the current flowing in those terminals.


	An ideal current source is a circuit element that maintains a prescribed current through its terminals regardless of the voltage across those terminals.





These circuit elements do not exist as practical devices—they are idealized models of actual voltage and current sources.


Using an ideal model for current and voltage sources constrains the mathematical descriptions of these components. For example, because an ideal voltage source provides a steady voltage even if the current in the element changes, it is impossible to specify the current in an ideal voltage source as a function of its voltage. Likewise, if the only information you have about an ideal current source is the value of current supplied, it is impossible to determine the voltage across that current source. We have sacrificed our ability to relate voltage and current in a practical source for the simplicity of using ideal sources in circuit analysis.


Ideal voltage and current sources can be further described as either independent sources or dependent sources.



	An independent source establishes a voltage or current in a circuit without relying on voltages or currents elsewhere in the circuit. The value of the voltage or current supplied is specified by the value of the independent source alone.


	A dependent source, in contrast, establishes a voltage or current whose value depends on the value of a voltage or current elsewhere in the circuit. You cannot specify the value of a dependent source unless you know the value of the voltage or current on which it depends.





The circuit symbols for the ideal independent sources are shown in Fig. 2.1. Note that a circle is used to represent an independent source. To completely specify an ideal independent voltage source in a circuit, you must include the value of the supplied voltage and the reference polarity, as shown in Fig. 2.1(a). Similarly, to completely specify an ideal independent current source, you must include the value of the supplied current and its reference direction, as shown in Fig. 2.1(b).



Figure 2.1

The circuit symbols for (a) an ideal independent voltage source and (b) an ideal independent current source.




          
          
              
                        [image: The figure contains two parts labeled (&#x201C;a&#x201D;) and (b) that illustrate the circuit symbols for an ideal independent voltage source and an ideal independent current source, respectively.] 
              

          

          

          
                          Part (“a”): The supplied voltage is labeled v subscript s with the reference polarities depicted by the positive and negative signs. Part (b): The supplied current is labeled i subscript s with the reference direction depicted by an upward arrow.
      
    
          

        

The circuit symbol for an ideal dependent source is a diamond, as shown in Fig. 2.2. There are four possible variations because both dependent current sources and dependent voltage sources can be controlled by either a voltage or a current elsewhere in the circuit. Dependent sources are sometimes called controlled sources.



Figure 2.2

(a) (b) Circuit symbols for ideal dependent voltage sources and (c) (d) ideal dependent current sources.




          
          
              
                        [image: The figure contains four parts that illustrate four circuit symbols for ideal dependent voltage and current sources.] 
              

          

          

          
                          Part (“a”): Ideal, dependent, voltage-controlled voltage source. The circuit symbol is depicted by a diamond with the reference polarities represented by a positive and a negative sign. The diamond structure is connected to two vertical lines drawn on the top and the bottom. The formula for the circuit reads v subscript s equals mu multiplied by v subscript x, where the supplied voltage (v subscript s) depends on the controlling voltage (v subscript x).

Part (b): Ideal, dependent, current controlled voltage source. The circuit symbol is depicted by a diamond with the reference polarities represented by a positive and a negative sign. The diamond structure is connected to two vertical lines drawn on the top and the bottom. The formula for the circuit reads v subscript s equals p multiplied by i subscript x, where the supplied voltage (v subscript s) depends on the controlling current (i subscript x).

Part (c): Ideal, dependent, voltage controlled current source. The circuit symbol is depicted by a diamond with the reference direction depicted by an upward arrow drawn inside. The diamond structure is connected to two vertical lines drawn on the top and the bottom. The formula for the circuit reads i subscript s equals alpha multiplied by v subscript x, where the supplied current (i subscript s) depends on the controlling voltage (v subscript x).

Part (d): Ideal, dependent, current controlled current source. The circuit symbol is depicted by a diamond with the reference direction depicted by an upward arrow drawn inside. The diamond structure is connected to two vertical lines drawn on the top and the bottom. The formula for the circuit reads i subscript s equals beta multiplied by i subscript x, where the supplied current (i subscript s) depends on the controlling current (i subscript x).
      
    
          

        

To completely specify an ideal dependent voltage-controlled voltage source, you must identify the controlling voltage, the equation that permits you to compute the supplied voltage from the controlling voltage, and the reference polarity for the supplied voltage. For example, in Fig. 2.2(a), the controlling voltage is υx, the equation that determines the supplied voltage υs is


υs=μυx,


and the reference polarity for υs is as indicated. Note that μ is a multiplying constant that is dimensionless.


Similar requirements exist for completely specifying the other ideal dependent sources. In Fig. 2.2(b), the controlling current is ix, the equation for the supplied voltage υs is


υs=ρix,


the reference polarity is as shown, and the multiplying constant ρ has the dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is υx, the equation for the supplied current is is


is=αυx,


the reference direction is as shown, and the multiplying constant α has the dimension amperes per volt. In Fig. 2.2(d), the controlling current is ix, the equation for the supplied current is is


is=βix,


the reference direction is as shown, and the multiplying constant β is dimensionless.


Note that the ideal independent and dependent voltage and current sources generate either constant voltages or currents, that is, voltages and currents that are invariant with time. Constant sources are often called dc sources. The dc stands for direct current, a description that has a historical basis but can seem misleading now. Historically, a direct current was defined as a current produced by a constant voltage. Therefore, a constant voltage became known as a direct current, or dc, voltage. The use of dc for constant stuck, and the terms dc current and dc voltage are now universally accepted in science and engineering to mean constant current and constant voltage.


Finally, we note that ideal sources are examples of active circuit elements. An active element is one that models a device capable of generating electric energy. Passive elements model physical devices that cannot generate electric energy. Resistors, inductors, and capacitors are examples of passive circuit elements. Examples 2.1 and 2.2 illustrate how the characteristics of ideal independent and dependent sources limit the types of permissible interconnections of the sources.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          

Example 2.1: Testing Interconnections of Ideal Sources


Use the definitions of the ideal independent voltage and current sources to determine which interconnections in Fig. 2.3 are permitted and which violate the constraints imposed by the ideal sources.







Solution


Connection (a) is permitted. Each source supplies voltage across the same pair of terminals, marked a and b. This requires that each source supply the same voltage with the same polarity, which they do.


Connection (b) is permitted. Each source supplies current through the same pair of terminals, marked a and b. This requires that each source supply the same current in the same direction, which they do.


Connection (c) is not permitted. Each source supplies voltage across the same pair of terminals, marked a and b. This requires that each source supply the same voltage with the same polarity, which they do not.


Connection (d) is not permitted. Each source supplies current through the same pair of terminals, marked a and b. This requires that each source supply the same current in the same direction, which they do not.






Figure 2.3

The circuits for Example 2.1.




          
          
              
                        [image: The figure contains five parts labeled &#x201C;a&#x201D;, b, c, d, and e that illustrate the interconnections of ideal independent voltage and current sources.] 
              

          

          

          
                          Part (“a”): The elements present in the circuit are two voltage sources labeled 10 volts. The positive terminal of the voltage source is connected to a node labeled “a” at the top, which in turn is connected to the positive terminal of the second voltage source. The negative terminal of the second voltage source is connected to a node labeled b at the bottom, which in turn is connected to the negative terminal of first voltage source.

Part (b): The elements present in the circuit are two current sources labeled 5 amperes. The current in the first source flows upward and toward a node on the top left labeled “a”, which in turn is connected to the second current source. The current in the second current source flows toward a node on the top right labeled b, which in turn is connected to the first current source.

Part (c): The elements present in the circuit are two voltage sources labeled 10 volts and 5 volts. The positive terminal of the 10 volts source is connected to a node at the top labeled “a”, which in turn is connected to the positive terminal of the 5 volts source. The negative terminal of the 5 volts source is connected to another node at the bottom labeled b, which in turn is connected to the negative terminal of the 10 volts source.

Part (d): The elements present in the circuit are two current sources labeled 5 amperes and 2 amperes. The current in the 5 amperes source flows upward and toward a node on the top left labeled “a”, which in turn is connected to the 2 amperes source. The current in the 2 amperes source flows toward a node on the top right labeled b, which is connected to the 5 amperes source.

Part (e): The elements present in the circuit are a voltage source labeled 10 volts and a current source labeled 5 amperes. The positive terminal of the voltage source is connected to a node labeled “a”, which is connected to the current source. The current in the 5 amperes source flows toward the right and its one end is connected to a node labeled b, which in turn is connected to the negative terminal of the voltage source.
      
    
          

        





Connection (e) is permitted. The voltage source supplies voltage across the pair of terminals marked a and b. The current source supplies current through the same pair of terminals. Because an ideal voltage source supplies the same voltage regardless of the current, and an ideal current source supplies the same current regardless of the voltage, this connection is permitted.







        

      

    

              
                
                  
                  
                  

                

              


          
            
      
        
          

Example 2.2: Testing Interconnections of Ideal Independent and Dependent Sources


State which interconnections in Fig. 2.4 are permitted and which violate the constraints imposed by the ideal sources, using the definitions of the ideal independent and dependent sources.







Solution


Connection (a) is not permitted. Both the independent source and the dependent source supply voltage across the same pair of terminals, labeled a and b. This requires that each source supply the same voltage with the same polarity. The independent source supplies 5 V, but the dependent source supplies 15 V.


Connection (b) is permitted. The independent voltage source supplies voltage across the pair of terminals marked a and b. The dependent current source supplies current through the same pair of terminals. Because an ideal voltage source supplies the same voltage regardless of current, and an ideal current source supplies the same current regardless of voltage, this is a valid connection.






Figure 2.4

The circuits for Example 2.2.




          
          
              
                        [image: The figure contains five parts labeled &#x201C;a&#x201D;, b, c, d, and e that illustrate the interconnections of ideal independent and dependent sources.] 
              

          

          

          
                          Part (“a”): The circuit consists of an independent voltage source labeled v subscript x BaseLine equals 5 volts and a dependent voltage source labeled v subscript s BaseLine equals 3 v subscript x. The positive terminal of the dependent source is connected to a node labeled “a”, which is connected to the positive terminal of the independent voltage source. The negative terminal of the independent source is connected to the second node labeled b, which in turn is connected to the negative terminal of the independent terminal.

Part (b): The circuit consists of an independent voltage source labeled v subscript x BaseLine equals 5 volts and a dependent current source labeled i subscript s BaseLine equals 3 v subscript x. The positive terminal of the independent voltage source is connected to a node labeled “a”, which is connected to the positive terminal of the dependent current source. The negative terminal of the current source is connected to a node labeled b, which is connected to the negative terminal of the voltage source. The current on the dependent current source flows upward from node b to node “a”.

Part (c): The circuit consists of an independent current source labeled i subscript x BaseLine equals 2 amperes and a dependent voltage source labeled v subscript s BaseLine equals 4 i subscript x. The positive terminal of the current source is connected to a node labeled “a”, which is connected to the positive terminal of the voltage source. The negative terminal of the voltage source is connected to node labeled b, which is connected to the negative terminal of the current source. The current on the independent current source flows upward from node b to node “a”.

Part (d): The circuit consists of an independent current source labeled i subscript x BaseLine equals 2 amperes and a dependent current source labeled i subscript s BaseLine equals 3 i subscript x. The positive terminal of the independent current source is connected to a node labeled “a”, which is connected to the positive terminal of the dependent source. The negative terminal of the dependent source is connected to node labeled b, which is connected to the negative terminal of the independent source. The current from both the sources flow upward and toward the node labeled “a”.
      
    
          

        






Connection (c) is permitted. The independent current source supplies current through the pair of terminals marked a and b. The dependent voltage source supplies voltage across the same pair of terminals. Because an ideal current source supplies the same current regardless of voltage, and an ideal voltage source supplies the same voltage regardless of current, this is a valid connection.


Connection (d) is not permitted. Both the independent source and the dependent source supply current through the same pair of terminals, labeled a and b. This requires that each source supply the same current in the same direction. The independent source supplies 2 A, but the dependent source supplies 6 A in the opposite direction.
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q(t) = f; 5dz = 5z ;

5t —5(0) = 5C for t > 0.
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