 [image: Book Cover for Starting out with Python - GLOBAL EDITION Gaddis, 6e.]

		

			

			

				

					Digital Resources for Students

					

				

				

					Your new textbook provides 12-month access to digital resources that may include VideoNotes (step-by-step video tutorials on programming concepts), source code, web chapters, quizzes, and more. Refer to the preface in the textbook for a detailed list of resources.

					

					Follow the instructions below to register for the Companion Website for Starting Out with Python, Sixth Edition, by Tony Gaddis

					

					

						 Go to https://media.pearsoncmg.com/intl/ge/abp/resources/index.html

						 Enter the title of your textbook or browse by author name.

						 Click Companion Website.

						 Click Register and follow the on-screen instructions to create a login name and password.

					

				

				

					Use the following access code when registering:

ISSPYS-SLUNK-RANCH-DRIBS-PRATO-PRISE

					Use the login name and password you created during registration to start using the digital resources that accompany your textbook.

					IMPORTANT:

				

				

					This access code can only be used once. This subscription is valid for 12 months upon activation and is not transferable.

					For technical support go to https://support.pearson.com/getsupport

				

			

		

	
STARTING OUT WITH PYTHON®

SIXTH EDITION

GLOBAL EDITION

	Tony Gaddis

	Haywood Community College

 [image: Pearson logo.]

		

			

			

				

					Product Management: Neelakantan Kavasseri Kailasam, Aaditya Bugga, and Priya Mishra

			

			

				

					Content Production: Naina Singh

			

			

				

					Product Marketing: Joanne Dieguez and Ellie Nicholls

			

			

				

					Rights and Permissions: Ashish Vyas

			

			

				Cover image: Kim Pin/Shutterstock

			

			

				Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.

			

			

				

					Pearson Education Limited

				

			

			

				KAO Two

			

			

				KAO Park

			

			

				Hockham Way

			

			

				Harlow, Essex

			

			

				CM17 9SR

			

			

				United Kingdom

			

			

				and Associated Companies throughout the world

			

			

				

					Visit us on the World Wide Web at:

					www.pearsonglobaleditions.com

				

			

			

				© Pearson Education Limited 2024

			

			

				The rights of Tony Gaddis to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

			

			

				Authorized adaptation from the United States edition, entitled Starting Out with Python, Sixth Edition, ISBN 978-0-13-761915-3, by Tony Gaddis, published by Pearson Education © 2022.

			

			

				All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

			

			

				Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect, or consequential damages or any damages whatsoever resulting from loss of use, data, or profits, whether in an action of contract, negligence, or other tortious action, arising out of or in connection with the use or performance of information available from the services.

			

			

				The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

			

			

				Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

			

			

				Acknowledgments of third-party content appear on the appropriate page within the text which constitutes an extension of this copyright page.

			

			

				PEARSON, ALWAYS LEARNING, and REVEL, and PEARSON ETEXTBOOK are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

			

			

				Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors.

			

			

				This eBook may be available as a standalone product or integrated with other Pearson digital products like MyLab and Mastering. This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.

			

			

			

				

					ISBN 13 (Print): 978-1-292-73603-7

			

			

				

					ISBN 13 (Channel Partner eBook): 978-1-292-46798-6

			

			

				

					British Library Cataloguing-in-Publication Data

				

			

			

				A catalogue record for this book is available from the British Library

			

			

		

	 Contents at a Glance

	Chapter 1: Introduction to Computers and Programming

	Chapter 2: Input, Processing, and Output

	Chapter 3: Decision Structures and Boolean Logic

	Chapter 4: Repetition Structures

	Chapter 5: Functions

	Chapter 6: Files and Exceptions

	Chapter 7: Lists and Tuples

	Chapter 8: More About Strings

	Chapter 9: Dictionaries and Sets

	Chapter 10: Classes and Object-Oriented Programming

	Chapter 11: Inheritance

	Chapter 12: Recursion

	Chapter 13: GUI Programming

	Chapter 14: Database Programming

	Appendix A: Installing Python

	Appendix B: Introduction to IDLE

	Appendix C: The ASCII Character Set

	Appendix D: Predefined Named Colors

	Appendix E: More About the import Statement

	Appendix F: Formatting Numeric Output with the format() Function

	Appendix G: Installing Modules with the pip Utility

	Appendix H: Answers to Noninteractive Checkpoints

	Student Supplemental Materials

 	
Note: For detailed Table of Contents please see navigation bar.

 Location of VideoNotes

VideoNotes are narrated step-by-step video tutorials that show how to solve problems completely, from design through coding.

Chapter 1: Introduction to Computers and Programming

	VideoNote 1-1: Using Interactive Mode in IDLE

	VideoNote 1-2: Performing Exercise 2

Chapter 2: Input, Processing, and Output

	VideoNote 2-1: Using the print function

	VideoNote 2-2: Reading input from the Keyboard

	VideoNote 2-3: Introduction to Turtle Graphics

	VideoNote 2-4: The Sales Prediction Problem

Chapter 3: Decision Structures and Boolean Logic

	VideoNote 3-1: The if Statement

	VideoNote 3-2: The if-else Statement

	VideoNote 3-3: The Areas of Rectangles Problem

Chapter 4: Repetition Structures

	VideoNote 4-1: The while Loop

	VideoNote 4-2: The for Loop

	VideoNote 4-3: Bug Collector Problem

Chapter 5: Functions

	VideoNote 5-1: Defining and Calling a Function

	VideoNote 5-2: Passing Arguments to a Function

	VideoNote 5-3: Writing a Value-Returning Function

	VideoNote 5-4: The Kilometer Converter Problem

	VideoNote 5-5: The Feet to Inches Problem

Chapter 6: Files and Exceptions

	VideoNote 6-1: Using Loops to Process Files

	VideoNote 6-2: File Display

Chapter 7: Lists and Tuples

	VideoNote 7-1: List Slicing

	VideoNote 7-2: Lottery Number Generator Problem

Chapter 8: More About Strings

 	VideoNote 8-1: Vowels and Consonants Problem

Chapter 9: Dictionaries and Sets

	VideoNote 9-1: Introduction to Dictionaries

	VideoNote 9-2: Introduction to Sets

	VideoNote 9-3: The Capital Quiz Problem

Chapter 10: Classes and Object-Oriented Programming

	VideoNote 10-1: Classes and Objects

	VideoNote 10-2: The Pet Class

Chapter 11: Inheritance

 	VideoNote 11-1: Person and Customer Classes

Chapter 12: Recursion

 	VideoNote 12-1: Recursive Multiplication

Chapter 13: GUI Programming

	VideoNote 13-1: Creating a Simple GUI

	VideoNote 13-2: Responding to Button Clicks

	VideoNote 13-3: Name and Address Problem

Chapter 14: Database Programming

	VideoNote 14-1: Opening and Closing a Database Connection

	VideoNote 14-2: Creating a Table

	VideoNote 14-3: Adding Data to a Table

	VideoNote 14-4: The SELECT Statement

	VideoNote 14-5: Updating Rows

	VideoNote 14-6: Getting Started with the Population Database Problem

Appendix B: Introduction to IDLE

 	VideoNote B-1: Intro to IDLE

 Preface

Welcome to Starting Out with Python, Sixth Edition, Global Edition. This book uses the Python language to teach programming concepts and problem-solving skills, without assuming any previous programming experience. With easy-to-understand examples, pseudocode, flowcharts, and other tools, the student learns how to design the logic of programs then implement those programs using Python. This book is ideal for an introductory programming course or a programming logic and design course using Python as the language.

As with all the books in the Starting Out With series, the hallmark of this text is its clear, friendly, and easy-to-understand writing. In addition, it is rich in example programs that are concise and practical. The programs in this book include short examples that highlight specific programming topics, as well as more involved examples that focus on problem solving. Each chapter provides one or more case studies that provide step-by-step analysis of a specific problem and shows the student how to solve it.

Control Structures First, Then Classes

Python is a fully object-oriented programming language, but students do not have to understand object-oriented concepts to start programming in Python. This text first introduces the student to the fundamentals of data storage, input and output, control structures, functions, sequences and lists, file I/O, and objects that are created from standard library classes. Then the student learns to write classes, explores the topics of inheritance and polymorphism, and learns to write recursive functions. Finally, the student learns to develop simple event-driven GUI applications.

 Changes in the Sixth Edition

This book’s clear writing style remains the same as in the previous edition. However, many additions and improvements have been made, which are summarized here:

	
Updated for Python 3.9 – This edition uses new language features from versions of Python up through Python 3.9.

	
The with Statement -- Chapter 6 now introduces the with statement as a way to open files. Many examples of using the with statement with files have been added throughout the book.

	
Multiple Assignment -- This edition introduces multiple assignment in Chapter 2.

	
Single-Line if Statements -- A new section on single-line if statements has been added to Chapter 3.

	
Conditional Expressions -- Chapter 3 now introduces conditional expressions and the ternary operator.

	
Walrus Operator and Assignment Expressions -- A new section on the walrus operator and assignment expressions has been added to Chapter 3. Chapter 3 shows an example using an assignment expression in an if statement, and Chapter 4 shows an example of using an assignment expression in a while loop.

	
Using the while Loop as a Count-Controlled Loop -- Chapter 4 has a new section on counter variables and using the while statement to write count-controlled loops.

	
Single-Line while Loops -- A new section on single-line while Loops has been added to Chapter 4.

	
Using break, continue, and else With Loops -- Chapter 4 now has a section on using break and continue with loops, and Python's unique else clause with loops.

	
Keyword-Only Parameters -- Chapter 5 now discusses keyword-only parameters and how to implement them in a function.

	
Positional-Only Parameters -- Chapter 5 now discusses positional-only parameters and how to implement them in a function.

	
Default Arguments -- Chapter 5 now has a section on default function arguments.

	
Using count and sum with Lists -- A discussion of the count method and the sum function with lists has been added to Chapter 7.

	
Storing Mutable Objects in a Tuple -- A new section has been added to Chapter 7 that discusses the immutability of tuples, and how mutable objects can be stored in tuples.

	
Dictionary Merge and Update Operators -- Chapter 9 has a new section that discusses the dictionary's merge and update operators.

 Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how computers work, how data is stored and manipulated, and why we write programs in highlevel languages. An introduction to Python, interactive mode, script mode, and the IDLE environment are also given.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and simple programs that are written as sequence structures. The student learns to write simple programs that read input from the keyboard, perform mathematical operations, and produce formatted screen output. Pseudocode and flowcharts are also introduced as tools for designing programs. The chapter also includes an optional introduction to the turtle graphics library.

Chapter 3: Decision Structures and Boolean Logic

In this chapter, the student learns about relational operators and Boolean expressions and is shown how to control the flow of a program with decision structures. The if, if-else, and if-elif-else statements are covered. Nested decision structures and logical operators are discussed as well. The chapter also includes an optional turtle graphics section, with a discussion of how to use decision structures to test the state of the turtle.

Chapter 4: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop and for loop. Counters, accumulators, running totals, and sentinels are discussed, as well as techniques for writing input validation loops. The chapter also includes an optional section on using loops to draw designs with the turtle graphics library.

Chapter 5: Functions

In this chapter, the student first learns how to write and call void functions. The chapter shows the benefits of using functions to modularize programs and discusses the top-down design approach. Then, the student learns to pass arguments to functions. Common library functions, such as those for generating random numbers, are discussed. After learning how to call library functions and use their return value, the student learns to define and call their own functions. Then the student learns how to use modules to organize functions. An optional section includes a discussion of modularizing turtle graphics code with functions.

Chapter 6: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and write large sets of data and store data as fields and records. The chapter concludes by discussing exceptions and shows the student how to write exception-handling code.

Chapter 7: Lists and Tuples

This chapter introduces the student to the concept of a sequence in Python and explores the use of two common Python sequences: lists and tuples. The student learns to use lists for arraylike operations, such as storing objects in a list, iterating over a list, searching for items in a list, and calculating the sum and average of items in a list. The chapter discusses list comprehension expressions, slicing, and many of the list methods. One- and two-dimensional lists are covered. The chapter also includes a discussion of the matplotlib package, and how to use it to plot charts and graphs from lists.

Chapter 8: More About Strings

In this chapter, the student learns to process strings at a detailed level. String slicing and algorithms that step through the individual characters in a string are discussed, and several built-in functions and string methods for character and text processing are introduced. This chapter also includes examples of string tokenizing and parsing CSV files.

Chapter 9: Dictionaries and Sets

This chapter introduces the dictionary and set data structures. The student learns to store data as key-value pairs in dictionaries, search for values, change existing values, add new key-value pairs, delete key-value pairs, and write dictionary comprehensions. The student learns to store values as unique elements in sets and perform common set operations such as union, intersection, difference, and symmetric difference. Set comprehensions are also introduced. The chapter concludes with a discussion of object serialization and introduces the student to the Python pickle module.

Chapter 10: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It covers the fundamental concepts of classes and objects. Attributes, methods, encapsulation and data hiding, __init__ functions (which are similar to constructors), accessors, and mutators are discussed. The student learns how to model classes with UML and how to find the classes in a particular problem.

Chapter 11: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymorphism. The topics covered include superclasses, subclasses, how __init__ functions work in inheritance, method overriding, and polymorphism.

Chapter 12: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive calls is provided, and recursive applications are discussed. Recursive algorithms for many tasks are presented, such as finding factorials, finding a greatest common denominator (GCD), and summing a range of values in a list, and the classic Towers of Hanoi example are presented.

Chapter 13: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the tkinter module in Python. Fundamental widgets, such as labels, buttons, entry fields, radio buttons, check buttons, list boxes, and dialog boxes, are covered. The student also learns how events work in a GUI application and how to write callback functions to handle events. The Chapter includes a discussion of the Canvas widget, and how to use it to draw lines, rectangles, ovals, arcs, polygons, and text.

Chapter 14: Database Programming

This chapter introduces the student to database programming. The chapter first introduces the basic concepts of databases, such as tables, rows, and primary keys. Then the student learns to use SQLite to connect to a database in Python. SQL is introduced and the student learns to execute queries and statements that search for rows, add new rows, update existing rows, and delete rows. CRUD applications are demonstrated, and the chapter concludes with a discussion of relational data.

Appendix A: Installing Python

This appendix explains how to download and install the latest Python distribution.

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that comes with Python.

Appendix C: The ASCII Character Set

As a reference, this appendix lists the ASCII character set.

Appendix D: Predefined Named Colors

This appendix lists the predefined color names that can be used with the turtle graphics library, matplotlib and tkinter.

Appendix E: More About the import Statement

This appendix discusses various ways to use the import statement. For example, you can use the import statement to import a module, a class, a function, or to assign an alias to a module.

Appendix F: Formatting Numeric Output with the format() Function

This appendix discusses the format() function and shows how to use its format specifiers to control the way that numeric values are displayed.

Appendix G: Installing Modules with the pip Utility

This appendix discusses how to use the pip utility to install third-party modules from the Python Package Index, or PyPI.

Appendix H: Answers to Checkpoints

This appendix gives the answers to the Checkpoint questions that appear throughout the text.

 Organization of the Text

The text teaches programming in a step-by-step manner. Each chapter covers a major set of topics and builds knowledge as students progress through the book. Although the chapters can be easily taught in their existing sequence, you do have some flexibility in the order that you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents a chapter or a group of chapters. An arrow points from a chapter to the chapter that must be covered before it.

Figure P-1 Chapter dependencies

[image: The figure illustrates the chapter dependencies of a book.]

 Ten rectangular sections containing different chapters are arranged in six rows. An arrow points from each row to the row just above it. The first row at the top has one rectangular section labeled Chapters 1 to 5 (Cover in Order). The second row has three rectangular sections. The second row has the first rectangular section labeled Chapter 6 Files and Exceptions, second rectangular section labeled Chapter 8 More About Strings, and third rectangular section labeled Chapter 12 Recursion. The third row has one rectangular section labeled Chapter 7 Lists and Tuples. The fourth row has two rectangular sections. The fourth row has the first rectangular sections labeled Chapter 9 Dictionaries and Sets and second rectangular section labeled Chapter 14 Database Programming. The fifth row has one rectangular section labeled Chapter 10 Classes and Object Orient Programming. The sixth row has two rectangular sections. The sixth row has the first rectangular section labeled Chapter 11 Inheritance and second rectangular section labeled Chapter 13 GUI Programming. A dashed arrow is from Chapter 14 Database Programming to Chapter 13 GUI Programming as Chapter 14 includes one example that uses a GUI interface.

 Features of the Text

Concept

Each major section of the text starts with a concept statement.

Statements

This statement concisely summarizes the main point of the section.

Example Programs

Each chapter has an abundant number of complete and partial example programs, each designed to highlight the current topic.

In the Spotlight

Each chapter has one or more In the Spotlight case studies that Case Studies provide detailed, step-by-step analysis of problems and show the student how to solve them.

VideoNotes

VideoNotes are narrated step-by-step video tutorials that show how to solve problems completely, from design through coding.

Notes

Notes appear at several places throughout the text. They are short explanations of interesting or often misunderstood points relevant to the topic at hand.

Tips

Tips advise the student on the best techniques for approaching different programming problems.

Warnings

Warnings caution students about programming techniques or practices that can lead to malfunctioning programs or lost data.

Checkpoints

(Noninteractive) Checkpoint Questions from the Book are questions placed at intervals throughout each chapter. They are designed to query the student’s knowledge quickly after learning a new topic. Certain sections also contain Interactive versions of these checkpoint questions.

Review Questions

Each chapter presents a thorough and diverse set of review questions and exercises. They include Multiple Choice, True/False, Algorithm Workbench, and Short Answer.

Programming Exercises

Each chapter offers a pool of programming exercises designed to solidify the student’s knowledge of the topics currently being studied. Please note that the end-of-chapter Programming Exercises in this textbook may differ from the end-of-chapter Programming Exercises embedded in the digital product Revel Starting Out with Python.

 Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items are available at https://media.pearsoncmg.com/intl/ge/abp/resources/index.html

Instructor Resources

The following supplements are available to qualified instructors only:

Solutions for the Section Quizzes, Chapter Quizzes, Programming Projects, Checkpoint self-review items, and Live Code Example practice activities are contained in the Revel Solutions Manual

	Solutions for the review questions and exercises

	PowerPoint presentation slides for each chapter

	Test bank

	TestGen

	Errata

Visit the Pearson Education Instructor Resource Center (https://www.pearson.com/en-gb.html) or contact your local Pearson Education campus representative for information on how to access them.

 Acknowledgments

I would like to thank the following faculty reviewers for their insight, expertise, and thoughtful recommendations:

	Desmond K. H. Chun
	
Raymond Pettit

	
Chabot Community College

	
Abilene Christian University

	
Sonya Dennis

	
Janet Renwick

	Morehouse College
	University of Arkansas–Fort Smith

	Barbara Goldner
	Haris Ribic

	
North Seattle Community College

	SUNY at Binghamton

	
Paul Gruhn

	Ken Robol

	Manchester Community College
	
Beaufort Community College

	Bob Husson
	Eric Shaffer

	Craven Community College
	University of Illinois at Urbana-Champaign

	Diane Innes
	Tom Stokke

	
Sandhills Community College

	University of North Dakota

	Daniel Jinguji
	Anita Sutton

	North Seattle Community College
	Germanna Community College

	
John Kinuthia

	Ann Ford Tyson

	Nazareth College of Rochester
	Florida State University

	Frank Liu
	Karen Ughetta

	Sam Houston State University
	Virginia Western Community College

	Gary Marrer
	Christopher Urban

	Glendale Community College
	SUNY Institute of Technology

	Keith Mehl
	Nanette Veilleux

	
Chabot College

	Simmons College

	
Shyamal Mitra

	Brent Wilson

	
University of Texas at Austin

	George Fox University

	Vince Offenback
	Linda F. Wilson

	North Seattle Community College
	 Texas Lutheran University

	Smiljana Petrovic
	

	Iona College
	

I would like to thank the faculty, staff, and administration at Haywood Community College for the opportunity to build a career teaching the subjects that I love. I would also like to thank my family and friends for their support in all of my projects.

It is a great honor to be published by Pearson, and I am extremely fortunate to have Tracy Johnson as my Editor and Content Manager. She and her colleagues Holly Stark, Erin Sullivan, Krista Clark, Scott Disanno, Sandra Rodriguez, Bob Engelhardt, Abhijeet Gope, Adarsh Sushanth, Pallavi Pandit, and Anu Sivakolundu have worked tirelessly to produce and promote this book. Thanks to you all!

 Global Edition Acknowledgments

Pearson would like to thank the following people for their work on the Global Edition:

Contributors

	Gregory Baatard

	Edith Cowan University

	Kenneth Eustace

	Charles Sturt University

Reviewer

	Bavly Hanna

	University of Technology Sydney

 About the Author

[image: Photo of the author Tony Gaddis.]

Tony Gaddis

Tony Gaddis’s career includes twenty years as a faculty member at Haywood Community College. He has taught computer science courses, both in-person and online, to a wide variety of students. He particularly enjoys the challenges of teaching non-majors and others who initially struggle with the concepts of programming. He is an award-winning instructor who was previously selected as the NC Community College Teacher of the Year.

Tony is also a prolific author. His Starting Out With… series of textbooks, published by Pearson, covers a wide range of programming languages and pedagogical approaches for the CS1 and CS2 classrooms. Each of Tony’s books encapsulates his passion for teaching and his experience explaining difficult concepts to beginning students.

Chapter 1 Introduction to Computers and Programming

Topics

1.1 Introduction

1.2 Hardware and Software

1.3 How Computers Store Data

1.4 How a Program Works

1.5 Using Python

 1.1: Introduction

Think about some of the different ways that people use computers. In school, students use computers for tasks such as writing papers, searching for articles, sending email, and participating in online classes. At work, people use computers to analyze data, make presentations, conduct business transactions, communicate with customers and coworkers, control machines in manufacturing facilities, and do many other things. At home, people use computers for tasks such as paying bills, shopping online, communicating with friends and family, and playing games. And don’t forget that cell phones, tablets, smart phones, car navigation systems, and many other devices are computers too. The uses of computers are almost limitless in our everyday lives.

Computers can perform such a wide variety of tasks because they can be programmed. This means that computers are not designed to do just one job, but to do any job that their programs tell them to do. A program is a set of instructions that a computer follows to perform a task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two commonly used programs.

Figure 1-1 A word processing program and a presentation program

[image: The figure illustrates a Microsoft Word document and a Microsoft PowerPoint presentation in two windows.]

 Window 1:

The Microsoft Word document contains the toolbar at the top. The first row of the toolbar contains File, Home, Insert, Design, Layout, References, Mailings, Review, View, Help, Share, and Comments.

The next row of the toolbar contains Paste, Clipboard, Font, Paragraph, Styles, Editing, Adobe Acrobat, Dictate, and Voice.

The text in the document is as follows.

1.4 How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in

machine language. Because people find it very difficult to write entire

programs in machine language, other programming languages have been

invented.

Window 2:

The Microsoft PowerPoint presentation contains the toolbar at the top. The first row of the toolbar contains File, Home, Insert, Draw, Design, and Format.

The next row of the toolbar contains Chart Layout, Chart Styles, Data, and Type.

The slide contains a pi chart.

Used with permission from Microsoft.

Programs are commonly referred to as software. Software is essential to a computer because it controls everything the computer does. All of the software that we use to make our computers useful is created by individuals working as programmers or software developers. A programmer, or software developer, is a person with the training and skills necessary to design, create, and test computer programs. Computer programming is an exciting and rewarding career. Today, you will find programmers’ work used in business, medicine, government, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the Python language. The Python language is a good choice for beginners because it is easy to learn and programs can be written quickly using it. Python is also a powerful language, popular with professional software developers. In fact, it has been reported that Python is used by Google, NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few basic things about computers and how they work. This chapter will build a solid foundation of knowledge that you will continually rely on as you study computer science. First, we will discuss the physical components of which computers are commonly made. Next, we will look at how computers store data and execute programs. Finally, you will get a quick introduction to the software that you will use to write Python programs.

 1.2: Hardware and Software

CONCEPT: The physical devices of which a computer is made are referred to as the computer’s hardware. The programs that run on a computer are referred to as software.

Hardware

The term hardware refers to all of the physical devices, or components, of which a computer is made. A computer is not one single device, but a system of devices that all work together. Like the different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing components such as microprocessors, memory, disk drives, video displays, graphics cards, and so on. Unless you already know a lot about computers, or at least have a friend that does, understanding what these different components do might be challenging. As shown in Figure 1-2, a typical computer system consists of the following major components:

	The central processing unit (CPU)

	Main memory

	Secondary storage devices

	Input devices

	Output devices

Figure 1-2 Typical components of a computer system

[image: The figure illustrates the different input, output and processing devices.]

 The input devices are webcam, joystick, scanner, mouse, camera, keyboard, and a digital pen tablet. The processing units are shown to the right of this. Central processing units and a main memory (R "A" M) are shown inside a block. The secondary storage devices such as floppy disk and pendrive are shown below this. The output devices like monitor, printer and set of speakers are shown to the right of this.

Let’s take a closer look at each of these components.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the computer is running or executing the program. The central processing unit, or CPU, is the part of a computer that actually runs programs. The CPU is the most important component in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical components such as vacuum tubes and switches. Figure 1-3 shows such a device. The two women in the photo are working with the historic ENIAC computer. The ENIAC, which is considered by many to be the world’s first programmable electronic computer, was built in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Figure 1-3 The ENIAC computer

[image: The photograph of two people standing infront of the ENIAC computer is shown.]

 The computer consists of big rectangular panels with switches, meters and lights.

Courtesy of U.S. Army Historic Computer Images

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab technician holding a modern microprocessor. In addition to being much smaller than the old electromechanical CPUs in early computers, microprocessors are also much more powerful.

Figure 1-4 A lab technician holds a modern microprocessor

[image: The photograph of a person holding a microchip.]

Creativa Images/Shutterstock

 Main Memory

You can think of main memory as the computer’s work area. This is where the computer stores a program while the program is running, as well as the data that the program is working with. For example, suppose you are using a word processing program to write an essay for one of your classes. While you do this, both the word processing program and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this because the CPU is able to quickly access data stored at any random location in RAM. RAM is usually a volatile type of memory that is used only for temporary storage while a program is running. When the computer is turned off, the contents of RAM are erased. Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips

[image: The figure illustrates the image of a R “A” M. The R “A” M consists of eight chips on a rectangular section.]

Garsya/Shutterstock

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even when there is no power to the computer. Programs are normally stored in secondary memory and loaded into main memory as needed. Important data, such as word processing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state drives, which store data in solid-state memory, are increasingly becoming popular. A solid-state drive has no moving parts and operates faster than a traditional disk drive. Most computers have some sort of secondary storage device, either a traditional disk drive or a solid-state drive, mounted inside their case. External storage devices, which connect to one of the computer’s communication ports, are also available. External storage devices can be used to create backup copies of important data or to move data to another computer.

In addition to external storage devices, many types of devices have been created for copying data and for moving it to other computers. For example, USB drives are small devices that plug into the computer’s USB (universal serial bus) port and appear to the system as a disk drive. These drives do not actually contain a disk, however. They store data in a special type of memory known as flash memory. USB drives, which are also known as memory sticks and flash drives, are inexpensive, reliable, and small enough to be carried in your pocket.

Input Devices

Input is any data the computer collects from people and from other devices. The component that collects the data and sends it to the computer is called an input device. Common input devices are the keyboard, mouse, touchscreen, scanner, microphone, and digital camera. Disk drives and optical drives can also be considered input devices, because programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be a sales report, a list of names, or a graphic image. The data is sent to an output device, which formats and presents it. Common output devices are video displays and printers. Disk drives can also be considered output devices because the system sends data to them in order to be saved.

 Software

If a computer is to function, software is not optional. Everything computer does, from the time you turn the power switch on until you shut the system down, is under the control of software. There are two general categories of software: system software and application software. Most computer programs clearly fit into one of these two categories. Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally referred to as system software. System software typically includes the following types of programs:

	
Operating Systems An operating system is the most fundamental set of programs on a computer. The operating system controls the internal operations of the computer’s hardware, manages all of the devices connected to the computer, allows data to be saved to and retrieved from storage devices, and allows other programs to run on the computer. Popular operating systems for laptop and desktop computers include Windows, macOS, and Linux. Popular operating systems for mobile devices include Android and iOS.

	
Utility Programs A utility program performs a specialized task that enhances the computer’s operation or safeguards data. Examples of utility programs are virus scanners, file compression programs, and data backup programs.

	
Software Development Tools Software development tools are the programs that programmers use to create, modify, and test software. Assemblers, compilers, and interpreters are examples of programs that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application software. These are the programs that people normally spend most of their time running on their computers. Figure 1-1, at the beginning of this chapter, shows screens from two commonly used applications: Microsoft Word, a word processing program, and PowerPoint, a presentation program. Some other examples of application software are spreadsheet programs, email programs, web browsers, and game programs.

 1.2: (Noninteractive) Checkpoint Questions from the Book

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its data while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other devices?

1.9 What fundamental set of programs control the internal operations of the computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers, and game programs belong to what category of software?

 1.3: How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is only enough memory to store a letter of the alphabet or a small number. In order to do anything meaningful, a computer has to have lots of bytes. Most computers today have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands for binary digit. Computer scientists usually think of bits as tiny switches that can be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In most computer systems, bits are tiny electrical components that can hold either a positive or a negative charge. Computer scientists think of a positive charge as a switch in the on position, and a negative charge as a switch in the off position. Figure 1-6 shows the way that a computer scientist might think of a byte of memory: as a collection of switches that are each flipped to either the on or off position.

Figure 1-6 Think of a byte as eight switches

[image: The figure illustrates eight switches that represent a byte.]

 The eight switches are in one row. The second, fifth, sixth, and eighth switches are in on position. The first, third, fourth, and seventh switches are in off position.

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern that represents the data. For example, the pattern on the left in Figure 1-7 shows how the number 77 would be stored in a byte, and the pattern on the right shows how the letter A would be stored in a byte. We explain below how these patterns are determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

[image: The figure shows two parts that illustrates sets of eight switches that represent a number 77 and letter “A” stored in a byte.]

 There are two sets of eight switches. The first set of eight switches represent the number 77. The second, fifth, sixth, and eighth switches of the first set are in on position. The first, third, fourth, and seventh switches of the first set are in off position. The second set of eight switches represent the letter “A”. The second and eighth switches of the second set are in on position. The remaining switches of the second set are in off position.

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the bit is turned on or off, it can represent one of two different values. In computer systems, a bit that is turned off represents the number 0, and a bit that is turned on represents the number 1. This corresponds perfectly to the binary numbering system. In the binary numbering system (or binary, as it is usually called), all numeric values are written as sequences of 0s and 1s. Here is an example of a number that is written in binary:

 10011101

The position of each digit in a binary number has a value assigned to it. Starting with the rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values calculated. Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

[image: The figure illustrates the value of each digit in a binary number as powers of 2.]

 The value of the eight digits of the binary number 10011101 as powers of 2 are described below. An arrow from 2 raised to the seventh power points to the first digit of the number. An arrow from 2 raised to the sixth power points to the second digit of the number. An arrow from 2 raised to the fifth power points to the third digit of the number. An arrow from 2 raised to the fourth power points to the fourth digit of the number. An arrow from 2 raised to the third power points to the fifth digit of the number. An arrow from 2 raised to the second power points to the sixth digit of the number. An arrow from 2 raised to the first power points to the seventh digit of the number. An arrow from 2 raised to the zero power points to the last digit of the number.

Figure 1-9 The values of binary digits

[image: The figure illustrates the value of each digit in a binary number.]

 The value of the eight digits of the binary number 10011101 are described below. An arrow from 128 points to the first digit of the number. An arrow from 64 points to the second digit of the number. An arrow from 32 points to the third digit of the number. An arrow from 16 points to the fourth digit of the number. An arrow from 8 points to the fifth digit of the number. An arrow from 4 points to the sixth digit of the number. An arrow from 2 points to the seventh digit of the number. An arrow from 1 points to the last digit of the number.

To determine the value of a binary number, you simply add up the position values of all the 1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157. So, the value of the binary number 10011101 is 157.

Figure 1-10 Determining the value of 10011101

[image: The figure illustrates the value of a binary number.]

 The value of the eight digits of the binary number 10011101 is described below. An arrow from 128 points to the first digit of the number. An arrow from 16 points to the fourth digit of the number. An arrow from 8 points to the fifth digit of the number. An arrow from 4 points to the sixth digit of the number. An arrow from 1 points to the last digit of the number. 1 plus 4 plus 8 plus 16 plus 128 equals 157.

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in the off position.

Figure 1-11 The bit pattern for 157

[image: The figure illustrates a set of switches for a bit pattern of 157.]

 There are eight switches. The first switch in 1 position has a position value of 128. The second switch in 0 position has a position value of 64. The third switch in 0 position has a position value of 32. The fourth switch in 1 position has a position value of 16. The fifth switch in 1 position has a position value of 8. The sixth switch in 1 position has a position value of 4. The seventh switch in 0 position has a position value of 2. The eighth switch in 1 position has a position value of 1. 128 plus 16 plus 8 plus 4 plus 1 equals 157.

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that can be stored in it. The largest value that can be stored in a byte is 1+2+4+8+16+32+64+128=255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than one byte. For example, suppose we put two bytes together. That gives us 16 bits. The position values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown in Figure 1-12, the maximum value that can be stored in two bytes is 65,535. If you need to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

[image: The figure illustrates two sets of switches for the bit pattern of 65535.]

 Each set contains eight switches. All sixteen switches are in 1 position. The position value of the switches from the first to last are, 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, and 1 respectively.

 Note: 32768 plus 16384 plus 8192 plus 4096 plus 2048 plus 1024 plus 512 plus 256 plus 128 plus 64 plus 32 plus 16 plus 8 plus 4 plus 2 plus 1 equals 65535.

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to actually convert numbers to binary while programming. Knowing that this process is taking place inside the computer will help you as you learn, and in the long term this knowledge will make you a better programmer.

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary number. That includes characters, such as letters and punctuation marks. When a character is stored in memory, it is first converted to a numeric code. The numeric code is then stored in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in computer memory. Historically, the most important of these coding schemes is ASCII, which stands for the American Standard Code for Information Interchange. ASCII is a set of 128 numeric codes that represent the English letters, various punctuation marks, and other characters. For example, the ASCII code for the uppercase letter A is 65. When you type an uppercase A on your computer keyboard, the number 65 is stored in memory (as a binary number, of course). This is shown in Figure 1-13.

Figure 1-13 The letter A is stored in memory as the number 65

[image: The figure illustrates a letter, number, and set of switches.]

 An arrow points from the letter "A" to the number 65. Another arrow points from 65 to the set of switches. There are eight switches. The first switch is in position 0, second in position 1, next five switches in position 0, and eighth switch in position 1.

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by almost all computer manufacturers. ASCII is limited, however, because it defines codes for only 128 characters. To remedy this, the Unicode character set was developed in the early 1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can also represent characters for many of the languages in the world. Today, Unicode is quickly becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier, you read about numbers and how they are stored in memory. While reading that section, perhaps it occurred to you that the binary numbering system can be used to represent only integer numbers, beginning with 0. Negative numbers and real numbers (such as 3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so they use encoding schemes along with the binary numbering system. Negative numbers are encoded using a technique known as two’s complement, and real numbers are encoded in floating-point notation. You don’t need to know how these encoding schemes work, only that they are used to convert negative numbers and real numbers to binary format.

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe anything that uses binary numbers. Digital data is data that is stored in binary format, and a digital device is any device that works with binary data. In this section, we have discussed how numbers and characters are stored in binary, but computers also work with many other types of digital data.

For example, consider the pictures that you take with your digital camera. These images are composed of tiny dots of color known as pixels. (The term pixel stands for picture element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code that represents the pixel’s color. The numeric code is stored in memory as a binary number.

Figure 1-14 A digital image is stored in binary format

[image: The figure illustrates an image and a digital camera.]

 An arrow from the image points to a binary number containing 0 and 1. Another arrow from the binary number points to the digital camera.

Jupiterimages/PHOTOS.com/Getty Images

The music that you stream from an online source, or play on an MP3 player is also digital. A digital song is broken into small pieces known as samples. Each sample is converted to a binary number, which can be stored in memory. The more samples that a song is divided into, the more it sounds like the original music when it is played back. For example, a CD quality song is divided into more than 44,000 samples per second!

 1.3: (Noninteractive) Checkpoint Questions from the Book

1.12 What amount of memory is enough to store a letter of the alphabet or a small number?

1.13 What do you call a tiny “switch” that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

 1.4: How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in machine language. Because people find it very difficult to write entire programs in machine language, other programming languages have been invented.

Earlier, we stated that the CPU is the most important component in a computer because it is the part of the computer that runs programs. Sometimes the CPU is called the “computer’s brain” and is described as being “smart.” Although these are common metaphors, you should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic device that is designed to do specific things. In particular, the CPU is designed to perform operations such as the following:

	Reading a piece of data from main memory

	Adding two numbers

	Subtracting one number from another number

	Multiplying two numbers

	Dividing one number by another number

	Moving a piece of data from one memory location to another

	Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose of a program. A program is nothing more than a list of instructions that cause the CPU to perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific operation. Here’s an example of an instruction that might appear in a program:

 10110000

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction to perform an operation.1 It is written in 0s and 1s because CPUs only understand instructions that are written in machine language, and machine language instructions always have an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of performing. For example, there is an instruction for adding numbers, there is an instruction for subtracting one number from another, and so forth. The entire set of instructions that a CPU can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs. Some of the more well-known microprocessor companies are Intel, AMD, and Motorola. If you look carefully at your computer, you might find a tag showing a logo for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically understood only by microprocessors of the same brand. For example, Intel microprocessors understand the same instructions, but they do not understand instructions for Motorola microprocessors.

The machine language instruction that was previously shown is an example of only one instruction. It takes a lot more than one instruction, however, for the computer to do anything meaningful. Because the operations that a CPU knows how to perform are so basic in nature, a meaningful task can be accomplished only if the CPU performs many operations. For example, if you want your computer to calculate the amount of interest that you will earn from your savings account this year, the CPU will have to perform a large number of instructions, carried out in the proper sequence. It is not unusual for a program to contain thousands or even millions of machine language instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you install a program on your computer, the program is typically downloaded from a website, or installed from an online app store.

Although a program can be stored on a secondary storage device such as a disk drive, it has to be copied into main memory, or RAM, each time the CPU executes it. For example, suppose you have a word processing program on your computer’s disk. To execute the program, you use the mouse to double-click the program’s icon. This causes the program to be copied from the disk into main memory. Then, the computer’s CPU executes the copy of the program that is in main memory. This process is illustrated in Figure 1-15.

Figure 1-15 A program is copied into main memory and then executed

[image: The figure illustrates a disk drive, R “A” M and C P U.]

 Disk drive consists of a rotating disk on a rectangular section. The program is copied from secondary storage to main memory. Main memory (R “A” M) consists of a number of chips on a rectangular section. C P U consists of a rectangular section with pins. The C P U executes the program in main memory. An arrow labeled with a binary number points from disk drive to main memory and another arrow points from main memory to C P U.

When a CPU executes the instructions in a program, it is engaged in a process that is known as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for each instruction in the program. The steps are:

	
Fetch. A program is a long sequence of machine language instructions. The first step of the cycle is to fetch, or read, the next instruction from memory into the CPU.

	
Decode. A machine language instruction is a binary number that represents a command that tells the CPU to perform an operation. In this step, the CPU decodes the instruction that was just fetched from memory, to determine which operation it should perform.

	
Execute. The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

Figure 1-16 The fetch-decode-execute cycle

[image: The figure illustrates the three steps of fetch-decode-execute cycle.]

 A rectangular section with chips represent Main memory (RAM) and a square section with pins represent CPU. Binary numbers, 10100001, 10111000, 10011110, 00011010, 11011100, and so forth are inside RAM. The binary number 10100001 is selected. An arrow points to 10100001 from RAM, and another arrow from 10100001 points to CPU. Step 1: Fetch the next instruction in the program. Step 2: Decode the instruction to determine which operation to perform. Step 3: Execute the instruction (perform the operation).

 From Machine Language to Assembly Language

Computers can only execute programs that are written in machine language. As previously mentioned, a program can have thousands or even millions of binary instructions, and writing such a program would be very tedious and time consuming. Programming in machine language would also be very difficult, because putting a 0 or a 1 in the wrong place will cause an error.

Although a computer’s CPU only understands machine language, it is impractical for people to write programs in machine language. For this reason, assembly language was created in the early days of computing2 as an alternative to machine language. Instead of using binary numbers for instructions, assembly language uses short words that are known as mnemonics. For example, in assembly language, the mnemonic add typically means to add numbers, mul typically means to multiply numbers, and mov typically means to move a value to a location in memory. When a programmer uses assembly language to write a program, he or she can write short mnemonics instead of binary numbers.

NOTE: There are many different versions of assembly language. It was mentioned earlier that each brand of CPU has its own machine language instruction set. Each brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU only understands machine language, so a special program known as an assembler is used to translate an assembly language program to a machine language program. This process is shown in Figure 1-17. The machine language program that is created by the assembler can then be executed by the CPU.

Figure 1-17 An assembler translates an assembly language program to a machine language program

[image: The figure illustrates the translation by Assembler.]

 The three sections from left to right are labeled Assembly language program, Assembler, and Machine language program. The assembly language program contains mov e "a" x, Z, add e "a" x, 2, mov Y, e "a" x, and so forth. The machine language program contains 10100001, 10111000, 10011110, and so forth. An arrow from Assembly language program points to Assembler. Another arrow from Assembler points to Machine language program.

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language instructions, it is not without difficulties. Assembly language is primarily a direct substitute for machine language, and like machine language, it requires that you know a lot about the CPU. Assembly language also requires that you write a large number of instructions for even the simplest program. Because assembly language is so close in nature to machine language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages began to appear. A high-level language allows you to create powerful and complex programs without knowing how the CPU works and without writing large numbers of low-level instructions. In addition, most high-level languages use words that are easy to understand. For example, if a programmer were using COBOL (which was one of the early high-level languages created in the 1950s), he or she would write the following instruction to display the message Hello world on the computer screen:

 DISPLAY "Hello world"

Python is a modern, high-level programming language that we will use in this book. In Python you would display the message Hello world with the following instruction:

 print('Hello world')

Doing the same thing in assembly language would require several instructions and an intimate knowledge of how the CPU interacts with the computer’s output device. As you can see from this example, high-level languages allow programmers to concentrate on the tasks they want to perform with their programs, rather than the details of how the CPU will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several of the more well-known languages.

Table 1-1 Programming languages

	Language
	Description

	Ada
	Ada was created in the 1970s, primarily for applications used by the U.S. Department of Defense. The language is named in honor of Ada Lovelace, a 19th century mathematician who published an algorithm that is considered by many to be the first computer program.

	BASIC
	
Beginners All-purpose Symbolic Instruction Code is a general-purpose language that was originally designed in the early 1960s to be simple enough for beginners to learn. Today, there are many different versions of BASIC.

	FORTRAN
	
FORmula TRANslator was the first high-level programming language. It was designed in the 1950s for performing complex mathematical calculations.

	COBOL
	
Common Business-Oriented Language was created in the 1950s and was designed for business applications.

	Pascal
	Pascal was created in 1970 and was originally designed for teaching programming. The language was named in honor of the mathematician, physicist, and philosopher Blaise Pascal.

	C and C++
	C and C++ (pronounced “c plus plus”) are powerful, general-purpose languages developed at Bell Laboratories. The C language was created in 1972, and the C++ language was created in 1983.

	C#
	Pronounced “c sharp.” This language was created by Microsoft around the year 2000 for developing applications based on the Microsoft .NET platform.

	Java
	Java was created by Sun Microsystems in the early 1990s. It can be used to develop programs that run on a single computer or over the Internet from a web server.

	JavaScript
	JavaScript, created in the 1990s, can be used in Web pages. Despite its name, JavaScript is not related to Java.

	Python
	Python, the language we use in this book, is a general-purpose language created in the early 1990s. It has become popular in business and academic applications.

	Ruby
	Ruby is a general-purpose language that was created in the 1990s. It is increasingly becoming a popular language for programs that run on Web servers.

	Rust
	The Rust programming language is designed for high performance, memory safety, and concurrent execution. It was announced in 2010 by Mozilla Research.

	Visual Basic
	Visual Basic (commonly known as VB) is a Microsoft programming language and software development environment that allows programmers to create Windows-based applications quickly. VB was originally created in the early 1990s.

 Keywords, Operators, and Syntax: An Overview

Each high-level language has its own set of predefined words that the programmer must use to write a program. The words that make up a high-level programming language are known as keywords or reserved words. Each keyword has a specific meaning, and cannot be used for any other purpose. Table 1-2 shows all of the Python keywords.

Table 1-2 The Python keywords

	and
	continue
	finally
	is
	raise﻿

	as
	def
	for
	lambda
	return

	assert
	del
	from
	None
	True

	async
	elif
	global
	nonlocal
	try

	await
	else
	if
	not
	while

	break﻿
	except
	import
	or
	with

	class﻿
	False
	in
	pass
	yield

In addition to keywords, programming languages have operators that perform various operations on data. For example, all programming languages have math operators that perform arithmetic. In Python, as well as most other languages, the + sign is an operator that adds two numbers. The following adds 12 and 75:

 12 + 75

There are numerous other operators in the Python language, many of which you will learn about as you progress through this text.

In addition to keywords and operators, each language also has its own syntax, which is a set of rules that must be strictly followed when writing a program. The syntax rules dictate how keywords, operators, and various punctuation characters must be used in a program. When you are learning a programming language, you must learn the syntax rules for that particular language.

The individual instructions that you use to write a program in a high-level programming language are called statements. A programming statement can consist of keywords, operators, punctuation, and other allowable programming elements, arranged in the proper sequence to perform an operation.

Compilers and Interpreters

Because the CPU understands only machine language instructions, programs that are written in a high-level language must be translated into machine language. Depending on the language in which a program has been written, the programmer will use either a compiler or an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate machine language program. The machine language program can then be executed any time it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and executing are two different processes.

Figure 1-18 Compiling a high-level program and executing it

[image: The figure consists of two parts that illustrate the compile and execution of a high level program.]

 Figure (1): Three sections are labeled High-level language program, Compiler, and Machine language program. The high-level language program contains print ("Hello Earthling") and so forth. The machine language program contains 10100001 10111000 10011110 and so forth. A right arrow points from the high-level language program to compiler and another right arrow points from the compiler to machine language program. Note: The compiler is used

to translate the high-level language program to a machine language program.

Figure (2): Two sections are labeled Machine language program and C P U. The machine language program contains 10100001 10111000 10011110 and so forth. A right arrow points from the machine language program to C P U. Note: The machine language program can be executed at any time, without using the compiler.

The Python language uses an interpreter, which is a program that both translates and executes the instructions in a high-level language program. As the interpreter reads each individual instruction in the program, it converts it to machine language instructions then immediately executes them. This process repeats for every instruction in the program. This process is illustrated in Figure 1-19. Because interpreters combine translation and execution, they typically do not create separate machine language programs.

Figure 1-19 Executing a high-level program with an interpreter

[image: The figure illustrates the execution of a high level program with an interpreter.]

 Figure (1): Three sections are labeled High-level language program, Interpreter, and C P U. The high-level language program contains print ("Hello Earthling") and so forth. The output from the high-level language program is input to Interpreter. The output from the interpreter is labeled machine language instruction 10100001. The output from interpreter is input to C P U and High level language program. Note: The interpreter translates each high-level instruction to its equivalent machine language instructions then

immediately executes them. This process is repeated for each high-level instruction

The statements that a programmer writes in a high-level language are called source code, or simply code. Typically, the programmer types a program’s code into a text editor then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler to translate the code into a machine language program, or an interpreter to translate and execute the code. If the code contains a syntax error, however, it cannot be translated. A syntax error is a mistake such as a misspelled keyword, a missing punctuation character, or the incorrect use of an operator. When this happens, the compiler or interpreter displays an error message indicating that the program contains a syntax error. The programmer corrects the error then attempts once again to translate the program.

NOTE: Human languages also have syntax rules. Do you remember when you took your first English class, and you learned all those rules about commas, apostrophes, capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when speaking and writing, other people usually understand what they mean. Unfortunately, compilers and interpreters do not have this ability. If even a single syntax error appears in a program, the program cannot be compiled or executed. When an interpreter encounters a syntax error, it stops executing the program.

 1.4: (Noninteractive) Checkpoint Questions from the Book

1.18 A CPU understands instructions that are written only in what language?

1.19 A program has to be copied into what type of memory each time the CPU executes it?

1.20 When a CPU executes the instructions in a program, it is engaged in what process?

1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex programs without knowing how the CPU works?

1.23 Each language has a set of rules that must be strictly followed when writing a program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in a high-level language program?

1.26 What type of mistake is usually caused by a misspelled keyword, a missing punctuation character, or the incorrect use of an operator?

 1.5: Using Python

CONCEPT: The Python interpreter can run Python programs that are saved in files or interactively execute Python statements that are typed at the keyboard. Python comes with a program named IDLE that simplifies the process of writing, executing, and testing programs.

Installing Python

Before you can try any of the programs shown in this book, or write any programs of your own, you need to make sure that Python is installed on your computer and properly configured. If you are working in a computer lab, this has probably been done already. If you are using your own computer, you can follow the instructions in Appendix A to download and install Python.

The Python Interpreter

You learned earlier that Python is an interpreted language. When you install the Python language on your computer, one of the items that is installed is the Python interpreter. The Python interpreter is a program that can read Python programming statements and execute them. (Sometimes, we will refer to the Python interpreter simply as the interpreter.)

You can use the interpreter in two modes: interactive mode and script mode. In interactive mode, the interpreter waits for you to type Python statements on the keyboard. Once you type a statement, the interpreter executes it and then waits for you to type another statement. In script mode, the interpreter reads the contents of a file that contains Python statements. Such a file is known as a Python program or a Python script. The interpreter executes each statement in the Python program as it reads it.

Interactive Mode

Once Python has been installed and set up on your system, you start the interpreter in interactive mode by going to the operating system’s command line and typing the following command:

 python

If you are using Windows, you can alternatively type python in the Windows search box. In the search results, you will see a program named something like Python 3.5. (The “3.5” is the version of Python that is installed. At the time this is being written, Python 3.5 is the latest version.) Clicking this item will start the Python interpreter in interactive mode.

NOTE: When the Python interpreter is running in interactive mode, it is commonly called the Python shell.

When the Python interpreter starts in interactive mode, you will see something like the following displayed in a console window:

 Python 3.9.5 (tags/v3.9.5:0a7dcbd, May 3 2021, 17:27:52)
[MSC v.1928 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>

The >>> that you see is a prompt that indicates the interpreter is waiting for you to type a Python statement. Let’s try it out. One of the simplest things that you can do in Python is print a message on the screen. For example, the following statement prints the message Python programming is fun! on the screen:

 print('Python programming is fun!')

You can think of this as a command that you are sending to the Python interpreter. If you type the statement exactly as it is shown, the message Python programming is fun! is printed on the screen. Here is an example of how you type this statement at the interpreter’s prompt:

 >>> print('Python programming is fun!') [Enter]

After typing the statement, you press the Enter key, and the Python interpreter executes the statement, as shown here:

 >>> print('Python programming is fun!') [Enter]
Python programming is fun!
>>>

After the message is displayed, the >>> prompt appears again, indicating the interpreter is waiting for you to enter another statement. Let’s look at another example. In the following sample session, we have entered two statements:

 >>> print('To be or not to be') [Enter]
To be or not to be
>>> print('That is the question.') [Enter]
That is the question.
>>>

If you incorrectly type a statement in interactive mode, the interpreter will display an error message. This will make interactive mode useful to you while you learn Python. As you learn new parts of the Python language, you can try them out in interactive mode and get immediate feedback from the interpreter.

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z (pressing both keys together) followed by Enter. On a Mac, or Linux computer, press Ctrl-D.

NOTE: In Chapter 2, we will discuss the details of statements like the ones previously shown. If you want to try them now in interactive mode, make sure you type them exactly as shown.

 Writing Python Programs and Running Them in Script Mode

Although interactive mode is useful for testing code, the statements that you enter in interactive mode are not saved as a program. They are simply executed and their results displayed on the screen. If you want to save a set of Python statements as a program, you save those statements in a file. Then, to execute the program, you use the Python interpreter in script mode.

For example, suppose you want to write a Python program that displays the following three lines of text:

 Nudge nudge
Wink wink
Know what I mean?

To write the program you would use a simple text editor like Notepad (which is installed on all Windows computers) to create a file containing the following statements:

 print('Nudge nudge')
print('Wink wink')
print('Know what I mean?')

NOTE: It is possible to use a word processor to create a Python program, but you must be sure to save the program as a plain text file. Otherwise, the Python interpreter will not be able to read its contents.

When you save a Python program, you give it a name that ends with the .py extension, which identifies it as a Python program. For example, you might save the program previously shown with the name test.py. To run the program, you would go to the directory in which the file is saved and type the following command at the operating system command line:

python test.py

This starts the Python interpreter in script mode and causes it to execute the statements in the file test.py. When the program finishes executing, the Python interpreter exits.

 The IDLE Programming Environment

 The previous sections described how the Python interpreter can be started in interactive mode or script mode at the operating system command line. As an alternative, you can use an integrated development environment, which is a single program that gives you all of the tools you need to write, execute, and test a program.

Recent versions of Python include a program named IDLE, which is automatically installed when the Python language is installed. (IDLE stands for Integrated DeveLopment Environment.) When you run IDLE, the window shown in Figure 1-20 appears. Notice the >>> prompt appears in the IDLE window, indicating that the interpreter is running in interactive mode. You can type Python statements at this prompt and see them executed in the IDLE window.

Figure 1-20 IDLE

[image: The figure illustrates the dialog box for the IDLE Shell 3.9 5.]

 The wndoe displays the following texts:
Line 1: Python 3.9.5 (tags slash v 3.9.5: 0 a 7 d c b d, May 3 2021, 17: 27: 52) [MSC v. 1928 64 bit (A M D 64)] on win 32

Line 2: Type "help", "copyright", "credits" or "license ()" for more information. CloseAngleBracket
CloseAngleBracket CloseAngleBracket.

Copyright ©2001-2022. Python Software Foundation

IDLE also has a built-in text editor with features specifically designed to help you write Python programs. For example, the IDLE editor “colorizes” code so keywords and other parts of a program are displayed in their own distinct colors. This helps make programs easier to read. In IDLE, you can write programs, save them to disk, and execute them. Appendix B provides a quick introduction to IDLE and leads you through the process of creating, saving, and executing a Python program.

NOTE: Although IDLE is installed with Python, there are several other Python IDEs available. Your instructor might prefer that you use a specific one in class.

 1: Review Questions

Multiple Choice

	A(n) __________ is a set of instructions that a computer follows to perform a task.
	compiler

	program

	interpreter

	programming language

	The physical devices that a computer is made of are referred to as __________.
	hardware

	software

	the operating system

	tools

	The part of a computer that runs programs is called __________.
	RAM

	secondary storage

	main memory

	the CPU

	Today, CPUs are small chips known as __________.
	ENIACs

	microprocessors

	memory chips

	operating systems

	The computer stores a program while the program is running, as well as the data that the program is working with, in __________.
	secondary storage

	the CPU

	main memory

	the microprocessor

	This is a volatile type of memory that is used only for temporary storage while a program is running.
	RAM

	secondary storage

	the disk drive

	the USB drive

	A type of memory that can hold data for long periods of time, even when there is no power to the computer, is called __________.
	RAM

	main memory

	secondary storage

	CPU storage

	A component that collects data from people or other devices and sends it to the computer is called __________.
	an output device

	an input device

	a secondary storage device

	main memory

	A video display is a(n) __________ device.
	output

	input

	secondary storage

	main memory

	A __________ is enough memory to store a letter of the alphabet or a small number.
	byte

	bit

	switch

	transistor

	A byte is made up of eight __________.
	CPUs

	instructions

	variables

	bits

	In the __________ numbering system, all numeric values are written as sequences of 0s and 1s.
	hexadecimal

	binary

	octal

	decimal

	A bit that is turned off represents the following value: __________.
	1

	−1

	0

	“no”

	A set of 128 numeric codes that represent the English letters, various punctuation marks, and other characters is __________.
	binary numbering

	ASCII

	Unicode

	ENIAC

	An extensive encoding scheme that can represent characters for many languages in the world is __________.
	binary numbering

	ASCII

	Unicode

	ENIAC

	Negative numbers are encoded using the __________ technique.
	two’s complement

	floating point

	ASCII

	Unicode

	Real numbers are encoded using the __________ technique.
	two’s complement

	floating point

	ASCII

	Unicode

	The tiny dots of color that digital images are composed of are called __________.
	bits

	bytes

	color packets

	pixels

	If you were to look at a machine language program, you would see __________.
	Python code

	a stream of binary numbers

	English words

	circuits

	In the __________ part of the fetch-decode-execute cycle, the CPU determines which operation it should perform.
	fetch

	decode

	execute

	deconstruct

	Computers can only execute programs that are written in __________.
	Java

	assembly language

	machine language

	Python

	The __________ translates an assembly language program to a machine language program.
	assembler

	compiler

	translator

	interpreter

	The words that make up a high-level programming language are called __________.
	binary instructions

	mnemonics

	commands

	keywords

	The rules that must be followed when writing a program are called __________.
	syntax

	punctuation

	keywords

	operators

	A(n) __________ program translates a high-level language program into a separate machine language program.
	assembler

	compiler

	translator

	utility

True or False

	Today, CPUs are huge devices made of electrical and mechanical components such as vacuum tubes and switches.

	Main memory is also known as RAM.

	Any piece of data that is stored in a computer’s memory must be stored as a binary number.

	Images, like the ones created with your digital camera, cannot be stored as binary numbers.

	Machine language is the only language that a CPU understands.

	Assembly language is considered a high-level language.

	An interpreter is a program that both translates and executes the instructions in a high-level language program.

	A syntax error does not prevent a program from being compiled and executed.

	Windows, Linux, Android, iOS, and macOS are all examples of application software.

	Word processing programs, spreadsheet programs, email programs, web browsers, and games are all examples of utility programs.

Short Answer

	How does the main memory and the secondary storage of a computer differ from each other?

	What number does a bit that is turned on represent? What number does a bit that is turned off represent?

	How many different characters can be represented in ASCII? Name the character set that addresses this limitation.

	What is an individual instruction in a program written in a high-level programming language called?

	What are the short words that are used in assembly language called?

	What is the difference between a compiler and an interpreter?

	What type of software controls the internal operations of the computer’s hardware?

 1: Programming Exercises

 	
To make sure that you can interact with the Python interpreter, try the following steps on your computer:

	Start the Python interpreter in interactive mode.

	At the >>> prompt, type the following statement then press Enter:

 print('This is a test of the Python interpreter.')

 	After pressing the Enter key, the interpreter will execute the statement. If you typed everything correctly, your session should look like this:

 >>> print('This is a test of the Python interpreter.')
This is a test of the Python interpreter.
>>>

	If you see an error message, enter the statement again, and make sure you type it exactly as shown.

	Exit the Python interpreter. (In Windows, press Ctrl-Z followed by Enter. On other systems, press Ctrl-D.)

 	To make sure that you can interact with IDLE, try the following steps on your computer:

	Start IDLE. To do this in Windows, type IDLE in the Windows search box. Click the IDLE desktop app, which will be displayed in the search results.

	When IDLE starts, it should appear similar to the window previously shown in Figure 1-20. At the >>> prompt, type the following statement then press Enter:

 print('This is a test of IDLE.')

 	After pressing the Enter key, the Python interpreter will execute the statement. If you typed everything correctly, your session should look like this:

 >>> print('This is a test of IDLE.')
This is a test of IDLE.
>>>

	If you see an error message, enter the statement again and make sure you type it exactly as shown.

	Exit IDLE by clicking File, then Exit (or pressing Ctrl-Q on the keyboard).

 	Use what you have learned about the binary numbering system in this chapter to convert the following decimal numbers to binary:

 14
 87
128
254

 	Use what you have learned about the binary numbering system in this chapter to convert the following binary numbers to decimal:

 101
 1111
110010

	Look at the ASCII chart in Appendix C and determine the code of the first printable character (a space), the “A” character, and the “a” character.

	
Use the Internet to research the history of the Python programming language, and answer the following questions:

	Who is the creator of Python, and what does his title of “BDFL” mean?

	What is “The Zen of Python”?

	In which year was the first version of Python 3 released, and in which year was the final version of Python 2 released?

Chapter 2 Input, Processing, and Output

Topics

2.1 Designing a Program

2.2 Input, Processing, and Output

2.3 Displaying Output with the print Function

2.4 Comments

2.5 Variables

2.6 Reading Input from the Keyboard

2.7 Performing Calculations

2.8 String Concatenation

2.9 More About the print Function

2.10 Displaying Formatted Output with F-strings

2.11 Named Constants

2.12 Introduction to Turtle Graphics

 2.1: Designing a Program

CONCEPT: Programs must be carefully designed before they are written. During the design process, programmers use tools such as pseudocode and flowcharts to create models of programs.

The Program Development Cycle

In Chapter 1, you learned that programmers typically use high-level languages such as Python to create programs. There is much more to creating a program than writing code, however. The process of creating a program that works correctly typically requires the five phases shown in Figure 2-1. The entire process is known as the program development cycle.

Figure 2-1 The program development cycle

[image: The figure illustrates a program development cycle.]

 Five rectangular sections in a row represent the five stages of the program development cycle. The first stage is labeled Design the program, second stage Write the code, third stage Correct syntax errors, fourth stage Test the program, and fifth stage Correct logic errors. An arrow points from each preceding stage to the following stage. An arrow from the fifth stage points to the first stage.

Let’s take a closer look at each stage in the cycle.

	
Design the Program. All professional programmers will tell you that a program should be carefully designed before the code is actually written. When programmers begin a new project, they should never jump right in and start writing code as the first step. They start by creating a design of the program. There are several ways to design a program, and later in this section, we will discuss some techniques that you can use to design your Python programs.

	
Write the Code. After designing the program, the programmer begins writing code in a high-level language such as Python. Recall from Chapter 1 that each language has its own rules, known as syntax, that must be followed when writing a program. A language’s syntax rules dictate things such as how keywords, operators, and punctuation characters can be used. A syntax error occurs if the programmer violates any of these rules.

	
Correct Syntax Errors. If the program contains a syntax error, or even a simple mistake such as a misspelled keyword, the compiler or interpreter will display an error message indicating what the error is. Virtually all code contains syntax errors when it is first written, so the programmer will typically spend some time correcting these. Once all of the syntax errors and simple typing mistakes have been corrected, the program can be compiled and translated into a machine language program (or executed by an interpreter, depending on the language being used).

	
Test the Program. Once the code is in an executable form, it is then tested to determine whether any logic errors exist. A logic error is a mistake that does not prevent the program from running, but causes it to produce incorrect results. (Mathematical mistakes are common causes of logic errors.)

OEBPS/images/2f31b34f-fec6-4f88-8e76-703ab3e5bb98_ASSET_Fig01-017.png
Assembly language Machine language
program program

mov eax, Z
add eax, 2
mov Y, eax

10100001

10111000

Assembler [

~ and so forth...

and so forth... 10011110

OEBPS/images/b784549a-ae35-439b-ab6e-8655eca6af89_ASSET_Fm-001.png
Chapters 1-5
(Cover in Order)

i

Chapter 6 Chapter 8
Files and Exceptions More About Strings

Chapter 12
Recursion

#i

Chapter 7
Lists and Tuples.

A

Chapter 9
Dictionaries and Sets

Chapter 14
Database Programming

)

Chapter 10

A a

Classes and Object- Chapter 14 includes
Oriented Programming one example that uses

GUI interface.

Chapter 11 Chapter 13
Inheritance GUIProgamming |

OEBPS/images/bec3c5aa-f9d7-48f3-9bdd-30c3e6a029ff_ASSET_Fig01-006.png
ow
-e
ow
ow
-e
()
ow
(S

OEBPS/images/69570fc4-6795-4da4-9165-11d1549d0591_ASSET_Fig01-018.png
The compiler is used
@ to translate the high-level
language program to a
machine language program.

The machine language
@ program can be executed
at any time, without using
the compiler.

High-level language

program

print ("Hello
Earthling")

and so forth...

Machine language

program
10100001
10111000

10011110
and so forth...

—

LLLy

Compiler

CPU

LU

Machine language
program

10100001

10111000

10011110
and so forth...

OEBPS/js/highlight.pack.js
/*
 Highlight.js 10.1.2 (edd73d24)
 License: BSD-3-Clause
 Copyright (c) 2006-2020, Ivan Sagalaev
*/
var hljs=function(){"use strict";function e(n){Object.freeze(n);var t="function"==typeof n;return Object.getOwnPropertyNames(n).forEach((function(r){!Object.hasOwnProperty.call(n,r)||null===n[r]||"object"!=typeof n[r]&&"function"!=typeof n[r]||t&&("caller"===r||"callee"===r||"arguments"===r)||Object.isFrozen(n[r])||e(n[r])})),n}class n{constructor(e){void 0===e.data&&(e.data={}),this.data=e.data}ignoreMatch(){this.ignore=!0}}function t(e){return e.replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""").replace(/'/g,"'")}function r(e,...n){var t={};for(const n in e)t[n]=e[n];return n.forEach((function(e){for(const n in e)t[n]=e[n]})),t}function a(e){return e.nodeName.toLowerCase()}var i=Object.freeze({__proto__:null,escapeHTML:t,inherit:r,nodeStream:function(e){var n=[];return function e(t,r){for(var i=t.firstChild;i;i=i.nextSibling)3===i.nodeType?r+=i.nodeValue.length:1===i.nodeType&&(n.push({event:"start",offset:r,node:i}),r=e(i,r),a(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:r,node:i}));return r}(e,0),n},mergeStreams:function(e,n,r){var i=0,s="",o=[];function l(){return e.length&&n.length?e[0].offset!==n[0].offset?e[0].offset<n[0].offset?e:n:"start"===n[0].event?e:n:e.length?e:n}function c(e){s+="<"+a(e)+[].map.call(e.attributes,(function(e){return" "+e.nodeName+'="'+t(e.value)+'"'})).join("")+">"}function u(e){s+="</"+a(e)+">"}function d(e){("start"===e.event?c:u)(e.node)}for(;e.length||n.length;){var g=l();if(s+=t(r.substring(i,g[0].offset)),i=g[0].offset,g===e){o.reverse().forEach(u);do{d(g.splice(0,1)[0]),g=l()}while(g===e&&g.length&&g[0].offset===i);o.reverse().forEach(c)}else"start"===g[0].event?o.push(g[0].node):o.pop(),d(g.splice(0,1)[0])}return s+t(r.substr(i))}});const s="",o=e=>!!e.kind;class l{constructor(e,n){this.buffer="",this.classPrefix=n.classPrefix,e.walk(this)}addText(e){this.buffer+=t(e)}openNode(e){if(!o(e))return;let n=e.kind;e.sublanguage||(n=`${this.classPrefix}${n}`),this.span(n)}closeNode(e){o(e)&&(this.buffer+=s)}value(){return this.buffer}span(e){this.buffer+=``}}class c{constructor(){this.rootNode={children:[]},this.stack=[this.rootNode]}get top(){return this.stack[this.stack.length-1]}get root(){return this.rootNode}add(e){this.top.children.push(e)}openNode(e){const n={kind:e,children:[]};this.add(n),this.stack.push(n)}closeNode(){if(this.stack.length>1)return this.stack.pop()}closeAllNodes(){for(;this.closeNode(););}toJSON(){return JSON.stringify(this.rootNode,null,4)}walk(e){return this.constructor._walk(e,this.rootNode)}static _walk(e,n){return"string"==typeof n?e.addText(n):n.children&&(e.openNode(n),n.children.forEach(n=>this._walk(e,n)),e.closeNode(n)),e}static _collapse(e){"string"!=typeof e&&e.children&&(e.children.every(e=>"string"==typeof e)?e.children=[e.children.join("")]:e.children.forEach(e=>{c._collapse(e)}))}}class u extends c{constructor(e){super(),this.options=e}addKeyword(e,n){""!==e&&(this.openNode(n),this.addText(e),this.closeNode())}addText(e){""!==e&&this.add(e)}addSublanguage(e,n){const t=e.root;t.kind=n,t.sublanguage=!0,this.add(t)}toHTML(){return new l(this,this.options).value()}finalize(){return!0}}function d(e){return e?"string"==typeof e?e:e.source:null}const g="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",h={begin:"\\\\[\\s\\S]",relevance:0},f={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[h]},p={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[h]},b={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},m=function(e,n,t={}){var a=r({className:"comment",begin:e,end:n,contains:[]},t);return a.contains.push(b),a.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|OPTIMIZE|HACK|XXX):",relevance:0}),a},v=m("//","$"),x=m("/*","*/"),E=m("#","$");var _=Object.freeze({__proto__:null,IDENT_RE:"[a-zA-Z]\\w*",UNDERSCORE_IDENT_RE:"[a-zA-Z_]\\w*",NUMBER_RE:"\\b\\d+(\\.\\d+)?",C_NUMBER_RE:g,BINARY_NUMBER_RE:"\\b(0b[01]+)",RE_STARTERS_RE:"!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",SHEBANG:(e={})=>{const n=/^#![]*\//;return e.binary&&(e.begin=function(...e){return e.map(e=>d(e)).join("")}(n,/.*\b/,e.binary,/\b.*/)),r({className:"meta",begin:n,end:/$/,relevance:0,"on:begin":(e,n)=>{0!==e.index&&n.ignoreMatch()}},e)},BACKSLASH_ESCAPE:h,APOS_STRING_MODE:f,QUOTE_STRING_MODE:p,PHRASAL_WORDS_MODE:b,COMMENT:m,C_LINE_COMMENT_MODE:v,C_BLOCK_COMMENT_MODE:x,HASH_COMMENT_MODE:E,NUMBER_MODE:{className:"number",begin:"\\b\\d+(\\.\\d+)?",relevance:0},C_NUMBER_MODE:{className:"number",begin:g,relevance:0},BINARY_NUMBER_MODE:{className:"number",begin:"\\b(0b[01]+)",relevance:0},CSS_NUMBER_MODE:{className:"number",begin:"\\b\\d+(\\.\\d+)?(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},REGEXP_MODE:{begin:/(?=\/[^/\n]*\/)/,contains:[{className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[h,{begin:/\[/,end:/\]/,relevance:0,contains:[h]}]}]},TITLE_MODE:{className:"title",begin:"[a-zA-Z]\\w*",relevance:0},UNDERSCORE_TITLE_MODE:{className:"title",begin:"[a-zA-Z_]\\w*",relevance:0},METHOD_GUARD:{begin:"\\.\\s*[a-zA-Z_]\\w*",relevance:0},END_SAME_AS_BEGIN:function(e){return Object.assign(e,{"on:begin":(e,n)=>{n.data._beginMatch=e[1]},"on:end":(e,n)=>{n.data._beginMatch!==e[1]&&n.ignoreMatch()}})}}),N="of and for in not or if then".split(" ");function w(e,n){return n?+n:function(e){return N.includes(e.toLowerCase())}(e)?0:1}const R=t,y=r,{nodeStream:O,mergeStreams:k}=i,M=Symbol("nomatch");return function(t){var a=[],i=Object.create(null),s=Object.create(null),o=[],l=!0,c=/(^(<[^>]+>|\t|)+|\n)/gm,g="Could not find the language '{}', did you forget to load/include a language module?";const h={disableAutodetect:!0,name:"Plain text",contains:[]};var f={noHighlightRe:/^(no-?highlight)$/i,languageDetectRe:/\blang(?:uage)?-([\w-]+)\b/i,classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:null,__emitter:u};function p(e){return f.noHighlightRe.test(e)}function b(e,n,t,r){var a={code:n,language:e};S("before:highlight",a);var i=a.result?a.result:m(a.language,a.code,t,r);return i.code=a.code,S("after:highlight",i),i}function m(e,t,a,s){var o=t;function c(e,n){var t=E.case_insensitive?n[0].toLowerCase():n[0];return Object.prototype.hasOwnProperty.call(e.keywords,t)&&e.keywords[t]}function u(){null!=y.subLanguage?function(){if(""!==A){var e=null;if("string"==typeof y.subLanguage){if(!i[y.subLanguage])return void k.addText(A);e=m(y.subLanguage,A,!0,O[y.subLanguage]),O[y.subLanguage]=e.top}else e=v(A,y.subLanguage.length?y.subLanguage:null);y.relevance>0&&(I+=e.relevance),k.addSublanguage(e.emitter,e.language)}}():function(){if(!y.keywords)return void k.addText(A);let e=0;y.keywordPatternRe.lastIndex=0;let n=y.keywordPatternRe.exec(A),t="";for(;n;){t+=A.substring(e,n.index);const r=c(y,n);if(r){const[e,a]=r;k.addText(t),t="",I+=a,k.addKeyword(n[0],e)}else t+=n[0];e=y.keywordPatternRe.lastIndex,n=y.keywordPatternRe.exec(A)}t+=A.substr(e),k.addText(t)}(),A=""}function h(e){return e.className&&k.openNode(e.className),y=Object.create(e,{parent:{value:y}})}function p(e){return 0===y.matcher.regexIndex?(A+=e[0],1):(L=!0,0)}var b={};function x(t,r){var i=r&&r[0];if(A+=t,null==i)return u(),0;if("begin"===b.type&&"end"===r.type&&b.index===r.index&&""===i){if(A+=o.slice(r.index,r.index+1),!l){const n=Error("0 width match regex");throw n.languageName=e,n.badRule=b.rule,n}return 1}if(b=r,"begin"===r.type)return function(e){var t=e[0],r=e.rule;const a=new n(r),i=[r.__beforeBegin,r["on:begin"]];for(const n of i)if(n&&(n(e,a),a.ignore))return p(t);return r&&r.endSameAsBegin&&(r.endRe=RegExp(t.replace(/[-/\\^$*+?.()|[\]{}]/g,"\\$&"),"m")),r.skip?A+=t:(r.excludeBegin&&(A+=t),u(),r.returnBegin||r.excludeBegin||(A=t)),h(r),r.returnBegin?0:t.length}(r);if("illegal"===r.type&&!a){const e=Error('Illegal lexeme "'+i+'" for mode "'+(y.className||"<unnamed>")+'"');throw e.mode=y,e}if("end"===r.type){var s=function(e){var t=e[0],r=o.substr(e.index),a=function e(t,r,a){let i=function(e,n){var t=e&&e.exec(n);return t&&0===t.index}(t.endRe,a);if(i){if(t["on:end"]){const e=new n(t);t["on:end"](r,e),e.ignore&&(i=!1)}if(i){for(;t.endsParent&&t.parent;)t=t.parent;return t}}if(t.endsWithParent)return e(t.parent,r,a)}(y,e,r);if(!a)return M;var i=y;i.skip?A+=t:(i.returnEnd||i.excludeEnd||(A+=t),u(),i.excludeEnd&&(A=t));do{y.className&&k.closeNode(),y.skip||y.subLanguage||(I+=y.relevance),y=y.parent}while(y!==a.parent);return a.starts&&(a.endSameAsBegin&&(a.starts.endRe=a.endRe),h(a.starts)),i.returnEnd?0:t.length}(r);if(s!==M)return s}if("illegal"===r.type&&""===i)return 1;if(B>1e5&&B>3*r.index)throw Error("potential infinite loop, way more iterations than matches");return A+=i,i.length}var E=T(e);if(!E)throw console.error(g.replace("{}",e)),Error('Unknown language: "'+e+'"');var _=function(e){function n(n,t){return RegExp(d(n),"m"+(e.case_insensitive?"i":"")+(t?"g":""))}class t{constructor(){this.matchIndexes={},this.regexes=[],this.matchAt=1,this.position=0}addRule(e,n){n.position=this.position++,this.matchIndexes[this.matchAt]=n,this.regexes.push([n,e]),this.matchAt+=function(e){return RegExp(e.toString()+"|").exec("").length-1}(e)+1}compile(){0===this.regexes.length&&(this.exec=()=>null);const e=this.regexes.map(e=>e[1]);this.matcherRe=n(function(e,n="|"){for(var t=/\[(?:[^\\\]]|\\.)*\]|\(\??|\\([1-9][0-9]*)|\\./,r=0,a="",i=0;i<e.length;i++){var s=r+=1,o=d(e[i]);for(i>0&&(a+=n),a+="(";o.length>0;){var l=t.exec(o);if(null==l){a+=o;break}a+=o.substring(0,l.index),o=o.substring(l.index+l[0].length),"\\"===l[0][0]&&l[1]?a+="\\"+(+l[1]+s):(a+=l[0],"("===l[0]&&r++)}a+=")"}return a}(e),!0),this.lastIndex=0}exec(e){this.matcherRe.lastIndex=this.lastIndex;const n=this.matcherRe.exec(e);if(!n)return null;const t=n.findIndex((e,n)=>n>0&&void
0!==e),r=this.matchIndexes[t];return n.splice(0,t),Object.assign(n,r)}}class a{constructor(){this.rules=[],this.multiRegexes=[],this.count=0,this.lastIndex=0,this.regexIndex=0}getMatcher(e){if(this.multiRegexes[e])return this.multiRegexes[e];const n=new t;return this.rules.slice(e).forEach(([e,t])=>n.addRule(e,t)),n.compile(),this.multiRegexes[e]=n,n}considerAll(){this.regexIndex=0}addRule(e,n){this.rules.push([e,n]),"begin"===n.type&&this.count++}exec(e){const n=this.getMatcher(this.regexIndex);n.lastIndex=this.lastIndex;const t=n.exec(e);return t&&(this.regexIndex+=t.position+1,this.regexIndex===this.count&&(this.regexIndex=0)),t}}function i(e,n){const t=e.input[e.index-1],r=e.input[e.index+e[0].length];"."!==t&&"."!==r||n.ignoreMatch()}if(e.contains&&e.contains.includes("self"))throw Error("ERR: contains `self` is not supported at the top-level of a language. See documentation.");return function t(s,o){const l=s;if(s.compiled)return l;s.compiled=!0,s.__beforeBegin=null,s.keywords=s.keywords||s.beginKeywords;let c=null;if("object"==typeof s.keywords&&(c=s.keywords.$pattern,delete s.keywords.$pattern),s.keywords&&(s.keywords=function(e,n){var t={};return"string"==typeof e?r("keyword",e):Object.keys(e).forEach((function(n){r(n,e[n])})),t;function r(e,r){n&&(r=r.toLowerCase()),r.split(" ").forEach((function(n){var r=n.split("|");t[r[0]]=[e,w(r[0],r[1])]}))}}(s.keywords,e.case_insensitive)),s.lexemes&&c)throw Error("ERR: Prefer `keywords.$pattern` to `mode.lexemes`, BOTH are not allowed. (see mode reference) ");return l.keywordPatternRe=n(s.lexemes||c||/\w+/,!0),o&&(s.beginKeywords&&(s.begin="\\b("+s.beginKeywords.split(" ").join("|")+")(?=\\b|\\s)",s.__beforeBegin=i),s.begin||(s.begin=/\B|\b/),l.beginRe=n(s.begin),s.endSameAsBegin&&(s.end=s.begin),s.end||s.endsWithParent||(s.end=/\B|\b/),s.end&&(l.endRe=n(s.end)),l.terminator_end=d(s.end)||"",s.endsWithParent&&o.terminator_end&&(l.terminator_end+=(s.end?"|":"")+o.terminator_end)),s.illegal&&(l.illegalRe=n(s.illegal)),void 0===s.relevance&&(s.relevance=1),s.contains||(s.contains=[]),s.contains=[].concat(...s.contains.map((function(e){return function(e){return e.variants&&!e.cached_variants&&(e.cached_variants=e.variants.map((function(n){return r(e,{variants:null},n)}))),e.cached_variants?e.cached_variants:function e(n){return!!n&&(n.endsWithParent||e(n.starts))}(e)?r(e,{starts:e.starts?r(e.starts):null}):Object.isFrozen(e)?r(e):e}("self"===e?s:e)}))),s.contains.forEach((function(e){t(e,l)})),s.starts&&t(s.starts,o),l.matcher=function(e){const n=new a;return e.contains.forEach(e=>n.addRule(e.begin,{rule:e,type:"begin"})),e.terminator_end&&n.addRule(e.terminator_end,{type:"end"}),e.illegal&&n.addRule(e.illegal,{type:"illegal"}),n}(l),l}(e)}(E),N="",y=s||_,O={},k=new f.__emitter(f);!function(){for(var e=[],n=y;n!==E;n=n.parent)n.className&&e.unshift(n.className);e.forEach(e=>k.openNode(e))}();var A="",I=0,S=0,B=0,L=!1;try{for(y.matcher.considerAll();;){B++,L?L=!1:(y.matcher.lastIndex=S,y.matcher.considerAll());const e=y.matcher.exec(o);if(!e)break;const n=x(o.substring(S,e.index),e);S=e.index+n}return x(o.substr(S)),k.closeAllNodes(),k.finalize(),N=k.toHTML(),{relevance:I,value:N,language:e,illegal:!1,emitter:k,top:y}}catch(n){if(n.message&&n.message.includes("Illegal"))return{illegal:!0,illegalBy:{msg:n.message,context:o.slice(S-100,S+100),mode:n.mode},sofar:N,relevance:0,value:R(o),emitter:k};if(l)return{illegal:!1,relevance:0,value:R(o),emitter:k,language:e,top:y,errorRaised:n};throw n}}function v(e,n){n=n||f.languages||Object.keys(i);var t=function(e){const n={relevance:0,emitter:new f.__emitter(f),value:R(e),illegal:!1,top:h};return n.emitter.addText(e),n}(e),r=t;return n.filter(T).filter(I).forEach((function(n){var a=m(n,e,!1);a.language=n,a.relevance>r.relevance&&(r=a),a.relevance>t.relevance&&(r=t,t=a)})),r.language&&(t.second_best=r),t}function x(e){return f.tabReplace||f.useBR?e.replace(c,e=>"\n"===e?f.useBR?"
":e:f.tabReplace?e.replace(/\t/g,f.tabReplace):e):e}function E(e){let n=null;const t=function(e){var n=e.className+" ";n+=e.parentNode?e.parentNode.className:"";const t=f.languageDetectRe.exec(n);if(t){var r=T(t[1]);return r||(console.warn(g.replace("{}",t[1])),console.warn("Falling back to no-highlight mode for this block.",e)),r?t[1]:"no-highlight"}return n.split(/\s+/).find(e=>p(e)||T(e))}(e);if(p(t))return;S("before:highlightBlock",{block:e,language:t}),f.useBR?(n=document.createElement("div")).innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[/]*>/g,"\n"):n=e;const r=n.textContent,a=t?b(t,r,!0):v(r),i=O(n);if(i.length){const e=document.createElement("div");e.innerHTML=a.value,a.value=k(i,O(e),r)}a.value=x(a.value),S("after:highlightBlock",{block:e,result:a}),e.innerHTML=a.value,e.className=function(e,n,t){var r=n?s[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),e.includes(r)||a.push(r),a.join(" ").trim()}(e.className,t,a.language),e.result={language:a.language,re:a.relevance,relavance:a.relevance},a.second_best&&(e.second_best={language:a.second_best.language,re:a.second_best.relevance,relavance:a.second_best.relevance})}const N=()=>{if(!N.called){N.called=!0;var e=document.querySelectorAll("pre code");a.forEach.call(e,E)}};function T(e){return e=(e||"").toLowerCase(),i[e]||i[s[e]]}function A(e,{languageName:n}){"string"==typeof e&&(e=[e]),e.forEach(e=>{s[e]=n})}function I(e){var n=T(e);return n&&!n.disableAutodetect}function S(e,n){var t=e;o.forEach((function(e){e[t]&&e[t](n)}))}Object.assign(t,{highlight:b,highlightAuto:v,fixMarkup:x,highlightBlock:E,configure:function(e){f=y(f,e)},initHighlighting:N,initHighlightingOnLoad:function(){window.addEventListener("DOMContentLoaded",N,!1)},registerLanguage:function(e,n){var r=null;try{r=n(t)}catch(n){if(console.error("Language definition for '{}' could not be registered.".replace("{}",e)),!l)throw n;console.error(n),r=h}r.name||(r.name=e),i[e]=r,r.rawDefinition=n.bind(null,t),r.aliases&&A(r.aliases,{languageName:e})},listLanguages:function(){return Object.keys(i)},getLanguage:T,registerAliases:A,requireLanguage:function(e){var n=T(e);if(n)return n;throw Error("The '{}' language is required, but not loaded.".replace("{}",e))},autoDetection:I,inherit:y,addPlugin:function(e){o.push(e)}}),t.debugMode=function(){l=!1},t.safeMode=function(){l=!0},t.versionString="10.1.2";for(const n in _)"object"==typeof _[n]&&e(_[n]);return Object.assign(t,_),t}({})}();"object"==typeof exports&&"undefined"!=typeof module&&(module.exports=hljs);hljs.registerLanguage("python",function(){"use strict";return function(e){var n={keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10",built_in:"Ellipsis NotImplemented",literal:"False None True"},a={className:"meta",begin:/^(>>>|\.\.\.) /},i={className:"subst",begin:/\{/,end:/\}/,keywords:n,illegal:/#/},s={begin:/\{\{/,relevance:0},r={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/(u|b)?r?'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(u|b)?r?"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(fr|rf|f)'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a,s,i]},{begin:/(fr|rf|f)"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a,s,i]},{begin:/(u|r|ur)'/,end:/'/,relevance:10},{begin:/(u|r|ur)"/,end:/"/,relevance:10},{begin:/(b|br)'/,end:/'/},{begin:/(b|br)"/,end:/"/},{begin:/(fr|rf|f)'/,end:/'/,contains:[e.BACKSLASH_ESCAPE,s,i]},{begin:/(fr|rf|f)"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,s,i]},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},l={className:"number",relevance:0,variants:[{begin:e.BINARY_NUMBER_RE+"[lLjJ]?"},{begin:"\\b(0o[0-7]+)[lLjJ]?"},{begin:e.C_NUMBER_RE+"[lLjJ]?"}]},t={className:"params",variants:[{begin:/\(\s*\)/,skip:!0,className:null},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:["self",a,l,r,e.HASH_COMMENT_MODE]}]};return i.contains=[r,l,a],{name:"Python",aliases:["py","gyp","ipython"],keywords:n,illegal:/(<\/|->|\?)|=>/,contains:[a,l,{beginKeywords:"if",relevance:0},r,e.HASH_COMMENT_MODE,{variants:[{className:"function",beginKeywords:"def"},{className:"class",beginKeywords:"class"}],end:/:/,illegal:/[${=;\n,]/,contains:[e.UNDERSCORE_TITLE_MODE,t,{begin:/->/,endsWithParent:!0,keywords:"None"}]},{className:"meta",begin:/^[\t]*@/,end:/$/},{begin:/\b(print|exec)\(/}]}}}());hljs.registerLanguage("python-repl",function(){"use strict";return function(n){return{aliases:["pycon"],contains:[{className:"meta",starts:{end:/ |$/,starts:{end:"$",subLanguage:"python"}},variants:[{begin:/^>>>(?=[]|$)/},{begin:/^\.\.\.(?=[]|$)/}]}]}}}());hljs.registerLanguage("makefile",function(){"use strict";return function(e){var i={className:"variable",variants:[{begin:"\\$\\("+e.UNDERSCORE_IDENT_RE+"\\)",contains:[e.BACKSLASH_ESCAPE]},{begin:/\$[@%<?\^\+*]/}]},n={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,i]},a={className:"variable",begin:/\$\([\w-]+\s/,end:/\)/,keywords:{built_in:"subst patsubst strip findstring filter filter-out sort word wordlist firstword lastword dir notdir suffix basename addsuffix addprefix join wildcard realpath abspath error warning shell origin flavor foreach if or and call eval file value"},contains:[i]},r={begin:"^"+e.UNDERSCORE_IDENT_RE+"\\s*(?=[:+?]?=)"},s={className:"section",begin:/^[^\s]+:/,end:/$/,contains:[i]};return{name:"Makefile",aliases:["mk","mak"],keywords:{$pattern:/[\w-]+/,keyword:"define endef undefine ifdef ifndef ifeq ifneq else endif include -include sinclude override export unexport private vpath"},contains:[e.HASH_COMMENT_MODE,i,n,a,r,{className:"meta",begin:/^\.PHONY:/,end:/$/,keywords:{$pattern:/[\.\w]+/,"meta-keyword":".PHONY"}},s]}}}());hljs.registerLanguage("csharp",function(){"use strict";return function(e){var n={keyword:"abstract as base bool break byte case catch char checked const continue decimal default delegate do double enum event explicit extern finally fixed float for foreach goto if
implicit in int interface internal is lock long object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this try typeof uint ulong unchecked unsafe ushort using virtual void volatile while add alias ascending async await by descending dynamic equals from get global group into join let nameof on orderby partial remove select set value var when where yield",literal:"null false true"},i=e.inherit(e.TITLE_MODE,{begin:"[a-zA-Z](\\.?\\w)*"}),a={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},s={className:"string",begin:'@"',end:'"',contains:[{begin:'""'}]},t=e.inherit(s,{illegal:/\n/}),l={className:"subst",begin:"{",end:"}",keywords:n},r=e.inherit(l,{illegal:/\n/}),c={className:"string",begin:/\$"/,end:'"',illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},e.BACKSLASH_ESCAPE,r]},o={className:"string",begin:/\$@"/,end:'"',contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},l]},g=e.inherit(o,{illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},r]});l.contains=[o,c,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.C_BLOCK_COMMENT_MODE],r.contains=[g,c,t,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.inherit(e.C_BLOCK_COMMENT_MODE,{illegal:/\n/})];var d={variants:[o,c,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},E={begin:"<",end:">",contains:[{beginKeywords:"in out"},i]},_=e.IDENT_RE+"(<"+e.IDENT_RE+"(\\s*,\\s*"+e.IDENT_RE+")*>)?(\\[\\])?",b={begin:"@"+e.IDENT_RE,relevance:0};return{name:"C#",aliases:["cs","c#"],keywords:n,illegal:/::/,contains:[e.COMMENT("///","$",{returnBegin:!0,contains:[{className:"doctag",variants:[{begin:"///",relevance:0},{begin:"\x3c!--|--\x3e"},{begin:"</?",end:">"}]}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"meta",begin:"#",end:"$",keywords:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},d,a,{beginKeywords:"class interface",end:/[{;=]/,illegal:/[^\s:,]/,contains:[{beginKeywords:"where class"},i,E,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{beginKeywords:"namespace",end:/[{;=]/,illegal:/[^\s:]/,contains:[i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"meta",begin:"^\\s*\\[",excludeBegin:!0,end:"\\]",excludeEnd:!0,contains:[{className:"meta-string",begin:/"/,end:/"/}]},{beginKeywords:"new return throw await else",relevance:0},{className:"function",begin:"("+_+"\\s+)+"+e.IDENT_RE+"\\s*(\\<.+\\>)?\\s*\\(",returnBegin:!0,end:/\s*[{;=]/,excludeEnd:!0,keywords:n,contains:[{begin:e.IDENT_RE+"\\s*(\\<.+\\>)?\\s*\\(",returnBegin:!0,contains:[e.TITLE_MODE,E],relevance:0},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:n,relevance:0,contains:[d,a,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},b]}}}());hljs.registerLanguage("c-like",function(){"use strict";return function(e){function t(e){return"(?:"+e+")?"}var n="(decltype\\(auto\\)|"+t("[a-zA-Z_]\\w*::")+"[a-zA-Z_]\\w*"+t("<.*?>")+")",r={className:"keyword",begin:"\\b[a-z\\d_]*_t\\b"},a={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'(\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)|.)",end:"'",illegal:"."},e.END_SAME_AS_BEGIN({begin:/(?:u8?|U|L)?R"([^()\\]{0,16})\(/,end:/\)([^()\\]{0,16})"/})]},i={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},s={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{"meta-keyword":"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(a,{className:"meta-string"}),{className:"meta-string",begin:/<.*?>/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},o={className:"title",begin:t("[a-zA-Z_]\\w*::")+e.IDENT_RE,relevance:0},c=t("[a-zA-Z_]\\w*::")+e.IDENT_RE+"\\s*\\(",l={keyword:"int float while private char char8_t char16_t char32_t catch import module export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using asm case typeid wchar_t short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignas alignof constexpr consteval constinit decltype concept co_await co_return co_yield requires noexcept static_assert thread_local restrict final override atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong new throw return and and_eq bitand bitor compl not not_eq or or_eq xor xor_eq",built_in:"std string wstring cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set pair bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap priority_queue make_pair array shared_ptr abort terminate abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf future isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr _Bool complex _Complex imaginary _Imaginary",literal:"true false nullptr NULL"},d=[r,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,i,a],_={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:l,contains:d.concat([{begin:/\(/,end:/\)/,keywords:l,contains:d.concat(["self"]),relevance:0}]),relevance:0},u={className:"function",begin:"("+n+"[*&\\s]+)+"+c,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:l,illegal:/[^\w\s*&:<>]/,contains:[{begin:"decltype\\(auto\\)",keywords:l,relevance:0},{begin:c,returnBegin:!0,contains:[o],relevance:0},{className:"params",begin:/\(/,end:/\)/,keywords:l,relevance:0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,i,r,{begin:/\(/,end:/\)/,keywords:l,relevance:0,contains:["self",e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,i,r]}]},r,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s]};return{aliases:["c","cc","h","c++","h++","hpp","hh","hxx","cxx"],keywords:l,disableAutodetect:!0,illegal:"</",contains:[].concat(_,u,d,[s,{begin:"\\b(deque|list|queue|priority_queue|pair|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",end:">",keywords:l,contains:["self",r]},{begin:e.IDENT_RE+"::",keywords:l},{className:"class",beginKeywords:"class struct",end:/[{;:]/,contains:[{begin:/</,end:/>/,contains:["self"]},e.TITLE_MODE]}]),exports:{preprocessor:s,strings:a,keywords:l}}}}());hljs.registerLanguage("cpp",function(){"use strict";return function(e){var t=e.getLanguage("c-like").rawDefinition();return t.disableAutodetect=!1,t.name="C++",t.aliases=["cc","c++","h++","hpp","hh","hxx","cxx"],t}}());hljs.registerLanguage("apache",function(){"use strict";return function(e){var n={className:"number",begin:"\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?"};return{name:"Apache config",aliases:["apacheconf"],case_insensitive:!0,contains:[e.HASH_COMMENT_MODE,{className:"section",begin:"</?",end:">",contains:[n,{className:"number",begin:":\\d{1,5}"},e.inherit(e.QUOTE_STRING_MODE,{relevance:0})]},{className:"attribute",begin:/\w+/,relevance:0,keywords:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{end:/$/,relevance:0,keywords:{literal:"on off all deny allow"},contains:[{className:"meta",begin:"\\s\\[",end:"\\]$"},{className:"variable",begin:"[\\$%]\\{",end:"\\}",contains:["self",{className:"number",begin:"[\\$%]\\d+"}]},n,{className:"number",begin:"\\d+"},e.QUOTE_STRING_MODE]}}],illegal:/\S/}}}());hljs.registerLanguage("scss",function(){"use strict";return function(e){var t={className:"variable",begin:"(\\$[a-zA-Z-][a-zA-Z0-9_-]*)\\b"},i={className:"number",begin:"#[0-9A-Fa-f]+"};return e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{name:"SCSS",case_insensitive:!0,illegal:"[=/|']",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:"\\#[A-Za-z0-9_-]+",relevance:0},{className:"selector-class",begin:"\\.[A-Za-z0-9_-]+",relevance:0},{className:"selector-attr",begin:"\\[",end:"\\]",illegal:"$"},{className:"selector-tag",begin:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",relevance:0},{className:"selector-pseudo",begin:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter
first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{className:"selector-pseudo",begin:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},t,{className:"attribute",begin:"\\b(src|z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",illegal:"[^\\s]"},{begin:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{begin:":",end:";",contains:[t,i,e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{className:"meta",begin:"!important"}]},{begin:"@(page|font-face)",lexemes:"@[a-z-]+",keywords:"@page @font-face"},{begin:"@",end:"[{;]",returnBegin:!0,keywords:"and or not only",contains:[{begin:"@[a-z-]+",className:"keyword"},t,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,i,e.CSS_NUMBER_MODE]}]}}}());hljs.registerLanguage("bash",function(){"use strict";return function(e){const s={};Object.assign(s,{className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{/,end:/\}/,contains:[{begin:/:-/,contains:[s]}]}]});const t={className:"subst",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]},n={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,s,t]};t.contains.push(n);const a={begin:/\$\(\(/,end:/\)\)/,contains:[{begin:/\d+#[0-9a-f]+/,className:"number"},e.NUMBER_MODE,s]},i=e.SHEBANG({binary:"(fish|bash|zsh|sh|csh|ksh|tcsh|dash|scsh)",relevance:10}),c={className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0};return{name:"Bash",aliases:["sh","zsh"],keywords:{$pattern:/\b-?[a-z\._]+\b/,keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[i,e.SHEBANG(),c,a,e.HASH_COMMENT_MODE,n,{className:"",begin:/\\"/},{className:"string",begin:/'/,end:/'/},s]}}}());hljs.registerLanguage("shell",function(){"use strict";return function(s){return{name:"Shell Session",aliases:["console"],contains:[{className:"meta",begin:"^\\s{0,3}[/\\w\\d\\[\\]()@-]*[>%$#]",starts:{end:"$",subLanguage:"bash"}}]}}}());hljs.registerLanguage("plaintext",function(){"use strict";return function(t){return{name:"Plain text",aliases:["text","txt"],disableAutodetect:!0}}}());hljs.registerLanguage("perl",function(){"use strict";return function(e){var n={$pattern:/[\w.]+/,keyword:"getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qq fileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmget sub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedir ioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when"},t={className:"subst",begin:"[$@]\\{",end:"\\}",keywords:n},s={begin:"->{",end:"}"},r={variants:[{begin:/\$\d/},{begin:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{begin:/[\$%@][^\s\w{]/,relevance:0}]},i=[e.BACKSLASH_ESCAPE,t,r],a=[r,e.HASH_COMMENT_MODE,e.COMMENT("^\\=\\w","\\=cut",{endsWithParent:!0}),s,{className:"string",contains:i,variants:[{begin:"q[qwxr]?\\s*\\(",end:"\\)",relevance:5},{begin:"q[qwxr]?\\s*\\[",end:"\\]",relevance:5},{begin:"q[qwxr]?\\s*\\{",end:"\\}",relevance:5},{begin:"q[qwxr]?\\s*\\|",end:"\\|",relevance:5},{begin:"q[qwxr]?\\s*\\<",end:"\\>",relevance:5},{begin:"qw\\s+q",end:"q",relevance:5},{begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"'},{begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},{begin:"{\\w+}",contains:[],relevance:0},{begin:"-?\\w+\\s*\\=\\>",contains:[],relevance:0}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\/\\/|"+e.RE_STARTERS_RE+"|\\b(split|return|print|reverse|grep)\\b)\\s*",keywords:"split return print reverse grep",relevance:0,contains:[e.HASH_COMMENT_MODE,{className:"regexp",begin:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",relevance:10},{className:"regexp",begin:"(m
qr)?/",end:"/[a-z]*",contains:[e.BACKSLASH_ESCAPE],relevance:0}]},{className:"function",beginKeywords:"sub",end:"(\\s*\\(.*?\\))?[;{]",excludeEnd:!0,relevance:5,contains:[e.TITLE_MODE]},{begin:"-\\w\\b",relevance:0},{begin:"^__DATA__$",end:"^__END__$",subLanguage:"mojolicious",contains:[{begin:"^@@.*",end:"$",className:"comment"}]}];return t.contains=a,s.contains=a,{name:"Perl",aliases:["pl","pm"],keywords:n,contains:a}}}());hljs.registerLanguage("lua",function(){"use strict";return function(e){var t={begin:"\\[=*\\[",end:"\\]=*\\]",contains:["self"]},a=[e.COMMENT("--(?!\\[=*\\[)","$"),e.COMMENT("--\\[=*\\[","\\]=*\\]",{contains:[t],relevance:10})];return{name:"Lua",keywords:{$pattern:e.UNDERSCORE_IDENT_RE,literal:"true false nil",keyword:"and break do else elseif end for goto if in local not or repeat return then until while",built_in:"_G _ENV _VERSION __index __newindex __mode __call __metatable __tostring __len __gc __add __sub __mul __div __mod __pow __concat __unm __eq __lt __le assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall arg self coroutine resume yield status wrap create running debug getupvalue debug sethook getmetatable gethook setmetatable setlocal traceback setfenv getinfo setupvalue getlocal getregistry getfenv io lines write close flush open output type read stderr stdin input stdout popen tmpfile math log max acos huge ldexp pi cos tanh pow deg tan cosh sinh random randomseed frexp ceil floor rad abs sqrt modf asin min mod fmod log10 atan2 exp sin atan os exit setlocale date getenv difftime remove time clock tmpname rename execute package preload loadlib loaded loaders cpath config path seeall string sub upper len gfind rep find match char dump gmatch reverse byte format gsub lower table setn insert getn foreachi maxn foreach concat sort remove"},contains:a.concat([{className:"function",beginKeywords:"function",end:"\\)",contains:[e.inherit(e.TITLE_MODE,{begin:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{className:"params",begin:"\\(",endsWithParent:!0,contains:a}].concat(a)},e.C_NUMBER_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:"\\[=*\\[",end:"\\]=*\\]",contains:[t],relevance:5}])}}}());hljs.registerLanguage("nginx",function(){"use strict";return function(e){var n={className:"variable",variants:[{begin:/\$\d+/},{begin:/\$\{/,end:/}/},{begin:"[\\$\\@]"+e.UNDERSCORE_IDENT_RE}]},a={endsWithParent:!0,keywords:{$pattern:"[a-z/_]+",literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},relevance:0,illegal:"=>",contains:[e.HASH_COMMENT_MODE,{className:"string",contains:[e.BACKSLASH_ESCAPE,n],variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/}]},{begin:"([a-z]+):/",end:"\\s",endsWithParent:!0,excludeEnd:!0,contains:[n]},{className:"regexp",contains:[e.BACKSLASH_ESCAPE,n],variants:[{begin:"\\s\\^",end:"\\s|{|;",returnEnd:!0},{begin:"~*?\\s+",end:"\\s|{|;",returnEnd:!0},{begin:"*(\\.[a-z\\-]+)+"},{begin:"([a-z\\-]+\\.)+*"}]},{className:"number",begin:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{className:"number",begin:"\\b\\d+[kKmMgGdshdwy]*\\b",relevance:0},n]};return{name:"Nginx config",aliases:["nginxconf"],contains:[e.HASH_COMMENT_MODE,{begin:e.UNDERSCORE_IDENT_RE+"\\s+{",returnBegin:!0,end:"{",contains:[{className:"section",begin:e.UNDERSCORE_IDENT_RE}],relevance:0},{begin:e.UNDERSCORE_IDENT_RE+"\\s",end:";|{",returnBegin:!0,contains:[{className:"attribute",begin:e.UNDERSCORE_IDENT_RE,starts:a}],relevance:0}],illegal:"[^\\s\\}]"}}}());hljs.registerLanguage("kotlin",function(){"use strict";return function(e){var n={keyword:"abstract as val var vararg get set class object open private protected public noinline crossinline dynamic final enum if else do while for when throw try catch finally import package is in fun override companion reified inline lateinit init interface annotation data sealed internal infix operator out by constructor super tailrec where const inner suspend typealias external expect actual trait volatile transient native default",built_in:"Byte Short Char Int Long Boolean Float Double Void Unit Nothing",literal:"true false null"},a={className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"@"},i={className:"subst",begin:"\\${",end:"}",contains:[e.C_NUMBER_MODE]},s={className:"variable",begin:"\\$"+e.UNDERSCORE_IDENT_RE},t={className:"string",variants:[{begin:'"""',end:'"""(?=[^"])',contains:[s,i]},{begin:"'",end:"'",illegal:/\n/,contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"',illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,s,i]}]};i.contains.push(t);var r={className:"meta",begin:"@(?:file|property|field|get|set|receiver|param|setparam|delegate)\\s*:(?:\\s*"+e.UNDERSCORE_IDENT_RE+")?"},l={className:"meta",begin:"@"+e.UNDERSCORE_IDENT_RE,contains:[{begin:/\(/,end:/\)/,contains:[e.inherit(t,{className:"meta-string"})]}]},c=e.COMMENT("/*","*/",{contains:[e.C_BLOCK_COMMENT_MODE]}),o={variants:[{className:"type",begin:e.UNDERSCORE_IDENT_RE},{begin:/\(/,end:/\)/,contains:[]}]},d=o;return d.variants[1].contains=[o],o.variants[1].contains=[d],{name:"Kotlin",aliases:["kt"],keywords:n,contains:[e.COMMENT("/**","*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,c,{className:"keyword",begin:/\b(break|continue|return|this)\b/,starts:{contains:[{className:"symbol",begin:/@\w+/}]}},a,r,l,{className:"function",beginKeywords:"fun",end:"[(]|$",returnBegin:!0,excludeEnd:!0,keywords:n,illegal:/fun\s+(<.*>)?[^\s\(]+(\s+[^\s\(]+)\s*=/,relevance:5,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"type",begin:/</,end:/>/,keywords:"reified",relevance:0},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:n,relevance:0,contains:[{begin:/:/,end:/[=,\/]/,endsWithParent:!0,contains:[o,e.C_LINE_COMMENT_MODE,c],relevance:0},e.C_LINE_COMMENT_MODE,c,r,l,t,e.C_NUMBER_MODE]},c]},{className:"class",beginKeywords:"class interface trait",end:/[:\{(]|$/,excludeEnd:!0,illegal:"extends implements",contains:[{beginKeywords:"public protected internal private constructor"},e.UNDERSCORE_TITLE_MODE,{className:"type",begin:/</,end:/>/,excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:/[,:]\s*/,end:/[<\(,]|$/,excludeBegin:!0,returnEnd:!0},r,l]},t,{className:"meta",begin:"^#!/usr/bin/env",end:"$",illegal:"\n"},{className:"number",begin:"\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",relevance:0}]}}}());hljs.registerLanguage("diff",function(){"use strict";return function(e){return{name:"Diff",aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^*** +\d+,\d+ +****$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/^*{15}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}}());hljs.registerLanguage("typescript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);return function(r){var t={$pattern:"[A-Za-z$_][0-9A-Za-z$_]*",keyword:e.concat(["type","namespace","typedef","interface","public","private","protected","implements","declare","abstract","readonly"]).join(" "),literal:n.join(" "),built_in:a.concat(["any","void","number","boolean","string","object","never","enum"]).join(" ")},s={className:"meta",begin:"@[A-Za-z$_][0-9A-Za-z$_]*"},i={className:"number",variants:[{begin:"\\b(0[bB][01]+)n?"},{begin:"\\b(0[oO][0-7]+)n?"},{begin:r.C_NUMBER_RE+"n?"}],relevance:0},o={className:"subst",begin:"\\$\\{",end:"\\}",keywords:t,contains:[]},c={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[r.BACKSLASH_ESCAPE,o],subLanguage:"xml"}},l={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[r.BACKSLASH_ESCAPE,o],subLanguage:"css"}},E={className:"string",begin:"`",end:"`",contains:[r.BACKSLASH_ESCAPE,o]};o.contains=[r.APOS_STRING_MODE,r.QUOTE_STRING_MODE,c,l,E,i,r.REGEXP_MODE];var d={begin:"\\(",end:/\)/,keywords:t,contains:["self",r.QUOTE_STRING_MODE,r.APOS_STRING_MODE,r.NUMBER_MODE]},u={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:t,contains:[r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,s,d]};return{name:"TypeScript",aliases:["ts"],keywords:t,contains:[r.SHEBANG(),{className:"meta",begin:/^\s*['"]use
strict['"]/},r.APOS_STRING_MODE,r.QUOTE_STRING_MODE,c,l,E,r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,i,{begin:"("+r.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,r.REGEXP_MODE,{className:"function",begin:"(\\([^(]*(\\([^(]*(\\([^(]*\\))?\\))?\\)|"+r.UNDERSCORE_IDENT_RE+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:r.UNDERSCORE_IDENT_RE},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:t,contains:d.contains}]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/[\{;]/,excludeEnd:!0,keywords:t,contains:["self",r.inherit(r.TITLE_MODE,{begin:"[A-Za-z$_][0-9A-Za-z$_]*"}),u],illegal:/%/,relevance:0},{beginKeywords:"constructor",end:/[\{;]/,excludeEnd:!0,contains:["self",u]},{begin:/module\./,keywords:{built_in:"module"},relevance:0},{beginKeywords:"module",end:/\{/,excludeEnd:!0},{beginKeywords:"interface",end:/\{/,excludeEnd:!0,keywords:"interface extends"},{begin:/\$[(.]/},{begin:"\\."+r.IDENT_RE,relevance:0},s,d]}}}());hljs.registerLanguage("sql",function(){"use strict";return function(e){var t=e.COMMENT("--","$");return{name:"SQL",case_insensitive:!0,illegal:/[<>{}*]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment values with",end:/;/,endsWithParent:!0,keywords:{$pattern:/[\w\.]+/,keyword:"as abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias all allocate allow alter always analyze ancillary and anti any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound bucket buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain explode export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force foreign form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour hours http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lateral lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minutes minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notnull notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search
sec_to_time second seconds section securefile security seed segment select self semi sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tablesample tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unnest unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace window with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null unknown",built_in:"array bigint binary bit blob bool boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text time timestamp tinyint varchar varchar2 varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[{begin:'""'}]},{className:"string",begin:"`",end:"`"},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,t,e.HASH_COMMENT_MODE]},e.C_BLOCK_COMMENT_MODE,t,e.HASH_COMMENT_MODE]}}}());hljs.registerLanguage("ruby",function(){"use strict";return function(e){var n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",a={keyword:"and then defined module in return redo if BEGIN retry end for self when next until do begin unless END rescue else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",literal:"true false nil"},s={className:"doctag",begin:"@[A-Za-z]+"},i={begin:"#<",end:">"},r=[e.COMMENT("#","$",{contains:[s]}),e.COMMENT("^\\=begin","^\\=end",{contains:[s],relevance:10}),e.COMMENT("^__END__","\\n$")],c={className:"subst",begin:"#\\{",end:"}",keywords:a},t={className:"string",contains:[e.BACKSLASH_ESCAPE,c],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/`/,end:/`/},{begin:"%[qQwWx]?\\(",end:"\\)"},{begin:"%[qQwWx]?\\[",end:"\\]"},{begin:"%[qQwWx]?{",end:"}"},{begin:"%[qQwWx]?<",end:">"},{begin:"%[qQwWx]?/",end:"/"},{begin:"%[qQwWx]?%",end:"%"},{begin:"%[qQwWx]?-",end:"-"},{begin:"%[qQwWx]?\\|",end:"\\|"},{begin:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/},{begin:/<<[-~]?'?(\w+)(?:.|\n)*?\n\s*\1\b/,returnBegin:!0,contains:[{begin:/<<[-~]?'?/},e.END_SAME_AS_BEGIN({begin:/(\w+)/,end:/(\w+)/,contains:[e.BACKSLASH_ESCAPE,c]})]}]},b={className:"params",begin:"\\(",end:"\\)",endsParent:!0,keywords:a},d=[t,i,{className:"class",beginKeywords:"class module",end:"$|;",illegal:/=/,contains:[e.inherit(e.TITLE_MODE,{begin:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{begin:"<\\s*",contains:[{begin:"("+e.IDENT_RE+"::)?"+e.IDENT_RE}]}].concat(r)},{className:"function",beginKeywords:"def",end:"$|;",contains:[e.inherit(e.TITLE_MODE,{begin:n}),b].concat(r)},{begin:e.IDENT_RE+"::"},{className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"(\\!|\\?)?:",relevance:0},{className:"symbol",begin:":(?!\\s)",contains:[t,{begin:n}],relevance:0},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{className:"params",begin:/\|/,end:/\|/,keywords:a},{begin:"("+e.RE_STARTERS_RE+"|unless)\\s*",keywords:"unless",contains:[i,{className:"regexp",contains:[e.BACKSLASH_ESCAPE,c],illegal:/\n/,variants:[{begin:"/",end:"/[a-z]*"},{begin:"%r{",end:"}[a-z]*"},{begin:"%r\\(",end:"\\)[a-z]*"},{begin:"%r!",end:"![a-z]*"},{begin:"%r\\[",end:"\\][a-z]*"}]}].concat(r),relevance:0}].concat(r);c.contains=d,b.contains=d;var g=[{begin:/^\s*=>/,starts:{end:"$",contains:d}},{className:"meta",begin:"^([>?]>|[\\w#]+\\(\\w+\\):\\d+:\\d+>|(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>)",starts:{end:"$",contains:d}}];return{name:"Ruby",aliases:["rb","gemspec","podspec","thor","irb"],keywords:a,illegal:/\/*/,contains:r.concat(g).concat(d)}}}());hljs.registerLanguage("yaml",function(){"use strict";return function(e){var n="true false yes no null",a="[\\w#;/?:@&=+$,.~*\\'()[\\]]+",s={className:"string",relevance:0,variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/\S+/}],contains:[e.BACKSLASH_ESCAPE,{className:"template-variable",variants:[{begin:"{{",end:"}}"},{begin:"%{",end:"}"}]}]},i=e.inherit(s,{variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/[^\s,{}[\]]+/}]}),l={end:",",endsWithParent:!0,excludeEnd:!0,contains:[],keywords:n,relevance:0},t={begin:"{",end:"}",contains:[l],illegal:"\\n",relevance:0},g={begin:"\\[",end:"\\]",contains:[l],illegal:"\\n",relevance:0},b=[{className:"attr",variants:[{begin:"\\w[\\w :\\/.-]*:(?=[\t]|$)"},{begin:'"\\w[\\w :\\/.-]*":(?=[\t]|$)'},{begin:"'\\w[\\w :\\/.-]*':(?=[\t]|$)"}]},{className:"meta",begin:"^---s*$",relevance:10},{className:"string",begin:"[\\|>]([0-9]?[+-])?[]*\\n(*)[\\S]+\\n(\\2[\\S]+\\n?)*"},{begin:"<%[%=-]?",end:"[%-]?%>",subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:"!\\w+!"+a},{className:"type",begin:"!<"+a+">"},{className:"type",begin:"!"+a},{className:"type",begin:"!!"+a},{className:"meta",begin:"&"+e.UNDERSCORE_IDENT_RE+"$"},{className:"meta",begin:"*"+e.UNDERSCORE_IDENT_RE+"$"},{className:"bullet",begin:"\\-(?=[]|$)",relevance:0},e.HASH_COMMENT_MODE,{beginKeywords:n,keywords:{literal:n}},{className:"number",begin:"\\b[0-9]{4}(-[0-9][0-9]){0,2}([Tt \\t][0-9][0-9]?(:[0-9][0-9]){2})?(\\.[0-9]*)?([\\t])*(Z|[-+][0-9][0-9]?(:[0-9][0-9])?)?\\b"},{className:"number",begin:e.C_NUMBER_RE+"\\b"},t,g,s],c=[...b];return c.pop(),c.push(i),l.contains=c,{name:"YAML",case_insensitive:!0,aliases:["yml","YAML"],contains:b}}}());hljs.registerLanguage("rust",function(){"use strict";return function(e){var n="([ui](8|16|32|64|128|size)|f(32|64))?",t="drop i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize f32 f64 str char bool Box Option Result String Vec Copy Send Sized Sync Drop Fn FnMut FnOnce ToOwned Clone Debug PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator SliceConcatExt ToString assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules! assert_ne! debug_assert_ne!";return{name:"Rust",aliases:["rs"],keywords:{$pattern:e.IDENT_RE+"!?",keyword:"abstract as async await become box break const continue crate do dyn else enum extern false final fn for if impl in let loop macro match mod move mut override priv pub ref return self Self static struct super trait true try type typeof unsafe unsized use virtual where while yield",literal:"true false Some None Ok Err",built_in:t},illegal:"</",contains:[e.C_LINE_COMMENT_MODE,e.COMMENT("/*","*/",{contains:["self"]}),e.inherit(e.QUOTE_STRING_MODE,{begin:/b?"/,illegal:null}),{className:"string",variants:[{begin:/r(#*)"(.|\n)*?"\1(?!#)/},{begin:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{className:"symbol",begin:/'[a-zA-Z_][a-zA-Z0-9_]*/},{className:"number",variants:[{begin:"\\b0b([01_]+)"+n},{begin:"\\b0o([0-7_]+)"+n},{begin:"\\b0x([A-Fa-f0-9_]+)"+n},{begin:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+n}],relevance:0},{className:"function",beginKeywords:"fn",end:"(\\(|<)",excludeEnd:!0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"meta",begin:"#\\!?\\[",end:"\\]",contains:[{className:"meta-string",begin:/"/,end:/"/}]},{className:"class",beginKeywords:"type",end:";",contains:[e.inherit(e.UNDERSCORE_TITLE_MODE,{endsParent:!0})],illegal:"\\S"},{className:"class",beginKeywords:"trait enum struct
union",end:"{",contains:[e.inherit(e.UNDERSCORE_TITLE_MODE,{endsParent:!0})],illegal:"[\\w\\d]"},{begin:e.IDENT_RE+"::",keywords:{built_in:t}},{begin:"->"}]}}}());hljs.registerLanguage("javascript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);function s(e){return r("(?=",e,")")}function r(...e){return e.map(e=>(function(e){return e?"string"==typeof e?e:e.source:null})(e)).join("")}return function(t){var i="[A-Za-z$_][0-9A-Za-z$_]*",c={begin:/<[A-Za-z0-9\\._:-]+/,end:/\/[A-Za-z0-9\\._:-]+>|\/>/},o={$pattern:"[A-Za-z$_][0-9A-Za-z$_]*",keyword:e.join(" "),literal:n.join(" "),built_in:a.join(" ")},l={className:"number",variants:[{begin:"\\b(0[bB][01]+)n?"},{begin:"\\b(0[oO][0-7]+)n?"},{begin:t.C_NUMBER_RE+"n?"}],relevance:0},E={className:"subst",begin:"\\$\\{",end:"\\}",keywords:o,contains:[]},d={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[t.BACKSLASH_ESCAPE,E],subLanguage:"xml"}},g={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[t.BACKSLASH_ESCAPE,E],subLanguage:"css"}},u={className:"string",begin:"`",end:"`",contains:[t.BACKSLASH_ESCAPE,E]};E.contains=[t.APOS_STRING_MODE,t.QUOTE_STRING_MODE,d,g,u,l,t.REGEXP_MODE];var b=E.contains.concat([{begin:/\(/,end:/\)/,contains:["self"].concat(E.contains,[t.C_BLOCK_COMMENT_MODE,t.C_LINE_COMMENT_MODE])},t.C_BLOCK_COMMENT_MODE,t.C_LINE_COMMENT_MODE]),_={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:b};return{name:"JavaScript",aliases:["js","jsx","mjs","cjs"],keywords:o,contains:[t.SHEBANG({binary:"node",relevance:5}),{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},t.APOS_STRING_MODE,t.QUOTE_STRING_MODE,d,g,u,t.C_LINE_COMMENT_MODE,t.COMMENT("/**","*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+",contains:[{className:"type",begin:"\\{",end:"\\}",relevance:0},{className:"variable",begin:i+"(?=\\s*(-)|$)",endsParent:!0,relevance:0},{begin:/(?=[^\n])\s/,relevance:0}]}]}),t.C_BLOCK_COMMENT_MODE,l,{begin:r(/[{,\n]\s*/,s(r(/(((\/\/.*)|(\/*(.|\n)**\/))\s*)*/,i+"\\s*:"))),relevance:0,contains:[{className:"attr",begin:i+s("\\s*:"),relevance:0}]},{begin:"("+t.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[t.C_LINE_COMMENT_MODE,t.C_BLOCK_COMMENT_MODE,t.REGEXP_MODE,{className:"function",begin:"(\\([^(]*(\\([^(]*(\\([^(]*\\))?\\))?\\)|"+t.UNDERSCORE_IDENT_RE+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:t.UNDERSCORE_IDENT_RE},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:o,contains:b}]}]},{begin:/,/,relevance:0},{className:"",begin:/\s/,end:/\s*/,skip:!0},{variants:[{begin:"<>",end:"</>"},{begin:c.begin,end:c.end}],subLanguage:"xml",contains:[{begin:c.begin,end:c.end,skip:!0,contains:["self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[t.inherit(t.TITLE_MODE,{begin:i}),_],illegal:/\[|%/},{begin:/\$[(.]/},t.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},t.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0},{begin:"(get|set)\\s+(?="+i+"\\()",end:/{/,keywords:"get set",contains:[t.inherit(t.TITLE_MODE,{begin:i}),{begin:/\(\)/},_]}],illegal:/#(?!!)/}}}());hljs.registerLanguage("go",function(){"use strict";return function(e){var n={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{name:"Go",aliases:["golang"],keywords:n,illegal:"</",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"string",variants:[e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{begin:"`",end:"`"}]},{className:"number",variants:[{begin:e.C_NUMBER_RE+"[i]",relevance:1},e.C_NUMBER_MODE]},{begin:/:=/},{className:"function",beginKeywords:"func",end:"\\s*(\\{|$)",excludeEnd:!0,contains:[e.TITLE_MODE,{className:"params",begin:/\(/,end:/\)/,keywords:n,illegal:/["']/}]}]}}}());hljs.registerLanguage("c",function(){"use strict";return function(e){var n=e.getLanguage("c-like").rawDefinition();return n.name="C",n.aliases=["c","h"],n}}());hljs.registerLanguage("xml",function(){"use strict";return function(e){var n={className:"symbol",begin:"&[a-z]+;|&#[0-9]+;|&#x[a-f0-9]+;"},a={begin:"\\s",contains:[{className:"meta-keyword",begin:"#?[a-z_][a-z1-9_-]+",illegal:"\\n"}]},s=e.inherit(a,{begin:"\\(",end:"\\)"}),t=e.inherit(e.APOS_STRING_MODE,{className:"meta-string"}),i=e.inherit(e.QUOTE_STRING_MODE,{className:"meta-string"}),c={endsWithParent:!0,illegal:/</,relevance:0,contains:[{className:"attr",begin:"[A-Za-z0-9\\._:-]+",relevance:0},{begin:/=\s*/,relevance:0,contains:[{className:"string",endsParent:!0,variants:[{begin:/"/,end:/"/,contains:[n]},{begin:/'/,end:/'/,contains:[n]},{begin:/[^\s"'=<>`]+/}]}]}]};return{name:"HTML, XML",aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist","wsf","svg"],case_insensitive:!0,contains:[{className:"meta",begin:"<![a-z]",end:">",relevance:10,contains:[a,i,t,s,{begin:"\\[",end:"\\]",contains:[{className:"meta",begin:"<![a-z]",end:">",contains:[a,s,i,t]}]}]},e.COMMENT("\x3c!--","--\x3e",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},n,{className:"meta",begin:/<\?xml/,end:/\?>/,relevance:10},{className:"tag",begin:"<style(?=\\s|>)",end:">",keywords:{name:"style"},contains:[c],starts:{end:"</style>",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:"<script(?=\\s|>)",end:">",keywords:{name:"script"},contains:[c],starts:{end:"<\/script>",returnEnd:!0,subLanguage:["javascript","handlebars","xml"]}},{className:"tag",begin:"</?",end:"/?>",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},c]}]}}}());hljs.registerLanguage("php",function(){"use strict";return function(e){var r={begin:"\\$+[a-zA-Z_�-Ã¿][a-zA-Z0-9_�-Ã¿]*"},t={className:"meta",variants:[{begin:/<\?php/,relevance:10},{begin:/<\?[=]?/},{begin:/\?>/}]},a={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:'b"',end:'"'},{begin:"b'",end:"'"},e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null})]},n={variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]},i={keyword:"__CLASS__ __DIR__ __FILE__ __FUNCTION__ __LINE__ __METHOD__ __NAMESPACE__ __TRAIT__ die echo exit include include_once print require require_once array abstract and as binary bool boolean break callable case catch class clone const continue declare default do double else elseif empty enddeclare endfor endforeach endif endswitch endwhile eval extends final finally float for foreach from global goto if implements instanceof insteadof int integer interface isset iterable list new object or private protected public real return string switch throw trait try unset use var void while xor yield",literal:"false null true",built_in:"Error|0 AppendIterator ArgumentCountError ArithmeticError ArrayIterator ArrayObject AssertionError BadFunctionCallException BadMethodCallException CachingIterator CallbackFilterIterator CompileError Countable DirectoryIterator DivisionByZeroError DomainException EmptyIterator ErrorException Exception FilesystemIterator FilterIterator GlobIterator InfiniteIterator InvalidArgumentException IteratorIterator LengthException LimitIterator LogicException MultipleIterator NoRewindIterator OutOfBoundsException OutOfRangeException OuterIterator OverflowException ParentIterator ParseError RangeException RecursiveArrayIterator RecursiveCachingIterator RecursiveCallbackFilterIterator RecursiveDirectoryIterator RecursiveFilterIterator RecursiveIterator RecursiveIteratorIterator RecursiveRegexIterator RecursiveTreeIterator RegexIterator RuntimeException SeekableIterator SplDoublyLinkedList SplFileInfo SplFileObject SplFixedArray SplHeap SplMaxHeap SplMinHeap SplObjectStorage SplObserver SplObserver SplPriorityQueue SplQueue SplStack SplSubject SplSubject SplTempFileObject TypeError UnderflowException UnexpectedValueException ArrayAccess Closure Generator Iterator IteratorAggregate Serializable Throwable Traversable WeakReference Directory __PHP_Incomplete_Class parent php_user_filter self static
stdClass"};return{aliases:["php","php3","php4","php5","php6","php7"],case_insensitive:!0,keywords:i,contains:[e.HASH_COMMENT_MODE,e.COMMENT("//","$",{contains:[t]}),e.COMMENT("/*","*/",{contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.COMMENT("__halt_compiler.+?;",!1,{endsWithParent:!0,keywords:"__halt_compiler"}),{className:"string",begin:/<<<['"]?\w+['"]?$/,end:/^\w+;?$/,contains:[e.BACKSLASH_ESCAPE,{className:"subst",variants:[{begin:/\$\w+/},{begin:/\{\$/,end:/\}/}]}]},t,{className:"keyword",begin:/\$this\b/},r,{begin:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{className:"function",beginKeywords:"fn function",end:/[;{]/,excludeEnd:!0,illegal:"[$%\\[]",contains:[e.UNDERSCORE_TITLE_MODE,{className:"params",begin:"\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0,keywords:i,contains:["self",r,e.C_BLOCK_COMMENT_MODE,a,n]}]},{className:"class",beginKeywords:"class interface",end:"{",excludeEnd:!0,illegal:/[:\(\$"]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"namespace",end:";",illegal:/[\.']/,contains:[e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"use",end:";",contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"=>"},a,n]}}}());hljs.registerLanguage("php-template",function(){"use strict";return function(n){return{name:"PHP template",subLanguage:"xml",contains:[{begin:/<\?(php|=)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/*",end:"*/",skip:!0},{begin:'b"',end:'"',skip:!0},{begin:"b'",end:"'",skip:!0},n.inherit(n.APOS_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0}),n.inherit(n.QUOTE_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0})]}]}}}());hljs.registerLanguage("java",function(){"use strict";function e(e){return e?"string"==typeof e?e:e.source:null}function n(e){return a("(",e,")?")}function a(...n){return n.map(n=>e(n)).join("")}function s(...n){return"("+n.map(n=>e(n)).join("|")+")"}return function(e){var t="false synchronized int abstract float private char boolean var static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private module requires exports do",i={className:"meta",begin:"@[Ã�-Ê¸a-zA-Z_$][Ã�-Ê¸a-zA-Z_$0-9]*",contains:[{begin:/\(/,end:/\)/,contains:["self"]}]},r=e=>a("[",e,"]+([",e,"_]*[",e,"]+)?"),c={className:"number",variants:[{begin:`\\b(0[bB]${r("01")})[lL]?`},{begin:`\\b(0${r("0-7")})[dDfFlL]?`},{begin:a(/\b0[xX]/,s(a(r("a-fA-F0-9"),/\./,r("a-fA-F0-9")),a(r("a-fA-F0-9"),/\.?/),a(/\./,r("a-fA-F0-9"))),/([pP][+-]?(\d+))?/,/[fFdDlL]?/)},{begin:a(/\b/,s(a(/\d*\./,r("\\d")),r("\\d")),/[eE][+-]?[\d]+[dDfF]?/)},{begin:a(/\b/,r(/\d/),n(/\.?/),n(r(/\d/)),/[dDfFlL]?/)}],relevance:0};return{name:"Java",aliases:["jsp"],keywords:t,illegal:/<\/|#/,contains:[e.COMMENT("/**","*/",{relevance:0,contains:[{begin:/\w+@/,relevance:0},{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"class",beginKeywords:"class interface",end:/[{;=]/,excludeEnd:!0,keywords:"class interface",illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"new throw return else",relevance:0},{className:"function",begin:"([Ã�-Ê¸a-zA-Z_$][Ã�-Ê¸a-zA-Z_$0-9]*(<[Ã�-Ê¸a-zA-Z_$][Ã�-Ê¸a-zA-Z_$0-9]*(\\s*,\\s*[Ã�-Ê¸a-zA-Z_$][Ã�-Ê¸a-zA-Z_$0-9]*)*>)?\\s+)+"+e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:t,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"params",begin:/\(/,end:/\)/,keywords:t,relevance:0,contains:[i,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},c,i]}}}());hljs.registerLanguage("less",function(){"use strict";return function(e){var n="([\\w-]+|@{[\\w-]+})",a=[],s=[],t=function(e){return{className:"string",begin:"~?"+e+".*?"+e}},r=function(e,n,a){return{className:e,begin:n,relevance:a}},i={begin:"\\(",end:"\\)",contains:s,relevance:0};s.push(e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,t("'"),t('"'),e.CSS_NUMBER_MODE,{begin:"(url|data-uri)\\(",starts:{className:"string",end:"[\\)\\n]",excludeEnd:!0}},r("number","#[0-9A-Fa-f]+\\b"),i,r("variable","@@?[\\w-]+",10),r("variable","@{[\\w-]+}"),r("built_in","~?`[^`]*?`"),{className:"attribute",begin:"[\\w-]+\\s*:",end:":",returnBegin:!0,excludeEnd:!0},{className:"meta",begin:"!important"});var c=s.concat({begin:"{",end:"}",contains:a}),l={beginKeywords:"when",endsWithParent:!0,contains:[{beginKeywords:"and not"}].concat(s)},o={begin:n+"\\s*:",returnBegin:!0,end:"[;}]",relevance:0,contains:[{className:"attribute",begin:n,end:":",excludeEnd:!0,starts:{endsWithParent:!0,illegal:"[<=$]",relevance:0,contains:s}}]},g={className:"keyword",begin:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{end:"[;{}]",returnEnd:!0,contains:s,relevance:0}},d={className:"variable",variants:[{begin:"@[\\w-]+\\s*:",relevance:15},{begin:"@[\\w-]+"}],starts:{end:"[;}]",returnEnd:!0,contains:c}},b={variants:[{begin:"[\\.#:&\\[>]",end:"[;{}]"},{begin:n,end:"{"}],returnBegin:!0,returnEnd:!0,illegal:"[<='$\"]",relevance:0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,l,r("keyword","all\\b"),r("variable","@{[\\w-]+}"),r("selector-tag",n+"%?",0),r("selector-id","#"+n),r("selector-class","\\."+n,0),r("selector-tag","&",0),{className:"selector-attr",begin:"\\[",end:"\\]"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"\\(",end:"\\)",contains:c},{begin:"!important"}]};return a.push(e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,g,d,o,b),{name:"Less",case_insensitive:!0,illegal:"[=>'/<($\"]",contains:a}}}());hljs.registerLanguage("coffeescript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);return function(r){var t={keyword:e.concat(["then","unless","until","loop","by","when","and","or","is","isnt","not"]).filter((e=>n=>!e.includes(n))(["var","const","let","function","static"])).join(" "),literal:n.concat(["yes","no","on","off"]).join(" "),built_in:a.concat(["npm","print"]).join(" ")},i="[A-Za-z$_][0-9A-Za-z$_]*",s={className:"subst",begin:/#\{/,end:/}/,keywords:t},o=[r.BINARY_NUMBER_MODE,r.inherit(r.C_NUMBER_MODE,{starts:{end:"(\\s*/)?",relevance:0}}),{className:"string",variants:[{begin:/'''/,end:/'''/,contains:[r.BACKSLASH_ESCAPE]},{begin:/'/,end:/'/,contains:[r.BACKSLASH_ESCAPE]},{begin:/"""/,end:/"""/,contains:[r.BACKSLASH_ESCAPE,s]},{begin:/"/,end:/"/,contains:[r.BACKSLASH_ESCAPE,s]}]},{className:"regexp",variants:[{begin:"///",end:"///",contains:[s,r.HASH_COMMENT_MODE]},{begin:"//[gim]{0,3}(?=\\W)",relevance:0},{begin:/\/(?![*]).*?(?![\\]).\/[gim]{0,3}(?=\W)/}]},{begin:"@"+i},{subLanguage:"javascript",excludeBegin:!0,excludeEnd:!0,variants:[{begin:"```",end:"```"},{begin:"`",end:"`"}]}];s.contains=o;var c=r.inherit(r.TITLE_MODE,{begin:i}),l={className:"params",begin:"\\([^\\(]",returnBegin:!0,contains:[{begin:/\(/,end:/\)/,keywords:t,contains:["self"].concat(o)}]};return{name:"CoffeeScript",aliases:["coffee","cson","iced"],keywords:t,illegal:/\/*/,contains:o.concat([r.COMMENT("###","###"),r.HASH_COMMENT_MODE,{className:"function",begin:"^\\s*"+i+"\\s*=\\s*(\\(.*\\))?\\s*\\B[-=]>",end:"[-=]>",returnBegin:!0,contains:[c,l]},{begin:/[:\(,=]\s*/,relevance:0,contains:[{className:"function",begin:"(\\(.*\\))?\\s*\\B[-=]>",end:"[-=]>",returnBegin:!0,contains:[l]}]},{className:"class",beginKeywords:"class",end:"$",illegal:/[:="\[\]]/,contains:[{beginKeywords:"extends",endsWithParent:!0,illegal:/[:="\[\]]/,contains:[c]},c]},{begin:i+":",end:":",returnBegin:!0,returnEnd:!0,relevance:0}])}}}());hljs.registerLanguage("http",function(){"use strict";return function(e){var n="HTTP/[0-9\\.]+";return{name:"HTTP",aliases:["https"],illegal:"\\S",contains:[{begin:"^"+n,end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) "+n+"$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:n},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}}());hljs.registerLanguage("swift",function(){"use strict";return function(e){var i={keyword:"#available #colorLiteral #column #else #elseif #endif #file #fileLiteral #function #if #imageLiteral #line #selector #sourceLocation _ __COLUMN__ __FILE__ __FUNCTION__ __LINE__ Any as as! as? associatedtype associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false fileprivate final for func get guard if import in indirect infix
init inout internal is lazy left let mutating nil none nonmutating open operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c compactMap contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},n=e.COMMENT("/*","*/",{contains:["self"]}),t={className:"subst",begin:/\\\(/,end:"\\)",keywords:i,contains:[]},a={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:/"""/,end:/"""/},{begin:/"/,end:/"/}]},r={className:"number",begin:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",relevance:0};return t.contains=[r],{name:"Swift",keywords:i,contains:[a,e.C_LINE_COMMENT_MODE,n,{className:"type",begin:"\\b[A-Z][\\wÃ�-Ê¸']*[!?]"},{className:"type",begin:"\\b[A-Z][\\wÃ�-Ê¸']*",relevance:0},r,{className:"function",beginKeywords:"func",end:"{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][0-9A-Za-z$_]*/}),{begin:/</,end:/>/},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:i,contains:["self",r,a,e.C_BLOCK_COMMENT_MODE,{begin:":"}],illegal:/["']/}],illegal:/\[|%/},{className:"class",beginKeywords:"struct protocol class extension enum",keywords:i,end:"\\{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][\u00C0-\u02B80-9A-Za-z$_]*/})]},{className:"meta",begin:"(@discardableResult|@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@objcMembers|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain|@dynamicMemberLookup|@propertyWrapper)\\b"},{beginKeywords:"import",end:/$/,contains:[e.C_LINE_COMMENT_MODE,n]}]}}}());hljs.registerLanguage("properties",function(){"use strict";return function(e){var n="[\\t\\f]*",t="("+n+"[:=]"+n+"|[\\t\\f]+)",a="([^\\\\:= \\t\\f\\n]|\\\\.)+",s={end:t,relevance:0,starts:{className:"string",end:/$/,relevance:0,contains:[{begin:"\\\\\\n"}]}};return{name:".properties",case_insensitive:!0,illegal:/\S/,contains:[e.COMMENT("^\\s*[!#]","$"),{begin:"([^\\\\\\W:= \\t\\f\\n]|\\\\.)+"+t,returnBegin:!0,contains:[{className:"attr",begin:"([^\\\\\\W:= \\t\\f\\n]|\\\\.)+",endsParent:!0,relevance:0}],starts:s},{begin:a+t,returnBegin:!0,relevance:0,contains:[{className:"meta",begin:a,endsParent:!0,relevance:0}],starts:s},{className:"attr",relevance:0,begin:a+n+"$"}]}}}());hljs.registerLanguage("ini",function(){"use strict";function e(e){return e?"string"==typeof e?e:e.source:null}function n(...n){return n.map(n=>e(n)).join("")}return function(a){var s={className:"number",relevance:0,variants:[{begin:/([\+\-]+)?[\d]+_[\d_]+/},{begin:a.NUMBER_RE}]},i=a.COMMENT();i.variants=[{begin:/;/,end:/$/},{begin:/#/,end:/$/}];var t={className:"variable",variants:[{begin:/\$[\w\d"][\w\d_]*/},{begin:/\$\{(.*?)}/}]},r={className:"literal",begin:/\bon|off|true|false|yes|no\b/},l={className:"string",contains:[a.BACKSLASH_ESCAPE],variants:[{begin:"'''",end:"'''",relevance:10},{begin:'"""',end:'"""',relevance:10},{begin:'"',end:'"'},{begin:"'",end:"'"}]},c={begin:/\[/,end:/\]/,contains:[i,r,t,l,s,"self"],relevance:0},g="("+[/[A-Za-z0-9_-]+/,/"(\\"|[^"])*"/,/'[^']*'/].map(n=>e(n)).join("|")+")";return{name:"TOML, also INI",aliases:["toml"],case_insensitive:!0,illegal:/\S/,contains:[i,{className:"section",begin:/\[+/,end:/\]+/},{begin:n(g,"(\\s*\\.\\s*",g,")*",n("(?=",/\s*=\s*[^#\s]/,")")),className:"attr",starts:{end:/$/,contains:[i,c,r,t,l,s]}}]}}}());hljs.registerLanguage("json",function(){"use strict";return function(n){var e={literal:"true false null"},i=[n.C_LINE_COMMENT_MODE,n.C_BLOCK_COMMENT_MODE],t=[n.QUOTE_STRING_MODE,n.C_NUMBER_MODE],a={end:",",endsWithParent:!0,excludeEnd:!0,contains:t,keywords:e},l={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[n.BACKSLASH_ESCAPE],illegal:"\\n"},n.inherit(a,{begin:/:/})].concat(i),illegal:"\\S"},s={begin:"\\[",end:"\\]",contains:[n.inherit(a)],illegal:"\\S"};return t.push(l,s),i.forEach((function(n){t.push(n)})),{name:"JSON",contains:t,keywords:e,illegal:"\\S"}}}());hljs.registerLanguage("css",function(){"use strict";return function(e){var n={begin:/(?:[A-Z_\.\-]+|--[a-zA-Z0-9_-]+)\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[{className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}}]};return{name:"CSS",case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"@(page|font-face)",lexemes:"@[a-z-]+",keywords:"@page @font-face"},{begin:"@",end:"[{;]",illegal:/:/,returnBegin:!0,contains:[{className:"keyword",begin:/@\-?\w[\w]*(\-\w+)*/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,keywords:"and or not only",contains:[{begin:/[a-z-]+:/,className:"attribute"},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"[a-zA-Z-][a-zA-Z0-9_-]*",relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,n]}]}}}());hljs.registerLanguage("markdown",function(){"use strict";return function(n){const e={begin:"<",end:">",subLanguage:"xml",relevance:0},a={begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},i={className:"strong",contains:[],variants:[{begin:/_{2}/,end:/_{2}/},{begin:/*{2}/,end:/*{2}/}]},s={className:"emphasis",contains:[],variants:[{begin:/*(?!*)/,end:/*/},{begin:/_(?!_)/,end:/_/,relevance:0}]};i.contains.push(s),s.contains.push(i);var c=[e,a];return i.contains=i.contains.concat(c),s.contains=s.contains.concat(c),{name:"Markdown",aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$",contains:c=c.concat(i,s)},{begin:"(?=^.+?\\n[=-]{2,}$)",contains:[{begin:"^[=-]*$"},{begin:"^",end:"\\n",contains:c}]}]},e,{className:"bullet",begin:"^[\t]*([*+-]|(\\d+\\.))(?=\\s+)",end:"\\s+",excludeEnd:!0},i,s,{className:"quote",begin:"^>\\s+",contains:c,end:"$"},{className:"code",variants:[{begin:"(`{3,})(.|\\n)*?\\1`*[]*"},{begin:"(~{3,})(.|\\n)*?\\1~*[]*"},{begin:"```",end:"```+[]*$"},{begin:"~~~",end:"~~~+[]*$"},{begin:"`.+?`"},{begin:"(?=^({4}|\\t))",contains:[{begin:"^({4}|\\t)",end:"(\\n)$"}],relevance:0}]},{begin:"^[-*]{3,}",end:"$"},a,{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}}());hljs.registerLanguage("objectivec",function(){"use strict";return function(e){var n=/[a-zA-Z@][a-zA-Z0-9_]*/,_={$pattern:n,keyword:"@interface @class @protocol @implementation"};return{name:"Objective-C",aliases:["mm","objc","obj-c"],keywords:{$pattern:n,keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required @encode @package @import @defs @compatibility_alias __bridge __bridge_transfer __bridge_retained __bridge_retain __covariant __contravariant __kindof _Nonnull _Nullable _Null_unspecified __FUNCTION__ __PRETTY_FUNCTION__ __attribute__ getter setter retain unsafe_unretained nonnull nullable null_unspecified null_resettable class instancetype NS_DESIGNATED_INITIALIZER NS_UNAVAILABLE NS_REQUIRES_SUPER NS_RETURNS_INNER_POINTER NS_INLINE NS_AVAILABLE NS_DEPRECATED NS_ENUM NS_OPTIONS NS_SWIFT_UNAVAILABLE NS_ASSUME_NONNULL_BEGIN NS_ASSUME_NONNULL_END NS_REFINED_FOR_SWIFT NS_SWIFT_NAME NS_SWIFT_NOTHROW NS_DURING NS_HANDLER NS_ENDHANDLER NS_VALUERETURN
NS_VOIDRETURN",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},illegal:"</",contains:[{className:"built_in",begin:"\\b(AV|CA|CF|CG|CI|CL|CM|CN|CT|MK|MP|MTK|MTL|NS|SCN|SK|UI|WK|XC)\\w+"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.C_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{className:"string",variants:[{begin:'@"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]}]},{className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(e.QUOTE_STRING_MODE,{className:"meta-string"}),{className:"meta-string",begin:/<.*?>/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"class",begin:"("+_.keyword.split(" ").join("|")+")\\b",end:"({|$)",excludeEnd:!0,keywords:_,contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"\\."+e.UNDERSCORE_IDENT_RE,relevance:0}]}}}());

OEBPS/js/highlightjs-line-numbers.js
// jshint multistr:true

(function (w, d) {
 'use strict';

 var TABLE_NAME = 'hljs-ln',
 LINE_NAME = 'hljs-ln-line',
 CODE_BLOCK_NAME = 'hljs-ln-code',
 NUMBERS_BLOCK_NAME = 'hljs-ln-numbers',
 NUMBER_LINE_NAME = 'hljs-ln-n',
 DATA_ATTR_NAME = 'data-line-number',
 BREAK_LINE_REGEXP = /\r\n|\r|\n/g;

 if (w.hljs) {
 w.hljs.initLineNumbersOnLoad = initLineNumbersOnLoad;
 w.hljs.lineNumbersBlock = lineNumbersBlock;
 w.hljs.lineNumbersValue = lineNumbersValue;

 addStyles();
 } else {
 w.console.error('highlight.js not detected!');
 }

 function isHljsLnCodeDescendant(domElt) {
 var curElt = domElt;
 while (curElt) {
 if (curElt.className && curElt.className.indexOf('hljs-ln-code') !== -1) {
 return true;
 }
 curElt = curElt.parentNode;
 }
 return false;
 }

 function getHljsLnTable(hljsLnDomElt) {
 var curElt = hljsLnDomElt;
 while (curElt.nodeName !== 'TABLE') {
 curElt = curElt.parentNode;
 }
 return curElt;
 }

 // Function to workaround a copy issue with Microsoft Edge.
 // Due to hljs-ln wrapping the lines of code inside a <table> element,
 // itself wrapped inside a <pre> element, window.getSelection().toString()
 // does not contain any line breaks. So we need to get them back using the
 // rendered code in the DOM as reference.
 function edgeGetSelectedCodeLines(selection) {
 // current selected text without line breaks
 var selectionText = selection.toString();

 // get the <td> element wrapping the first line of selected code
 var tdAnchor = selection.anchorNode;
 while (tdAnchor.nodeName !== 'TD') {
 tdAnchor = tdAnchor.parentNode;
 }

 // get the <td> element wrapping the last line of selected code
 var tdFocus = selection.focusNode;
 while (tdFocus.nodeName !== 'TD') {
 tdFocus = tdFocus.parentNode;
 }

 // extract line numbers
 var firstLineNumber = parseInt(tdAnchor.dataset.lineNumber);
 var lastLineNumber = parseInt(tdFocus.dataset.lineNumber);

 // multi-lines copied case
 if (firstLineNumber != lastLineNumber) {

 var firstLineText = tdAnchor.textContent;
 var lastLineText = tdFocus.textContent;

 // if the selection was made backward, swap values
 if (firstLineNumber > lastLineNumber) {
 var tmp = firstLineNumber;
 firstLineNumber = lastLineNumber;
 lastLineNumber = tmp;
 tmp = firstLineText;
 firstLineText = lastLineText;
 lastLineText = tmp;
 }

 // discard not copied characters in first line
 while (selectionText.indexOf(firstLineText) !== 0) {
 firstLineText = firstLineText.slice(1);
 }

 // discard not copied characters in last line
 while (selectionText.lastIndexOf(lastLineText) === -1) {
 lastLineText = lastLineText.slice(0, -1);
 }

 // reconstruct and return the real copied text
 var selectedText = firstLineText;
 var hljsLnTable = getHljsLnTable(tdAnchor);
 for (var i = firstLineNumber + 1 ; i < lastLineNumber ; ++i) {
 var codeLineSel = format('.{0}[{1}="{2}"]', [CODE_BLOCK_NAME, DATA_ATTR_NAME, i]);
 var codeLineElt = hljsLnTable.querySelector(codeLineSel);
 selectedText += '\n' + codeLineElt.textContent;
 }
 selectedText += '\n' + lastLineText;
 return selectedText;
 // single copied line case
 } else {
 return selectionText;
 }
 }

 // ensure consistent code copy/paste behavior across all browsers
 // (see https://github.com/wcoder/highlightjs-line-numbers.js/issues/51)
 document.addEventListener('copy', function(e) {
 // get current selection
 var selection = window.getSelection();
 // override behavior when one wants to copy line of codes
 if (isHljsLnCodeDescendant(selection.anchorNode)) {
 var selectionText;
 // workaround an issue with Microsoft Edge as copied line breaks
 // are removed otherwise from the selection string
 if (window.navigator.userAgent.indexOf('Edge') !== -1) {
 selectionText = edgeGetSelectedCodeLines(selection);
 } else {
 // other browsers can directly use the selection string
 selectionText = selection.toString();
 }
 e.clipboardData.setData('text/plain', selectionText);
 e.preventDefault();
 }
 });

 function addStyles () {
 var css = d.createElement('style');
 css.type = 'text/css';
 css.innerHTML = format(
 '.{0}{border-collapse:collapse}' +
 '.{0} td{padding:0}' +
 '.{1}:before{content:attr({2})}',
 [
 TABLE_NAME,
 NUMBER_LINE_NAME,
 DATA_ATTR_NAME
]);
 d.getElementsByTagName('head')[0].appendChild(css);
 }

 function initLineNumbersOnLoad (options) {
 if (d.readyState === 'interactive' || d.readyState === 'complete') {
 documentReady(options);
 } else {
 w.addEventListener('DOMContentLoaded', function () {
 documentReady(options);
 });
 }
 }

 function documentReady (options) {
 try {
 var blocks = d.querySelectorAll('code.hljs,code.nohighlight');

 for (var i in blocks) {
 if (blocks.hasOwnProperty(i)) {
 if (!isPluginDisabledForBlock(blocks[i])) {
 lineNumbersBlock(blocks[i], options);
 }
 }
 }
 } catch (e) {
 w.console.error('LineNumbers error: ', e);
 }
 }

 function isPluginDisabledForBlock(element) {
 return element.classList.contains('nohljsln');
 }

 function lineNumbersBlock (element, options) {
 if (typeof element !== 'object') return;

 async(function () {
 element.innerHTML = lineNumbersInternal(element, options);
 });
 }

 function lineNumbersValue (value, options) {
 if (typeof value !== 'string') return;

 var element = document.createElement('code')
 element.innerHTML = value

 return lineNumbersInternal(element, options);
 }

 function lineNumbersInternal (element, options) {

 var internalOptions = mapOptions(element, options);

 duplicateMultilineNodes(element);

 return addLineNumbersBlockFor(element.innerHTML, internalOptions);
 }

 function addLineNumbersBlockFor (inputHtml, options) {
 var lines = getLines(inputHtml);

 // if last line contains only carriage return remove it
 if (lines[lines.length-1].trim() === '') {
 lines.pop();
 }

 if (lines.length > 1 || options.singleLine) {
 var html = '';

 for (var i = 0, l = lines.length; i < l; i++) {
 html += format(
 '<tr>' +
 '<td class="{0} {1}" {3}="{5}">' +
 '<div class="{2}" {3}="{5}"></div>' +
 '</td>' +
 '<td class="{0} {4}" {3}="{5}">' +
 '{6}' +
 '</td>' +
 '</tr>',
 [
 LINE_NAME,
 NUMBERS_BLOCK_NAME,
 NUMBER_LINE_NAME,
 DATA_ATTR_NAME,
 CODE_BLOCK_NAME,
 i + options.startFrom,
 lines[i].length > 0 ? lines[i] : ' '
]);
 }

 return format('<table class="{0}">{1}</table>', [TABLE_NAME, html]);
 }

 return inputHtml;
 }

 /**
 * @param {HTMLElement} element Code block.
 * @param {Object} options External API options.
 * @returns {Object} Internal API options.
 */
 function mapOptions (element, options) {
 options = options || {};
 return {
 singleLine: getSingleLineOption(options),
 startFrom: getStartFromOption(element, options)
 };
 }

 function getSingleLineOption (options) {
 var defaultValue = false;
 if (!!options.singleLine) {
 return options.singleLine;
 }
 return defaultValue;
 }

 function getStartFromOption (element, options) {
 var defaultValue = 1;
 var startFrom = defaultValue;

 if (isFinite(options.startFrom)) {
 startFrom = options.startFrom;
 }

 // can be overridden because local option is priority
 var value = getAttribute(element, 'data-ln-start-from');
 if (value !== null) {
 startFrom = toNumber(value, defaultValue);
 }

 return startFrom;
 }

 /**
 * Recursive method for fix multi-line elements implementation in highlight.js
 * Doing deep passage on child nodes.
 * @param {HTMLElement} element
 */
 function duplicateMultilineNodes (element) {
 var nodes = element.childNodes;
 for (var node in nodes) {
 if (nodes.hasOwnProperty(node)) {
 var child = nodes[node];
 if (getLinesCount(child.textContent) > 0) {
 if (child.childNodes.length > 0) {
 duplicateMultilineNodes(child);
 } else {
 duplicateMultilineNode(child.parentNode);
 }
 }
 }
 }
 }

 /**
 * Method for fix multi-line elements implementation in highlight.js
 * @param {HTMLElement} element
 */
 function duplicateMultilineNode (element) {
 var className = element.className;

 if (! /hljs-/.test(className)) return;

 var lines = getLines(element.innerHTML);

 for (var i = 0, result = ''; i < lines.length; i++) {
 var lineText = lines[i].length > 0 ? lines[i] : ' ';
 result += format('{1}\n', [className, lineText]);
 }

 element.innerHTML = result.trim();
 }

 function getLines (text) {
 if (text.length === 0) return [];
 return text.split(BREAK_LINE_REGEXP);
 }

 function getLinesCount (text) {
 return (text.trim().match(BREAK_LINE_REGEXP) || []).length;
 }

 ///
 /// HELPERS
 ///

 function async (func) {
 w.setTimeout(func, 0);
 }

 /**
 * {@link https://wcoder.github.io/notes/string-format-for-string-formating-in-javascript}
 * @param {string} format
 * @param {array} args
 */
 function format (format, args) {
 return format.replace(/\{(\d+)\}/g, function(m, n){
 return args[n] !== undefined ? args[n] : m;
 });
 }

 /**
 * @param {HTMLElement} element Code block.
 * @param {String} attrName Attribute name.
 * @returns {String} Attribute value or empty.
 */
 function getAttribute (element, attrName) {
 return element.hasAttribute(attrName) ? element.getAttribute(attrName) : null;
 }

 /**
 * @param {String} str Source string.
 * @param {Number} fallback Fallback value.
 * @returns Parsed number or fallback value.
 */
 function toNumber (str, fallback) {
 if (!str) return fallback;
 var number = Number(str);
 return isFinite(number) ? number : fallback;
 }

}(window, document));

OEBPS/images/475f4584-cda0-4f20-a323-02f4bb203649_ASSET_Fig02-001.png
Design the
program

Write the
code

Correct
syntax errors

Test the
program

Correct
logic errors

4

OEBPS/images/0cb6575a-19a1-45b2-ab76-67d1ef899374_ASSET_Fig01-011.png

OEBPS/images/Figure-1-20.jpg
B IDLE Shell 3.9.

File Edit Shell Debug Options Window Help

Python 3.9.5 (tags/v3.9.5:0a7dcbkd, May 3 2021, 17:27:52) [MSC v.1928 64 A
bit (AMD€4)] on win32

Type "help”, "copyright”, "credits" or "license ()" for more information.
>>> |

v

Ln:3 Col:4

OEBPS/images/7816acfd-f18b-42ba-b9c3-0f51788f0d31_ASSET_Fig01-015.png
The program is copied 10100007 10111000 10011110

from secondary storage Th(iec Prl; er::;:\i]rl\es
to main memory. maiE mgemory

Main memory
(RAM)

Disk drive CPU

OEBPS/images/c5fd31e0-28e0-4c29-9437-5d19970d83e1_ASSET_Fig01-008.png
55555555
22222222

=

OEBPS/images/2022e632-9034-40e1-9cfa-19c2e0d3d5d7_ASSET_Fig01-007.png
. o8 o . (]
QUOOOOOION YUYV
e oo . e e eeee

The number 77 stored in a byte. The letter A stored in a byte.

OEBPS/images/dc625966-3321-478c-9674-c6e44415d41c_ASSET_Fig01-002.png
Feng Yu/Shutterstock

Nikita Rogul/
Shutterstock

-

—
&5
Iko/Shutterstock

Chiyacat/
Shutterstock

e
o

‘—»

Input
Devices

Elkostas/Shutterstock

ﬂ

Tkemot/Shutterstock

Central Processing
Unit

Shutterstock

Aquila/

Peter Guess/
Shutterstock

Main Memory
(RAM)

Kastianz/Shutterstock

A Secondary

T]
B
5
3
! . 2
)
Output =
Devices
.

-

Jocic/Shutterstock

StockPhotosArt/Shutterstock

Y Storage Devices

Andre Nitsievsky/Shutterstock.

Shutterstock

OEBPS/images/4ff5f813-8d0f-424a-905b-9a86859aa0c2_ASSET_PearsonLogo_Horizontal_Blk_2-1.png

OEBPS/images/ac8e4e34-bb18-4ccd-aedd-7f8afd71eb93_ASSET_Fig01-004.jpg

OEBPS/images/1227fd14-98de-4def-8014-597b8ecb392e_ASSET_Fig01-012.png
=)

Position
values

OEBPS/images/b61c2a19-d29f-4756-9126-0dc9360da401_ASSET_Fig01-014.png
01017 -
oo 70,
AN %
1194 mef
)

OEBPS/images/186b6428-947d-4f3a-9e42-b96f98ccab2e_ASSET_Fig01-009.png

OEBPS/images/c2afca6e-0e93-48b6-8cb1-f33c39620e8d_ASSET_Fig01-005.jpg

OEBPS/images/4fac254d-566e-4495-92f5-899c19c506b7_ASSET_Fig01-016.png
10100001) ,
Fetch the next instruction

in the program.

10100001

10111000 Decode the instruction
10011110 to determine which
00011010 operation to perform.
11011100

and so forth...
Execute the instruction

(perform the operation).

Main memory
(RAM)

OEBPS/images/5e972a61-b4e8-4d85-9a61-f2bc2d8f4d8c_ASSET_Fig01-001.png
Fe Home mam Desgn lyoa Referces Maing: Revew View Hp Aqovst

Govens
S R R RREY ERRYERER EERRREEE ERERERRS SEERERT)

14 How a Program Works

Concept: Acomputer's U con only understandintructions that ore witen in machine
anguoge.Secaus people fiod it verydiffiut to writ entie progroms n
machinelanguoge, othr progromming languoges hove ben insentec.

Eorlr, e stated that the CPU s the mst important component I a computer because s
the prt of the computer thatruns programs. Sometimes the CPU s called the “computer’s
rai,” andis described as being “smart.” Akhough these are commen metaphors, 0u should
~ understnd that the CPU £ not brsin, and s not smar, The CPU 1 an slectronc device that

s designed o do secific hings. I particulr, the CPU i designed to perform operations such
a5 the folowing:

Reading a piece of dta from main memory
Adding o numbers

Subtractng one number from ancther number

Moliping two pumbers

Oividing one number by another number

Moving a picce of data from one memrylocation to anather
Determining whether one value s equsl o another value
And o orth

s you can seefromthis s, the CPU performs simple operations o pieces of data, The CPU.

L dos nothing o it own, howewer. 1t hys o be told what t 6o, and that’s the purpose of a
program. A program s nothing mre than s of instructions that cause the CPUto peform
opertions.

Toetez owoss [} s BIEI® - 0

I — v » 3
LEr« BIu-wx X A s |G m.[:fww{l:] .Ell
53| o Do lroree e e [s e |

ikt

s

®

&
2 T

i
i B4 i3
Siea Gon e

OEBPS/images/e0a1f946-08ce-4524-a606-0f4bf7d29511_ASSET_Fig01-019.png
High-level language

program

Machine language

print ("Hello
Earthling")

and so forth.

CPU
instruction
—P»| Interpreter —P» 10100001 —
L ULLD)

The interpreter translates each high-level instruction to
its equivalent machine language instructions then
immediately executes them.

This process is repeated for each high-level instruction.

OEBPS/images/edb05e0b-f64c-4062-ba54-c0477a21af15_ASSET_Fig01-003.jpg

OEBPS/images/5b029612-5a28-4aab-89ab-387702959db6_ASSET_Gaddis_SOwP_6e_GE_FrontCover.png
GLOBAL /‘”\
EDITION y
—

Starting Ou

SIXTH EDITION

‘ Tony Gaddis

OEBPS/images/47a425d3-61fe-4a68-bafb-70e7a7f98d34_ASSET_Fig01-010.png
1001

1

=

4
8
16

128
1+4+8+16+ 128 = 157

OEBPS/images/a429b2ee-40cd-4a84-9fda-1dd3a9a04237_ASSET_TonyGaddis.png

OEBPS/images/4d9d036a-f99c-464c-98d5-e696d679e270_ASSET_Fig01-013.png
o ©
A —65— 00000000
0100101010

