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The first edition of this book appeared in 1992; this is the sixth edition and there have been a few changes, mostly a few corrections and additions, but also more substantive changes to Chapter 13 Data Handling and Probability Theory. Echoing the words of my predecessor Professor Glyn James, the range of material covered in this sixth edition is regarded as appropriate for a first-level core studies course in mathematics for undergraduate courses in all engineering disciplines. Whilst designed primarily for use by engineering students it is believed that the book is also highly suitable for students of the physical sciences and applied mathematics. Additional material appropriate for second-level undergraduate core studies, or possibly elective studies for some engineering disciplines, is contained in the companion text Advanced Modern Engineering Mathematics.

The objective of the authoring team remains that of achieving a balance between the development of understanding and the mastering of solution techniques, with the emphasis being on the development of the student’s ability to use mathematics with understanding to solve engineering problems. Consequently, the book is not a collection of recipes and techniques designed to teach students to solve routine exercises, nor is mathematical rigour introduced for its own sake. To achieve the desired objective the text contains:


	
•Worked examples
Approximately 500 worked examples, many of which incorporate mathematical models and are designed both to provide relevance and to reinforce the role of mathematics in various branches of engineering. In response to feedback from users, additional worked examples have been incorporated within this revised edition.



	
•Applications
To provide further exposure to the use of mathematical models in engineering practice, each chapter contains sections on engineering applications. These sections form an ideal framework for individual, or group, case study assignments leading to a written report and/or oral presentation, thereby helping to develop the skills of mathematical modelling necessary to prepare for the more open-ended modelling exercises at a later stage of the course.



	
•Exercises
There are numerous exercise sections throughout the text, and at the end of each chapter there is a comprehensive set of review exercises. While many of the exercise problems are designed to develop skills in mathematical techniques, others are designed to develop understanding and to encourage learning by doing, and some are of an open-ended nature. This book contains over 1200 exercises and answers to all the questions are given. It is hoped that this provision, together with the large number of worked examples and style of presentation, also make the book suitable for private or directed study. Again in response to feedback from users, the frequency of exercise sections has been increased and additional questions have been added to many of the sections.



	
•Numerical methods
Recognizing the increasing use of numerical methods in engineering practice, which often complement the use of analytical methods in analysis and design and are of ultimate relevance when solving complex engineering problems, there is wide agreement that they should be integrated within the mathematics curriculum. Consequently the treatment of numerical methods is integrated within the analytical work throughout the book.





The position of software use is an important aspect of engineering education. The decision has been taken to use mainly MATLAB but also, in later chapters, MAPLE. Students are encouraged to make intelligent use of software, and where appropriate codes are included, but there is a health warning. The pace of technology shows little signs of lessening, and so in the space of six years, the likely time lapse before a new edition of this text, it is probable that software will continue to be updated, probably annually. There is therefore a real risk that much coding, though correct and working at the time of publication, could be broken by these updates. Therefore, in this edition the decision has been made not to overemphasize specific code but to direct students to the Companion Website or to general principles instead. The software packages, particularly MAPLE, have become easier to use without the need for programming skills. Much is menu driven these days. Here is more from Glyn on the subject that is still true:

Students are strongly encouraged to use one of these packages to check the answers to the examples and exercises. It is stressed that the MATLAB (and a few MAPLE) inserts are not intended to be a first introduction of the package to students; it is anticipated that they will receive an introductory course elsewhere and will be made aware of the excellent ‘help’ facility available. The purpose of incorporating the inserts is not only to improve efficiency in the use of the package but also to provide a facility to help develop a better understanding of the related mathematics. Whilst use of such packages takes the tedium out of arithmetic and algebraic manipulations it is important that they are used to enhance understanding and not to avoid it. It is recognized that not all users of the text will have access to either MATLAB or MAPLE, and consequently all the inserts are highlighted and can be ‘omitted’ without loss of continuity in developing the subject content.

Throughout the text two icons are used:


	
•An open screen [image: ]  indicates that use of a software package would be useful (for example, for checking solutions) but not essential.

	
•A closed screen [image: ]  indicates that the use of a software package is essential or highly desirable.



Specific changes in this sixth edition are an improvement in many of the diagrams, taking advantage of present-day software, and modernization of the examples and language. Also, Chapter 13 Data Handling and Probability Theory has been significantly modernized by interfacing the presentation with the very powerful software package R. It is free; simply search for ‘R Software’ and download it. I have been much aided in getting this edition ready for publication by my hardworking colleagues Matthew, John and Yinghui who now comprise the team.

Feedback from users of the previous edition on the subject content has been favourable, and consequently no new chapters have been introduced. However, in response to the feedback, chapters have been reviewed and amended/updated accordingly. Whilst subject content at this level has not changed much over the years the mode of delivery is being driven by developments in computer technology. Consequently there has been a shift towards online teaching and learning, coupled with student self-study programmes. In support of such programmes, worked examples and exercise sections are seen by many as the backbone of the text. Consequently in this new edition emphasis is given to strengthening the ‘Worked Examples’ throughout the text and increasing the frequency and number of questions in the ‘Exercise Sections’. This has involved the restructuring, sometimes significantly, of material within individual chapters.

A comprehensive Solutions Manual is obtainable free of charge to lecturers using this textbook. It will be available for download online at go.pearson.com/uk/he/resources.

Also available online is a set of ‘Refresher Units’ covering topics students should have encountered at school but may not have used for some time.

This text is also paired with a MyLab™ - a teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. MyLab Math for this textbook has over 1150 questions to assign to your students, including exercises requiring different types of mathematics applications for a variety of industry types. Note that students require a course ID and an access card in order to use MyLab Math (see inside front cover for more information or contact your Pearson account manager at the link go.pearson.com/findarep).
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1.1Introduction

Mathematics plays an important role in our lives. It is used in everyday activities from buying food to organizing maintenance schedules for aircraft. Through applications developed in various cultural and historical contexts, mathematics has been one of the decisive factors in shaping the modern world. It continues to grow and to find new uses, particularly in engineering and technology, from electronic circuit design to machine learning.

Mathematics provides a powerful, concise and unambiguous way of organizing and communicating information. It is a means by which aspects of the physical universe can be explained and predicted. It is a problem-solving activity supported by a body of knowledge. Mathematics consists of facts, concepts, skills and thinking processes – aspects that are closely interrelated. It is a hierarchical subject in that new ideas and skills are developed from existing ones. This sometimes makes it a difficult subject for learners who, at every stage of their mathematical development, need to have ready recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most students will already understand and we shall extend them into further developments in mathematics. There are four key areas of which students will already have considerable knowledge.


	
•numbers

	
•algebra

	
•geometry

	
•functions



These areas are vital to making progress in engineering mathematics (indeed, they will solve many important problems in engineering). Here we will aim to consolidate that knowledge, to make it more precise and to develop it. In this first chapter we will deal with the first three topics; functions are considered next (see Chapter 2).



1.2Number and arithmetic

1.2.1Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of knowledge. The most ancient mathematical skill is counting, using, in the first instance, the natural numbers and later the integers. The term natural numbers commonly refers to the set ℕ = {1, 2, 3, ...}, and the term integers to the set ℤ = {0, 1, −1, 2, −2, 3, −3, ...}. The integers can be represented as equally spaced points on a line called the number line as shown in Figure 1.1. In a computer the integers can be stored exactly. The set of all points (not just those representing integers) on the number line represents the real numbers (so named to distinguish them from the complex numbers, which are discussed in Chapter 3). The set of real numbers is denoted by ℝ. The general real number is usually denoted by the letter x and we write ‘x in ℝ’, meaning x is a real number. A real number that can be written as the ratio of two integers, like [image: ] or −[image: ], is called a rational number. Other numbers, like √2 and π, that cannot be expressed in that way are called irrational numbers. In a computer the real numbers can be stored only to a limited number of figures. This is a basic difference between the ways in which computers treat integers and real numbers, and is the reason why the computer languages commonly used by engineers distinguish between integer values and variables on the one hand and real number values and variables on the other.


[image: ]

Figure 1.1 The number line.


1.2.2Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1,2, 3, 4, 5, 6, 7, 8, 9. These ten symbols are sufficient to represent all numbers if a position notation is adopted. For whole numbers this means that, starting from the right-hand end of the number, the least significant end, the figures represent the number of units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-five is represented by 1365, and two hundred and nine is represented by 209. Notice the role of the 0 in the latter example, acting as a position keeper. The use of a decimal point makes it possible to represent fractions as well as whole numbers. This system uses ten symbols. The number system is said to be ‘to base ten’ and is called the decimal system. Other bases are possible: for example, the Babylonians used a number system to base sixty, a fact that still influences our measurement of time. In some societies a number system evolved with more than one base, a survival of which can be seen in imperial measures (inches, feet, yards, …). For some applications it is more convenient to use a base other than ten. Early electronic computers used binary numbers (to base two); modern computers use hexadecimal numbers (to base sixteen). For elementary (pen-and-paper) arithmetic a representation to base twelve would be more convenient than the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6) than ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units (100), tens (101), hundreds (102) and so on, while those to the right of the decimal point represent tenths (10−1), hundredths (10−2) and so on. Thus, for example,

[image: ]

so

[image: ]

In other number bases the pattern is the same: in base b the position values are b0, b1, b2, … and b−1, b−2, … . Thus in binary (base two) the position values are units, twos, fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal (base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so on, and sixteenths, two hundred and fifty-sixths and so on.



Example 1.1



Write (a) the binary number 10111012 as a decimal number and (b) the decimal number 11510 as a binary number.

Solution


	
(a)[image: ]


	
(b)We achieve the conversion to binary by repeated division by 2. Thus
[image: ]





so that

[image: ]


Example 1.2



Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five, (c) five and three-quarters and (d) one-third in


	(i)decimal form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

	(ii)binary form using the figures 0, 1;

	
(iii)duodecimal (base twelve) form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Δ, ε.



Solution


	
(a)two hundred and one
[image: ]



	
(b)two hundred and seventy-five
[image: ]



	
(c)five and three-quarters
[image: ]



	
(d)one-third
[image: ]








1.2.3Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are performed subject to the Fundamental Rules of Arithmetic. For any three numbers a, b and c:


	(a1)the commutative law of addition
[image: ]



	(a2)the commutative law of multiplication
[image: ]



	(b1)the associative law of addition
[image: ]



	(b2)the associative law of multiplication
[image: ]



	(c1)the distributive law of multiplication over addition and subtraction
[image: ]



	(c2)the distributive law of division over addition and subtraction
[image: ]





Here the brackets indicate which operation is performed first. These operations are called binary operations because they associate with every two members of the set of real numbers a unique third member; for example,

[image: ]


Example 1.3



Find the value of (100 + 20 + 3) × 456.

Solution

Using the distributive law we have

[image: ]

Here 100 × 456 has been evaluated as

[image: ]

and similarly 20 × 456 and 3 × 456.

This, of course, is normally set out in the traditional school arithmetic way:

[image: ]


Example 1.4



Rewrite (a + b) × (c + d) as the sum of products.

Solution

Using the distributive law we have

[image: ]

applying the commutative laws several times.



A further operation used with real numbers is that of powering. For example, a × a is written as a2, and a × a × a is written as a3. In general the product of n a’s where n is a positive integer is written as an. (Here the n is called the index or exponent.) Operations with powering also obey simple rules:

[image: ]

From rule (1.1b) it follows, by setting n = m and a ≠ 0, that a0 = 1. It is also convention to take 00 = 1. The process of powering can be extended to include the fractional powers like a1/2. Using rule (1.1c),

[image: ]

and we see that

[image: ]

the nth root of a. Also, we can define a−m using rule (1.1b) with n = 0, giving

[image: ]

Thus a−m is the reciprocal of am. In contrast with the binary operations +, ×, − and ÷, which operate on two numbers, the powering operation ( )r operates on just one element and is consequently called a unary operation. Notice that the fractional power

[image: ]

is the nth root of am. If n is an even integer, then am/n is not defined when a is negative. When n√a is an irrational number then such a root is called a surd.

Numbers like √2 were described by the Greeks as a-logos, without a ratio number. An Arabic translator took the alternative meaning ‘without a word’ and used the Arabic word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated from Arabic to Latin in the mid-twelfth century.


Example 1.5



Find the values of


	(a)271/3


	(b)(−8)2/3


	(c)16−3/2


	(d)(−2)−2


	(e)(−1/8)−2/3


	(f)(9)−1/2





Solution


	
(a)[image: ]


	
(b)[image: ]


	
(c)[image: ]


	
(d)[image: ]


	
(e)[image: ]


	
(f)[image: ]





Example 1.6



Express (a) in terms of √2 and simplify (b) to (f).



	(a)√18 + √32 — √50

	(b)6/√2

	(c)(1 – √3)(1 + √3)

	(d)[image: ]


	(e)(1 + √6)(1 – √6)

	(f)[image: ]




Solution


	
(a)[image: ]
Thus √18 + √32 − √50 = 2√2.






	
(b)6/√2 = 3 × 2/√2
Since 2 = √2 × √2, we have 6/√2 = 3√2.



	
(c)(1 − √3)(1 + √3) = 1 + √3 − √3 − 3 = −2

	
(d)Using the result of part (c), [image: ] can be simplified by multiplying ‘top and bottom’ by 1 + √3 (notice the sign change in front of the √). Thus
[image: ]



	
(e)(1 + √6)(1 − √6) = 1 − √6 + √6 − 6 = −5

	
(f)Using the same technique as in part (d) we have
[image: ]

This process of expressing the irrational number so that all of the surds are in the numerator is called rationalization.








When evaluating arithmetical expressions the following rules of precedence are observed:


	
•the powering operation ( )r is performed first

	
•then multiplication × and/or division ÷

	
•then addition + and/or subtraction −



When two operators of equal precedence are adjacent in an expression the left-hand operation is performed first. For example,

[image: ]

and

[image: ]

The precedence rules are overridden by brackets; thus

[image: ]

and

[image: ]

This order of precedence is commonly referred to as BODMAS/BIDMAS (meaning: brackets, order/index, multiplication, addition, subtraction).


Example 1.7



Evaluate 7 − 5 × 3 ÷ 22.

Solution

Following the rules of precedence, we have

[image: ]






1.2.4 Exercises




	
1Find the decimal equivalent of 110110.1012.

	
2Find the binary and octal (base eight) equivalents of the decimal number 16 321. Obtain a simple rule that relates these two representations of the number, and hence write down the octal equivalent of 10111001011012.

	
3Find the binary and octal equivalents of the decimal number 30.6. Does the rule obtained in Question 2 still apply?

	
4Use binary arithmetic to evaluate

	(a)100011.0112 + 1011.0012


	(b)111.100112 × 10.1112






	
5Simplify the following expressions, giving the answers with positive indices and without brackets:

	(a)23 × 2−4


	(b)23 ÷ 2−4


	(c)(23)−4


	(d)31/3 × 35/3


	(e)(36)−1/2


	(f)163/4






	
6The expression 7 − 2 × 32 + 8 may be evaluated using the usual implicit rules of precedence. It could be rewritten as ((7 − (2 × (32))) + 8) using brackets to make the precedence explicit. Similarly rewrite the following expressions in fully bracketed form:

	(a)21 + 4 × 3 ÷ 2

	(b)17 − 62+3


	(c)4 × 23 − 7 ÷ 6 × 2

	(d)2 × 3 − 6 ÷ 4 + 32−5






	
7Express the following in the form x + y√2 with x and y rational numbers:

	(a)(7 + 5√2)3


	(b)(2 + √2)4


	(c)3√(7 + 5√2)

	(d)[image: ]






	
8Show that
[image: ]

Hence express the following numbers in the form x + y√n where x and y are rational numbers and n is an integer:


	(a)[image: ]


	(b)[image: ]


	(c)[image: ]


	(d)[image: ]






	
9Find the difference between 2 and the squares of
[image: ]


	(a)Verify that successive terms of the sequence stand in relation to each other as m/n does to (m + 2n)/(m + n).

	(b)Verify that if m/n is a good approximation to √2 then (m + 2n)/(m + n) is a better one, and that the errors in the two cases are in opposite directions.

	(c)Find the next three terms of the above sequence.












1.2.5Inequalities

The number line (Figure 1.1) makes explicit a further property of the real numbers – that of ordering. This enables us to make statements like ‘seven is greater than two’ and ‘five is less than six’. We represent this using the comparison symbols

[image: ]

It also makes obvious two other comparators:

[image: ]

These comparators obey simple rules when used in conjunction with the arithmetical operations. For any four numbers a, b, c and d:

[image: ]


Example 1.8



Show, without using a calculator, that √2 + √3 > 2(4√6).

Solution

By squaring we have that

[image: ]

Also

[image: ]

implying that 5 > 2√6. Thus

[image: ]

and, since √2 + √3 is a positive number, it follows that

[image: ]




1.2.6Modulus and intervals

The size of a real number x is called its modulus (or absolute value) and is denoted by |x| (or sometimes by mod(x)). Thus

[image: ]

where the comparator ⩾ indicates ‘greater than or equal to’. (Likewise ⩽ indicates ‘less than or equal to’.)

Geometrically |x| is the distance of the point representing x on the number line from the point representing zero. Similarly |x − a| is the distance of the point representing x on the number line from that representing a.

The set of numbers between two distinct numbers, a and b say, defines an open interval on the real line. This is the set {x:a < x < b, x in ℝ} and is usually denoted by (a, b). (Set notation will be fully described later (see Chapter 6); here {x:P} denotes the set of all x that have property P.) Here the double-sided inequality means that x is greater than a and less than b; that is, the inequalities a < x and x < b apply simultaneously. An interval that includes the end points is called a closed interval, denoted by [a, b], with

[image: ]

Note that the distance between two numbers a and b might be either a − b or b − a depending on which was the larger. An immediate consequence of this is that

[image: ]

since a is the same distance from b as b is from a.


Example 1.9



Find the values of x so that

[image: ]

Solution

|x − 4.3|= 5.8 means that the distance between the real numbers x and 4.3 is 5.8 units, but does not tell us whether x > 4.3 or whether x < 4.3. The situation is illustrated in Figure 1.2, from which it is clear that the two possible values of x are −1.5 and 10.1.


[image: ]

Figure 1.2 Illustration of |x - 4.3 | = 5.8.




Example 1.10



Express the sets (a) {x:|x − 3| < 5, x in ℝ} and (b) {x:| x + 2| ⩽ 3, x in ℝ} as intervals.

Solution

(a)|x − 3| < 5 means that the distance of the point representing x on the number line from the point representing 3 is less than 5 units, as shown in Figure 1.3(a). This implies that

[image: ]

Adding 3 to each member of this inequality, using rule (1.2d), gives

[image: ]

and the set of numbers satisfying this inequality is the open interval (−2, 8).

(b) Similarly | x + 2| ⩽ 3, which may be rewritten as | x − (−2)| ⩽ 3, means that the distance of the point x on the number line from the point representing −2 is less than or equal to 3 units, as shown in Figure 1.3(b). This implies

[image: ]

Subtracting 2 from each member of this inequality, using rule (1.2d), gives

[image: ]

and the set of numbers satisfying this inequality is the closed interval [−5, 1].

It is easy (and sensible) to check these answers using spot values. For example, putting x = −4 in (b) gives | −4 + 2| < 3 correctly. Sometimes the sets | x + 2| ⩽ 3 and | x + 2| < 3 are described verbally as ‘lies in the interval x equals –2 ± 3’.


[image: ]

Figure 1.3 (a) The open interval (−2, 8). (b) The closed interval [−5, 1].


We note in passing the following results. For any two real numbers x and y:

[image: ]

Result (1.4d) is proved in Example 1.11 below and may be stated in words as


the arithmetic mean [image: ] of two positive numbers x and y is greater than or equal to the geometric mean √(xy). Equality holds only when y = x.



Results (1.4a) to (1.4c) should be verified by the reader, who may find it helpful to try some particular values first, for example setting x = −2 and y = 3 in (1.4c).


Example 1.11



Prove that for any two positive numbers x and y, the arithmetic–geometric inequality

[image: ]

holds.

Deduce that [image: ] for any positive number x.

We have to prove that [image: ] is greater than or equal to zero. Let E denote the expression (x + y) − 2√(xy). Then

[image: ]

(see Example 1.13)

[image: ]

which is greater than zero unless x = y. Since (x + y) + 2√(xy) is positive, this implies

[image: ]. Setting [image: ], we obtain

[image: ]

or

[image: ]




1.2.7 Exercises




	
10Show that (√5 + √13)2 > 34 and determine without using a calculator the larger of √5 + √13 and √3 + √19.

	
11Show the following sets on number lines and express them as intervals:

	(a){x:| x − 4 | ⩽ 6}

	(b){x:| x + 3| < 2}

	(c){x:| 2x − 1| ⩽ 7}

	(d)[image: ]






	
12Show the following intervals on number lines and express them as sets in the form {x:| ax + b| < c} or {x:| ax + b| ⩽ c}:

	(a)(1, 7)

	(b)[−4, −2]

	(c)(17, 26)

	(d)[image: ]






	
13Given that a < b and c < d, which of the following statements are always true?

	(a)a − c < b − d


	(b)a − d < b − c


	(c)ac < bd


	(d)[image: ]




In each case either prove that the statement is true or give a numerical example to show it can be false.

If, additionally, a, b, c and d are all greater than zero, how does that modify your answer?



	
14The average speed for a journey is the distance covered divided by the time taken.

	(a)A journey is completed by travelling for the first half of the time at speed v1 and the second half at speed v2. Find the average speed va for the journey in terms of v1 and v2.

	(b)A journey is completed by travelling at speed v1 for half the distance and at speed v2 for the second half. Find the average speed vb for the journey in terms of v1 and v2.







Deduce that a journey completed by travelling at two different speeds for equal distances will take longer than the same journey completed at the same two speeds for equal times.




1.3Algebra

The origins of algebra are to be found in Arabic mathematics as the name suggests, coming from the word aljabara meaning ‘combination’ or ‘re-uniting’. Algorithms are rules for solving problems in mathematics by standard step-by-step methods. Such methods were first described by the ninth-century mathematician Abu Ja’far Mohammed ben Musa from Khwarizm, modern Khiva on the southern border of Uzbekistan. The Arabic al-Khwarizm (‘from Khwarizm’) was Latinized to algorithm in the late Middle Ages. Often the letter x is used to denote an unassigned (or free) variable. It is thought that this is a corruption of the script letter r abbreviating the Latin word res, thing. The use of unassigned variables enables us to form mathematical models of practical situations as illustrated in the following example. First we deal with a specific case and then with the general case using unassigned variables.

The idea, first introduced in the seventeenth century, of using letters to represent unspecified quantities led to the development of algebraic manipulation based on the elementary laws of arithmetic. This development greatly enhanced the problem-solving power of mathematics – so much so that it is difficult now to imagine doing mathematics without this resource.


Example 1.12



A pipe has the form of a hollow cylinder as shown in Figure 1.4. Find its mass when

(a) its length is 1.5 m, its external diameter is 205 mm, its internal diameter is 160 mm and its density is 5500 kgm−3;

(b) its length is l m, its external diameter is D mm, its internal diameter is d mm and its density is ρ kgm−3. Notice here that the unassigned variables l, D, d, ρ are pure numbers and do not include units of measurement.



Solution


	
(a)Standardizing the units of length, the internal and external diameters are 0.16 m and 0.205 m respectively. The area of cross-section of the pipe is
[image: ]

Figure 1.4 Cylindrical pipe of Example 1.12.


[image: ]

(Reminder: The area of a circle of diameter D is πD2/4.)

Hence the volume of the material of the pipe is

[image: ]

and the mass (volume × density) of the pipe is

[image: ]

Evaluating this last expression by calculator gives the mass of the pipe as 106 kg to the nearest kilogram.



	
(b)The internal and external diameters of the pipe are d/1000 and D/1000 metres, respectively, so that the area of cross-section is
[image: ]

The volume of the pipe is

[image: ]

Hence the mass M kg of the pipe of density ρ is given by the formulae

[image: ]





1.3.1Algebraic manipulation

Algebraic manipulation made possible concise statements of well-known results, such as

[image: ]

Previously these results had been obtained by a combination of verbal reasoning and elementary geometry as illustrated in Figure 1.5.

[image: ]

Figure 1.5 Illustration of (a + b)2 = a2 + 2ab + b2.



Example 1.13



Prove that

[image: ]

Given 702 = 4900 and 362 = 1296, calculate 53 × 17.

Solution

Since

[image: ]

we deduce

[image: ]

and

[image: ]

and

[image: ]

The result is illustrated geometrically in Figure 1.6. Setting a = 53 and b = 17, we have

[image: ]

This method of calculating products was used by the Babylonians and is sometimes called ‘quarter-square’ multiplication. It has been used in some analogue devices and simulators.


[image: ]

Figure 1.6 Illustration of ab = 1/4 [(a + b)2 - (a - b)2].




Example 1.14



Show that

[image: ]

Solution

Rewriting a + b + c as (a + b) + c we have

[image: ]


Example 1.15



Verify that

[image: ]

and deduce that

[image: ]

Solution

(x + p)2 = x2 + 2px + p2

so that

[image: ]

Working in the reverse direction is more difficult

[image: ]

Comparing [image: ] with x2 + 2px + q, we can identify

[image: ]

Thus we can write

[image: ]

where [image: ]

giving

[image: ]

This algebraic process is called ‘completing the square’.



We may summarize the results so far

[image: ]

As shown in the previous examples, the ordinary rules of arithmetic carry over to the generalized arithmetic of algebra. This is illustrated again in the following example.


Example 1.16



Express as a single fraction


	(a)[image: ]


	(b)[image: ]




Solution


	
(a)The lowest common denominator of these fractions is 12, so we may write
[image: ]



	
(b)The lowest common multiple of the denominators of these fractions is (x + 1)(x + 2), so we may write
[image: ]






Example 1.17



Use the method of completing the square to manipulate the following quadratic expressions into the form of a number + (or −) the square of a term involving x.


	(a)x2 + 3x − 7

	(b)5 − 4x − x2


	(c)3x2 − 5x + 4

	(d)1 + 2x − 2x2




Solution

Remember (a + b)2 = a2 + 2ab + b2.


	
(a)To convert x2 + 3x into a perfect square we need to add [image: ]. Thus we have
[image: ]



	
(b)5 − 4x − x2 = 5 − (4x + x2)
To convert x2 + 4x into a perfect square we need to add 22. Thus we have

[image: ]

and

[image: ]



	
(c)First we ‘take outside’ the coefficient of x2:
[image: ]

Then we rearrange

[image: ]

so that [image: ]



	
(d)Similarly
[image: ]

and

[image: ]

so that

[image: ]

The reader should confirm that these results agree with identity (1.5d).







The number 45 can be factorized as 3 × 3 × 5. Any product of numbers from 3, 3 and 5 is also a factor of 45. Algebraic expressions can be factorized in a similar fashion. An algebraic expression with more than one term can be factorized if each term contains common factors (either numerical or algebraic). These factors are removed by division from each term and the non-common factors remaining are grouped into brackets.


Example 1.18



Factorize xz + 2yz − 2y − x.

Solution

There is no common factor to all four terms so we take them in pairs:

[image: ]

Alternatively, we could have written

[image: ]

to obtain the same result.



In many problems we are able to facilitate the solution by factorizing a quadratic expression ax2 + bx + c ‘by hand’, using knowledge of the factors of the numerical coefficients a, b and c.


Example 1.19



Factorize the expressions


	(a)x2 + 12x + 35

	(b)2x2 + 9x – 5



Solution


	
(a)Since
[image: ]

we examine the factors of the constant term of the expression

[image: ]

and notice that 5 + 7 = 12 while 35 + 1 = 36. So we can choose a = 5 and b = 7 and write

[image: ]



	
(b)Since
[image: ]

we examine the factors of the coefficient of x2 and of the constant to give the coefficient of x. Here

[image: ]

and we see that

[image: ]

Thus we can write

[image: ]

It is sensible to do a ‘spot-check’ on the factorization by inserting a sample value of x, for example x = 1

[image: ]





Comment

Some quadratic expressions, for example x2 + y2, do not have real factors.



The expansion of (a + b)2 in (1.5a) is a special case of a general result for (a + b)n known as the binomial expansion. This is discussed again later (see Sections 1.3.6 and 7.7.2). Here we shall look at the cases for n = 0, 1, … , 6.

Writing these out, we have

[image: ]


[image: ]

Figure 1.7 Pascal’s triangle.


This table can be extended indefinitely. Each line can easily be obtained from the previous one. Thus, for example,

[image: ]

The coefficients involved form a pattern of numbers called Pascal’s triangle, shown in Figure 1.7. Each number in the interior of the triangle is obtained by summing the numbers to its right and left in the row above, as indicated by the arrows in Figure 1.7. This number pattern had been discovered prior to Pascal by the Chinese mathematician Jia Xian (in the mid-eleventh century).


Example 1.20



Expand


	(a)(2x + 3y)2


	(b)(2x + 3)3


	(c)[image: ]




Solution


	
(a)Here we use the expansion
[image: ]

with a = 2x and b = 3y to obtain

[image: ]



	
(b)Here we use the expansion
[image: ]

with a = 2x and b = −3 to obtain

[image: ]



	
(c)Here we use the expansion
[image: ]

with a = 2x and b = −1/x to obtain

[image: ]









1.3.2 Exercises




	
15Simplify the following expressions:

	(a)[image: ]


	(b)[image: ]


	(c)[image: ]


	(d)[image: ]


	(e)[image: ]


	(f)[image: ]


	(g)[image: ]


	(h)[image: ]


	(i)[image: ]


	(j)[image: ]


	(k)[image: ]






	
16Factorize

	(a)x2y – xy2


	(b)x2yz – xy2z + 2xyz2


	(c)ax – 2by – 2ay + bx


	(d)x2 + 3x – 10

	(e)[image: ]


	(f)81x4 – y4






	
17Simplify

	(a)[image: ]


	(b)[image: ]


	(c)[image: ]


	(d)[image: ]






	
18An isosceles trapezium has non-parallel sides of length 20cm and the shorter parallel side is 30cm, as illustrated in Figure 1.8. The perpendicular distance between the parallel sides is hcm. Show that the area of the trapezium is h(30 + √(400 − h2))cm2.
[image: ]

Figure 1.8



	
19An open container is made from a sheet of cardboard of size 200 mm × 300 mm using a simple fold, as shown in Figure 1.9. Show that the capacity Cml of the box is given by
[image: ]

[image: ]

Figure 1.9 Sheet of cardboard of Question 19.



	
20Rearrange the following quadratic expressions by completing the square.

	(a)x2 + x – 12

	(b)3 – 2x + x2


	(c)(x – 1)2 – (2x – 3)2


	(d)1 + 4x – x2











1.3.3Equations, inequalities and identities

It commonly occurs in the application of mathematics to practical problem solving that the numerical value of an expression involving unassigned variables is specified and we have to find the values of the unassigned variables which yield that value. We illustrate the idea with the elementary examples that follow.


Example 1.21



A hollow cone of base diameter 100 mm and height 150 mm is held upside down and completely filled with a liquid. The liquid is then transferred to a hollow circular cylinder of base diameter 80 mm. To what height is the cylinder filled?

Solution

The situation is illustrated in Figure 1.10. The capacity of the cone is

[image: ]

Thus the volume of liquid contained in the cone is

[image: ]

The volume of the liquid in the circular cylinder is

[image: ]

where hmm is the height of the liquid in the cylinder. Equating these quantities (assuming no liquid is lost in the transfer) we have

[image: ]

This equation enables us to find the value of the unassigned variable h:

[image: ]

Thus the height of the liquid in the cylinder is 78 mm to the nearest millimetre.

[image: ]

Figure 1.10 The cone and cylinder of Example 1.21.




In the previous example we made use of the formula for the volume V of a cone of base diameter D and height H. We normally write this as

[image: ]

understanding that the units of measurement are compatible. This formula also tells us the height of such a cone in terms of its volume and base diameter

[image: ]

This type of rearrangement is common and is generally described as ‘changing the subject of the formula’.


Example 1.22



A dealer bought a number of equally priced articles for a total cost of £120. He sold all but one of them, making a profit of £1.50 on each article with a total revenue of £135. How many articles did he buy?

Solution

Let n be the number of articles bought. Then the cost of each article was £(120/n). Since (n − 1) articles were sold the selling price of each article was £(135/(n − 1)). Thus the profit per item was

[image: ]

which we are told is equal to £1.50. Thus

[image: ]

This implies

[image: ]

Dividing both sides by 1.5 gives

[image: ]

Simplifying and collecting terms we obtain

[image: ]

This equation for n can be simplified further by factorizing the quadratic expression on the left-hand side

[image: ]

This implies either n = 16 or n = −5, so the dealer initially bought 16 articles (the solution n = −5 is not feasible).


Example 1.23



Using the method of completing the square (1.5a), obtain the formula for finding the roots of the general quadratic equation

[image: ]

Solution

Dividing throughout by a gives

[image: ]

Completing the square leads to

[image: ]

giving

[image: ]

which on taking the square root gives

[image: ]

or

[image: ]

Here the ± symbol provides a neat shorthand for the two solutions.


Comments


	(a)The formula given in (1.6) makes clear the three cases: where for b2 > 4ac we have two real roots to the equation, for b2 < 4ac we have no real roots, and for b2 = 4ac we have one repeated real root. 

	(b)The condition for equality of the roots of a quadratic equation occurs in practical applications, and we shall illustrate this in Example 2.48 after considering the trigonometric functions.

	(c)The quadratic equation has many important applications. One, which is of historical significance, concerned the electrical engineer Oliver Heaviside. In 1871 the telephone cable between England and Denmark developed a fault caused by a short circuit under the sea. His task was to locate that fault. The cable had a uniform resistance per unit length. His method of solution was brilliantly simple. The situation can be represented schematically as shown in Figure 1.11.



[image: ]

Figure 1.11 The circuit for the telephone line fault.

In the figure the total resistance of the line between A and B is a ohms and is known; x and y are unknown. If we can find x, we can locate the distance along the cable where the fault has occurred. Heaviside solved the problem by applying two tests. First he applied a battery, having voltage E, at A with the circuit open at B, and measured the resulting current I1. Then he applied the same battery at A but with the cable earthed at B, and again measured the resulting current I2. Using Ohm’s law and the rules for combining resistances in parallel and in series, this yields the pair of equations

[image: ]

Writing b = E/I1 and c = E/I2, we can eliminate y from these equations to obtain an equation for x:

[image: ]

which, using (1.6), has solutions

[image: ]

From his experimental data Heaviside was able to predict accurately the location of the fault.



In some problems we have to find the values of unassigned variables such that the value of an expression involving those variables satisfies an inequality condition (that is, it is either greater than, or alternatively less than, a specified value). Solving such inequalities requires careful observance of the rules for inequalities (1.2a – 1.2g) set out previously (see Section 1.2.5).


Example 1.24



Find the values of x for which

[image: ]

Solution


	
(a)When 3 − x > 0, that is x < 3, we may, using (1.2e), multiply (1.7) throughout by 3 − x to give
[image: ]

which, using (1.2d, e), reduces to

[image: ]

so that (1.7) is satisfied when both x < 3 and [image: ] are satisfied; that is, [image: ].



	
(b)When 3 − x < 0, that is x > 3, we may, using (1.2f), multiply (1.7) throughout by 3 − x to give
[image: ]

which reduces to [image: ] so that (1.7) is also satisfied when both x > 3 and [image: ] ; that is, x > 3. 

Thus inequality (1.7) is satisfied by values of x in the ranges x > 3 and [image: ].





Comment

A common mistake made is simply to multiply (1.7) throughout by 3 − x to give the answer [image: ], forgetting to consider both cases of 3 − x > 0 and 3 − x < 0. We shall return to consider this example from the graphical point of view in Example 2.36.


Example 1.25



Find the values of x such that

[image: ]

Solution

Completing the square on the left-hand side of the inequality we obtain

[image: ]

which gives

[image: ]

Taking the square root of both sides of this inequality we deduce that

[image: ]

Note particularly the first of these inequalities. From these we deduce that

[image: ]

The reader should check these results using spot values of x, say x = −10 and x = 10.


Example 1.26



A food manufacturer found that the sales figure for a certain item depended on its selling price. The company’s market research department advised that the maximum number of items that could be sold weekly was 20 000 and that the number sold decreased by 100 for every 1p increase in its price. The total production cost consisted of a set-up cost of £200 plus 50p for every item manufactured. What price should the manufacturer adopt?

Solution

The data supplied by the market research department suggests that if the price of the item is p pence, then the number sold would be 20 000 − 100p. (So the company would sell none with p = 200, when the price is £2.) The production cost in pounds would be 200 + 0.5 × (number sold), so that in terms of p we have the production cost £C given by

[image: ]

The revenue £R accrued by the manufacturer for the sales is (number sold) × (price), which gives

[image: ]

(remember to express the amount in pounds). Thus, the profit £P is given by

[image: ]

Completing the square we have

[image: ]

Since (p − 125)2 ⩾ 0, we deduce that P ⩽ 5425 and that the maximum value of P is 5425. To achieve this weekly profit, the manufacturer should adopt the price £1.25.



It is important to distinguish between those equalities that are valid for a restricted set of values of the unassigned variable x and those that are true for all values of x. For example,

OEBPS/images/Figure1-10.jpg
Wl





OEBPS/images/v21.jpg
(4x%)~"°





OEBPS/images/Figure1-11.jpg
x a-x

England A B Denmark

= Short circuit





OEBPS/images/v1.jpg





OEBPS/images/Figure1-1.jpg





OEBPS/images/v10.jpg
E=0or 5(x + y) = V(xy)





OEBPS/images/M69.jpg
a,\3+bx+c=a[





OEBPS/images/Mach1-9.jpg





OEBPS/images/M39.jpg
V2 + 3 > @6) = 2(*V6)





OEBPS/images/M58.jpg
Sapl(D + dYD — d) X 107°





OEBPS/images/Mach1-5.jpg
)

2 (tenths) + 5 (hundredths) + 5 (thousandths) +

0010101 ...,

= 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + ...

i) = 4 (twelfths)





OEBPS/images/Mach1-6.jpg
(a

+
>






OEBPS/images/M81.jpg
1 2
(+Dx+2) x+l






OEBPS/images/Mach1-7.jpg
(a

X
>






OEBPS/images/Mach1-8.jpg





OEBPS/images/M104.jpg
2=2Xland =5=(=5)X1=5X(-1)





OEBPS/images/Mach1-20.jpg





OEBPS/images/v20.jpg





OEBPS/images/Mach1-21.jpg
1-42

1+ 6





OEBPS/images/v31.jpg





OEBPS/images/Mach1-4.jpg
(1) = 5 (units) + 7 (tenths) + 5 (hundredths) = 3.75,,
(ii) = 1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.11,
.9,

i) = 5 (units) + 9 (twelfths) =





OEBPS/images/M98.jpg
X2+ 2yz =2y —x=(xz2—x) + (2Qyz — 2y)
=xz-D+2z-1)
=@x+2z-1)





OEBPS/images/Figure1-2.jpg
distance

distance

5.8

58

TT

e

e
+

43

.|
+
10





OEBPS/images/v2.jpg





OEBPS/images/M68.jpg
+plP+g-p=xX+2px+gq





OEBPS/images/Mach1-18.jpg
(—=1/8)*" = ["\(—=1/8)]

V(= D/NE8)





OEBPS/images/Mach1-19.jpg





OEBPS/images/M57.jpg
0257I(D* — d?/10°m*





OEBPS/images/M86.jpg
43 -T=[+3 -GP1-7

=(y+ 32 -3
=(+§)P -7





OEBPS/images/Mach1-14.jpg





OEBPS/images/Mach1-15.jpg





OEBPS/images/Mach1-16.jpg





OEBPS/images/Mach1-17.jpg





OEBPS/images/M38.jpg
(V2 + 3 > 2V6 + 2V6 = 4V6





OEBPS/images/M11.jpg
=g





OEBPS/images/M20.jpg
2 __20+43)

=3 (=31 +3)

_2443)
1-3
1-V3






OEBPS/images/M2.jpg
214.36 = 2(10% + 1(10') + 4(10°) + 3(55) + 6(555)
=200+ 10+ 4 + 35+ 155






OEBPS/images/in-ch1-2.jpg





OEBPS/images/v12.jpg





OEBPS/images/M53.jpg
0.257(0.205> — 0.160%) m*





OEBPS/images/M107.jpg
()6)=2+9-5





OEBPS/images/in-ch1-1.jpg





OEBPS/images/M6.jpg
(100 + 20 + 3) X 456 = 100 X 456 + 20 X 456 + 3 X 456
15600 + 9120 + 1368 = 56 088






OEBPS/images/M115.jpg
(a+ b)' = a* + 4a’b + 6a°H* + dab’ + b*





OEBPS/images/M48.jpg
T+ ) =y





OEBPS/images/M116.jpg
= (2%)* + 42x)(— 1/x) + 6(Q2x)(— 1/x)* + 4Q2x)(— 1/x)* + (= 1/x)*

= 16x* — 32x2 4+ 24 — &/x2 + 1/x?





OEBPS/images/M75.jpg
b v
—=2p and £ q
a a





OEBPS/images/M12.jpg
o =tants a#0





OEBPS/images/v22.jpg





OEBPS/images/M26.jpg





OEBPS/images/v11.jpg
ol





OEBPS/images/M7.jpg
456
123 %
1368
9120
45 600
56 088





OEBPS/images/M95.jpg





OEBPS/images/M56.jpg
0257(D* — d*)/1000000m*





OEBPS/images/M59.jpg
2ab + b





OEBPS/images/M5.jpg
115, = 1110011,





OEBPS/images/M50.jpg
E=x+2y+y —4xy
-2y +y
==y





OEBPS/images/M114.jpg
(2¢ = 3) = 8* — 3627 + Sdx — 27





OEBPS/images/M34.jpg
=, ‘equals’
#, ‘does not equal’





OEBPS/images/M83.jpg
U S P

(+DE+2) x+1 x+2

_ 1 x4 Hxt)
@D +2) (G +DE+2)  (F D@ +2)
_1-20+2)+3 + 1)

O+ +2)

2x—-4+3x+3

(x+1)(x +2)

x
T D +2)





OEBPS/images/M4.jpg
remainder 1
remainder 1
remainder 0
remainder 0
remainder 1
remainder 1

remainder 1

@)
@
@)
@)
[e3)
@)
2%





OEBPS/images/M14.jpg
VI8 = (2 X 9) =V2 X V9 =3\2
V32 = (2 X 16) = V2 X V16 = 42

V50 = \(2 X 25) = V2 X \25 = 5\2






OEBPS/images/M139.jpg
a+bx+c=0 (a#0)





OEBPS/images/Figure1-8.jpg
30 cm

20 cm





OEBPS/images/M131.jpg





OEBPS/images/Figure1-9.jpg
300 mm

200 mm






OEBPS/images/M130.jpg
h = 1250/16 = 78.125





OEBPS/images/M94.jpg





OEBPS/images/M133.jpg





OEBPS/images/M132.jpg





OEBPS/images/M135.jpg
1352 — 120(n — 1) = 1.50(n — )n





OEBPS/images/M134.jpg
120 _






OEBPS/images/Figure1-6.jpg
ab

ab

(a—b)®






OEBPS/images/M105.jpg
2X5+ 1% (=1






OEBPS/images/M137.jpg
n=1ln—-80=0





OEBPS/images/Figure1-7.jpg
(a+by'=1

@b =a+h

(@t b=+ 2ab 41

(@t by =a+ 30+ 3ab + '

(@ by = + 40D + 6B 4 a4 b

+5a'+ 1005 + 100" + 5ab' + b*





OEBPS/images/M136.jpg
90n — 80(n — 1) =n* — n





OEBPS/images/M78.jpg





OEBPS/images/M138.jpg
n—=16)n+35 =0





OEBPS/images/M13.jpg
amn =
Nay ="
@

)





OEBPS/images/v13.jpg





OEBPS/images/M37.jpg





OEBPS/images/M80.jpg





OEBPS/images/M8.jpg
@+b)X(c+d)y=axc+d)+bX(c+d)
=S+d)Xa+C+d)Xb

=cXa+dXa+eXb+dxXb

axctaxXd+bXc+bXd





OEBPS/images/M92.jpg
3x* — 5x + 4 =3[(a






OEBPS/images/M124.jpg
C = x(150 = x)(100 — x)/250





OEBPS/images/M127.jpg
1 A(50°)(150) = 1250007 mm’





OEBPS/images/M126.jpg
L (base area) X (perpendicular height)






OEBPS/images/M129.jpg
1600 wh = 1250007





OEBPS/images/M128.jpg
(base area) X (height) = 7(40")hmm*





OEBPS/images/M112.jpg
@+ 3y = @) + 2293y) + Gy
=4x2 + 12xy + 9y





OEBPS/images/v33.jpg





OEBPS/images/v6.jpg





OEBPS/images/M151.jpg
1>203-x)





OEBPS/images/M150.jpg
x<

ol





OEBPS/images/M70.jpg





OEBPS/images/M10.jpg





OEBPS/images/M153.jpg
@+ 12+ 1>50





OEBPS/images/M1.jpg
2 1 4 -3 6
Lol Lo
100100 10° 107 107





OEBPS/images/M152.jpg
X+ 20+ 2> 50





OEBPS/images/M100.jpg
(x + a)x+ B) =x"+ (a + B)x + af





OEBPS/images/M154.jpg
x+1)2>49





OEBPS/images/M113.jpg
(a + by =a*+ 3a’ + 3ab* + b*





OEBPS/images/M52.jpg





OEBPS/images/M156.jpg
Y+ 2r +2>50forx< —Rorrx>6





OEBPS/images/M3.jpg
1011101, = 1(2°) + 0(2°) + 1(2°) + 1(2) + 1(2°) + O(2") + 1(2°)
=641+ 0+ 1659+ 8+ dig + 0+ 1g
=093,





OEBPS/toc.xhtml

Cover


Modern Engineering Mathematics


Pearson


Title


copyright


Contents


preface


About The Authors


Chapter 1 Number, Algebra and Geometry





1.1Introduction





1.2Number and arithmetic


1.2.1 Number line


1.2.2 Representation of numbers


1.2.3 Rules of arithmetic


1.2.4 Exercises (1–9)


1.2.5 Inequalities


1.2.6 Modulus and intervals


1.2.7 Exercises (10–14)





1.3Algebra


1.3.1 Algebraic manipulation


1.3.2 Exercises (15–20)


1.3.3 Equations, inequalities and identities


1.3.4 Exercises (21–32)


1.3.5 Suffix and sigma notation


1.3.6 Factorial notation and the binomial expansion


1.3.7 Exercises (33–35)





1.4Geometry


1.4.1 Coordinates


1.4.2 Straight lines


1.4.3 Circles


1.4.4 Exercises (36–43)


1.4.5 Conics


1.4.6 Exercises (44–46)





1.5Number and accuracy


1.5.1 Rounding, decimal places and significant figures


1.5.2 Estimating the effect of rounding errors


1.5.3 Exercises (47–56)


1.5.4 Computer arithmetic


1.5.5 Exercises (57–59)





1.6Engineering applications


1.7Review exercises (1–25)


Chapter 2 Functions


2.1Introduction





2.2Basic definitions


2.2.1 Concept of a function


2.2.2 Exercises (1–6)


2.2.3 Inverse functions


2.2.4 Composite functions


2.2.5 Exercises (7–13)


2.2.6 Odd, even and periodic functions


2.2.7 Exercises (14–16)





2.3Linear and quadratic functions


2.3.1 Linear functions


2.3.2 Least squares fit of a linear function to experimental data


2.3.3 Exercises (17–23)


2.3.4 The quadratic function


2.3.5 Exercises (24–29)





2.4Polynomial functions


2.4.1 Basic properties


2.4.2 Factorization


2.4.3 Nested multiplication and synthetic division


2.4.4 Roots of polynomial equations


2.4.5 Exercises (30–38)





2.5Rational functions


2.5.1 Partial fractions


2.5.2 Exercises (39–42)


2.5.3 Asymptotes


2.5.4 Parametric representation


2.5.5 Exercises (43–47)





2.6Circular functions


2.6.1 Trigonometric ratios


2.6.2 Exercises (48–54)


2.6.3 Circular functions


2.6.4 Trigonometric identities


2.6.5 Amplitude and phase


2.6.6 Exercises (55–66)


2.6.7 Inverse circular (trigonometric) functions


2.6.8 Polar coordinates


2.6.9 Exercises (67–71)





2.7Exponential, logarithmic and hyperbolic functions


2.7.1 Exponential functions


2.7.2 Logarithmic functions


2.7.3 Exercises (72–80)


2.7.4 Hyperbolic functions


2.7.5 Inverse hyperbolic functions


2.7.6 Exercises (81–88)





2.8Irrational functions


2.8.1 Algebraic functions


2.8.2 Implicit functions


2.8.3 Piecewise defined functions


2.8.4 Exercises (89–98)





2.9Numerical evaluation of functions


2.9.1 Tabulated functions and interpolation


2.9.2 Exercises (99–104)





2.10Engineering application: a design problem





2.11Engineering application: an optimization problem





2.12Review exercises (1–23)


Chapter 3 Complex Numbers


3.1Introduction





3.2Properties


3.2.1 The Argand diagram


3.2.2 The arithmetic of complex numbers


3.2.3 Complex conjugate


3.2.4 Modulus and argument


3.2.5 Exercises (1–18)


3.2.6 Polar form of a complex number


3.2.7 Euler’s formula


3.2.8 Exercises (19–27)


3.2.9 Relationship between circular and hyperbolic functions


3.2.10 Logarithm of a complex number


3.2.11 Exercises (28–33)





3.3Powers of complex numbers


3.3.1 De Moivre’s theorem


3.3.2 Powers of trigonometric functions and multiple angles


3.3.3 Exercises (34–41)





3.4Loci in the complex plane


3.4.1 Straight lines


3.4.2 Circles


3.4.3 More general loci


3.4.4 Exercises (42–50)





3.5Functions of a complex variable


3.5.1 Exercises (51–56)





3.6Engineering application: alternating currents in electrical networks 223


3.6.1 Exercises (57–58)





3.7Review exercises (1–34)


Chapter 4 Vector Algebra


4.1Introduction





4.2Basic definitions and results


4.2.1 Cartesian coordinates


4.2.2 Scalars and vectors


4.2.3 Addition of vectors


4.2.4 Exercises (1–10)


4.2.5 Cartesian components and basic properties


4.2.6 Complex numbers as vectors


4.2.7 Exercises (11–26)


4.2.8 The scalar product


4.2.9 Exercises (27–40)


4.2.10 The vector product


4.2.11 Exercises (41–56)


4.2.12 Triple products


4.2.13 Exercises (57–65)





4.3The vector treatment of the geometry of lines and planes


4.3.1 Vector equation of a line


4.3.2 Exercises (66–72)


4.3.3 Vector equation of a plane


4.3.4 Exercises (73–83)





4.4Engineering application: spin-dryer suspension 289


4.4.1 Point-particle model





4.5Engineering application: cable-stayed bridge 291


4.5.1 A simple stayed bridge





4.6Review exercises (1–22)


Chapter 5 Matrix Algebra


5.1Introduction





5.2Basic concepts, definitions and properties


5.2.1 Definitions


5.2.2 Basic operations of matrices


5.2.3 Exercises (1–11)


5.2.4 Matrix multiplication


5.2.5 Exercises (12–18)


5.2.6 Properties of matrix multiplication


5.2.7 Exercises (19–33)





5.3Determinants


5.3.1 Exercises (34–50)





5.4The inverse matrix


5.4.1 Exercises (51–59)





5.5Linear equations


5.5.1 Exercises (60–71)


5.5.2 The solution of linear equations: elimination methods


5.5.3 Exercises (72–78)


5.5.4 The solution of linear equations: iterative methods


5.5.5 Exercises (79–84)





5.6Rank


5.6.1 Exercises (85–93)





5.7The eigenvalue problem


5.7.1 The characteristic equation


5.7.2 Eigenvalues and eigenvectors


5.7.3 Exercises (94–95)


5.7.4 Repeated eigenvalues


5.7.5 Exercises (96–101)


5.7.6 Some useful properties of eigenvalues


5.7.7 Symmetric matrices


5.7.8 Exercises (102–106)





5.8Engineering application: spring systems


5.8.1 A two-particle system


5.8.2 An n-particle system





5.9Engineering application: steady heat transfer through composite materials


5.9.1 Introduction


5.9.2 Heat conduction


5.9.3 The three-layer situation


5.9.4 Many-layer situation





5.10Review exercises (1–26)


Chapter 6 An Introduction to Discrete Mathematics


6.1Introduction





6.2Set theory


6.2.1 Definitions and notation


6.2.2 Union and intersection


6.2.3 Exercises (1–8)


6.2.4 Algebra of sets


6.2.5 Exercises (9–17)





6.3Switching and logic circuits


6.3.1 Switching circuits


6.3.2 Algebra of switching circuits


6.3.3 Exercises (18–29)


6.3.4 Logic circuits


6.3.5 Exercises (30–31)





6.4Propositional logic and methods of proof


6.4.1 Propositions


6.4.2 Compound propositions


6.4.3 Algebra of statements


6.4.4 Exercises (32–37)


6.4.5 Implications and proofs


6.4.6 Exercises (38–47)





6.5Engineering application: decision support





6.6Engineering application: control





6.7Review exercises (1–23)





Chapter 7 Sequences, Series and Limits


7.1Introduction





7.2Sequences and series


7.2.1 Notation


7.2.2 Graphical representation of sequences


7.2.3 Exercises (1–13)





7.3Finite sequences and series


7.3.1 Arithmetical sequences and series


7.3.2 Geometric sequences and series


7.3.3 Other finite series


7.3.4 Exercises (14–25)





7.4Recurrence relations


7.4.1 First-order linear recurrence relations with constant coefficients


7.4.2 Exercises (26–28)


7.4.3 Second-order linear recurrence relations with constant coefficients


7.4.4 Exercises (29–35)





7.5Limit of a sequence


7.5.1 Convergent sequences


7.5.2 Properties of convergent sequences


7.5.3 Computation of limits


7.5.4 Exercises (36–40)





7.6Infinite series


7.6.1 Convergence of infinite series


7.6.2 Tests for convergence of positive series


7.6.3 The absolute convergence of general series


7.6.4 Exercises (41–49)





7.7Power series


7.7.1 Convergence of power series


7.7.2 Special power series


7.7.3 Exercises (50–56)





7.8Functions of a real variable


7.8.1 Limit of a function of a real variable


7.8.2 One-sided limits


7.8.3 Exercises (57–61)





7.9Continuity of functions of a real variable


7.9.1 Properties of continuous functions


7.9.2 Continuous and discontinuous functions


7.9.3 Numerical location of zeros


7.9.4 Exercises (62–69)





7.10Engineering application: insulator chain





7.11Engineering application: approximating functions and Padé approximants





7.12Review exercises (1–25)


Chapter 8 Differentiation and Integration


8.1Introduction





8.2Differentiation


8.2.1 Rates of change


8.2.2 Definition of a derivative


8.2.3 Interpretation as the slope of a tangent


8.2.4 Differentiable functions


8.2.5 Speed, velocity and acceleration


8.2.6 Exercises (1–7)


8.2.7 Mathematical modelling using derivatives


8.2.8 Exercises (8–18)





8.3Techniques of differentiation


8.3.1 Basic rules of differentiation


8.3.2 Derivative of x'


8.3.3 Differentiation of polynomial functions


8.3.4 Differentiation of rational functions


8.3.5 Exercises (19–25)


8.3.6 Differentiation of composite functions


8.3.7 Differentiation of inverse functions


8.3.8 Exercises (26–33)


8.3.9 Differentiation of circular functions


8.3.10 Extended form of the chain rule


8.3.11 Exercises (34–37)


8.3.12 Differentiation of exponential and related functions


8.3.13 Exercises (38–46)


8.3.14 Parametric and implicit differentiation


8.3.15 Exercises (47–59)





8.4Higher derivatives


8.4.1 The second derivative


8.4.2 Exercises (60–72)


8.4.3 Curvature of plane curves


8.4.4 Exercises (73–78)





8.5Applications to optimization problems


8.5.1 Optimal values


8.5.2 Exercises (79–88)





8.6Numerical differentiation


8.6.1 The chord approximation


8.6.2 Exercises (89–93)





8.7Integration


8.7.1 Basic ideas and definitions


8.7.2 Mathematical modelling using integration


8.7.3 Exercises (94–102)


8.7.4 Definite and indefinite integrals


8.7.5 The Fundamental Theorem of Calculus


8.7.6 Exercise (103)





8.8Techniques of integration


8.8.1 Integration as antiderivative


8.8.2 Integration of piecewise-continuous functions


8.8.3 Exercises (104–109)


8.8.4 Integration by parts


8.8.5 Exercises (110–111)


8.8.6 Integration using the general composite rule


8.8.7 Exercises (112–116)


8.8.8 Integration using partial fractions


8.8.9 Exercises (117–118)


8.8.10 Integration involving the circular and hyperbolic functions


8.8.11 Exercises (119–120)


8.8.12 Integration by substitution


8.8.13 Integration involving √(ax2 + bx + c)


8.8.14 Exercises (121–126)





8.9Applications of integration


8.9.1 Volume of a solid of revolution


8.9.2 Centroid of a plane area


8.9.3 Centre of gravity of a solid of revolution


8.9.4 Mean values


8.9.5 Root mean square values


8.9.6 Arclength and surface area


8.9.7 Moments of inertia


8.9.8 Exercises (127–136)





8.10Numerical evaluation of integrals


8.10.1 The trapezium rule


8.10.2 Simpson’s rule


8.10.3 Exercises (137–142)





8.11Engineering application: design of prismatic channels





8.12Engineering application: harmonic analysis of periodic functions





8.13Review exercises (1–39)


Chapter 9 Further Calculus


9.1Introduction





9.2Improper integrals


9.2.1 Integrand with an infinite discontinuity


9.2.2 Infinite integrals


9.2.3 Exercise (1)





9.3Some theorems with applications to numerical methods


9.3.1 Rolle’s theorem and the first mean value theorems


9.3.2 Convergence of iterative schemes


9.3.3 Exercises (2–7)





9.4Taylor’s theorem and related results


9.4.1 Taylor polynomials and Taylor’s theorem


9.4.2 Taylor and Maclaurin series


9.4.3 L’Hôpital’s rule


9.4.4 Exercises (8–20)


9.4.5 Interpolation revisited


9.4.6 Exercises (21–23)


9.4.7 The convergence of iterations revisited


9.4.8 Newton–Raphson procedure


9.4.9 Optimization revisited


9.4.10 Exercises (24–27)


9.4.11 Numerical integration


9.4.12 Exercises (28–31)





9.5Calculus of vectors


9.5.1 Differentiation and integration of vectors


9.5.2 Exercises (32–36)





9.6Functions of several variables


9.6.1 Representation of functions of two variables


9.6.2 Partial derivatives


9.6.3 Directional derivatives


9.6.4 Exercises (37–46)


9.6.5 The chain rule


9.6.6 Exercises (47–56)


9.6.7 Successive differentiation


9.6.8 Exercises (57–67)


9.6.9 The total differential and small errors


9.6.10 Exercises (68–75)


9.6.11 Exact differentials


9.6.12 Exercises (76–78)





9.7Taylor’s theorem for functions of two variables


9.7.1 Taylor’s theorem


9.7.2 Optimization of unconstrained functions


9.7.3 Exercises (79–87)


9.7.4 Optimization of constrained functions


9.7.5 Exercises (88–93)





9.8Engineering application: deflection of a built-in column





9.9Engineering application: streamlines in fluid dynamics





9.10Review exercises (1–35)


Chapter 10 Introduction to Ordinary Differential Equations


10.1Introduction





10.2Engineering examples


10.2.1 The take-off run of an aircraft


10.2.2 Domestic hot-water supply


10.2.3 Hydro-electric power generation


10.2.4 Simple electrical circuits





10.3The classification of ordinary differential equations


10.3.1 Independent and dependent variables


10.3.2 The order of a differential equation


10.3.3 Linear and nonlinear differential equations


10.3.4 Homogeneous and nonhomogeneous equations


10.3.5 Exercises (1–2)





10.4Solving differential equations


10.4.1 Solution by inspection


10.4.2 General and particular solutions


10.4.3 Boundary and initial conditions


10.4.4 Analytical and numerical solution


10.4.5 Exercises (3–6)





10.5First-order ordinary differential equations


10.5.1 A geometrical perspective


10.5.2 Exercises (7–10)


10.5.3 Solution of separable differential equations


10.5.4 Exercises (11–17)


10.5.5 Solution of differential equations of [image: ] form


10.5.6 Exercises (18–22)


10.5.7 Solution of exact differential equations


10.5.8 Exercises (23–30)


10.5.9 Solution of linear differential equations


10.5.10 Solution of the Bernoulli differential equations


10.5.11 Exercises (31–38)





10.6Numerical solution of first-order ordinary differential equation


10.6.1 A simple solution method: Euler’s method


10.6.2 Analysing Euler’s method


10.6.3 Using numerical methods to solve engineering problems


10.6.4 Exercises (39–45)





10.7Engineering application: analysis of damper performance





10.8Linear differential equations


10.8.1 Differential operators


10.8.2 Linear differential equations


10.8.3 Exercises (46–54)





10.9Linear constant-coefficient differential equations


10.9.1 Linear homogeneous constant-coefficient equations


10.9.2 Exercises (55–61)


10.9.3 Linear nonhomogeneous constant-coefficient equations


10.9.4 Exercises (62–65)





10.10Engineering application: second-order linear constant-coefficient differential equations


10.10.1 Free oscillations of elastic systems


10.10.2 Free oscillations of damped elastic systems


10.10.3 Forced oscillations of elastic systems


10.10.4 Oscillations in electrical circuits


10.10.5 Exercises (66–73)





10.11Numerical solution of second- and higher-order differential equations


10.11.1 Numerical solution of coupled first-order equations


10.11.2 State-space representation of higher-order systems


10.11.3 Exercises (74–79)





10.12Qualitative analysis of second-order differential equations


10.12.1 Phase-plane plots


10.12.2 Exercises (80–81)





10.13Review exercises (1–35)


Chapter 11 Introduction to Laplace Transforms


11.1Introduction





11.2The Laplace transform


11.2.1 Definition and notation


11.2.2 Transforms of simple functions


11.2.3 Existence of the Laplace transform


11.2.4 Properties of the Laplace transform


11.2.5 Table of Laplace transforms


11.2.6 Exercises (1–3)


11.2.7 The inverse transform


11.2.8 Evaluation of inverse transforms


11.2.9 Inversion using the first shift theorem


11.2.10 Exercise (4)





11.3Solution of differential equations


11.3.1 Transforms of derivatives


11.3.2 Transforms of integrals


11.3.3 Ordinary differential equations


11.3.4 Exercise (5)


11.3.5 Simultaneous differential equations


11.3.6 Exercise (6)





11.4Engineering applications: electrical circuits and mechanical vibrations


11.4.1 Electrical circuits


11.4.2 Mechanical vibrations


11.4.3 Exercises (7–12)





11.5Review exercises (1–18)


Chapter 12 Introduction to Fourier Series


12.1Introduction





12.2Fourier series expansion


12.2.1 Periodic functions


12.2.2 Fourier’s theorem


12.2.3 The Fourier coefficients


12.2.4 Functions of period 2π


12.2.5 Even and odd functions 959


12.2.6 Even and odd harmonics


12.2.7 Linearity property


12.2.8 Convergence of the Fourier series


12.2.9 Exercises (1–7)


12.2.10 Functions of period T


12.2.11 Exercises (8–13)





12.3Functions defined over a finite interval


12.3.1 Full-range series


12.3.2 Half-range cosine and sine series


12.3.3 Exercises (14–23)





12.4Differentiation and integration of Fourier series


12.4.1 Integration of a Fourier series


12.4.2 Differentiation of a Fourier series


12.4.3 Exercises (24–26)





12.5Engineering application: analysis of a slider–crank mechanism





12.6Review exercises (1–21)


Chapter 13 Data Handling and Probability Theory


13.1Introduction





13.2The raw material of statistics


13.2.1 Experiments and sampling


13.2.2 Data types


13.2.3 Graphs for qualitative data


13.2.4 Histograms of quantitative data


13.2.5 Alternative types of plot for quantitative data


13.2.6 Exercises (1–5)





13.3Probabilities of random events


13.3.1 Interpretations of probability


13.3.2 Sample space and events


13.3.3 Axioms of probability


13.3.4 Conditional probability


13.3.5 Independence


13.3.6 Exercises (6–23)





13.4Random variables


13.4.1 Introduction and definition


13.4.2 Discrete random variables


13.4.3 Continuous random variables


13.4.4 Properties of density and distribution functions


13.4.5 Exercises (24–31)


13.4.6 Measures of location and dispersion


13.4.7 Expected values


13.4.8 Independence of random variables


13.4.9 Scaling and adding random variables


13.4.10 Measures from sample data


13.4.11 Exercises (32–48)





13.5Important practical distributions


13.5.1 The binomial distribution


13.5.2 The Poisson distribution


13.5.3 The normal distribution


13.5.4 The central limit theorem


13.5.5 Normal approximation to the binomial


13.5.6 Random variables for simulation


13.5.7 Exercises (49–65)





13.6Engineering application: quality control


13.6.1 Attribute control charts


13.6.2 United States standard attribute charts


13.6.3 Exercises (66–67)





13.7Engineering application: clustering of rare events


13.7.1 Introduction


13.7.2 Survey of near-misses between aircraft


13.7.3 Exercises (68–69)





13.8Review exercises (1–13)


Appendix I Tables 1070


Al.1Some useful results


Al.2Trigonometric identities


Al.3Derivatives and integrals


Al.4Some useful standard integrals





Answers to Exercises


Index




OEBPS/images/Figure1-5.jpg





OEBPS/images/v32.jpg





OEBPS/images/M55.jpg
0.25 X 5500 X 7(0.205° — 0.160°) X 1.5kg





OEBPS/images/M148.jpg
.7)






OEBPS/images/Figure1-4.jpg
External

diameter
-~

Internal
diameter

yiSuo]





OEBPS/images/M149.jpg
1<23 -





OEBPS/images/M141.jpg





OEBPS/images/M140.jpg
b ¢
+—x+—
a a

0





OEBPS/images/M143.jpg
b
FeL

N~ da)
2a

2a

_0? 4o

4ac)





OEBPS/images/M40.jpg
x (x=0)

1= (x<0)

(1.3)






OEBPS/images/M142.jpg





OEBPS/images/M145.jpg
E=Lx+y)

E=1 .\'+[l+
y






OEBPS/images/M144.jpg
= Z2ENO? —dac) (1.6)
2





OEBPS/images/M147.jpg
x=c*x\[(a—c)b - o)





OEBPS/images/M33.jpg
13717 41 9

12571229 70





OEBPS/images/M108.jpg
(@a+b)=1

@+b)=a+b

(a+ by =a® +2ab + b?

(a+ by =a' + 3 + 3ab* + b

(a + b)' = a* + 4a’b + 6a°b® + dab® + b*

(a+ by = a + 5a'b + 10a°D* + 10a’h’ + Sab* + b°

(a + b)’ = a® + 6a°b + 15a'b* + 20a°V’ + 15a°b* + 6ab’ + b°






OEBPS/images/M146.jpg
2 =2cx+cla+b)y—ab=0





OEBPS/images/M46.jpg
layl =l Iyl (1.4a)
|x| <afora>0, implies —a<x<a (1.4b)
|x+ y[ < |[x|+ |y|. known as the ‘triangle inequality’ (14c)

S +y) =\(xy), whenx=0andy=0 (1.44)





OEBPS/images/Chapter.jpg





OEBPS/images/v24.jpg





OEBPS/images/v8.jpg





OEBPS/images/M90.jpg
3x — 5x + 4 =3(x?






OEBPS/images/M93.jpg
1+2x=2x"=1-2(x*~x)





OEBPS/images/M102.jpg
A 120435 = (x+ S+ 7)





OEBPS/images/M61.jpg
(a + by





OEBPS/images/M9.jpg
(1.1a)
(1.1b)
(119






OEBPS/images/M72.jpg
ax3+bx+c=u[x2+£x+£
a a





OEBPS/images/M88.jpg
X+ dx=(x+2)





OEBPS/images/M49.jpg
E X [(x +y) + 2\(x ¢+ y) = 4(xy)





OEBPS/images/M51.jpg





OEBPS/images/M24.jpg
15+3X2=5%x2=10





OEBPS/images/M54.jpg
0.257(0.205% — 0.160*) X 1.5m*





OEBPS/images/v23.jpg





OEBPS/images/v34.jpg





OEBPS/images/v7.jpg
>(x + y)





OEBPS/images/M79.jpg
(a+ by =a + 2ab + b*
(a—byP=a*—2ab+ b
@ — b= (a+b)a—b)

2 2
n2+bx+c=a(x+i) P
2a 4a

(1.50)
(1.5b)
(1.5¢)

(1.5d)





OEBPS/images/M30.jpg





OEBPS/images/cover.jpg





OEBPS/images/M77.jpg
b <
p=Landg=<
p=opada=z





OEBPS/images/v93.jpg
ab = < [(a + b)* — (a — b))





OEBPS/images/v94.jpg
either(x+ 1)< —Jor(x+1)>1/





OEBPS/images/v26.jpg





OEBPS/images/x2.png
dx X
a*'(?





OEBPS/images/v15.jpg





OEBPS/images/M63.jpg
(a+ by — (a— b)*=4ab





OEBPS/images/M73.jpg
b <
X =
a  a





OEBPS/images/v92.jpg





OEBPS/images/M97.jpg
Xz + 2yz — 2y —

42z = Qy+x)
=42z - (x+2y)
=x+2)z—-1)





OEBPS/images/M23.jpg
12—-4+13=8+13=21





OEBPS/images/M36.jpg
W2 +V3P=2+223+3=5+26





OEBPS/images/v25.jpg





OEBPS/images/v9.jpg
5(x + y) = V(xy)





OEBPS/images/v90.jpg





OEBPS/images/v91.jpg





OEBPS/images/v14.jpg





OEBPS/images/M43.jpg
e T £





OEBPS/images/M62.jpg
—2ab + b*






OEBPS/images/M89.jpg





OEBPS/images/v28.jpg





OEBPS/images/v5.jpg
4-243
7-3J3





OEBPS/images/v17.jpg





OEBPS/images/M65.jpg





OEBPS/images/M42.jpg





OEBPS/images/M109.jpg
(a + b)' = (a + b)a + b)
=a(@ + 3a’b + 3ab® + b*) + b(@® + 3a’b + 3ab® + b)
=a*+ 3d’b + 3a®* + ab’ + @’b + 3a®* + 3ab’ + b*
=a* 4+ 4°h + 6a2h° + dab® + b*





OEBPS/images/M25.jpg
R-@+13)=12-1






OEBPS/images/M106.jpg
Cx—Dx+5=2"+9%x -5





OEBPS/images/v27.jpg
(dab™) "





OEBPS/images/M45.jpg
—3=sx+2s=3





OEBPS/images/v16.jpg





OEBPS/images/M101.jpg
35=5X7=35x1





OEBPS/images/M64.jpg
ab =7l +b? ~ (@~ b’





OEBPS/images/M76.jpg
ax-+ bx + ¢ = a[(x + p)* + g — p7]





OEBPS/images/M32.jpg
>, ‘greater than’
<, ‘less than’





OEBPS/images/M157.jpg
€ =200 + 0.5(20000 — 100p)





OEBPS/images/M111.jpg
(a+ by =a*+2ab+ b





OEBPS/images/M159.jpg
P=R-C
= (20000 — 100p)p/100 — 200 — 0.5(20000 — 100p)

—p* + 250p — 10200





OEBPS/images/M158.jpg
R = (20000 — 100p)p/100





OEBPS/images/M160.jpg
P =125 — (p — 125)* — 10200
= 5425 — (p — 125)





OEBPS/images/Mach1-10.jpg
(@+b)Xc=(axXc)+(Xc)
(@a—b)Xc=(aXc)—(bXc)





OEBPS/images/v3.jpg
7+ 5\2





OEBPS/images/Mach1-11.jpg
=@+c)+~+c
@=c)— (b= o)






OEBPS/images/person.png
Pearson





OEBPS/images/v30.jpg





OEBPS/images/Mach1-12.jpg





OEBPS/images/person2.png
@ Pearson

Harlow, England - London « New

Tokyo * Seoul * e





OEBPS/images/M91.jpg
25
=(x--%





OEBPS/images/Mach1-13.jpg





OEBPS/images/M44.jpg
-2<x<8





OEBPS/images/PC.png





OEBPS/images/v19.jpg





OEBPS/images/M67.jpg
(a+b)+cP=(a+b)l+2a+b)kc+c using(l.5a)
@+ 2ab + b + 2ac + 2be + ¢
@+ b + ¢ + 2ab + 2bc + 2ac

1





OEBPS/images/M82.jpg





OEBPS/images/Mach1-1.jpg
(1) = 2 (hundreds) + O (tens) and 1 (units) = 201,

1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (cight) + 1 (unit)
11001001,

1 (gross) + 4 (dozens) + 9 (units) = 149,.

X






OEBPS/images/M41.jpg
la.b] = {xa=x=b,xin R}





OEBPS/images/M103.jpg
(mx + a)(nx + B) = mnx® + (na + mP)x + o





OEBPS/images/v29.jpg





OEBPS/images/v4.jpg
2+34\2
9 - 72






OEBPS/images/v18.jpg





OEBPS/images/02.jpg
(1) = 2 (hundreds) + 7 (tens) + 5 (units) = 275,

(ii) = 1 (two hundred and fifty-six) + I (sixteen) + 1 (two) + 1 (unit) = 100010011,

i) = 1 (gross) + 10 (dozens) + eleven (units) = 14e,,
(A repvesents ton and & represeats oleven)





OEBPS/images/M66.jpg
 + 2ab + 2bc + 2ca





OEBPS/images/03.jpg





OEBPS/images/01.jpg





OEBPS/images/M22.jpg
1-42 _ (1=~2)(1-+6)

1+46 (1 +6)(1—6)
1-2-v6+12

B 1-6

(1 =2 =6 + 2\3)/5






OEBPS/images/M35.jpg
(@<bandc<d) implies a+c<b+d (1.2a)

(@<bandc>d) implies a—c<b-d (1.2b)
(@<bandb<c) implies a<c (1.20)

a<b implies a+c<b+c (1.2d)
(@<bandc>0) implies ac<bc (1.2¢)
(a<bandc<0) implies ac> be (1.2)

(@a<bandab>0) implies (1.2g)






