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Preface to the Twelfth Edition 
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Chapter  One International System of Measurement







Objectives 



When you have studied this chapter, you should




	be familiar with the International System of Measurement



	be familiar with a variety of derived SI units



	be aware of the concepts of torque and turning moment



	be capable of analysing simple applications of the given SI units



	have an understanding of work, energy and power



	be capable of analysing simple applications involving work, energy and power



	have an understanding of efficiency and its relevance to energy and power



	be capable of analysing the efficiency of simple applications



	have an understanding of temperature and its units of measurement
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Electrical technology is a subject which is closely related to the technologies of mechanics, heat, light and sound. For instance, we use electrical motors to drive machines such as cranes, we use electric heaters to keep us warm, we use electric lamp bulbs perhaps to read this book and we use electric radios to listen to our favourite music.


At this introductory stage, let us assume that we have some understanding of physics in general and, in particular, let us assume that we have some understanding of the basic mechanics which form part of any study of physics. It is not necessary to have an extensive knowledge, and in this chapter we shall review the significant items of which you should have an understanding. We shall use these to develop an appreciation of electrical technology.


In particular, we shall be looking at the concepts of work, energy and power since the underlying interest that we have in electricity is the delivery of energy to a point of application. Thus we drive an electric train yet the power source is in a generating station many kilometres away, or we listen to a voice on the phone speaking with someone possibly on the other side of the world. It is electricity which delivers the energy to make such things happen.







































1.1 The International System



The International System of Units, known as SI in every language, was formally introduced in 1960 and has been accepted by most countries as their only legal system of measurement.


One of the SI’s most important advantages over its predecessors is that it is a coherent system wherever possible. A system is coherent if the product or quotient of any two quantities is the unit of the resultant quantity. For example, unit area results when unit length is multiplied by unit length. Similarly, unit velocity results when unit length or distance is divided by unit time.


The SI is based on the measures of six physical quantities:




	Mass



	Length



	Time



	Electric current



	Absolute temperature



	Luminous intensity






All other units are derived units and are related to these base units by definition.


If we attempt to analyse relationships between one unit and another, this can be much more readily achieved by manipulating symbols, e.g. A for areas, W for energy and so on. As each quantity is introduced, its symbol will be highlighted as follows:








	Energy

	Symbol: W










Capital letters are normally used to represent constant quantities – if they vary, the symbols can be made lower case, i.e. W indicates constant energy whereas w indicates a value of energy which is time varying.


The names of the SI units can be abbreviated for convenience. Thus the unit for energy – the joule – can be abbreviated to J. This will be highlighted as follows:








	Energy

	Symbol: W


	Unit: joule (J)










Here the unit is given the appropriate unit abbreviation in brackets. These are only used after numbers, e.g. 16 J. By comparison, we might refer to a few joules of energy.


Now let us consider the six base quantities.


The kilogram is the mass of a platinum-iridium cylinder preserved at the International Bureau of Weights and Measures at Sèvres, near Paris, France.








	Mass

	Symbol: m


	Unit: kilogram (kg)










It should be noted that the megagram is also known as the tonne (t).


The metre is the length equal to 1 650 763.73 wavelengths of the orange line in the spectrum of an internationally specified krypton discharge lamp.








	Length

	Symbol: l


	Unit: metre (m)










Length and distance are effectively the same measurement, but we use the term distance to indicate a length of travel. In such instances, the symbol d may be used instead of l. In the measurement of length, the centimetre is additional to the normal multiple units.


The second is the interval occupied by 9 192 631 770 cycles of the radiation corresponding to the transition of the caesium-133 atom.








	Time

	Symbol: t


	Unit: second (s)










Although the standard submultiples of the second are used, the multiple units are often replaced by minutes (min), hours (h), days (d) and years (a).


The ampere is defined in section 2.7.








	Electric current

	Symbol: I


	Unit: ampere (A)










The kelvin is 1/273.16 of the thermodynamic temperature of the triple point of water. On the Celsius scale the temperature of the triple point of water is 0.01 °C, hence


0°C=273.15 K


A temperature interval of 1 °C = a temperature interval of 1 K.


The candela is the unit of luminous intensity.









1.2 SI Derived Units



Although the physical quantities of area, volume, velocity, acceleration and angular velocity are generally understood, it is worth noting their symbols and units.








	Area

	Symbol: A


	Unit: square metre (m2)







	Volume

	Symbol: V


	Unit: cubic metre (m3)







	Velocity

	Symbol: u


	Unit: metre per second (m/s)







	Acceleration

	Symbol: a


	Unit: metre per second squared (m/s2)







	Angular velocity

	Symbol: ω


	Unit: radian per second (rad/s)










The unit of force, called the newton, is that force which, when applied to a body having a mass of one kilogram, gives it an acceleration of one metre per second squared.








	Force

	Symbol: F


	Unit: newton (N)











F=ma [1.1]



F [newtons]=m [kilograms]×a [metres per second2]


Weight The weight of a body is the gravitational force exerted by the Earth on that body. Owing to the variation in the radius of the Earth, the gravitational force on a given mass, at sea-level, is different at different latitudes, as shown in Fig. 1.1. It will be seen that the weight of a 1 kg mass at sea-level in the London area is practically 9.81 N. For most purposes we can assume



The weight of a body≃9.81m newtons [1.2]



where m is the mass of the body in kilograms.
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Fig.  1.1 Variation of weight with latitude












Example  1.1




A force of 50 N is applied to a mass of 200 kg. Calculate the acceleration.


Substituting in expression [1.1], we have


50 [N]=200 [kg]×a∴a=0.25 m/s2








Example  1.2




A steel block has a mass of 80 kg. Calculate the weight of the block at sea-level in the vicinity of London.


Since the weight of a 1 kg mass is approximately 9.81 N,


Weight of the steel block =80[kg]×9.81 [N/kg]=785 N





In the above example, it is tempting to give the answer as 784.8 N, but this would be a case of false accuracy. The input information was only given to three figures and therefore the answer should only have three significant numbers, hence 784.8 ought to be shown as 785. Even here, it could be argued that the 80 kg mass was only given as two figures and the answer might therefore have been shown as 780 N. Be careful to show the answer as a reasonable compromise. In the following examples, such adjustments will be brought to your attention.









1.3 Unit of Turning Moment or Torque



If a force F, in newtons, is acting at right angles to a radius r, in metres, from a point, the turning moment or torque about that point is


Fr newton metres








	Torque

	Symbol: T (or M)

	Unit: newton metre (N m)










If the perpendicular distance from the line of action to the axis of rotation is r, then



T=Fr [1.3]



The symbol M is reserved for the torque of a rotating electrical machine.









1.4 Unit of Work or Energy



The SI unit of energy is the joule (after the English physicist, James P. Joule, 1818–1889). The joule is the work done when a force of 1 N acts through a distance of 1 m in the direction of the force. Hence, if a force F acts through distance l in its own direction


Work done=F[newtons]×l[metres]=Fl joules








	Work or energy

	Symbol: W


	Unit: joule (J)











W=Fl (1.4)



Note that energy is the capacity for doing work. Both energy and work are therefore measured in similar terms.


If a body having mass m, in kilograms, is moving with velocity u, in metres per second


Kinetic energy=12 mu2 joules



∴W=12mu2 [1.5]



If a body having mass m, in kilograms, is lifted vertically through height h, in metres, and if g is the gravitational acceleration, in metres per second squared, in that region, the potential energy acquired by the body is


Work done in lifting the body=mgh joules



W≃9.81mh [1.6]






Example  1.3




A body having a mass of 30 kg is supported 50 m above the Earth’s surface. What is its potential energy relative to the ground?


If the body is allowed to fall freely, calculate its kinetic energy just before it touches the ground. Assume gravitational acceleration to be 9.81 m/s2.


Weight of body=30 [kg]×9.81 [N/kg]=294.3 N∴Potential energy=294.3 [N]×50 [m]=14 700 J


Note: here we carried a false accuracy in the figure for the weight and rounded the final answer to three figures.


If u is the velocity of the body after it has fallen a distance l with an acceleration g


u=(2gl)=(2×9.81×50)=31.32 m/s


and


Kinetic energy=12×30[kg]×(31.32)2 [m/s]2=14 700 J


Hence the whole of the initial potential energy has been converted into kinetic energy. When the body is finally brought to rest by impact with the ground, practically the whole of this kinetic energy is converted into heat.












1.5 Unit of Power



Since power is the rate of doing work, it follows that the SI unit of power is the joule per second, or watt (after the Scottish engineer James Watt, 1736–1819). In practice, the watt is often found to be inconveniently small and so the kilowatt is frequently used.








	Power

	Symbol: P


	Unit: watt (W)










P=Wt=F⋅lt=F⋅lt



P=Fu [1.7]



In the case of a rotating electrical machine



P=Mω=2πNrM60 [1.8]



where Nr is measured in revolutions per minute.








	Rotational speed

	Symbol: Nr


	Unit: revolution per minute (r/min)










In the SI, the rotational speed ought to be given in revolutions per second but this often leads to rather small numbers, hence it is convenient to give rotational speed in revolutions per minute. The old abbreviation was rev/min and this is still found to be widely in use.








	Rotational speed

	Symbol: nr


	Unit: revolution per second (r/s)










There is another unit of energy which is used commercially: the kilowatt hour (kW h). It represents the work done by working at the rate of one kilowatt for a period of one hour. Once known as the Board of Trade Unit, it is still widely referred to, especially by electricity suppliers, as the unit.


1 kW h=1000 watt hours=1000×3600 watt seconds or joules=3 600 000 J =3.6 MJ





Example  1.4




A stone block, having a mass of 120 kg, is hauled 100 m in 2 min along a horizontal floor. The coefficient of friction is 0.3. Calculate:




	the horizontal force required;



	the work done;



	the power.








	
Weight of stone ≃120 [kg]×9.81 [N/kg]=1177.2 N


∴Force required =0.3×1177.2 [N]=353.16 N =353 N




	Work done=353.16 [N]×100 [m]=35 316 J=35.3 kJ



	Power =35 316 [J](2×60)[s]=294 W












Example  1.5




An electric motor is developing 10 kW at a speed of 900 r/min. Calculate the torque available at the shaft.


Speed =900 [r/min]60 [s/min]=15 r/s


Substituting in expression [1.8], we have


10 000 [W]=T ×2π×15 [r/s]∴T=106 N m












1.6 Efficiency



It should be noted that when a device converts or transforms energy, some of the input energy is consumed to make the device operate. The efficiency of this operation is defined as


Efficiency=energy output in a given timeenergy input in the same time=WoWin=power outputpower input=PoPin


Efficiency   Symbol: η   Unit: none



∴η=PoPin [1.9]






Example  1.6




A generating station has a daily output of 280 MW h and uses 500 t (tonnes) of coal in the process. The coal releases 7 MJ/kg when burnt. Calculate the overall efficiency of the station.


Input energy per day is


Win=7×106×500×1000=35.0×1011 J


Output energy per day is


Wo=280 MW h=280×106×3.6×103=10.1×1011 Jη=WoWin=10.1×101135.0×1011=0.288








Example  1.7




A lift of 250 kg mass is raised with a velocity of 5 m/s. If the driving motor has an efficiency of 85 per cent, calculate the input power to the motor.


Weight of lift is


F=mg=250×9.81=2452 N


Output power of motor is


Po=Fu =2452×5=12 260 W


Input power to motor is


Pin=Poη=12 2600.85=14 450 W =14.5 kW












1.7 Temperature



Some mention is required of temperature measurement, which is in the Celsius scale. Absolute temperature is measured in kelvin, but for most electrical purposes at an introductory stage it is sufficient to measure temperature in degrees Celsius.


It should be remembered that both degrees of temperature represent the same change in temperature – the difference lies in the reference zero.








	Temperature

	Symbol: θ


	Unit: degree Celsius (°C)










A useful constant to note is that it takes 4185 J to raise the temperature of 1 litre of water through 1 °C.





Example  1.8




An electric heater contains 40 litres of water initially at a mean temperature of 15 °C; 2.5 kW h is supplied to the water by the heater. Assuming no heat losses, what is the final mean temperature of the water?


Win=2.5×3.6×106=9×106 J


Energy to raise temperature of 40 litres of water through 1 °C is


40×4185 J


Therefore change in temperature is


Δθ=9×10640×4185=53.8°Cθ2=θ1+Δθ=15+53.8=68.8 °C











Summary of Important Formulae 




F[newtons]=m[kilograms]×a[metres per second squared] [1.1]



i.e.


F=ma



Torque T=Fr (newton metres) [1.3]




Work W=Fl (joules) [1.4]



Work =Energy



Kinetic energy W=12mu2 [1.5]



Power



P=Fu (watts) [1.7]



Efficiency



=Tω=Mω=2πnT [1.8]




 η=Po/Pin [1.9]










Terms and Concepts 




Force, when applied to a body, causes the body to accelerate.


Weight is the gravitational force exerted by the Earth on a body.


Torque, when applied to a body, causes the body to rotationally accelerate.


Energy is the capacity to do work. When selling energy, it is measured in kilowatt hours rather than joules.


Power is the rate of working.


Efficiency is the ratio of output power to input power. The difference between output and input is usually due to wastage.









Exercises  1






	A force of 80 N is applied to a mass of 200 kg. Calculate the acceleration in metres per second squared.




	Calculate the force, in kilonewtons, required to give a mass of 500 kg an acceleration of 4 m/s2.




	What is the weight, in newtons, of a body of mass 10 kg?




	A ball falls off the top of a wall. Determine its downward velocity 1 s, 2 s and 3 s after commencing its fall.




	A body of mass 10 tonnes is acted upon by a force of 1 kN. How long will it take the body to reach a speed of 5 m/s?




	A 10 000 tonne ship, when slowing down with its engines stopped, is found to slow from 3 m/s to 2 m/s in a distance of 40 m. Determine the average resistance to motion.




	A body of mass 10 kg rests on a surface travelling upwards with uniform velocity 3 m/s. Determine the apparent weight of the body that it exerts on the surface. If the surface accelerated at 3 m/s2, what would be the new value of the apparent weight?




	A body of true weight 10 N appears to weigh 9 N when its weight is measured by means of a spring balance in a moving lift. What is the acceleration of the lift at the time of weighing?




	A train having a mass of 300 Mg is hauled at a constant speed of 90 km/h along a straight horizontal track. The track resistance is 5 mN per newton of train weight. Calculate (a) the tractive effort in kilonewtons, (b) the energy in megajoules and in kilowatt hours expended in 10 minutes, (c) the power in kilowatts and (d) the kinetic energy of the train in kilowatt hours (neglecting rotational inertia).




	The power required to drive a certain machine at 350 r/min is 600 kW. Calculate the driving torque in newton metres.














Chapter  Two Introduction to Electrical Systems







Objectives 



When you have studied this chapter, you should




	have an understanding of the importance electricity has for engineers



	be familiar with the constituent parts of an electric circuit



	be familiar with electric charge



	recognize that an electric current is the rate of flow of electric charge



	have an understanding of the effect that electromotive force has on a circuit



	be capable of differentiating between electromotive force and volt drop



	be familiar with basic electrical units of measurement



	have an understanding of Ohm’s law



	be capable of applying Ohm’s law to the analysis of simple circuits



	be familiar with resistors and their coding



	be aware of the difference between conductors and insulators
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Electrical systems involve the use of circuits. This chapter introduces you to the construction of a circuit and classifies the principal parts which are to be found in every circuit, and this will lead to an understanding of circuit diagrams. We shall also address what happens to bring about the action of an electric circuit. The principal activity involves electric charge – when we arrange for electric charge to move in a predetermined way, we achieve an electric current. To produce this effect, we require to enlist the aid of an electromotive force.


Georg Ohm related the electromotive force to the current in his simple law, and by applying Ohm’s law we can find out about resistance, which is an important physical property associated with all circuits. This will lead us to discover that circuits can have conductors, insulators and resistors depending on the way in which we regard the resistance of the component parts. And most significantly, we find that current passing through a resistor produces heat – and this is important in practice since it determines whether a cable can pass a small current or a large one.

















































2.1 Electricity and the Engineer



Electricity can be considered from two points of view. The scientist is concerned with what happens in an electric system and seeks to explain its mysteries. The engineer accepts that electricity is there and seeks to make use of its properties without the need to fully understand them.


Because this book is written for engineers, let us concentrate on the features of electricity which are most significant – and the most significant is that an electrical system permits us easily to transmit energy from a source of supply to a point of application.


In fact, electrical engineering could be summarized into four categories:




	The production of electrical energy.



	The transmission of electrical energy.



	The application of electrical energy.



	The control of electrical energy.






Most electrical engineers concern themselves with electronic control systems which involve not only computers but also all forms of communications. Transmission systems are varied and include the electronic communications systems as well as the power systems which appear as tower lines. For the electronics engineer, the source, which produces the energy, and the load to which the energy is applied, are less significant; for the power engineer, they are the most significant.


To understand an electrical system better, let us consider a simple situation with which we are familiar – the electric light in our room.









2.2 An Electrical System



A basic electrical system has four constituent parts as shown in Fig. 2.1.




	The source. The function of the source is to provide the energy for the electrical system. A source may usually be thought of as a battery or a generator, although for simplicity we might even think of a socket outlet as a source.



	The load. The function of the load is to absorb the electrical energy supplied by the source. Most domestic electrical equipment constitutes loads. Common examples include lamps and heaters, all of which accept energy from the system.



	The transmission system. This conducts the energy from the source to the load. Typically, the transmission system consists of insulated wire.



	The control apparatus. As the name suggests, its function is to control. The most simple control is a switch which permits the energy to flow or else interrupts the flow.
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Fig.  2.1 Parts of an electrical system
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Fig.  2.2 Simple lamp system
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Fig.  2.3 Simple lamp circuit









A simple system is shown in Fig. 2.2; a generator supplies a lamp bulb, while a switch is included to put the lamp on and off. This example serves to show two points. First, it illustrates the fundamental function of any electric system which is to transport energy from the input source to the energy-converting load. The generator could well be a long distance away from the point of application to the lamp, and this transport of energy is called transmission, i.e. the energy has been transmitted. Secondly, the sketch of the system arrangement is difficult to interpret. The system used to take the energy from the generator to the lamp is almost impossible to follow. However, the alternative form of diagram shown in Fig. 2.3 is easy to follow because symbols have replaced detailed sketches of the components.


Such symbolic diagrams do not take long to draw, but they involve a new means of communication. This new means is the use of the symbols, which are shown separately in Fig. 2.4.


To obtain the best use of these symbols, it is necessary that everyone should use the same system of symbols, and such a system is published in a specification drawn up by the International Electrotechnical Commission (IEC). It has the number IEC 617 and is published in the UK by the British Standards Institution as BS EN 60617. Most engineers become familiar with many of the symbols and it would be unusual to require to remember them all. Most symbols are self-explanatory as each diagram is introduced.
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Fig.  2.4 Symbols used in Fig. 2.3










It should be remembered that electrical circuit diagrams, as they are called, are generally drawn to show a clear sequence of events; in particular, the energy flows from source to load. Normally this flow should read from left to right; thus, in Fig. 2.3, the generator was drawn at the left-hand side and the lamp bulb at the right-hand side, with the controlling switch in between.


Electricity permits the source of energy to be remote from the point of application. Electrical engineering is concerned with the study of how this energy transmission takes place, but, before getting down to applying electric current to our use, it is necessary to become familiar with some of the basic electrical terms.









2.3 Electric Charge



An electrical system generally transmits energy due to the movement of electric charge. Although we need not study electric charge in depth, we need to have some understanding in order to develop a system of measurement of electrical quantities and also to relate these to the measurements which we have reviewed in Chapter 1.


Electricity appears in one of two forms which, by convention, are called negative and positive electricity. Electric charge is the excess of negative or positive electricity on a body or in space. If the excess is negative, the body is said to have a negative charge and vice versa.


An electron is an elementary particle charged with a small and constant quantity of negative electricity. A proton is similarly defined but charged with positive electricity whereas the neutron is uncharged and is therefore neutral. In an atom the number of electrons normally equals the number of protons; it is the number of protons that determines to which element type the atom belongs. An atom can have one or more electrons added to it or taken away. This does not change its elemental classification but it disturbs its electrical balance. If the atom has excess electrons, it is said to be negatively charged. A charged atom is called an ion.


A body containing a number of ionized atoms is also said to be electrically charged. It can be shown that positively and negatively charged bodies are mutually attracted to one another whereas similarly charged bodies repel one another.









2.4 Movement of Electrons



All electrons have a certain potential energy. Given a suitable medium in which to exist, they move freely from one energy level to another and this movement, when undertaken in a concerted manner, is termed an electric current flow. Conventionally it is said that the current flows from a point of high energy level to a point of low energy level. These points are said to have high potential and low potential respectively. For convenience the point of high potential is termed the positive and the point of low potential is termed the negative, hence conventionally a current is said to flow from positive to negative.


This convention was in general use long before the nature of electric charge was discovered. Unfortunately, it was found that electrons move in the other direction since the negatively charged electron is attracted to the positive potential. Thus conventional current flows in the opposite direction to that of electron current. Normally only conventional current is described by the term current and this will apply throughout the text.


The transfer of electrons takes place more readily in a medium in which atoms can readily release electrons, e.g. copper, aluminium, silver. Such a material is termed a conductor. A material that does not readily permit electron flow is termed an insulator, e.g. porcelain, nylon, rubber. There is also a family of materials termed semiconductors which have certain characteristics that belong to neither of the other groups.









2.5 Current Flow in a Circuit



For most practical applications it is necessary that the current flow continues for as long as it is required; this will not happen unless the following conditions are fulfilled:




	There must be a complete circuit around which the electrons may move. If the electrons cannot return to the point of starting, then eventually they will all congregate together and the flow will cease.



	
There must be a driving influence to cause the continuous flow. This influence is provided by the source which causes the current to leave at a high potential and to move round the circuit until it returns to the source at a low potential. This circuit arrangement is indicated in Fig. 2.5.
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Fig.  2.5 Elementary Circuit














The driving influence is termed the electromotive force, hereafter called the e.m.f. Each time the charge passes through the source, more energy is provided by the source to permit it to continue round once more. This is a continuous process since the current flow is continuous. It should be noted that the current is the rate of flow of charge through a section of the circuit.









2.6 Electromotive Force and Potential Difference



The e.m.f. represents the driving influence that causes a current to flow. The e.m.f. is not a force, but represents the energy expended during the passing of a unit charge through the source; an e.m.f. is always connected with energy conversion.


The energy introduced into a circuit is transferred to the load unit by the transmission system, and the energy transferred due to the passage of unit charge between two points in a circuit is termed the potential difference (p.d.). If all the energy is transferred to the load unit, the p.d. across the load unit is equal to the source e.m.f.


It will be observed that both e.m.f. and p.d. are similar quantities. However, an e.m.f. is always active in that it tends to produce an electric current in a circuit whereas a p.d. may be either passive or active. A p.d. is passive whenever it has no tendency to create a current in a circuit.


Unless it is otherwise stated, it is usual to consider the transmission system of a circuit to be ideal, i.e. it transmits all the energy from the source to the load unit without loss. Appropriate imperfections will be considered later.


Certain conventions of representing the e.m.f. and p.d. in a circuit diagram should be noted. Each is indicated by an arrow as shown in Fig. 2.6. In each case, the arrowhead points towards the point of high (or assumed higher) potential. It is misleading to show an arrowhead at each end of the
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Fig.  2.6 Circuit diagram conventions









line as if it were a dimension line. An arrowhead is drawn on the transmission system to indicate the corresponding direction of conventional current flow.


It will be seen that the current flow leaves the source at the positive terminal and therefore moves in the same direction as indicated by the source e.m.f. arrow. The current flow enters the load at the positive terminal, and therefore in the opposite direction to that indicated by the load p.d. arrow. Energy is converted within the load unit and, depending on the nature of this conversion, the p.d. may be constituted in a variety of ways. It is sufficient at first to consider the p.d. as the change in energy level across the terminals of the load unit. This is termed a volt drop since the p.d. (and e.m.f.) are measured in volts.


In Fig. 2.6 the source indicated consists of a battery which delivers direct current, i.e. current which flows in one direction. The source in Fig. 2.3 was shown as a circle which indicates that a rotating machine provided the current. A general symbol for any type of source of direct current is shown in Fig. 2.7.
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Fig.  2.7 General symbol for d.c. source
















2.7 Electrical Units



The unit of current is the ampere and is one of the SI base units mentioned in section 1.1.





(a) Current



The ampere is defined as that current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in a vacuum, would produce between these conductors a force of 2×10−7 newtons per metre of length. The conductors are attracted towards each other if the currents are in the same direction, whereas they repel each other if the currents are in opposite directions.








	Current

	Symbol: I


	Unit: ampere (A)










This definition is outstanding for its complexity. However, by using such a definition, most of the electrical units take on suitable magnitudes. The figure of 2×10−7 is therefore one of convenience and the definition will be explained in section 7.3.


The value of the current in terms of this definition can be determined by means of a very elaborately constructed balance in which the force between fixed and moving coils carrying the current is balanced by the force of gravity acting on a known mass.








(b) Quantity of Electricity



The unit of electrical quantity is the coulomb, namely the quantity of electricity passing a given point in a circuit when a current of 1 ampere is maintained for 1 second. Hence


Q [coulombs]=I [amperes]×t [seconds]



∴ Q=It [2.1]









	Charge

	Symbol: Q


	Unit: coulomb (C)










From equation [2.1], it can be seen that the coulomb is an ampere second. Batteries are used to hold charge but they are usually rated in ampere hours.


1 ampere hour=3600 coulombs


The rate of charge passing a point is the current, but it has become common practice to describe a flow of charge as a current. We have already met this misuse in the last paragraph (a) above when it was said that the coils were carrying a current. Thus we shall find the term ‘current’ being used to indicate both a flow of charge and also the rate of flow of charge. It sounds confusing, but fortunately it rarely gives rise to difficulties.





Example  2.1




If a charge of 25 C passes a given point in a circuit in a time of 125 ms, determine the current in the circuit.


From equation [2.1]


Q=It∴I=Qt=25125×10−3=200 A











(c) Potential Difference



The unit of potential difference is the volt, namely the difference of potential between two points of a conducting wire carrying a current of 1 ampere, when the power dissipated between these points is equal to 1 watt.


The term voltage originally meant a difference of potential expressed in volts, but it is now used as a synonym for potential difference irrespective of the unit in which it is expressed. For instance, the voltage between the lines of a transmission system may be 400 kV, while in communication and electronic circuits the voltage between two points may be 5μV. The term potential difference is generally abbreviated to p.d.








	Electric potential

	Symbol: V


	Unit: volt (V)










Electromotive force has the symbol E but has the same unit. Because p.d.s are measured in volts, they are also referred to as volt drops or voltages. By experiment, it can be shown that the relation corresponding to the definition is


V=PI


This is better expressed as



P=VI [2.2]



It also follows that



V=PI=Wt⋅tQ∴V=WQ [2.3]



That is, the p.d. is equal to the energy per unit charge.





Example  2.2




A circuit delivers energy at the rate of 20 W and the current is 10 A. Determine the energy of each coulomb of charge in the circuit.


From [2.2]


V=PI=2010=2 V


From [2.3]


W=VQ=2×1=2 J











(d) Resistance



The unit of electric resistance is the ohm, namely the resistance between two points of a conductor when a potential difference of 1 volt, applied between these points, produces in this conductor a current of 1 ampere, the conductor not being a source of any electromotive force.


Alternatively, the ohm can be defined as the resistance of a circuit in which a current of 1 ampere generates heat at the rate of 1 watt.








	Electric resistance

	Symbol: R


	Unit: ohm (Ω)










If V represents the p.d., in volts, across a circuit having resistance R, in ohms, carrying a current I, in amperes, for time t, in seconds,



V=IR [2.4]



or


I=VR


Power



P=IV=I2R [2.5]



=V2R


Also, the energy dissipated is given by


W=Pt=I2Rt=IVt





Example  2.3




A current of 5 A flows in a resistor of resistance 8 Ω. Determine the rate of heat dissipation and also the heat dissipated in 30 s.


P=I2R=52×8=200 W


W=Pt=200×30=6000 J











(e) Electromotive Force



An electromotive force is that which tends to produce an electric current in a circuit, and the unit of e.m.f. is the volt.








	Electromotive force

	Symbol: E


	Unit: volt (V)










The principal sources of e.m.f. are as follows:




	The electrodes of dissimilar materials immersed in an electrolyte, as in primary and secondary cells, i.e. batteries.



	The relative movement of a conductor and a magnetic flux, as in electric generators; this source can, alternatively, be expressed as the variation of magnetic flux linked with a coil (sections 6.10 and 8.3).



	The difference of temperature between junctions of dissimilar metals, as in thermo-junctions.
















2.8 Ohm’s law



One of the most important steps in the analysis of the circuit was undertaken by Georg Ohm, who found that the p.d. across the ends of many conductors is proportional to the current flowing between them. This, he found, was a direct proportionality, provided that temperature remained constant. Since the symbol for current is I, this relationship may be expressed as



V∝I [2.6]



Relation [2.6] is the mathematical expression of what is termed Ohm’s law.


Subsequent experimental evidence has shown that many other factors affect this relationship, and that in fact few conduction processes give a direct proportionality between p.d. and current. However, this relationship is almost constant for many electrical circuits and it is convenient at this introductory stage to consider only circuits in which the relationship is constant. The corresponding characteristic is shown in Fig. 2.8.
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Fig.  2.8 Constant potential difference/current characteristic and the circuit from which it is obtained









Since the relationship is assumed constant, then


VI=R


where R is a constant termed the resistance of the conductor. The boxes used in Figs 2.6 and 2.7 are generally used to represent a load with resistance properties. The expression involving R is usually expressed as



V=IR [2.4]



It should be noted that this relationship is derived from Ohm’s law and is not a symbolic expression for it. Ohm’s law only notes the constancy of p.d. to current provided that other physical factors remain unchanged, i.e. for a given p.d. the current will vary in consequence of variation of external physical factors.





Example  2.4




A motor gives an output power of 20 kW and operates with an efficiency of 80 per cent. If the constant input voltage to the motor is 200 V, what is the constant supply current?


Po=20 000 WPin=Poη=20 0000.8=25 000 W =VII=25 000200=125 A






Example  2.5




A 200 t train experiences wind resistance equivalent to 62.5 N/t. The operating efficiency of the driving motors is 0.87 and the cost of electrical energy is 8 p/kW h. What is the cost of the energy required to make the train travel 1 km?


If the train is supplied at a constant voltage of 1.5 kV and travels with a velocity of 80 km/h, what is the supply current?


In moving 1 km


Wo=Fl=200×62.5×1000=12.5×106JWin=Woη=12.5×1060.87=14.4×106J


But 1 kW h=3.6×106J, hence


Win=14.4×1063.6×106=4.0 kW h


∴ Cost of energy=8.0×4.0=32 p


Work done in 1 h when moving with a velocity of 80 km/h is


(14.4×106×80) J


Work done in 1 s (equivalent to the input power) is


14.4×106×8060×60=320×103 W =Pin


But Pin=VI


∴ I=PinV=320×1031.5×103=214 A










2.9 Resistors



A resistor is a device which provides resistance in an electrical circuit. The resistance of a resistor is said to be linear if the current through the resistor is proportional to the p.d. across its terminals. If the resistance were to vary with the magnitude of either the voltage or the current, the resistor is said to be non-linear. Resistors made from semiconductor materials (see Chapter 19) are examples of non-linear resistors.


In this book resistors may be assumed linear, i.e. their resistance will be assumed to remain constant when the temperature is maintained constant. We cannot ignore the effect of temperature since all resistors dissipate heat when operating, i.e. if a resistor passes a current I, then energy is brought into the resistor at the rate I2R. In order to release this heat energy, the resistor must become warmer than its surroundings until it can release the heat energy at the same rate as it is arriving. Therefore we have to assume that the effect of this temperature rise is negligible.
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Fig.  2.9 Resistor types and symbols









All resistors have a power rating which is the maximum power that can be dissipated without the temperature rise being such that damage occurs to the resistor. Thus a 1 W resistor with a resistance of 100 Ω can pass a current of 100 mA, whereas a 14 W resistor with the same resistance could only handle a current of 50 mA. In either case, if the current level were exceeded for any length of time, the resistor would overheat and might burn out.


Conductor wires and cables are similarly rated. Although we like to assume that a conductor has no resistance, in fact all have some resistance. The passing of a current therefore causes the conductor to heat, and if the heating effect is too great the insulant material can be damaged. The rating is therefore determined by the temperature which the insulant can withstand.
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Fig.  2.10 Wire-wound resistors. (a) Cement coated on a ceramic former; (b) vitreous enamel coated on a ceramic former









Therefore if we wish to purchase a resistor, we require to specify not only the required resistance but also the power rating. In electronic circuits, the common standard rating are 14 W, 12 W, 1 W and 2 W. Thus if we required a resistor to dissipate 1.1 W, we would select a 2 W resistor since the rating must exceed the operational value. In power circuits, much higher ratings up to a megawatt and more can be experienced, but such operational conditions are expensive since we would be paying for energy which we are throwing away. Thus power engineers avoid the use of resistors as much as possible, seeking to utilize energy with minimal loss.


For the purpose of this book we will assume that the ratings have been correctly specified, and therefore resistors will only have their resistances given. Resistors can be made in a variety of ways but all fall into the following categories given in Fig. 2.9. Most fixed resistors (also called non-variable resistors) are used in electronic circuits and are made from carbon mouldings or from metal-oxide film. These will be considered further in section 2.10, but they have the common feature of having low power ratings. When ratings of more than 1 W are required, this often involves the winding of a thin nichrome wire on a ceramic former. As we shall see in section 3.6, the thinner and the longer then the greater is its resistance. Usually the wire is of a very fine gauge and the coil of wire is coated with a cement or a vitreous enamel. Such resistors can operate up to 10 or 20 W and are shown in Fig. 2.10. At the top end of the scale, when hundreds of watts and more are involved, the resistors resemble lumps of cast iron or bent metal bars held in cages so that the air can circulate and take away the waste heat.






[image: ]


Fig.  2.11 Variable resistors. (a) Wire-wound; (b) mains ‘dropper’ resistor with fixed tappings; cement coated on a ceramic former









Wire-wound resistors may be wound on what looks like a large washer made from an insulant material such as card. An arm is mounted through the centre of the washer. By rotating the arm the length of wire between the point of contact and the end of the coil is varied, hence the resistance is varied. Usually such variable resistors have three connections, being each end of the coil plus the connection from the wiper arm. When all three connections are used, the device is said to be a potentiometer, as shown in Fig. 2.11(a).


OEBPS/images/M02NF004.png
Symbol

/%0

Representing

Wires (conductors)

Generator

Lamp bulb

Switch





OEBPS/images/M02NF011.png
0)3)3)3)313)





OEBPS/images/M02NF003.png
ch (control apparatus)

Generator Lamp bulb
(source) (load unit)

Wires (transmi:

ion system)





OEBPS/xhtml/js/format_lg_obj.js
/*

Responsive table script



Credit to http://css-tricks.com/responsive-data-tables/

*/



!function($) {

    var className = 'lc_responsivetable',

        maxWindowWidth = 700,

        bodyElement = document.body,

        windowWidth = window.innerWidth,

        windowHeight = window.innerHeight,

        largeTables = document.getElementsByTagName('table'),

        largeImages = document.getElementsByClassName('ls_large-image'),

        //svgEquations = document.getElementsByTagName("svg"),

        equations = document.getElementsByTagName('math'),

        // or m:math??

        scalable = 1,

        smallDevice, supportsTouch;



    if (window.innerWidth > maxWindowWidth) {

        smallDevice = false;

    } else {

        smallDevice = true;

    }





    //Check if it's touch device





    function isTouchDevice() {

        supportsTouch = ('ontouchstart' in window) || !! (navigator.msMaxTouchPoints);

        return supportsTouch;

    }



    function zoomIn(event, target) {

        scalable = scalable + 0.2

        var imageId = target.getAttribute('data-target')

        var targetImage = document.getElementById(imageId)

        targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.transformOrigin = "0 0"

        targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.webkitTransformOrigin = "0 0"



    }



    function zoomOut(event, target) {

        scalable = scalable - 0.2

        if (scalable > 0.2) {

            var imageId = target.getAttribute('data-target')

            var targetImage = document.getElementById(imageId)

            targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

            targetImage.style.transformOrigin = "0 0"

            targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

            targetImage.style.webkitTransformOrigin = "0 0"

        }

    }



    function zoomReset(event, target) {

        scalable = 1

        var imageId = target.getAttribute('data-target')

        var targetImage = document.getElementById(imageId)

        targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.transformOrigin = "0 0"

        targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.webkitTransformOrigin = "0 0"



    }

    

    function setupEquations(){

        if (equations.length > 0) {

            var eqs = []

            if (equations.length > 0) {

                for (var key in equations) {

                    eqs.push(equations[key])

                }

            }

            /*if (svgEquations.length > 0) {

                for (var i = 0; i < svgEquations.length; i++) {

                    // check if it's really an equation or not

                    eqs.push(svgEquations[i])

                }

            }*/



            //set up the equations

            for (var i = 0; i < eqs.length; i++) {

                var equation = eqs[i],

                    width,

                    parentW = equation.parentNode ? equation.parentNode.offsetWidth : equation.offsetWidth



                if (equation.childNodes && equation.childNodes[0].length == 0) {

                    width = equation.offsetWidth

                } else {

                    width = equation.childNodes ? equation.childNodes[0].offsetWidth : equation.offsetWidth

                }



                if (equation.parentNode && equation.parentNode.className.indexOf("inlineequation") === -1 && equation.style && equation.style.display != "inline") {

                    // wrap it in a div for scaling purposes

                    var div = document.createElement('div')

                    div.wrap(equation)

                    div.setAttribute("style", "width: " + parentW + "px; overflow: visible;")

                    div.className = "lc_equationwrapper"

                    

                    if (width > parentW) {

                        // scale if it's bigger

                        scaleEquation(div, width, parentW)

                    }

                }

            }



        }

        

        if (window.MathJax != undefined) {

            MathJax.Hub.Queue(function() {

                var Equations = document.getElementsByClassName("MathJax_Display")

                for (var i = 0; i < Equations.length; i++) {

                    var equation = Equations[i]



                    if (equation.parentNode.className.indexOf("lc_equationwrapper") == -1 && equation.style.display != "inline") {

                        // oops, it's not wrapped for some reason... wrap it up, then continue

                        var div = document.createElement('div')

                        div.setAttribute("style", "width: " + equation.parentNode.offsetWidth + "px; overflow: visible;")

                        div.className = "lc_equationwrapper"

                        var newHTML = equation.parentNode.innerHTML,

                            parent = equation.parentNode

                            div.innerHTML = newHTML

                            parent.innerHTML = ""

                        parent.appendChild(div)

                        equation = div.childNodes[2]

                    }



                    var width = equation.childNodes[0].offsetWidth,

                        parentW = equation.parentNode.offsetWidth

                    if (width > parentW) {

                        scaleEquation(equation.parentNode, width, parentW)

                    }

                }

            });

        }

    }

    

    function resizeEquations(){

        // scale the equations here

        var equations = document.getElementsByClassName("lc_equationwrapper")



        if (equations.length > 0) {

            for (var i = 0; i < equations.length; i++) {

                var equation = equations[i],

                    width = equation.offsetWidth,

                    innerWidth = 0,

                    innerHeight = equation.offsetHeight,

                    screenWidth = equation.parentNode.offsetWidth



                    // get the inner width

                if (equation.childNodes[1] && equation.childNodes[1].className.indexOf("MathJax") != -1) {

                    if (equation.childNodes[1].childNodes[0]) {

                        innerWidth = equation.childNodes[1].childNodes[0].offsetWidth

                    } else {

                        innerWidth = equation.childNodes[2].childNodes[0].offsetWidth

                    }

                } else {

                    innerWidth = equation.childNodes[0].offsetWidth

                }



                if (innerWidth > screenWidth) {

                    scaleEquation(equation, innerWidth, screenWidth)

                } else {

                    equation.setAttribute("style", "width: " + screenWidth + "px; overflow: visible; margin: 0 auto;")

                    //equation.parentNode.setAttribute("style", "height: "+innerHeight+"px")

                }

            }

        }

    }



    function scaleEquation(equation, width, parentW) {

        // if this fires, the equation needs scaling

        var scaleRatio = parentW / width,

            height = equation.offsetHeight * scaleRatio



            equation.style.webkitTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.webkitTransformOrigin = "0 0"

        equation.style.mozTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.mozTransformOrigin = "0 0"

        equation.style.transform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.transformOrigin = "0 0"

        equation.style.width = width + "px"

        equation.style.maxWidth = width + "px"

        //equation.parentNode.style.height = height + "px"

    }

    

    function scaleIt(it){

        if(it.id != "highlightPopupContent"){

            // check for nested images, on tables

            var nestedImgs = it.getElementsByTagName('img')

            for (var j = 0; j < nestedImgs.length; j++) {

                var nestImage = nestedImgs[j]

                nestImage.style.maxWidth = "none"

            }

            

            // set the parent to have a style of "overflow:auto"

            it.parentNode.style.overflowY = "hidden"

            it.parentNode.style.overflowX = "auto"            

            it.style.webkitTransformOrigin = "0 0"

            it.style.mozTransformOrigin = "0 0"

            it.style.msTransformOrigin = "0 0"

            it.style.OTransformOrigin = "0 0"

            it.style.transformOrigin = "0 0"

            var parentW = it.parentNode.offsetWidth,

                itW = it.offsetWidth

            if(itW > parentW){

                // it's too big

                var ratio = parentW/itW                

                it.style.height = "auto"

                

                var height = it.offsetHeight,

                    parentHeight = it.parentNode.offsetHeight

                it.style.webkitTransform = "scale("+ratio+", "+ratio+")"

                it.style.mozTransform = "scale("+ratio+", "+ratio+")"

                it.style.msTransform = "scale("+ratio+", "+ratio+")"

                it.style.OTransform = "scale("+ratio+", "+ratio+")"

                it.style.transform = "scale("+ratio+", "+ratio+")"

                it.style.height = height*ratio+"px"

                it.parentNode.style.height = height*ratio +"px"

            } else {

                it.style.webkitTransform = ""

                it.style.mozTransform = ""

                it.style.msTransform = ""

                it.style.OTransform = ""

                it.style.transform = ""

                it.style.height = ""

                it.parentNode.style.height = ""

            }

        }

    }



   function init() {

       isTouchDevice()

        // bind the click events for the tables

        document.addEventListener("click", function(e) {

            var targetClasses = e.target.className,

                target



                // if it's fa, then bubble to parent

            if (targetClasses.indexOf("fa") != -1) {

                targetClasses = e.target.parentElement.className

                target = e.target.parentElement

            } else {

                target = e.target

            }



            if (targetClasses.indexOf("zoom") != -1) {

                targetClasses = targetClasses.replace("zoom-btn ", "")

                switch (targetClasses) {

                case "zoom-in":

                    zoomIn(e, target)

                    break

                case "zoom-out":

                    zoomOut(e, target)

                    break

                case "zoom-reset":

                    zoomReset(e, target)

                    break

                }

            }

        }, false)



        var selectedTable, otherEls, scaleRatio



        if (supportsTouch) {

            window.addEventListener("orientationchange", function() {

                if (largeTables.length > 0) {

                    for (var i = 0; i < largeTables.length; i++) {

                        selectedTable = largeTables[i]

                        scaleIt(selectedTable)

                    }

                }



                resizeEquations()

            });

        } else {

            var css = '.lc_imagewrapper {width:100%; overflow: auto; padding: 0 0 0 32px;} \

                       .zoom-buttons { position:absolute; left: 0; width: 25px; z-index:5; } \

                       .zoom-btn { -webkit-box-shadow: 0px 1px 3px rgba(0,0,0,0.4); box-shadow: 0px 1px 3px rgba(0,0,0,0.4);} \

                       .zoom-in, .zoom-in:hover, .zoom-out, .zoom-out:hover {display:block; font-size:18px; font-weight:bold; background:#fff; border:1px solid #000; color: #000; padding: 2px; line-height: 100%; width: 25px; border-radius: 0; -webkit-border-radius: 0;} \

                       .zoom-in, .zoom-in:hover {border-bottom: 0} \

                       .zoom-reset, .zoom-reset:hover {border:none; font-size: 12px; background: transparent; padding: 0; box-shadow: none; color: #08c; font-weight: normal; } ',

                head = document.head || document.getElementsByTagName('head')[0],

                style = document.createElement('style');

            style.type = 'text/css';

            if (style.styleSheet) {

                style.styleSheet.cssText = css;

            } else {

                style.appendChild(document.createTextNode(css));

            }

            head.appendChild(style);



            for (var i = 0; i < largeImages.length; i++) {

                var selectedImage = largeImages[i]

                var randomId = Math.random().toString(36).substr(2);

                selectedImage.setAttribute("id", randomId);

                selectedImage.parentElement.setAttribute("style", "position: relative;")

                var div = document.createElement('div')

                div.setAttribute("class", "lc_imagewrapper")

                div.wrap(selectedImage)

                var div_control = ['<div class="zoom-buttons">', '<button data-target="' + randomId + '" class="zoom-btn zoom-in">+</button>', '<button data-target="' + randomId + '" class="zoom-btn zoom-out">-</button>', '<button class="zoom-btn zoom-reset" data-target="' + randomId + '" >Reset</button>', '</div>'].join('\n')



                div.insertAdjacentHTML('afterBegin', div_control)

            }

        }



        if (largeTables.length > 0) {

            for (var i = 0; i < largeTables.length; i++) {

                // on initial load, wrap the whole thing in a div

                selectedTable = largeTables[i]

                var newDiv = document.createElement("div")

                newDiv.className = "lc_tablewrapper"

                selectedTable.parentNode.insertBefore(newDiv, selectedTable)

                newDiv.appendChild(selectedTable)



                // fire off the scaling

                scaleIt(selectedTable)

            }

        }

        

        setupEquations()



    }



    window.addEventListener("resize", resizeThrottler, false);



    var resizeTimeout;



    function resizeThrottler() {

        // ignore resize events as long as an actualResizeHandler execution is in the queue

        if (!resizeTimeout && !supportsTouch) {

            resizeTimeout = setTimeout(function() {

                resizeTimeout = null;

                resizeWatcher();

                // The resize Watcher will execute at a rate of 15fps

            }, 66);

        }

    }



    function resizeWatcher() {



        if (largeTables.length > 0) {

            for (var i = 0; i < largeTables.length; i++) {

                selectedTable = largeTables[i]

                scaleIt(selectedTable)

            }

        }



        resizeEquations()



    }





    //find the closest figure parent





    function findAncestor(el, classname) {

        while ((el = el.parentElement) && !el.classList.contains(classname));

        return el;

    }



    function ancestorTag(node) {

        // walk tree until you reach a section

        var newNode = node,

            isParent = false



            do {

                newNode = newNode.parentNode

                if (newNode.nodeName.toLowerCase() == "figure" || newNode.nodeName.toLowerCase() == "section" || newNode.nodeName.toLowerCase() == "aside" || newNode.nodeName.toLowerCase() == "li") isParent = true

                //console.log(newNode)

            } while (!isParent)



            return newNode

    }





    //find the closest figure parent





    function hasClass(el, selector) {

        var className = " " + selector + " ";



        if ((" " + el.className + " ").replace(/[\n\t]/g, " ").indexOf(className) > -1) {

            return true;

        }



        return false;

    }



    //auto width columns





    function autoCalculateColWidth(tableEl) {

        var $table = $(tableEl);







        var $theadCells = $table.find('thead tr').children(),

            colCount

            // var colCount = $table.find('thead tr').length,

            //  colWidth = $table.parent().width() / colCount



        var $tbodyCells = $table.find('tbody tr:first').children();



        // Get the tbody columns width array

        colWidth = $tbodyCells.map(function() {

            return $(this).width();

        });



        // Set the width of thead columns

        $theadCells.each(function(i, v) {

            $(v).width(colWidth[i]);

        });



    }



    // Wrap an HTMLElement around each element in an HTMLElement array.

    HTMLElement.prototype.wrap = function(elms) {

        // Convert `elms` to an array, if necessary.

        if (!elms.length) elms = [elms];



        // Loops backwards to prevent having to clone the wrapper on the

        // first element (see `child` below).

        for (var i = elms.length - 1; i >= 0; i--) {

            var child = (i > 0) ? this.cloneNode(true) : this;

            var el = elms[i];



            // Cache the current parent and sibling.

            var parent = el.parentNode;

            var sibling = el.nextSibling;



            // Wrap the element (is automatically removed from its current

            // parent).

            child.appendChild(el);



            // If the element had a sibling, insert the wrapper before

            // the sibling to maintain the HTML structure; otherwise, just

            // append it to the parent.

            if (sibling) {

                parent.insertBefore(child, sibling);

            } else {

                parent.appendChild(child);

            }

        }

    }

    

    // check the readyState so it will load even if the the document has already loaded

    if(document.readyState == "loaded" || document.readyState == "complete"){

        init()

    } else {

        // not loaded, bind an event

        document.onreadystatechange = function(){

            if(document.readyState == "loaded" || document.readyState == "complete"){

                init()

            }

        }

    }



}(window.jQuery)
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