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Preface 




Audience



This book has been written to serve the mathematical needs of students engaged in a first course in engineering at degree level. It is primarily aimed at students of electronic, electrical, communications and systems engineering. Systems engineering typically encompasses areas such as manufacturing, control and production engineering. The textbook will also be useful for engineers who wish to engage in self-study and continuing education.





Motivation



Engineers are called upon to analyse a variety of engineering systems, which can be anything from a few electronic components connected together through to a complete factory. The analysis of these systems benefits from the intelligent application of mathematics. Indeed, many cannot be analysed without the use of mathematics. Mathematics is the language of engineering. It is essential to understand how mathematics works in order to master the complex relationships present in modern engineering systems and products.





Aims



There are two main aims of the book. Firstly, we wish to provide an accessible, readable introduction to engineering mathematics at degree level. The second aim is to encourage the integration of engineering and mathematics.





Content



The first three chapters include a review of some important functions and techniques that the reader may have met in previous courses. This material ensures that the book is self-contained and provides a convenient reference.


Traditional topics in algebra, trigonometry and calculus have been covered. Also included are chapters on set theory, sequences and series, Boolean algebra, logic, difference equations and the z transform. The importance of signal processing techniques is reflected by a thorough treatment of integral transform methods. Thus the Laplace, z and Fourier transforms have been given extensive coverage.


In the light of feedback from readers, new topics and new examples have been added in the fifth edition. Recognizing that motivation comes from seeing the applicability of mathematics we have focused mainly on the enhancement of the range of applied examples. These include topics on the discrete cosine transform, image processing, applications in music technology, communications engineering and frequency modulation.






Style



The style of the book is to develop and illustrate mathematical concepts through examples. We have tried throughout to adopt an informal approach and to describe mathematical processes using everyday language. Mathematical ideas are often developed by examples rather than by using abstract proof, which has been kept to a minimum. This reflects the authors' experience that engineering students learn better from practical examples, rather than from formal abstract development. We have included many engineering examples and have tried to make them as free-standing as possible to keep the necessary engineering prerequisites to a minimum. The engineering examples, which have been carefully selected to be relevant, informative and modern, range from short illustrative examples through to complete sections which can be regarded as case studies. A further benefit is the development of the link between mathematics and the physical world. An appreciation of this link is essential if engineers are to take full advantage of engineering mathematics. The engineering examples make the book more colourful and, more importantly, they help develop the ability to see an engineering problem and translate it into a mathematical form so that a solution can be obtained. This is one of the most difficult skills that an engineer needs to acquire. The ability to manipulate mathematical equations is by itself insufficient. It is sometimes necessary to derive the equations corresponding to an engineering problem. Interpretation of mathematical solutions in terms of the physical variables is also essential. Engineers cannot afford to get lost in mathematical symbolism.





Format



Important results are highlighted for easy reference. Exercises and solutions are provided at the end of most sections; it is essential to attempt these as the only way to develop competence and understanding is through practice. A further set of review exercises is provided at the end of each chapter. In addition some sections include exercises that are intended to be carried out on a computer using a technical computing language such as MATLAB®, GNU Octave, Mathematica or Python®. The MATLAB® command syntax is supported in several software packages as well as MATLAB® itself and will be used throughout the book.





Supplements



A comprehensive Solutions Manual is obtainable free of charge to lecturers using this textbook. It is also available for download via the web at www.pearsoned.co.uk/croft.


Finally we hope you will come to share our enthusiasm for engineering mathematics and enjoy the book.




Anthony Croft




Robert Davison




Martin Hargreaves





James Flint



March 2017
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1.1 Introduction



This chapter introduces some algebraic techniques which are commonly used in engineering mathematics. For some readers this may be revision. Section 1.2 examines the laws of indices. These laws are used throughout engineering mathematics. Section 1.3 looks at number bases. Section 1.4 looks at methods of solving polynomial equations. Section 1.5 examines algebraic fractions, while Section 1.6 examines the solution of inequalities. Section 1.7 looks at partial fractions. The chapter closes with a study of summation notation.


Computers are used extensively in all engineering disciplines to perform calculations. Some of the examples provided in this book make use of the technical computing language MATLAB®, which is commonly used in both an academic and industrial setting.


Because MATLAB® and many other similar languages are designed to compute not just with single numbers but with entire sequences of numbers at the same time, data is entered in the form of arrays. These are multi-dimensional objects. Two particular types of array are vectors and matrices which are studied in detail in Chapters 7 and 8.


Apart from being able to perform basic mathematical operations with vectors and matrices, MATLAB® has, in addition, a vast range of built-in computational functions which are straightforward to use but nevertheless are very powerful. Many of these high-level functions are accessible by passing data to them in the form of vectors and matrices. A small number of these special functions are used and explained in this text. However, to get the most out of a technical computing language it is however necessary However, to get the most out of a technical computing language it is necessary to develop a good understanding of what the software can do and to make regular reference to the manual.







1.2 Laws of Indices



Consider the product 6×6×6×6×6. This may be written more compactly as 65. We call 5 the index or power. The base is 6. Similarly, y×y×y×y may be written as y4. Here the base is y and the index is 4.



Example 1.1




Write the following using index notation:




	(−2)(−2)(−2)



	4.4.4.5.5



	yyyxxxx



	aa(−a)(−a)bb(−b)






Solution 





	(−2)(−2)(−2) may be written as (−2)3.



	4.4.4.5.5 may be written as 4352.



	yyyxxxx may be written as y3x4.



	
Note that (−a)(−a)=aa since the product of two negative quantities is positive. So aa(−a)(−a)=aaaa=a4. Also bb(−b)=−bbb=−b3. Hence


aa(−a)(−a)bb(−b)=a4−b3=−a4b3














Example 1.2




Evaluate




	73



	(−3)3



	23(−3)4






Solution 





	73=7.7.7=343



	(−3)3=(−3)(−3)(−3)=−27



	23(−3)4=8(81)=648












Most scientific calculators have an xy button to enable easy calculation of expressions of a similar form to those in Example 1.2.



1.2.1 Multiplying expressions involving indices



Consider the product (62)(63). We may write this as


(62)(63)=(6.6)(6.6.6)=65


So


6263=65


This illustrates the first law of indices which is


aman=am+n


When expressions with the same base are multiplied, the indices are added.



Example 1.3




Simplify each of the following expressions:




	39310



	434446



	x3x6



	y4y2y3






Solution 





	39310=39+10=319



	434446=43+4+6=413



	x3x6=x3+6=x9



	y4y2y3=y4+2+3=y9













Engineering application 1.1




Power dissipation in a resistor



The resistor is one of the three fundamental electronic components. The other two are the capacitor and the inductor, which we will meet later. The role of the resistor is to reduce the current flow within the branch of a circuit for a given voltage. As current flows through the resistor, electrical energy is converted into heat. Because the energy is lost from the circuit and is effectively wasted, it is termed dissipated energy. The rate of energy dissipation is known as the power, P, and is given by



P=I2R

(1.1)




where I is the current flowing through the resistor and R is the resistance value. Note that the current is raised to the power 2. Note that power, P, is measured in watts; current, I, is measured in amps; and resistance, R, is measured in ohms.


There is an alternative formula for power dissipation in a resistor that uses the voltage, V, across the resistor. To obtain this alternative formula we need to use Ohm's law, which states that the voltage across a resistor, V, and the current passing through it, are related by the formula



V=IR

(1.2)




From Equation (1.2) we see that



I=VR

(1.3)




Combining Equations (1.1) and (1.3) gives


P=(VR)2R=VR⋅VR⋅R=V2R


Note that in this formula for P, the voltage is raised to the power 2. Note an important consequence of this formula is that doubling the voltage, while keeping the resistance fixed, results in the power dissipation increasing by a factor of 4, that is 22. Also trebling the voltage, for a fixed value of resistance, results in the power dissipation increasing by a factor of 9, that is 32.


Similar considerations can be applied to Equation 1.1. For a fixed value of resistance, doubling the current results in the power dissipation increasing by a factor of 4, and trebling the current results in the power dissipation increasing by a factor of 9.








Consider the product 3(33). Now


3(33)=3(3.3.3)=34


Also, using the first law of indices we see that 3133=34. This suggests that 3 is the same as 31. This illustrates the general rule:




a=a1





Raising a number to the power 1 leaves the number unchanged.



Example 1.4




Simplify




	565



	x3xx2






Solution 





	565=56+1=57



	x3xx2=x3+1+2=x6
















1.2.2 Dividing expressions involving indices



Consider the expression 4543:


4543=4.4.4.4.44.4.4=4.4  by cancelling 4s=42


This serves to illustrate the second law of indices which is




aman=am−n





When expressions with the same base are divided, the indices are subtracted.



Example 1.5




Simplify




	5957



	(−2)16(−2)13



	x9x5



	y6y






Solution 





	5957=59−7=52



	(−2)16(−2)13=(−2)16−13=(−2)3



	x9x5=x9−5=x4



	y6y=y6−1=y5












Consider the expression 2323. Using the second law of indices we may write


2323=23−3=20


But, clearly, 2323=1, and so 20=1. This illustrates the general rule:




a0=1





Any expression raised to the power 0 is 1.






1.2.3 Negative indices



Consider the expression 4345. We can write this as




4345=4.4.44.4.4.4.4=14.4=142





Alternatively, using the second law of indices we have


4345=43−5=4−2


So we see that


4−2=142


Thus we are able to interpret negative indices. The sign of an index changes when the expression is inverted. In general we can state




a−m=1am  am=1a−m






Example 1.6




Evaluate the following:




	3−2



	24−3



	3−1



	(−3)−2



	6−36−2






Solution 





	3−2=132=19



	24−3=2(43)=2(64)=128



	3−1=131=13



	(−3)−2=1(−3)2=19



	6−36−2=6−3−(−2)=6−1=161=16













Example 1.7




Write the following expressions using only positive indices:




	x−4



	3x−4



	x−2y−2



	3x−2y−3






Solution 





	x−4=1x4



	3x−4=3x4



	x−2y−2=x−2y2=y2x2



	3x−2y−3=3x2y3













Engineering application 1.2




Power density of a signal transmitted by a radio antenna



A radio antenna is a device that is used to convert electrical energy into electromagnetic radiation, which is then transmitted to distant points.


An ideal theoretical point source radio antenna which radiates the same power in all directions is termed an isotropic antenna. When it transmits a radio wave, the wave spreads out equally in all directions, providing there are no obstacles to block the expansion of the wave. The power generated by the antenna is uniformly distributed on the surface of an expanding sphere of area, A, given by


A=4πr2


where r is the distance from the generating antenna to the wave front.


The power density, S, provides an indication of how much of the signal is received by another antenna placed at distance r. The actual power received depends on the effective area or aperture of the antenna, which is usually expressed in units of m2.


Electromagnetic field exposure limits for humans are sometimes specified in terms of a power density. The closer a person is to the transmitter, the higher the power density will be. So a safe distance needs to be determined.


The power density is the ratio of the power transmitted, Pt, to the area over which it is spread


S=power transmittedarea=Pt4πr2=Pt4πr−2 W m−2


Note that r in this equation has a negative index. This type of relationship is known as an inverse square law and is found commonly in science and engineering.


Note that if the distance, r, is doubled, then the area, A, increases by a factor of 4 (i.e. 22. If the distance is trebled, the area increases by a factor of 9 (i.e. 32) and so on. This means that as the distance from the antenna doubles, the power density, S, decreases to a quarter of its previous value; if the distance trebles then the power density is only a ninth of its previous value.












1.2.4 Multiple indices



Consider the expression (43)2. This may be written as


(43)2=43.43=43+3=46


This illustrates the third law of indices which is




(am)n=amn





Note that the indices m and n have been multiplied.



Example 1.8




Write the following expressions using a single index:




	(32)4



	(7−2)3



	(x2)−3



	(x−2)−3






Solution 





	(32)4=32×4=38



	(7−2)3=3−2×3=7−6



	(x2)−3=x2×(−3)=x−6



	(x−2)−3=x−2×−3=x6












Consider the expression (2452)3. We see that


(2452)3=(2452)(2452)(2452)=242424525252=21256


This illustrates a generalization of the third law of indices which is




(ambn)k=amkbnk






Example 1.9




Remove the brackets from




	(2x2)3



	(−3y4)2



	(x−2y)3






Solution 





	(2x2)3=(21x2)3=23x6=8x6



	(−3y4)2=(−3)2y8=9y8



	(x−2y)3=x−6y3













Engineering application 1.3




Radar scattering



It has already been shown in Engineering application 1.2 that the power density of an isotropic transmitter of radio waves is


S=Pt4πr−2  W m−2


It is possible to use radio waves to detect distant objects. The technique involves transmitting a radio signal, which is then reflected back when it strikes a target. This weak reflected signal is then picked up by a receiving antenna, thus allowing a number of properties of the target to be deduced, such as its angular position and distance from the transmitter. This system is known as radar, which was originally an acronym standing for RAdio Detection And Ranging.


When the wave hits the target it produces a quantity of reflected power. The power depends upon the object's radar cross-section (RCS), normally denoted by the Greek lower case letter sigma, σ, and having units of m2. The power reflected at the object, Pr, is given by


Pr=Sσ=Ptσ4πr−2   W


Some military aircraft use special techniques to minimize the RCS in order to reduce the amount of power they reflect and hence minimize the chance of being detected.


If the reflected power at the target is assumed to spread spherically, when it returns to the transmitter position it will have the power density, Sr, given by


Sr=power reflected at targetarea=Pr4πr−2   W m−2


Substituting for the reflected power, Pr, gives


Sr=power reflected at targetarea=(Ptσ4πr−2)4πr−2=Ptσ4π×4π(r−2)2=Ptσ(4π)2r−4   W m−2


Note that the product of the two r−2 terms has been calculated using the third law of indices.


This example illustrates one of the main challenges with radar design which is that the power density returned by a distant object is very much smaller than the transmitted power, even for targets with a large RCS. For theoretical isotropic antennas, the received power density depends upon the factor r−4. This factor diminishes rapidly for large values of r, that is, as the object being detected gets further away.


In practice, the transmit antennas used are not isotropic but directive and often scan the area of interest. They also make use of receive antennas with a large effective area which can produce a viable signal from the small reflected power densities.












1.2.5 Fractional indices



The third law of indices states that (am)n=amn. If we take a=2, m=12 and n=2 we obtain


(21/2)2=21=2


So when 21/2 is squared, the result is 2. Thus, 21/2 is a square root of 2. Each positive number has two square roots and so


21/2=2=±1.4142…


Similarly


(21/3)3=21=2


so that 21/3 is a cube root of 2:


21/3=23=1.2599…


In general 21/n is an nth root of 2. The general law states




x1/n is  an nth root of x






Example 1.10




Write the following using a single positive index:




	(3−2)1/4



	x2/3x5/3



	yy−2/5



	k3






Solution 





	(3−2)1/4=3−2×14=3−1/2=131/2



	x2/3x5/3=x2/3+5/3=x7/3



	yy−2/5=y1y−2/5=y1−2/5=y3/5



	k3=(k3)1/2=k3×12=k3/2













Example 1.11






	81/3



	82/3



	8−1/3



	8−2/3



	84/3






Solution 



We note that 8 may be written as 23.




	81/3=(23)1/3=21=2



	82/3=(81/3)2=22=4



	8−1/3=181/3=12



	8−2/3=182/3=14



	84/3=(81/3)4=24=16













Engineering application 1.4




Skin depth in a radial conductor



When an alternating current signal travels along a conductor, such as a copper wire, most of the current is found near the surface of the conductor. Nearer to the centre of the conductor, the current diminishes. The depth of penetration of the signal, termed the skin depth, into the conductor depends on the frequency of the signal. Skin depth, illustrated in Figure 1.1, is defined as the depth at which the current density has decayed to approximately 37% of that at the edge. Skin depth is important because it affects the resistance of wires and other conductors: the smaller the skin depth, the higher the effective resistance and the greater the loss due to heating.





Figure 1.1




Cross-section of a radial conductor illustrating a skin depth δ.




[image: ]




At low frequencies, such as those found in the domestic mains supply, the skin depth is so large that often it can be neglected; however, in very large-diameter conductors and smaller conductors at microwave frequencies it becomes important and has to be taken into account.


The skin depth, δ, is given by


δ=(2ωμσ)1/2


where μ is a material constant known as the permeability of the conductor, ω is the angular frequency of the signal and σ is the conductivity of the conductor.












Exercises 1.2






	
Evaluate





	23



	32



	513512



	19−1119−13



	(21/4)8



	(−4)−2



	4−1/2



	(91/3)3/2



	322



	0.01



	813/4








	
Use a scientific calculator to evaluate





	101.2



	6−0.7



	62.5



	(3−142)0.8








	
Express each of the following expressions using a single positive index:





	x4x7



	x2(−x)



	x2x



	x−2x−1



	(x−2)4



	(x−2.5x−3.5)2








	
Simplify as much as possible





	x1/2x1/3



	(16x4)0.25



	(27y3)1/3



	2xy2(2xy)2



	a2b6c4



	(64t3)2/3












Solutions 






	
1




	8



	9



	5



	361



	4



	116



	12



	3



	8



	0.1



	27








	
2




	15.8489



	0.2853



	88.1816



	3.8159








	
3




	x11



	−x3



	x



	1x



	1x8



	1x12








	
4




	x1/6



	2x



	3y



	12x



	ab3c2



	16t2






















1.3 Number Bases



The decimal system of numbers in common use is based on the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. However, other number systems have important applications in computer science and electronic engineering. In this section we remind the reader of what is meant by a number in the decimal system, and show how we can use powers or indices with bases of 2 and 16 to represent numbers in the binary and hexadecimal systems respectively. We follow this by an explanation of an alternative binary representation of a number known as binary coded decimal.



1.3.1 The decimal system



The numbers that we commonly use in everyday life are based on 10. For example, 253 can be written as


253=200+50+3=2(100)+5(10)+3(1)=2(102)+5(101)+3(100)


In this form it is clear why we refer to this as a ‘base 10’ number. When we use 10 as a base we say we are writing in the decimal system. Note that in the decimal system there are 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. You may recall the phrase ‘hundreds, tens and units’ and as we have seen these are simply powers of 10. To avoid possible confusion with numbers using other bases, we denote numbers in base 10 with a small subscript, for example, 519210:


519210=5000+100+90+2=5(1000)+1(100)+9(10)+2(1)=5(103)+1(102)+9(101)+2(100)


Note that, in the previous line, as we move from right to left, the powers of 10 increase.






1.3.2 The binary system



A binary system uses the number 2 for its base. A binary system has only two digits, 0 and 1, and these are called binary digits or simply bits. Binary numbers are based on powers of 2. In a computer, binary numbers are usually stored in groups of 8 bits which we call a byte.



Converting from binary to decimal



Consider the binary number 1101012. As the base is 2 this means that as we move from right to left the position of each digit represents an increasing power of 2 as follows:


1101012=1(25)+1(24)+0(23)+1(22)+0(21)+1(20)=1(32)+1(16)+0(8)+1(4)+0(2)+1(1)=32+16+4+1=5310


Hence 1101012 and 5310 are equivalent.



Example 1.12




Convert the following to decimal:




	11112



	1010102






Solution 





	11112=1(23)+1(22)+1(21)+1(20)=1(8)+1(4)+1(2)+1(1)=8+4+2+1=1510



	1010102=1(25)+0(24)+1(23)+1(21)+0(20)=1(32)+0+1(8)+0+1(2)+0=32+8+2=4210















Converting decimal to binary



We now look at some examples of converting numbers in base 10 to numbers in base 2, that is from decimal to binary. We make use of Table 1.1, which shows various powers of 2, when converting from decimal to binary. Table 1.1 may be extended as necessary.



Table 1.1 




Powers of 2.










	20


	1






	21


	2






	22


	4






	23


	8






	24


	16






	25


	32






	26


	64






	27


	128






	28


	256






	29


	512






	210


	1024






	211


	2048













Example 1.13




Convert 8310 to a binary number.


Solution 



We need to express 8310 as the sum of a set of numbers, each of which is a power of 2. From Table 1.1 we see that 64 is the highest number in the table that does not exceed the given number of 83. We write


83=64+19


We now focus on the 19. From Table 1.1, 16 is the highest number that does not exceed 19. So we write


19=16+3


giving


83=64+16+3


We now focus on the 3 and again using Table 1.1 we may write


83=64+16+2+1=26+24+21+20=1(26)+0(25)+1(24)+0(23)+0(22)+1(21)+1(20)=10100112









Example 1.14




Express 20010 as a binary number.


Solution 



From Table 1.1 we note that 128 is the highest number that does not exceed 200 so we write


200=128+72


Using Table 1.1 repeatedly we may write


200=128+72=128+64+8=27+26+23=1(27)+1(26)+0(25)+0(24)+1(23)+0(22)+0(21)+0(20)=110010002








Another way to convert decimal numbers to binary numbers is to divide by 2 repeatedly and note the remainder. We rework the previous two examples using this method.



Example 1.15




Convert the following decimal numbers to binary:




	83



	200









Solution 





	
We divide by 2 repeatedly and note the remainder.








	

	Remainder










	83÷2=41 r 141÷2=20 r 120÷2=10 r 010÷2=5 r 05÷2=2 r 12÷2=1 r 01÷2=0 r 1

	1


1


0


0


1


0


1









To obtain the binary number we write out the remainder, working from the bottom one to the top one. This gives


8310=10100112


as before.




	
We repeat the process by repeatedly dividing 200 by 2 and noting the remainder.








	

	Remainder










	200÷2=100 r 0100÷2=50 r 050÷2=25 r 025÷2=12 r112÷2=6 r 06÷2=3 r 03÷2=1 r 11÷2=0 r 1

	0


0


0


1


0


0


1


1









Reading the remainder column from the bottom to the top gives the required binary number:


20010=110010002




















1.3.3 Hexadecimal system



We now consider the number system which uses 16 as a base. This system is termed hexadecimal (or simply hex). There are 16 digits in the hexadecimal system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Notice that conventional decimal digits are insufficient to represent hexadecimal numbers and so additional ‘digits’, A, B, C, D, E, and F, are included. Table 1.2 shows the equivalence between decimal and hexadecimal digits. Hexadecimal numbers are based on powers of 16.



Table 1.2 




Hexadecimal numbers.










	Decimal

	Hexadecimal










	0

	0






	1

	1






	2

	2






	3

	3






	4

	4






	5

	5






	6

	6






	7

	7






	8

	8






	9

	9






	10

	A






	11

	B






	12

	C






	13

	D






	14

	E






	15

	F












Converting from hexadecimal to decimal



The following example illustrates how to convert from hexadecimal to decimal. We use the fact that as we move from right to left, the position of each digit represents an increasing power of 16.



Example 1.16




Convert the following hexadecimal numbers to decimal numbers:




	93A



	F9B3






Solution 





	
Noting that hexadecimal numbers use base 16 we have


93A16=9(162)+3(161)+A(160)=9(256)+3(16)+10(1)=236210




	



F9B316=F(163)+9(162)+B(161)+3(160)=15(4096)+9(256)+11(16)+3(1)=63 92310
















Converting from decimal to hexadecimal



Table 1.3 provides powers of 16 which help in the conversion from decimal to hexadecimal.



Table 1.3















	160


	1






	161


	16






	162


	256






	163


	4096






	164


	65 536












The following example illustrates how to convert from decimal to hexadecimal.



Example 1.17




Convert 14 397 to a hexadecimal number.


Solution 



We need to express 14397 as the sum of multiples of powers of 16. From Table 1.3 we see that the highest number that does not exceed 14397 is 4096. We express 14397 as a multiple of 4096 with an appropriate remainder. Dividing 14397 by 4096 we obtain 3 with a remainder of 2109. So we may write


14397=3(4096)+2109


We now focus on 2109 and apply the same process as above. From Table 1.3 the highest number that does not exceed 2109 is 256:


2109=8(256)+61


Finally, 61=3(16)+13. So we have


14 397=3(4096)+8(256)+3(16)+13=3(163)+8(162)+3(161)+13(160)


From Table 1.2 we see that 1310 is D in hexadecimal,


14 397=383D16








As with base 2 we can convert decimal numbers by repeated division and noting the remainder. The previous example is reworked to illustrate this.



Example 1.18




Convert 14 397 to hexadecimal.


Solution 



We divide repeatedly by 16, noting the remainder.








	

	Remainder










	14 397÷16=899 r 13899÷16= 56 r 3  56÷16= 3 r 8  3÷16= 0 r 3  

	13


3


8


3









Recall that 13 in hexadecimal is D. Reading up the Remainder column we have


14 39710=383D16


as before.








Electronic engineers need to be familiar with the decimal, binary and hexadecimal systems and be able to convert between them. The equivalent representations of the decimal numbers 0–15 are provided in Table 1.4.



Table 1.4















	Decimal

	Binary

	Hex










	 0

	0000

	0






	 1

	0001

	1






	 2

	0010

	2






	 3

	0011

	3






	 4

	0100

	4






	 5

	0101

	5






	 6

	0110

	6






	 7

	0111

	7






	 8

	1000

	8






	 9

	1001

	9






	10

	1010

	A






	11

	1011

	B






	12

	1100

	C






	13

	1101

	D






	14

	1110

	E






	15

	1111

	F















Converting from binary to hexadecimal



There is a straightforward way of converting a binary number into a hexadecimal number. The digits of the binary number are grouped into fours, or quartets, (from the right-hand side) and each quartet is converted to its hex equivalent using Table 1.4.



Example 1.19




Convert 11010111001112 into hexadecimal.


Solution 



Working from the right, the binary number is grouped into fours, with additional zeros being added as necessary to the final grouping.


0001  1010  1110  0111


Table 1.4 is used to express each group of four as its hex equivalent. For example, 0111=716, and continuing in this way we obtain


1AE7


Thus 110101110 01112 = 1AE716.















1.3.4 Binary coded decimal



We have seen in Section 1.3.2 that decimal numbers can be expressed in an equivalent binary form where the position of each binary digit, moving from the right to the left, represents an increasing power of 2. There is an alternative way of expressing numbers using the binary digits 1 and 0 that is often used in electronic engineering because for some applications it is more straightforward to build the necessary hardware. This system is called binary coded decimal (b.c.d.).


First of all, recall how the decimal digits 0,1,2,…,9 are expressed in their usual binary form. Note that the largest decimal digit 9 is 1001 in binary, and so we need at most four digits to store the binary representations of 0,1,…,9. Expressing each decimal digit as a four-digit binary number we obtain Table 1.5.



Table 1.5 




Decimal digits and their four-digit binary representations.










	0

	0000






	1

	0001






	2

	0010






	3

	0011






	4

	0100






	5

	0101






	6

	0110






	7

	0111






	8

	1000






	9

	1001












A four-digit binary number is referred to as a nibble To express a multi-digit decimal number, such as 347, in b.c.d. each decimal digit in turn is converted into its binary representation as shown. Note that a nibble is used for each decimal digit.




[image: ]




Recall from Section 1.3.2 that a byte is a group of 8 bits (binary digits). Computers usually store numbers in 8-bit bytes so there are two common ways of encoding b.c.d. The first is to use a whole byte for each nibble, with the first 4 bits always set to 0. So, for example, 34710 can be stored as


00000011  00000100  000000111


Alternatively, each byte can be used to store two nibbles, in which case 34710 would be stored as


00000011  01000111


Rules have been developed for performing calculations in b.c.d. but these are beyond the scope of this book.



Engineering application 1.5




Seven-segment displays



The number displays found on music systems, video and other electronic equipment commonly employ one or more seven-segment indicators. A single seven-segment indicator is shown in Figure 1.2(a). The individual segments are typically illuminated with a light-emitting diode (LED) or similar optical device and are either on or off. The segments are illuminated according to the table shown in Figure 1.2(b), where 1 indicates that the segment is turned on and 0 indicates that it is turned off.





Figure 1.2




(a) Seven-segment LED display. (b) Seven-segment coding.
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The numbers in the microprocessor system driving the display are typically stored in binary format, known as, binary coded decimal (b.c.d.). As an example we consider displaying binary number 111010102 as a decimal number on seven-segment displays. This represents the decimal number 234, which requires three seven-segment displays.


The microprocessor first divides the input number by 100 and in this case obtains the result 2 with a remainder of 34. This can be done directly on the binary number itself via a series of operations within the assembly language of the microprocessor without first converting to a decimal number. The result 2=00102 is then decoded using Figure 1.2(b), giving the bit pattern 1101101 which is passed to the ‘hundreds’ display.


The remainder of 34 is then divided by 10 giving 3 with a final remainder of 4. The number 3=00112 and so this can be outputted to the ‘tens’ display as the pattern 1111001. Finally, 4=01002, which is passed to the display as the pattern 0110011.


The display shows




[image: ]




Notice that prior to decoding for display, by successive division by 100 and 10 the number has been converted into separate b.c.d. digits. Integrated circuits are available which convert b.c.d. directly into the bit patterns for display. Hence the output bit pattern of the microprocessor may be chosen to be b.c.d. In this case it has the advantage that fewer pins are required on the microprocessor to operate the display.












Exercises 1.3






	
Convert the following decimal numbers to binary numbers:





	19



	36



	100



	796



	5000








	
Convert the following binary numbers to decimal numbers:





	111



	10101



	111001



	1110001



	11111111








	What is the highest decimal number that can be written in binary form using a maximum of (a) 2 binary digits (b) 3 binary digits (c) 4 binary digits (d) 5 binary digits? Can you spot a pattern? (e) Write a formula for the highest decimal number that can be written using N binary digits.




	Write the decimal number 0.5 in binary.




	
Convert the following hexadecimal numbers to decimal numbers:





	91



	6C



	A1B



	F9D4



	ABCD








	
Convert the following decimal numbers to hexadecimal numbers:





	160



	396



	5010



	25 000



	1 000 000








	Calculate the highest decimal number that can be represented by a hexadecimal number with (a) 1 digit (b) 2 digits (c) 3 digits (d) 4 digits (e) N digits




	Express the decimal number 375 as both a pure binary number and a number in b.c.d.




	Convert (a) 11111112 (b) 1010101112 into hexadecimal.







Solutions 





	
1




	1910=100112



	100100



	1100100



	1100011100



	1001110001000








	
2




	1112=7



	21



	57



	113



	255








	
3




	3



	7



	15



	31



	2N−1








	
4 The binary system is based on powers of 2. The examples in the text can be extended to the case of negative powers of 2 just as in the decimal system numbers after the decimal place represent negative powers of 10. So, for example, the binary number 11.1012 is converted to decimal as follows:


11.1012=1×21+1×20+1×2−1+0×2−2+1×2−3=2+1+12+18=358


In the same way the binary equivalent of the decimal number 0.5 is 0.1.




	
5




	9116 = 14510



	6C = 108



	2587



	63 956



	43 981








	
6




	16010=A0



	18C



	1392



	61A8



	F4240








	
7




	15



	255



	4095



	65 535



	16N−1








	
8




	1011101112



	0011 0111 0101bcd








	
9




	7F



	157






















1.4 Polynomial Equations





A polynomial equation has the form



P(x)=anxn+an−1xn−1+an−2xn−2+⋯+a2x2+a1x+a0=0(1.4)




where n is a positive whole number, an,an−1,…,a0 are constants and x is a variable. The constants an,an−1,…,a2,a1,a0 are called the coefficients of the polynomial.





The roots of an equation are those values of x which satisfy P(x)=0. So if x=x1 is a root then P(x1)=0.


Examples of polynomial equations are



7x2+4x−1=0

(1.5)





2x−3=0

(1.6)





x3−20=0

(1.7)




The degree of an equation is the value of the highest power. Equation (1.5) has degree 2, Equation (1.6) has degree 1 and Equation (1.7) has degree 3. A polynomial equation of degree n has n roots.


There are some special names for polynomial equations of low degree (see Table 1.6).



Table 1.6















	Equation

	Degree

	Name










	ax+b=0

	1

	Linear






	ax2+bx+c=0

	2

	Quadratic






	ax3+bx2+cx+d=0

	3

	Cubic






	ax4+bx3+cx2+dx+e=0

	4

	Quartic













1.4.1 Quadratic equations



We now focus attention on quadratic equations. The standard form of a quadratic equation is ax2+bx+c=0. We look at three methods of solving quadratic equations:




	factorization,



	use of a formula,



	completing the square.






Example 1.20 illustrates solution by factorization.



Example 1.20




Solve


6x2+11x−10=0


Solution 



The left-hand side (l.h.s.) is factorized:


(3x−2)(2x+5)=0


So either


3x−2=0 or 2x+5=0


Hence


x=23,−52








When roots cannot be found by factorization we can make use of a formula.




The formula for finding the roots of ax2+bx+c=0 is


x=−b±b2−4ac2a






Example 1.21




Use the quadratic formula to solve


3x2−x−6=0


Solution 



Comparing 3x2−x−6 with ax2+bx+c we see that a=3, b=−1 and c=−6. So


x=−(−)±(−)2−4(3)(−6)2(3)=1±736=−1.2573, 1.5907









Engineering application 1.6




Current used by an electric vehicle



Personal transport systems that make use of electrical power are becoming increasingly common. One of the factors behind this change is that their use can reduce roadside pollution in an urban environment. Electrical vehicles have also become the base for self-driving cars when combined with electrical control and navigation systems.


The motor in an operational electric vehicle has to do work to overcome wind, inertia, friction, road resistance and in order to climb inclines. The energy supply in the form of electrical power comes from the on-board battery pack. Due to its internal construction the battery pack has a total internal resistance, R, which serves to reduce the power available to the motor.


A simplified circuit diagram of a vehicle is shown in Figure 1.3.





Figure 1.3




Electric vehicle wiring diagram.
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The total power delivered by the battery pack is


power=voltage×current=VI


This is shared between loss due to the internal resistance and the power, P, to the motor. The power loss due to the internal resistance is I2R (see Engineering application 1.1). So the equation for the power in the circuit is


VI=I2R+P


This can be rewritten into the form of a quadratic equation


RI2−VI+P=0


which can be solved to calculate the current in the wire for a particular power delivered to the motor. It is important to know the current in order to specify the size of the fuses, the motor controller and the wire diameters used in the vehicle.


Consider the case where the power output is 2 kW. If the circuit parameters are V = 150 volts, R = 1.6 Ω, we have


1.6I2−150I+2000=0


The solutions to the quadratic equation are


I=−b±b2−4ac2a=−(−150)±(−150)2−(4×1.6×2000)2×1.6=77.7 A,  16.1 A


The relevant solution depends on the electrical characteristics of the motor used in the circuit. In practice, the larger of the two currents would correspond to a substantial loss in the internal resistance and would be avoided by the correct choice of motor.


The technical computing language MATLAB® has the function roots which finds the solutions of a polynomial equation. In this example we would type roots ([1.6 −150 2000]) at the command line to obtain the results calculated above.








We now introduce the method of completing the square. The idea behind completing the square is to absorb both the x2 and the x term into a single squared term. Note that this is possible since


x2+2kx+k2=(x+k)2


and so


x2+2kx=(x+k)2−k2


and finally


x2+2kx+A=(x+k)2+A−k2


The x2 and the x terms are both contained in the (x+k)2 term. The coefficient of x on the l.h.s. is 2k. The squared term on the right-hand side (r.h.s.) has the form (x+k)2, that is (x+coefficient of x2)2. The following example illustrates the idea.



Example 1.22




Solve the following quadratic equations by completing the square:




	x2+8x+2=0



	2x2−4x+1=0






Solution 





	
By comparing x2+8x+2 with x2+2kx+A we see k=4. Thus the squared term must be (x+4)2. Now


(x+4)2=x2+8x+16


and so


x2+8x=(x+4)2−16


Therefore


x2+8x+2=(x+4)2−16+2=(x+4)2−14


At this stage we have completed the square. Finally, solving x2+8x+2=0 we have


x2+8x+2=0(x+4)2−14=0(x+4)2=14x+4=±14x=−4±14=−7.7417,−0.2583




	
2x2−4x+1=0 may be expressed as x2−2x+0.5=0. Comparing x2−2x+0.5 with x2+2kx+A we see that k=−1. Thus the required squared term must be (x−1)2. Now


(x−1)2=x2−2x+1


and so


x2−2x=(x−1)2−1


and


x2−2x+0.5=(x−1)2−1+0.5=(x−1)2−0.5


Finally, solving x2−2x+0.5=0 we have


(x−1)2−0.5=0(x−1)2=0.5x−1=±0.5x=1±0.5=0.2929, 1.7071

















1.4.2 Polynomial equations of higher degree




Example 1.23




Verify that x=1 and x=2 are roots of


P(x)=x4−2x3−x+2=0


Solution 



P(x)=x4−2x3−x+2P(1)=1−2−1+2=0P(2)=24−2(23)−2+2=16−16−2+2=0


Since P(1)=0 and P(2)=0, then x=1 and x=2 are roots of the given polynomial equation and are sometimes referred to as real roots. Further knowledge is required to find the two remaining roots, which are known as complex roots. This topic is covered in Chapter 9.









Example 1.24




Solve the equation


P(x)=x3+2x2−37x+52=0


Solution 



As seen in Example 1.21 a formula can be used to solve quadratic equations. For higher degree polynomial equations such simple formulae do not always exist. However, if one of the roots can be found by inspection we can proceed as follows. By inspection P(4)=43+2(4)2−37(4)+52=0 so that x=4 is a root. Hence x−4 is a factor of P(x). Therefore P(x) can be written as


P(x)=x3+2x2−37x+52=(x−4)(x2+ax+β)


where β and β must now be found. Expanding the r.h.s. gives


P(x)=x3+ax2+βx−4x2−4ax−4β


Hence


x3+2x2−37x+52=x3+(α−4)x2+(β−4α)x−4β


By comparing constant terms on the l.h.s. and r.h.s. we see that


52=−4β


so that


β=−13


By comparing coefficients of x2 we see that


2=α−4


Therefore,


α=6


Hence, P(x)=(x−4)(x2+6x−13). The quadratic equation x2+6x−13=0 can be solved using the formula


x=−6±36−4(−13)2=−6±882=1.690,−7.690


We conclude that P(x)=0 has roots at x=4, x=1.690 and x=−7.690.












Exercises 1.4






	
Calculate the roots of the following linear equations:





	4x−12=0



	5t+20=0



	t+10=2t



	y2−1=3



	0.5t−6=0



	2x+3=5x−6



	3x2−17=0



	x2+x3=1



	2x−1=x2+2



	2(y+1)=6



	3(2y−1)=2(y+2)



	32(t+3)=23(4t−1)








	
Solve the following quadratic equations by factorization:





	t2−5t+6=0



	x2+x−12=0



	t2=10t−25



	x2+4x−21=0



	x2−9x+18=0



	x2=1



	y2−10y+9=0



	2z2−z−1=0



	2x2+3x−2=0



	3t2+4t+1=0



	4y2+12y+5=0



	4r2−9r+2=0



	6d2−d−2=0



	6x2−13x+2=0








	
Complete the square for the following quadratic equations and hence find their roots:





	x2+2x−8=0



	x2−6x−5=0



	x2+4x−6=0



	x2−14x−10=0



	x2+5x−49=0








	
Solve the following quadratic equations using the quadratic formula:





	x2+x−1=0



	t2−3t−2=0



	h2+5h+1=0



	0.5x2+3x−2=0



	2k2−k−3=0



	−y2+3y+1=0



	3r2=7r+2



	x2−70=0



	4s2−2=s



	2t2+5t+2=0



	3x2=50








	
Calculate the roots of the following polynomial equations:





	x3−6x2+11x−6=0 given x=1 is a root



	t3−2t2−5t+6=0 given t=3 is a root



	v3−v2−30v+72=0 given v=4 is a root



	2y3+3y2−11y+3=0 given y=1.5 is a root



	2x3+3x2−7x−5=0 given x=−52 is a root.








	
Check that the given values are roots of the following polynomial equations:





	x2+x−2=0  x=−2, 1



	2t3−3t2−3t+2=0 t=−1, 0.5



	y3+y2+y+1=0 y=−1



	v4+4v3+6v2+3v=0 v=−1,0











Solutions 





	
1




	3



	−4



	10



	8



	12



	3



	343



	65



	2



	2



	74



	317








	
2




	2, 3



	−4, 3



	5



	−7, 3



	3, 6



	−1, 1



	1, 9



	−0.5, 1



	−2, 0.5



	−1,−13



	−2.5, −0.5



	0.25, 2



	−12,23



	16,2








	
3




	(x+1)2−9=0,x=−4,2



	(x−3)2−14=0,x=−0.7417,6.7417



	(x+2)2−10=0,x=−5.1623,1.1623



	(x−7)2−59=0,x=−0.6811,14.6811



	(x+52)2−2214=0,x=−9.9330,  4.9330








	
4




	−1.6180, 0.6180



	−0.5616, 3.5616



	4.7913, −0.2087



	−6.6056, 0.6056



	−1, 1.5



	−0.3028, 3.3028



	−0.2573, 2.5907



	−8.3666, 8.3666



	−0.5931, 0.8431



	−2, −0.5



	−4.0825, 4.0825








	
5




	1, 2, 3



	−2, 1, 3



	−6, 3, 4



	−3.3028, 0.3028, 1.5



	−2.5, −0.6180, 1.6180






















1.5 Algebraic Fractions



An algebraic fraction has the form


algebraic fraction=numeratordenominator=polynomial expressionpolynomial expression


For example,


3t+1t2+t+4,  x3x2+1  and  y2+1y2+2y+3


are all algebraic fractions.



1.5.1 Proper and improper fractions



When presented with a fraction, we can note the degree of the numerator, say n, and the degree of the denominator, say d.


A fraction is proper if d > n, that is the degree of the denominator is greater than the degree of the numerator. If d ≤ n then the fraction is improper.



Example 1.25




Classify the following fractions as either proper or improper. In each case, state the degree of both numerator and denominator.




	x2+9x−63x3+x2+100



	t3+t2+9t−6t5+9



	(v+1)(v−6)v2+3v+6



	(z+2)35z2+10z+16






Solution 





	The degree of the numerator, n, is 2. The degree of the denominator, d, is 3. Since d > n the fraction is proper.



	Here n=3 and d=5. The fraction is proper since d > n.



	Here n=2 and d=2, so d=n and the fraction is improper.



	Here n=3 and d=2, so d < n and the fraction is improper.
















1.5.2 Equivalent fractions



Consider the numerical fractions 12 and 24. These fractions have the same value. Similarly, 23,69 and 2030 all have the same value. The algebraic fractions xy,2x2y and xtyt all have the same value. Fractions with the same value are called equivalent fractions.


The value of a fraction remains unchanged if both numerator and denominator are multiplied or divided by the same quantity. This fact can be used to write a fraction in many equivalent forms. Consider for example the fractions




	2x



	2(x+1)x(x+1)



	2xtx2t






These are all equivalent fractions. Fraction (b) can be obtained by multiplying both numerator and denominator of fraction (a) by (x+1), so they are equivalent. Fraction (a) can be obtained by dividing numerator and denominator of fraction (c) by xt and so they are also equivalent.



Example 1.26




Show that


x+1x+7  and  x2+4x+3x2+10x+21


are equivalent.



Solution 




We factorize the numerator and denominator of the second fraction:


x2+4x+3x2+10x+21=(x+1)(x+3)(x+7)(x+3)


Dividing both numerator and denominator by (x+3) results in x+1x+7. So the two given fractions are equivalent.


Dividing both numerator and denominator by x+3 is often referred to as ‘cancelling x+3’.












1.5.3 Expressing a fraction in its simplest form



Consider the numerical fraction 610. To simplify this we factorize both numerator and denominator and then cancel any common factors. Thus


610=2×32×5=35


The fractions 610 and 35 have identical values but 35 is in a simpler form than 610. It is important to stress that only factors which are common to both numerator and denominator can be cancelled.



Example 1.27




Simplify




	6x18x2



	12x3y24x2yz






Solution 





	
Note that 18 can be factorized to 6×3 and so 6 is a factor common to both numerator and denominator. Also x2 is x×x and so x is also a common factor. Cancelling the common factors, 6 and x, produces


6x18x2=6x(6)(3)(x)(x)=13x




	
The common factors are 4, x2 and y. Cancelling these factors gives


12x3y24x2yz=3xyz














Example 1.28




Simplify




	46x+4



	6t3+3t2+6t3t2+3t






Solution 





	
Factorizing both numerator and denominator and cancelling common factors yields


46x+4=(2)(2)2(3x+2)=23x+2







	
Factorizing and cancelling common factors yields


6t3+3t2+6t3t2+3t=3t(2t2+t+2)3t(t+1)=2t2+t+2t+1


Note that the common factor, 3t, has been cancelled.














Example 1.29




Simplify




	4t+8t2+3t+2



	2y2−y−1y2−2y+1






Solution 



The numerator and denominator are factorized and common factors are cancelled.




	
4t+8t2+3t+2=4(t+2)(t+2)(t+1)=4t+1


The common factor, t+2, has been cancelled.




	
2y2−y−1y2−2y+1=(2y+1)(y−1)(y−1)2=2y+1y−1


The common factor, y−1, has been cancelled.

















1.5.4 Multiplication and division of algebraic fractions



To multiply two algebraic fractions together, we multiply their numerators together, and multiply their denominators together, that is


ab×cd=a×cb×d=acbd


Division is performed by inverting the second fraction and then multiplying, that is


ab÷cd=ab×dc=adbc


Before multiplying or dividing fractions it is advisable to express each fraction in its simplest form.



Example 1.30




Simplify


x2+5x+62x−2×x2−xx2+3x+2


Solution 



Factorizing numerators and denominators produces


x2+5x+62x−2×x2−xx2+3x+2=(x+2)(x+3)2(x−1)×x(x−1)(x+1)(x+2)=(x+2)(x+3)x(x−1)2(x−1)(x+1)(x+2)


Common factors (x+2) and (x−1) can be cancelled from numerator and denominator to give


(x+2)(x+3)x(x−1)2(x−1)(x+1)(x+2)=(x+3)x2(x+1)


Hence


x2+5x+62x−2×x2−xx2+3x+2=x(x+3)2(x+1)









Example 1.31




Simplify


x2+8x+7x2−6x÷x+7x3+x2


Solution 



The second fraction is inverted to give


x2+8x+7x2−6x×x3+x2x+7


Factorizing numerators and denominators yields


(x+1)(x+7)x(x−6)×x2(x+1)(x+7)=(x+1)(x+7)x2(x+1)x(x−6)(x+7)


Common factors of x and (x+7) are cancelled leaving


(x+1)x(x+1)x−6


which may be written as


x(x+1)2x−6












1.5.5 Addition and subtraction of algebraic fractions



The method of adding and subtracting algebraic fractions is identical to that for numerical fractions.


Each fraction is written in its simplest form. The denominators of the fractions are then examined and the lowest common denominator (l.c.d.) is found. This is the simplest expression that has the given denominators as factors. All fractions are then written in an equivalent form with the l.c.d. as denominator. Finally the numerators are added/subtracted and placed over the l.c.d. Consider the following examples.



Example 1.32




Express as a single fraction


2x+1+4x+2


Solution 



Both fractions are already in their simplest form. The l.c.d. of the denominators, (x+1) and (x+2), is found. This is (x+1)(x+2). Note that this is the simplest expression that has both x+1 and x+2 as factors.


Each fraction is written in an equivalent form with the l.c.d. as denominator. So 2x+1 is written as 2(x+2)(x+1)(x+2)


and


4x+2 is written as 4(x+1)(x+1)(x+2)


Finally the numerators are added. Hence we have


2x+1+4x+2=2(x+2)(x+1)(x+2)+4(x+1)(x+1)(x+2)=2(x+2)+4(x+1)(x+1)(x+2)=6x+8(x+1)(x+2)=6x+8x2+3x+2









Example 1.33




Express as a single fraction


x2=3x+2x2−1−22x+6


Solution 



Each fraction is written in its simplest form:


x2+3x+2x2−1=(x+1)(x+2)(x−1)(x+1)=x+2x−122x+6=22(x+3)=1x+3


The l.c.d. is (x−1)(x+3). Each fraction is written in an equivalent form with l.c.d. as denominator:


x+2x−1=(x+2)(x+3)(x−1)(x+3),  1x+3=x−1(x−1)(x+3)


So


x2+3x+2x2−1−22x+6=x+2x−1−1x+3=(x+2)(x+3)(x−1)(x+3)−(x−1)(x−1)(x+3)=(x+2)(x+3)−(x−1)(x−1)(x+3)=x2+5x+6−x+1(x−1)(x+3)=x2+4x+7(x−1)(x+3)









Engineering application 1.7




Resistors in parallel



When carrying out circuit analysis it is often helpful to reduce the complexity of a circuit by calculating an equivalent single resistance for several resistors connected together in parallel. This simplified version of the original circuit then becomes much easier to understand. Figure 1.4 shows the simplest case of two resistors connected together in parallel.





Figure 1.4




Two resistors in parallel.




[image: ]




The equivalent resistance, RE, of this simple network is found from the formula


1RE=1R1+1R2


By combining the fractions on the r.h.s. we see


1RE=R2+R1R1R2


and hence


RE=R1R2R1+R2


Consider the case when R1 and R2 are equal and have value R. The equivalent resistance then becomes


RE=RRR+R=R22R=R2


So


RE=R2=0.5R


Therefore the effect of putting two equal resistors in parallel is to produce an overall equivalent resistance which is half that of a single resistor.












Exercises 1.5






	
Classify each fraction as either proper or improper.





	x+2x2+2



	2x+2



	2+x2



	x2+2x+2



	x2+2x2+1



	x2+1x2+2








	
Classify each of the following algebraic fractions as proper or improper.





	3t+1t2−1



	10v2+4v−63v2+v−1



	6−4t+t36t2+1



	9t+1t+1



	100f2+1f3−1



	(x+1)(x+2)(x+3)3



	(y+1)(y+2)(y+3)(y+4)3



	(z+1)10(2z+1)10



	(q+1)10(q2+1)6



	3k2+2k−1k3+k2−4x+1








	
Express each fraction in its simplest form.





	y3+2y2y−y2



	5x2+510x−10



	t2+7t+12t2+5t+4



	x2−1x3−2x2+x



	x2+2x+1x2−2x+1








	
Simplify the following:





	x+1x+3×x+3x+2



	4x2−1×x+16



	x2+3xx3+2x2×x2+4x+44x



	4xt+4txt2−t2×4x2−48x+8



	x2+2x−15x2+4x−5×x2+3x−4x2−4x+3








	
Express as a single fraction





	3x+6+2x+1



	4x+2−2(x+2)2



	2x+1x2+x+1+4x−1



	x2+3x−18x2+7x+6−2x2+7x−4x2+9x+20



	3(x+1)x2+4x+4+2(x−1)x2−4











Solutions 





	
1




	proper



	proper



	improper



	improper



	improper



	improper








	
2




	proper



	improper



	improper



	improper



	proper



	proper



	improper



	improper



	proper



	proper








	
3




	y2+22−y



	x2+12x−2



	t+3t+1



	x+1x(x−1)



	x2+2x+1x2−2x+1








	
4




	x+1x+2



	23(x−1)



	(x+2)(x+3)4x2



	2(x+1)t



	x+4x−1








	
5




	5x+15(x+1)(x+6)



	4x+6(x+2)2



	6x2+3x+3(x−1)(x2+x+1)



	−x2+x−14(x+1)(x+5)



	5x2−x−10(x+2)2(x−2)






















1.6 Solution of Inequalities



An inequality is any expression involving one of the symbols >, ≥, <, ≤.




a > b means a is greater than b


a < b means a is less than b


a ≥ b means a is greater than or equal to b


a ≤ b means a is less than or equal to b





Just as with an equation, when we add or subtract the same quantity to both sides of an inequality the inequality still remains. Mathematically we have


If a > b then


a+k>b+k   adding k to both sidesa−k>b−k   subtracting k from both sides


We can make similar statements for a ≥ b, a < b and a ≤ b.


When multiplying or dividing both sides of an inequality extra care must be taken. Suppose we wish to multiply or divide an inequality by a quantity k. If k is positive the inequality remains the same; if k is negative then the inequality is reversed.


If a > b then


ka>kbak>bk}  if k is positive  ka<kbak<bk}  if k is negative


Note that when k is negative the inequality changes from > to <. Similar statements can be made for a ≥ b, a < b and a ≤ b. When asked to solve an inequality we need to state all the values of the variable for which the inequality is true.



Example 1.34




Solve the following inequalities:




	3t+1>t+7



	2−3z≤6+z






Solution 





	
3t+1>t+72t+1>7subtracting t from both sides2t>6subtracting 1 from both sidest>3dividing both sides by2


Hence all values of t greater than 3 satisfy the inequality.




	
2−3z≤6+z−3z≤4+zsubtracting 2 from both sides−4z≤4subtracting z from both sidesz≥−1dividing both sides by −4, remembering to reverse the inequality


Hence all values of z greater than or equal to −1 satisfy the inequality.













We often have inequalities of the form αβ>0,αβ<0,αβ>0 and αβ<0 to solve. It is useful to note that if


αβ>0 then either α>0 and β>0 or α<0 and β<0αβ<0 then either α>0 and β<0 or α<0 and β>0αβ>0 then either α>0 and β>0 or α<0 and β<0αβ<0 then either α>0 and β<0 or α<0 and β>0


The following examples illustrate this.



Example 1.35




Solve the following inequalities:




	x+12x−6>0



	2t+3t+2≤1






Solution 





	
Consider the fraction x+12x−6. For the fraction to be positive requires either of the following:




	x+1>0 and 2x−6>0.



	x+1<0 and 2x−6<0.






We consider both cases.


Case (i)



x+1>0 and so x>−1.


2x−6>0 and so x>3.


Both of these inequalities are true only when x>3. Hence the fraction is positive when x>3.





Case (ii)



x+1<0 and so x<−1.


2x−6<0 and so x<3.


Both of these inequalities are true only when x<−1. Hence the fraction is positive when x<−1.


In summary, x+12x−6>0 when x>3 or x<−1.





	
2t+3t+2≤12t+3t+2−1≤0t+1t+2≤0


We now consider the fraction t+1t+2. For the fraction to be negative or zero requires either of the following:




	t+1≤0 and t+2>0.



	t+1≥0 and t+2<0.






We consider each case in turn.


Case (i)



t+1≤0 and so t≤−1.


t+2>0 and so t>−2.


Hence the inequality is true when t is greater than −2 and less than or equal to −1. We write this as −2<t≤−1.





Case (ii)



t+1≥0 and so t≥−1.


t+2<0 and so t<−2.


It is impossible to satisfy both t≥−1 and t<−2 and so this case yields no values of t.


In summary, 2t+3t+2≤1 when −2<t≤−1.














Example 1.36




Solve the following inequalities:




	x2>4



	x2<4






Solution 





	
x2>4x2−4>0(x−2)(x+2)>0


For the product (x−2)(x+2) to be positive requires either




	
x−2>0 and x+2>0


or




	x−2<0 and x+2<0.






We examine each case in turn.


Case (i)



x−2>0 and so x>2.


x+2>0 and so x>−2.


Both of these are true only when x>2.





Case (ii)



x−2<0 and so x<2.


x+2<0 and so x<−2.


Both of these are true only when x<−2.


In summary, x2>4 when x>2 or x<−2.





	
x2<4x2−4<0(x−2)(x+2)<0


For the product (x−2)(x+2) to be negative requires either




	
x−2>0 and x+2<0


or




	x−2<0 and x+2>0.






We examine each case in turn.


Case (i)



x−2>0 and so x>2.


x+2<0 and so x<−2.


No values of x are possible.






Case (ii)



x−2<0 and so x<2.


x+2>0 and so x>−2.


Here we have x<2 and x>−2. This is usually written as −2<x<2. Thus all values of x between −2 and 2 will ensure that x2<4.


In summary, x2<4 when −2<x<2.














The previous example illustrates a general rule.




If x2>k then x>k or x<−k.


If x2<k then −k <x<−k.






Example 1.37




Solve the following inequalities:




	x2+x−6>0



	x2+8x+1<0






Solution 





	
x2+x−6>0(x−2)(x+3)>0


For the product (x−2)(x+3) to be positive requires either




	
x−2>0 and x+3>0


or




	x−2<0 and x+3<0.






Case (i)



x−2>0 and so x>2.


x+3>0 and so x>−3.


Both of these inequalities are satisfied only when x>2.





Case (ii)



x−2<0 and so x<2.


x+3<0 and so x<−3.


Both of these inequalities are satisfied only when x<−3.


In summary, x2+x−6>0 when either x>2 or x<−3.





	
The quadratic expression x2+8x+1 does not factorize and so the technique of completing the square is used.


x2+8x+1=(x+4)2−15


Hence


(x+4)2−15<0(x+4)2<15


Using the result after Example 1.36 we may write


       −15<x+4<15−15−4<x<15−4  −7.873<x<−0.127














Exercises 1.6






	
Solve the following inequalities:





	2x>6



	y4>0.6



	3t<12



	z+1≥4



	3v−2≤4



	6−k≥−1



	6−2v3<1



	m2≥2



	x2<9



	v2+1≤10



	x2+10<6



	2k2−3≥1



	10−2v2≤6



	5+4k2>21



	(v−2)2≤25



	(3t+1)2>16








	
Solve the following inequalities:





	x2−6x+8>0



	x2+6x+8≤0



	2t2+3t−2<0



	y2−2y−24≥0



	h2+6h+9≤1



	r2+6r+7≥0



	x2+4x−6<0



	4t2+4t+9≤12



	x+4x−5>1



	2t−3t+6≤6



	3v+126−2v≥0



	x2x+1>0



	xx2+1<0



	3y+1y−2≤2



	k3>0



	x3>8



	t2+6t+9t+5<0



	(x+1)(x−2)(x+3)>0











Solutions 





	
1




	x>3



	y>2.4



	t<4



	z≥3



	v≤2



	k≤7



	v>32



	m≥2 or m≤−2



	−3<x<3



	−3≤v≤3



	no solution



	k≥2 or k≤−2



	v≥2 or k≤−2



	k>2 or k<−2



	−3≤v≤7



	t>1 or t<−53








	
2




	x>4 or x<2



	−4≤x≤−2



	−2<t<12



	y≥6 or y≤−4



	−4≤h≤−2



	r≥2−3 or r≤−2−3



	−10−2<x<10−2



	−32≤t≤12



	x>5



	t≤−394 or t>−6



	−4≤v<3



	x>−1 with x≠0



	x<0



	−5≤y<2



	k>0



	x>2



	t<−5



	x>2 or −3<x<−1






















1.7 Partial Fractions



Given a set of fractions, we can add them together to form a single fraction. For example, in Example 1.32 we saw


2x+1+4x+2=2(x+2)+4(x+1)(x+1)(x+2)=6x+8x2+3x+2


Alternatively, if we are given a single fraction, we can break it down into the sum of easier fractions. These simple fractions, which when added together form the given fraction, are called partial fractions. The partial fractions of 6x+8x2+3x+2 are 2x+1 and 4x+2.


When expressing a given fraction as a sum of partial fractions it is important to classify the fraction as proper or improper. The denominator is then factorized into a product of factors which can be linear and/or quadratic. Linear factors are those of the form ax+b, for example 2x−1, x2+6. Repeated linear factors are those of the form (ax+b)2,(ax+b)3 and so on, for example (3x−2)2 and (2x+1)3 are repeated linear factors. Quadratic factors are those of the form ax
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/*

Responsive table script



Credit to http://css-tricks.com/responsive-data-tables/

*/



!function($) {

    var className = 'lc_responsivetable',

        maxWindowWidth = 700,

        bodyElement = document.body,

        windowWidth = window.innerWidth,

        windowHeight = window.innerHeight,

        largeTables = document.getElementsByTagName('table'),

        largeImages = document.getElementsByClassName('ls_large-image'),

        //svgEquations = document.getElementsByTagName("svg"),

        equations = document.getElementsByTagName('math'),

        // or m:math??

        scalable = 1,

        smallDevice, supportsTouch;



    if (window.innerWidth > maxWindowWidth) {

        smallDevice = false;

    } else {

        smallDevice = true;

    }





    //Check if it's touch device





    function isTouchDevice() {

        supportsTouch = ('ontouchstart' in window) || !! (navigator.msMaxTouchPoints);

        return supportsTouch;

    }



    function zoomIn(event, target) {

        scalable = scalable + 0.2

        var imageId = target.getAttribute('data-target')

        var targetImage = document.getElementById(imageId)

        targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.transformOrigin = "0 0"

        targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.webkitTransformOrigin = "0 0"



    }



    function zoomOut(event, target) {

        scalable = scalable - 0.2

        if (scalable > 0.2) {

            var imageId = target.getAttribute('data-target')

            var targetImage = document.getElementById(imageId)

            targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

            targetImage.style.transformOrigin = "0 0"

            targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

            targetImage.style.webkitTransformOrigin = "0 0"

        }

    }



    function zoomReset(event, target) {

        scalable = 1

        var imageId = target.getAttribute('data-target')

        var targetImage = document.getElementById(imageId)

        targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.transformOrigin = "0 0"

        targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

        targetImage.style.webkitTransformOrigin = "0 0"



    }

    

    function setupEquations(){

        if (equations.length > 0) {

            var eqs = []

            if (equations.length > 0) {

                for (var key in equations) {

                    eqs.push(equations[key])

                }

            }

            /*if (svgEquations.length > 0) {

                for (var i = 0; i < svgEquations.length; i++) {

                    // check if it's really an equation or not

                    eqs.push(svgEquations[i])

                }

            }*/



            //set up the equations

            for (var i = 0; i < eqs.length; i++) {

                var equation = eqs[i],

                    width,

                    parentW = equation.parentNode ? equation.parentNode.offsetWidth : equation.offsetWidth



                if (equation.childNodes && equation.childNodes[0].length == 0) {

                    width = equation.offsetWidth

                } else {

                    width = equation.childNodes ? equation.childNodes[0].offsetWidth : equation.offsetWidth

                }



                if (equation.parentNode && equation.parentNode.className.indexOf("inlineequation") === -1 && equation.style && equation.style.display != "inline") {

                    // wrap it in a div for scaling purposes

                    var div = document.createElement('div')

                    div.wrap(equation)

                    div.setAttribute("style", "width: " + parentW + "px; overflow: visible;")

                    div.className = "lc_equationwrapper"

                    

                    if (width > parentW) {

                        // scale if it's bigger

                        scaleEquation(div, width, parentW)

                    }

                }

            }



        }

        

        if (window.MathJax != undefined) {

            MathJax.Hub.Queue(function() {

                var Equations = document.getElementsByClassName("MathJax_Display")

                for (var i = 0; i < Equations.length; i++) {

                    var equation = Equations[i]



                    if (equation.parentNode.className.indexOf("lc_equationwrapper") == -1 && equation.style.display != "inline") {

                        // oops, it's not wrapped for some reason... wrap it up, then continue

                        var div = document.createElement('div')

                        div.setAttribute("style", "width: " + equation.parentNode.offsetWidth + "px; overflow: visible;")

                        div.className = "lc_equationwrapper"

                        var newHTML = equation.parentNode.innerHTML,

                            parent = equation.parentNode

                            div.innerHTML = newHTML

                            parent.innerHTML = ""

                        parent.appendChild(div)

                        equation = div.childNodes[2]

                    }



		    if (equation.childNodes && equation.childNodes[0]) {

    			var width = equation.childNodes[0].offsetWidth,

                                parentW = equation.parentNode.offsetWidth

    			if (width > parentW) {

                                scaleEquation(equation.parentNode, width, parentW)

    			}

		    }



                }

            });

        }

    }

    

    function resizeEquations(){

        // scale the equations here

        var equations = document.getElementsByClassName("lc_equationwrapper")



        if (equations.length > 0) {

            for (var i = 0; i < equations.length; i++) {

                var equation = equations[i],

                    width = equation.offsetWidth,

                    innerWidth = 0,

                    innerHeight = equation.offsetHeight,

                    screenWidth = equation.parentNode.offsetWidth



                    // get the inner width

                if (equation.childNodes[1] && equation.childNodes[1].className.indexOf("MathJax") != -1) {

                    if (equation.childNodes[1].childNodes[0]) {

                        innerWidth = equation.childNodes[1].childNodes[0].offsetWidth

                    } else {

                        innerWidth = equation.childNodes[2].childNodes[0].offsetWidth

                    }

                } else {

                    innerWidth = equation.childNodes[0].offsetWidth

                }



                if (innerWidth > screenWidth) {

                    scaleEquation(equation, innerWidth, screenWidth)

                } else {

                    equation.setAttribute("style", "width: " + screenWidth + "px; overflow: visible; margin: 0 auto;")

                    //equation.parentNode.setAttribute("style", "height: "+innerHeight+"px")

                }

            }

        }

    }



    function scaleEquation(equation, width, parentW) {

        // if this fires, the equation needs scaling

        var scaleRatio = parentW / width,

            height = equation.offsetHeight * scaleRatio



            equation.style.webkitTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.webkitTransformOrigin = "0 0"

        equation.style.mozTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.mozTransformOrigin = "0 0"

        equation.style.transform = "scale(" + scaleRatio + "," + scaleRatio + ")"

        equation.style.transformOrigin = "0 0"

        equation.style.width = width + "px"

        equation.style.maxWidth = width + "px"

        //equation.parentNode.style.height = height + "px"

    }

    

    function scaleIt(it){

        if(it.id != "highlightPopupContent"){

            // check for nested images, on tables

            var nestedImgs = it.getElementsByTagName('img')

            for (var j = 0; j < nestedImgs.length; j++) {

                var nestImage = nestedImgs[j]

                nestImage.style.maxWidth = "none"

            }

            

            // set the parent to have a style of "overflow:auto"

            it.parentNode.style.overflowY = "hidden"

            it.parentNode.style.overflowX = "auto"            

            it.style.webkitTransformOrigin = "0 0"

            it.style.mozTransformOrigin = "0 0"

            it.style.msTransformOrigin = "0 0"

            it.style.OTransformOrigin = "0 0"

            it.style.transformOrigin = "0 0"

            var parentW = it.parentNode.offsetWidth,

                itW = it.offsetWidth

            if(itW > parentW){

                // it's too big

                var ratio = parentW/itW                

                it.style.height = "auto"

                

                var height = it.offsetHeight,

                    parentHeight = it.parentNode.offsetHeight

                it.style.webkitTransform = "scale("+ratio+", "+ratio+")"

                it.style.mozTransform = "scale("+ratio+", "+ratio+")"

                it.style.msTransform = "scale("+ratio+", "+ratio+")"

                it.style.OTransform = "scale("+ratio+", "+ratio+")"

                it.style.transform = "scale("+ratio+", "+ratio+")"

                it.style.height = height*ratio+"px"

                it.parentNode.style.height = height*ratio +"px"

            } else {

                it.style.webkitTransform = ""

                it.style.mozTransform = ""

                it.style.msTransform = ""

                it.style.OTransform = ""

                it.style.transform = ""

                it.style.height = ""

                it.parentNode.style.height = ""

            }

        }

    }



   function init() {

       isTouchDevice()

        // bind the click events for the tables

        document.addEventListener("click", function(e) {

            var targetClasses = e.target.className,

                target



                // if it's fa, then bubble to parent

            if (targetClasses.indexOf("fa") != -1) {

                targetClasses = e.target.parentElement.className

                target = e.target.parentElement

            } else {

                target = e.target

            }



            if (targetClasses.indexOf("zoom") != -1) {

                targetClasses = targetClasses.replace("zoom-btn ", "")

                switch (targetClasses) {

                case "zoom-in":

                    zoomIn(e, target)

                    break

                case "zoom-out":

                    zoomOut(e, target)

                    break

                case "zoom-reset":

                    zoomReset(e, target)

                    break

                }

            }

        }, false)



        var selectedTable, otherEls, scaleRatio



        if (supportsTouch) {

            window.addEventListener("orientationchange", function() {

                if (largeTables.length > 0) {

                    for (var i = 0; i < largeTables.length; i++) {

                        selectedTable = largeTables[i]

                        scaleIt(selectedTable)

                    }

                }



                resizeEquations()

            });

        } else {

            /*var css = '.lc_imagewrapper {width:100%; overflow: auto; padding: 0 0 0 32px;} \

                       .zoom-buttons { position:absolute; left: 0; width: 25px; z-index:5; } \

                       .zoom-btn { -webkit-box-shadow: 0px 1px 3px rgba(0,0,0,0.4); box-shadow: 0px 1px 3px rgba(0,0,0,0.4);} \

                       .zoom-in, .zoom-in:hover, .zoom-out, .zoom-out:hover {display:block; font-size:18px; font-weight:bold; background:#fff; border:1px solid #000; color: #000; padding: 2px; line-height: 100%; width: 25px; border-radius: 0; -webkit-border-radius: 0;} \

                       .zoom-in, .zoom-in:hover {border-bottom: 0} \

                       .zoom-reset, .zoom-reset:hover {border:none; font-size: 12px; background: transparent; padding: 0; box-shadow: none; color: #08c; font-weight: normal; } ',

                head = document.head || document.getElementsByTagName('head')[0],

                style = document.createElement('style');

            style.type = 'text/css';

            if (style.styleSheet) {

                style.styleSheet.cssText = css;

            } else {

                style.appendChild(document.createTextNode(css));

            }

            head.appendChild(style);



            for (var i = 0; i < largeImages.length; i++) {

                var selectedImage = largeImages[i]

                var randomId = Math.random().toString(36).substr(2);

                selectedImage.setAttribute("id", randomId);

                selectedImage.parentElement.setAttribute("style", "position: relative;")

                var div = document.createElement('div')

                div.setAttribute("class", "lc_imagewrapper")

                div.wrap(selectedImage)

                var div_control = ['<div class="zoom-buttons">', '<button data-target="' + randomId + '" class="zoom-btn zoom-in">+</button>', '<button data-target="' + randomId + '" class="zoom-btn zoom-out">-</button>', '<button class="zoom-btn zoom-reset" data-target="' + randomId + '" >Reset</button>', '</div>'].join('\n')



                div.insertAdjacentHTML('afterBegin', div_control)

            }*/

        }



        if (largeTables.length > 0) {

            for (var i = 0; i < largeTables.length; i++) {

                // on initial load, wrap the whole thing in a div

                selectedTable = largeTables[i]

                var newDiv = document.createElement("div")

                newDiv.className = "lc_tablewrapper"

                selectedTable.parentNode.insertBefore(newDiv, selectedTable)

                newDiv.appendChild(selectedTable)



                // fire off the scaling

                scaleIt(selectedTable)

            }

        }

        

        setupEquations()



    }



    window.addEventListener("resize", resizeThrottler, false);



    var resizeTimeout;



    function resizeThrottler() {

        // ignore resize events as long as an actualResizeHandler execution is in the queue

        if (!resizeTimeout && !supportsTouch) {

            resizeTimeout = setTimeout(function() {

                resizeTimeout = null;

                resizeWatcher();

                // The resize Watcher will execute at a rate of 15fps

            }, 66);

        }

    }



    function resizeWatcher() {



        if (largeTables.length > 0) {

            for (var i = 0; i < largeTables.length; i++) {

                selectedTable = largeTables[i]

                scaleIt(selectedTable)

            }

        }



        resizeEquations()



    }





    //find the closest figure parent





    function findAncestor(el, classname) {

        while ((el = el.parentElement) && !el.classList.contains(classname));

        return el;

    }



    function ancestorTag(node) {

        // walk tree until you reach a section

        var newNode = node,

            isParent = false



            do {

                newNode = newNode.parentNode

                if (newNode.nodeName.toLowerCase() == "figure" || newNode.nodeName.toLowerCase() == "section" || newNode.nodeName.toLowerCase() == "aside" || newNode.nodeName.toLowerCase() == "li") isParent = true

                //console.log(newNode)

            } while (!isParent)



            return newNode

    }





    //find the closest figure parent





    function hasClass(el, selector) {

        var className = " " + selector + " ";



        if ((" " + el.className + " ").replace(/[\n\t]/g, " ").indexOf(className) > -1) {

            return true;

        }



        return false;

    }



    //auto width columns





    function autoCalculateColWidth(tableEl) {

        var $table = $(tableEl);







        var $theadCells = $table.find('thead tr').children(),

            colCount

            // var colCount = $table.find('thead tr').length,

            //  colWidth = $table.parent().width() / colCount



        var $tbodyCells = $table.find('tbody tr:first').children();



        // Get the tbody columns width array

        colWidth = $tbodyCells.map(function() {

            return $(this).width();

        });



        // Set the width of thead columns

        $theadCells.each(function(i, v) {

            $(v).width(colWidth[i]);

        });



    }



    // Wrap an HTMLElement around each element in an HTMLElement array.

    HTMLElement.prototype.wrap = function(elms) {

        // Convert `elms` to an array, if necessary.

        if (!elms.length) elms = [elms];



        // Loops backwards to prevent having to clone the wrapper on the

        // first element (see `child` below).

        for (var i = elms.length - 1; i >= 0; i--) {

            var child = (i > 0) ? this.cloneNode(true) : this;

            var el = elms[i];



            // Cache the current parent and sibling.

            var parent = el.parentNode;

            var sibling = el.nextSibling;



            // Wrap the element (is automatically removed from its current

            // parent).

            child.appendChild(el);



            // If the element had a sibling, insert the wrapper before

            // the sibling to maintain the HTML structure; otherwise, just

            // append it to the parent.

            if (sibling) {

                parent.insertBefore(child, sibling);

            } else {

                parent.appendChild(child);

            }

        }

    }

    

    // check the readyState so it will load even if the the document has already loaded

    if(document.readyState == "loaded" || document.readyState == "complete"){

        init()

    } else {

        // not loaded, bind an event

        document.onreadystatechange = function(){

            if(document.readyState == "loaded" || document.readyState == "complete"){

                init()

            }

        }

    }



}(window.jQuery)
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