

[image: Portada del libro "Construcción de grandes modelos de lenguaje desde cero" de Sebastian Raschka, publicado por Anaya Multimedia.]

[image: Portada del libro "Construcción de GRANDES MODELOS DE LENGUAJE desde cero" por Sebastian Raschka, publicado por ANAYA.]

		
			
Agradecimientos

			Escribir un libro es un proyecto de envergadura, y me gustaría expresar mi sincera gratitud a mi esposa, Liza, por su paciencia y apoyo a lo largo de este proceso. Su amor incondicional y su aliento constante han sido absolutamente esenciales.

			Le estoy increíblemente agradecido a Daniel Kleine, cuyos valiosos comentarios sobre los capítulos y el código fueron excepcionales. Con su buen ojo para el detalle y sus perspicaces sugerencias, las aportaciones de Daniel han transformado indudablemente este libro en una experiencia de lectura más fluida y agradable.

			También me gustaría dar las gracias al maravilloso personal de Manning Publications, incluido Michael Stephens, por las numerosas y productivas discusiones que ayudaron a dar forma a la dirección que debía tomar este libro, y a Dustin Archibald, cuyos constructivos comentarios han sido cruciales, así como su orientación en el cumplimiento de las directrices de Manning. También agradezco su flexibilidad a la hora de dar cabida a los requisitos únicos de este enfoque tan poco convencional. Debo agradecer de forma especial a Aleksandar Dragosavljević, Kari Lucke y Mike Beady por su trabajo de maquetación, y a Susan Honeywell y su equipo por perfeccionar y pulir los gráficos.

			Quiero expresar mi más sincero agradecimiento a Robin Campbell y a su excelente equipo de marketing por su inestimable apoyo durante todo el proceso de redacción.

			Por último, hago extensivo mi agradecimiento a los revisores: Anandaganesh Balakrishnan, Anto Aravinth, Ayush Bihani, Bassam Ismail, Benjamin Muskalla, Bruno Sonnino, Christian Prokopp, Daniel Kleine, David Curran, Dibyendu Roy Chowdhury, Gary Pass, Georg Sommer, Giovanni Alzetta, Guillermo Alcántara, Jonathan Reeves, Kunal Ghosh, Nicolas Modrzyk, Paul Silisteanu, Raul Ciotescu, Scott Ling, Sriram Macharla, Sumit Pal, Vahid Mirjalili, Vaijanath Rao y Walter Reade, por sus exhaustivas valoraciones de los borradores. Su experta atención a los detalles y sus lúcidos comentarios han sido esenciales para mejorar la calidad de este libro.

			A todos los que han contribuido a este viaje, les estoy sinceramente agradecido. Vuestro apoyo, experiencia y dedicación han sido fundamentales para que este libro vea la luz. Gracias a todos.

		

	

Sobre el autor

[image: Retrato en blanco y negro de un hombre joven sonriendo ligeramente junto a una pared de ladrillo. Corresponde a Sebastian Raschka, ingeniero de investigación especializado en machine learning e inteligencia artificial.]

SEBASTIAN RASCHKA lleva más de una década trabajando en machine learning e inteligencia artificial. Además de ser investigador, le apasiona la enseñanza. Es reconocido por sus libros sobre machine learning con Python y por sus contribuciones al código abierto.

Actualmente, Sebastian es ingeniero de investigación en Lightning AI, donde se especializa en la implementación y entrenamiento de grandes modelos de lenguaje (LLM). Anteriormente, fue profesor asistente en el Departamento de Estadística de la Universidad de Wisconsin-Madison, centrado principalmente en la investigación del deep learning. Puedes encontrar más información sobre él en su sitio web: https://sebastianraschka.com.

Sobre la imagen de cubierta

La figura de la portada de este libro, titulada Le duchesse, o La duquesa, está tomada de un libro de Louis Curmer publicado en 1841. Todas las ilustraciones contenidas en él están finamente dibujadas y coloreadas a mano.

En aquella época, era fácil identificar dónde vivía la gente y cuál era su oficio o posición en la vida únicamente por su vestimenta. Manning celebra la inventiva e iniciativa del negocio informático con portadas de libros basadas en la rica diversidad de la cultura regional de hace siglos, revivida por imágenes de colecciones como esta.

		
			
			
Prefacio

			Siempre me han fascinado los modelos lingüísticos. Hace más de una década, mi viaje por la IA comenzó con una clase sobre clasificación de patrones estadísticos, que me llevó a mi primer proyecto independiente: desarrollar un modelo y una aplicación web para detectar el estado de ánimo de una canción basándome en su letra.

			En 2022, con el lanzamiento de ChatGPT, los grandes modelos de lenguaje o LLM (Large Language Models) han tomado el mundo al asalto y han revolucionado la forma de trabajar de muchos de nosotros. Estos modelos son increíblemente versátiles y ayudan en tareas como revisión gramatical, redacción de correos electrónicos, resumen de documentos extensos y mucho más. Esto se debe a su capacidad para analizar y generar texto similar al de las personas, algo de enorme importancia en varios campos, desde la atención al cliente a la creación de contenidos, e incluso en dominios más técnicos, como la codificación y el análisis de datos.

			Como su nombre indica, los LLM son grandes o de gran tamaño, y abarcan entre millones y miles de millones de parámetros (a modo de comparación, utilizando métodos de machine learning o estadísticos más tradicionales, el conjunto de datos flor Iris puede clasificarse con una precisión superior al 90 % utilizando un modelo reducido con tan solo dos parámetros). Sin embargo, a pesar del gran tamaño de los LLM en comparación con otros métodos más tradicionales, no tienen por qué ser algo incomprensible.

			En este libro aprenderás a construir un LLM paso a paso. Cuando llegues al final, tendrás una profunda comprensión de cómo funcionan estos modelos (como los utilizados en ChatGPT) a un nivel básico. Creo que desarrollar confianza con los conceptos fundamentales y el código subyacente es crucial para el éxito. No solamente ayuda a corregir errores y mejorar el rendimiento, sino que también permite experimentar con nuevas ideas.

			Hace varios años, cuando empecé a trabajar con LLM, tuve que aprender a implementarlos por las malas, rebuscando entre muchos artículos de investigación y repositorios de código incompletos para poder comprenderlos de una forma general. Con este libro, donde desarrollo y comparto un tutorial de implementación paso a paso que detalla los principales componentes y fases de desarrollo de un LLM, espero lograr que estos modelos de lenguaje sean más accesibles.

			Creo firmemente que la mejor manera de entender los grandes modelos de lenguaje es programar uno desde cero. ¡Verás lo divertido que puede llegar a ser!

			¡Feliz lectura y programación!

		

	
		
			
			
Sobre el libro

			Este libro se ha escrito para ayudarte a comprender y crear tus propios grandes modelos de lenguaje (LLM) de tipo GPT desde cero. El libro comienza centrándose en los fundamentos del trabajo con datos de texto y la codificación de mecanismos de atención y, a continuación, te guía a través de la implementación de un modelo GPT completo desde el principio. Posteriormente aborda el mecanismo de preentrenamiento, así como el ajuste fino para tareas específicas, como la clasificación de textos y el seguimiento de instrucciones. Al final tendrás una comprensión profunda de cómo funcionan los LLM y dispondrás de las habilidades necesarias para construir tus propios modelos. Aunque dichos modelos sean de menor escala en comparación con los grandes modelos fundacionales, utilizan los mismos conceptos y sirven como potentes herramientas educativas para comprender los mecanismos y técnicas básicos utilizados en la construcción de los LLM más avanzados.

			
Quién debería leer este libro

			Este libro está dirigido a entusiastas del machine learning, ingenieros, investigadores, estudiantes y profesionales que deseen comprender en profundidad cómo funcionan los LLM y aprender a construir sus propios modelos desde cero. Tanto los principiantes como los desarrolladores experimentados podrán hacer uso de sus habilidades y conocimientos para comprender los conceptos y técnicas utilizados en la creación de LLM.

			Lo que distingue a este libro es su exhaustiva cobertura de todo el proceso de creación de LLM, desde el trabajo con conjuntos de datos hasta la implementación de la arquitectura del modelo, su preentrenamiento con datos no etiquetados y su ajuste fino para tareas específicas. En el momento de escribir estas líneas, no existe ningún otro recurso que ofrezca un enfoque tan completo y práctico para construir LLM desde cero.

			Para entender los ejemplos de código de este libro, debes disponer de sólidos conocimientos de programación en Python. Aunque puede venirte muy bien tener cierta familiaridad con el aprendizaje automático o machine learning (ML), el aprendizaje profundo o deep learning (DL) y la inteligencia artificial, no se requiere una amplia experiencia en estas áreas. Los LLM son un subconjunto único de la IA por lo que, incluso aunque seas relativamente nuevo en el campo, podrás entenderlo todo sin problemas.

			Si tienes experiencia con redes neuronales profundas, puede que ciertos conceptos te resulten más familiares, porque los LLM se basan en estas arquitecturas. Sin embargo, el dominio de PyTorch no es un requisito previo. El apéndice A ofrece una breve introducción a PyTorch, con la que aprenderás las habilidades necesarias para comprender los ejemplos de código del libro.

			A la hora de explorar el funcionamiento interno de los LLM, puede ser útil tener conocimientos de matemáticas a nivel de bachillerato, en particular del trabajo con vectores y matrices, aunque no es necesario que dichos conocimientos sean avanzados para comprender los conceptos e ideas clave de este libro.

			El requisito previo más importante es una sólida base de programación en Python. Con este conocimiento, estarás bien preparado para explorar el fascinante mundo de los LLM y comprender los conceptos y ejemplos de código presentados en este libro.

			
Cómo está organizado este libro: una hoja de ruta

			Este libro está diseñado para ser leído secuencialmente, pues cada capítulo se basa en los conceptos y técnicas introducidos en los anteriores. El libro está dividido en siete capítulos, que cubren los aspectos esenciales de los LLM y su implementación.

			El capítulo 1 ofrece una completa introducción sobre los conceptos fundamentales de los LLM. Explora la arquitectura Transformer, que constituye la base de modelos LLM como los utilizados en la plataforma ChatGPT.

			El capítulo 2 presenta un plan para construir un LLM desde cero. Trata todo el proceso de preparación del texto para el entrenamiento del LLM, incluyendo la división del texto en tókenes de palabras y subpalabras, el uso de codificación de pares de símbolos para tokenización avanzada, el muestreo de ejemplos de entrenamiento con un enfoque de ventana deslizante, y la conversión de tókenes en vectores que alimentan al LLM.

			El capítulo 3 aborda los mecanismos de atención utilizados en los LLM. Introduce una estructura básica de autoatención y va avanzando hacia un mecanismo de autoatención mejorado. También explica la implementación de un módulo de atención causal, que permite a los LLM generar un token cada vez, enmascarando pesos de atención seleccionados aleatoriamente mediante dropout para reducir el sobreajuste, y apilando varios módulos de atención causal en un solo módulo de multihead attention.

			El capítulo 4 se centra en la codificación de un LLM tipo GPT, que pueda entrenarse para generar texto similar al de las personas. Abarca técnicas como la normalización de las activaciones de las capas para estabilizar el entrenamiento de las redes neuronales, la incorporación de conexiones de atajo en redes neuronales profundas para entrenar los modelos de forma más eficaz, la implementación de bloques Transformer para crear modelos GPT de varios tamaños y el cálculo del número de parámetros y los requisitos de almacenamiento de los modelos GPT.

			El capítulo 5 aborda el proceso de preentrenamiento de los LLM. Abarca el cálculo de las pérdidas de los conjuntos de entrenamiento y validación para evaluar la calidad del texto generado por el LLM, la implementación de una función de entrenamiento y el preentrenamiento del LLM, el almacenamiento y la carga de los pesos del modelo para continuar entrenando un LLM, y la carga de pesos preentrenados de OpenAI.

			El capítulo 6 presenta diferentes enfoques de afinamiento del LLM. Explica la preparación de un conjunto de datos para la clasificación de texto, la modificación de un LLM preentrenado para su ajuste fino, el afinamiento de un LLM para identificar mensajes de spam y la evaluación de la precisión de un clasificador LLM ya afinado.

			El capítulo 7 explora el proceso de afinamiento de los LLM para seguir instrucciones. Incluye la preparación de un conjunto de datos, al que después se aplicará ajuste fino supervisado por instrucciones, la organización de los datos de instrucciones en lotes de entrenamiento, la carga de un LLM preentrenado y su afinamiento para seguir instrucciones humanas, la extracción de las respuestas a instrucciones generadas por el LLM para su valoración y la evaluación de un LLM afinado por instrucciones.

			
Acerca del código

			Todos los ejemplos de código fuente de este libro están disponibles para su descarga en la página web de Anaya Multimedia en https://anayamultimedia.es, en la opción Selecciona complemento que encontrará en la ficha correspondiente a este libro. También puede descargarlos de la página web del libro original en https://www.manning.com/books/build-a-large-language-model-from-scratch, así como en formato Jupyter Notebook en GitHub en https://github.com/rasbt/LLMs-from-scratch. No te preocupes si te quedas atascado: en el apéndice C encontrarás las soluciones a todos los ejercicios.

			Este libro contiene muchos ejemplos de código fuente, tanto en listados numerados como incluidos dentro del texto de cada capítulo. En ambos casos, el código fuente está formateado en una fuente monoespacial como esta para distinguirlo del texto normal.

			Uno de los objetivos clave de este libro es la accesibilidad. Por ello, los ejemplos de código se han diseñado cuidadosamente para que se ejecuten de forma eficiente en un ordenador portátil normal, sin necesidad de ningún hardware especial. Si tienes acceso a una GPU, algunas secciones ofrecen consejos útiles sobre cómo ampliar los conjuntos de datos y los modelos para aprovechar esa potencia adicional.

			A lo largo del libro, utilizaremos PyTorch como tensor de referencia y una biblioteca de deep learning para implementar LLM desde cero. Si PyTorch es nuevo para ti, te recomiendo que empieces con el apéndice A, que proporciona una detallada introducción, con recomendaciones de configuración.

		

	

1

Comprender los grandes modelos de lenguaje

En este capítulo encontrarás:

•Explicaciones generales de los conceptos fundamentales de los grandes modelos de lenguaje.

•Información sobre la arquitectura Transformer de la que derivan los LLM.

•Un plan para construir un LLM desde cero.

Los grandes modelos de lenguaje o LLM (Large Language Models), como los que ofrece ChatGPT de OpenAI, son modelos de redes neuronales profundas que se han ido desarrollando en los últimos años. Han marcado el comienzo de una nueva era en el procesamiento del lenguaje natural (PLN). Antes de la llegada de los LLM, los métodos tradicionales destacaban en tareas de categorización, como la clasificación de correo electrónico no deseado y el reconocimiento de patrones sencillos, que se podían capturar con reglas elaboradas a mano o modelos más simples. Sin embargo, su rendimiento solía ser inferior en tareas lingüísticas que exigían complejas capacidades de comprensión y generación, como el análisis sintáctico de instrucciones detalladas, la realización de análisis contextuales y la creación de textos originales coherentes y adecuados al contexto. Por ejemplo, las generaciones anteriores de modelos de lenguaje no eran capaces de escribir un correo electrónico a partir de una lista de palabras clave, una tarea trivial para los LLM de hoy en día.

Los LLM tienen una notable habilidad para comprender, generar e interpretar el lenguaje humano. Sin embargo, es importante una puntualización: cuando decimos que los modelos de lenguaje «entienden», nos referimos a su capacidad para procesar y generar texto de forma que parezca coherente y contextualmente relevante, no a que posean una conciencia o comprensión similar a la humana.

Gracias a los avances en el deep learning —un subconjunto del machine learning y la inteligencia artificial (IA) centrado en las redes neuronales—, los LLM se entrenan con grandes cantidades de datos de texto. Este entrenamiento a gran escala les permite captar información contextual más profunda y sutilezas del lenguaje humano, a diferencia de enfoques anteriores. Como resultado, los grandes modelos de lenguaje han mejorado significativamente el rendimiento en una amplia gama de tareas de PLN, como la traducción de textos, el análisis de sentimientos, la respuesta a preguntas y muchas más.

Otra diferencia importante entre los LLM actuales y los modelos de PLN anteriores es que estos últimos solían diseñarse para tareas específicas, como la categorización de textos, la traducción de idiomas, etc. Mientras que esos primeros modelos de PLN destacaban en las aplicaciones específicas para las que habían sido creados, los LLM demuestran un dominio más amplio de una gran variedad de tareas de PLN.

El éxito de los LLM puede atribuirse a la arquitectura Transformer en la que se basan muchos de ellos, y a la gran cantidad de datos con los que son entrenados, lo cual les permite captar una amplia variedad de matices lingüísticos, contextos y patrones que serían difíciles de codificar manualmente. Este cambio hacia la implementación de modelos basados en la arquitectura Transformer y el uso de grandes conjuntos de datos para entrenar a los LLM ha transformado fundamentalmente el campo del PLN, y proporcionado herramientas más capaces de comprender el lenguaje humano e interactuar con él.

La siguiente discusión sienta las bases para lograr el objetivo principal de este libro: comprender los LLM implementando paso a paso con código un LLM tipo ChatGPT basado en la arquitectura Transformer.

1.1. ¿Qué es un LLM?

Un LLM es una red neuronal diseñada para comprender, generar y responder a textos similares a los humanos. Estos modelos son redes neuronales profundas entrenadas con cantidades ingentes de datos de texto, que a veces abarcan grandes secciones de todo el texto disponible públicamente en Internet.

La parte «de gran tamaño» de la expresión «modelo de lenguaje de gran tamaño» se refiere tanto a la magnitud del modelo en términos de parámetros como al inmenso conjunto de datos con el que se ha entrenado. Los modelos de este tipo suelen tener decenas o incluso cientos de miles de millones de parámetros, que son los pesos ajustables de la red que se optimizan durante el entrenamiento para predecir la siguiente palabra de una secuencia. La predicción de la palabra siguiente es crítica, porque aprovecha la naturaleza secuencial inherente al lenguaje para entrenar modelos capaces de comprender el contexto, la estructura y las relaciones dentro del texto. Sin embargo, es una tarea muy sencilla, por lo que a muchos investigadores les sorprende que pueda producir modelos tan capaces. En capítulos posteriores analizaremos y aplicaremos paso a paso el procedimiento de entrenamiento de la palabra siguiente.

Los LLM utilizan una arquitectura denominada Transformer, que les permite prestar atención selectiva a distintas partes de la entrada cuando deben hacer predicciones, lo cual les hace especialmente hábiles a la hora de manejar los matices y complejidades del lenguaje humano. Debido a que los LLM son capaces de generar texto, también se suele hacer referencia a ellos como una forma de inteligencia artificial generativa, a menudo abreviada como IA generativa o GenAI (del inglés Generative IA). Como se ilustra en la figura 1.1, la IA abarca el campo más amplio de la creación de máquinas capaces de realizar tareas que requieren una inteligencia similar a la humana, como la comprensión del lenguaje, el reconocimiento de patrones y la toma de decisiones, e incluye subcampos como machine learning (ML) y deep learning (DL).

[image: Diagrama explicativo que muestra la arquitectura de un modelo de lenguaje grande (LLM). Incluye recuadros con etiquetas en español que describen los componentes principales: área de entrada profunda, mecanismo de atención, procesamiento neuronal y sistema de salida. Ilustra el flujo de información en un modelo Transformer.]

Figura 1.1. Como sugiere esta representación jerárquica de la relación entre los distintos campos, los LLM representan una aplicación específica de las técnicas de deep learning, al utilizar su capacidad para procesar y generar texto similar al humano. Deep learning (DL) o aprendizaje profundo es una rama especializada del machine learning (ML) o aprendizaje automático centrada en el uso de redes neuronales multicapa. Tanto ML como DL son campos orientados a implementar algoritmos que permitan a los ordenadores aprender de los datos y realizar tareas que normalmente requieren inteligencia humana.

Los algoritmos utilizados para implementar la IA son el objetivo del campo del machine learning. En concreto, el ML implica el desarrollo de algoritmos capaces de aprender de datos y hacer predicciones o tomar decisiones basadas en datos sin estar programados explícitamente para ello. Para ilustrarlo, imaginemos un filtro de correo no deseado como aplicación práctica del machine learning. En lugar de escribir manualmente las reglas para identificar los correos basura, un algoritmo de ML recibe ejemplos de correos etiquetados como spam y como legítimos. Al minimizar el error en sus predicciones sobre un conjunto de datos de entrenamiento, el modelo aprende a reconocer patrones y características indicativas de spam, y ello le permite clasificar los nuevos correos electrónicos como no deseados o legítimos.

Como se ilustra en la figura 1.1, el deep learning es un subconjunto del machine learning centrado en la utilización de redes neuronales con tres o más capas (también llamadas redes neuronales profundas) para representar patrones complejos y abstracciones en los datos. A diferencia del DL, el ML tradicional requiere la extracción manual de características, lo cual significa que los expertos humanos tienen que identificar y seleccionar las características más relevantes para el modelo.

Aunque el campo de la IA está dominado actualmente por ML y DL, también incluye otros enfoques, como el uso de sistemas basados en reglas, algoritmos genéticos, sistemas expertos, lógica difusa o razonamiento simbólico.

Volviendo al ejemplo de la clasificación de correo no deseado, en machine learning tradicional, los expertos humanos podrían extraer manualmente características del texto del correo electrónico, como la frecuencia de ciertas palabras desencadenantes (por ejemplo, «premio», «ganar», «gratis»), el número de signos de exclamación, el uso de todas las palabras en mayúsculas o la presencia de enlaces sospechosos. Este conjunto de datos, creado a partir de estas características definidas por los expertos, se utilizaría entonces para entrenar el modelo. A diferencia del ML tradicional, el deep learning no requiere la extracción manual de características. En otras palabras, los expertos humanos no necesitan identificar y seleccionar las características más relevantes para el caso de un modelo de DL (sin embargo, tanto el machine learning tradicional como el deep learning para la clasificación de correo basura siguen requiriendo la recopilación de etiquetas, como spam o no spam, que deben ser recopiladas por un experto o por los usuarios).

Veamos algunos de los problemas que los LLM pueden resolver hoy en día, los retos que abordan los LLM y la arquitectura general de LLM que implementaremos más adelante.

1.2. Aplicaciones de los LLM

Gracias a sus avanzadas capacidades para analizar y comprender datos de texto no estructurados, los LLM tienen una amplia gama de aplicaciones en diversos ámbitos. Hoy en día, los LLM se emplean para la traducción automática, la generación de textos novedosos (véase la figura 1.2), el análisis de sentimientos, el resumen de textos y muchas otras tareas. Recientemente, los LLM se han utilizado para la creación de contenidos, como la escritura de ficción, artículos e incluso código informático.

Los LLM también pueden alimentar sofisticados chatbots y asistentes virtuales, como ChatGPT de OpenAI o Gemini de Google (antes llamado Bard), capaces de responder a las consultas de los usuarios y aumentar la capacidad de motores de búsqueda tradicionales como Google Search o Microsoft Bing.

Además, los LLM pueden utilizarse para la recuperación eficaz de conocimientos a partir de grandes volúmenes de texto en áreas especializadas como la medicina o el derecho, lo cual incluye cribar documentos, resumir pasajes extensos y responder a preguntas técnicas.

En resumen, los LLM tienen un valor incalculable para automatizar casi cualquier tarea que implique analizar y generar texto. Sus aplicaciones son prácticamente infinitas, y a medida que seguimos innovando y explorando nuevas formas de utilizar estos modelos, está claro que los LLM tienen el potencial de redefinir nuestra relación con la tecnología y hacerla más conversacional, intuitiva y accesible.

Nos centraremos en comprender cómo funcionan los LLM desde la base, codificando un LLM capaz de generar texto. También conocerás las técnicas que permiten a los LLM realizar consultas, desde responder preguntas hasta resumir textos, traducir textos a diferentes idiomas y mucho más. En otras palabras, aprenderás cómo funcionan asistentes LLM complejos como ChatGPT construyendo uno paso a paso.

[image: La imagen muestra un diagrama explicativo de un modelo de lenguaje, con anotaciones que señalan la "Entrada del usuario" y el "Resultado ofrecido por el modelo". Se observa una interfaz tipo chat con texto en español y flechas indicativas que explican el funcionamiento del sistema.]

Figura 1.2. Las interfaces de los LLM permiten la comunicación en lenguaje natural entre los usuarios y los sistemas de IA. Esta imagen muestra a ChatGPT escribiendo un poema según las especificaciones del usuario.

1.3. Etapas de la creación y uso de LLM

¿Por qué deberías construir tu propio LLM? Codificar un LLM desde cero es un ejercicio excelente para comprender su mecánica y sus limitaciones. Además, nos proporciona los conocimientos necesarios para preentrenar o afinar las arquitecturas de LLM de código abierto existentes con nuestros propios conjuntos de datos o para tareas específicas.

NOTA: La mayoría de los LLM actuales se implementan utilizando la biblioteca de deep learning PyTorch, que también utilizaremos nosotros. Los lectores pueden encontrar una introducción completa a PyTorch en el apéndice A.

La investigación ha demostrado que, en lo referente al rendimiento del modelo, los LLM personalizados (adaptados a tareas o dominios específicos) pueden superar a los LLM de uso general, como los que proporciona ChatGPT, diseñados para una amplia gama de aplicaciones. Algunos ejemplos son BloombergGPT (especializado en finanzas) y LLM adaptados para responder preguntas médicas (para más información, ver el apéndice B).

El uso de LLM personalizados ofrece varias ventajas, sobre todo en lo relativo a la privacidad de los datos. Por ejemplo, las empresas pueden preferir no compartir datos sensibles con proveedores de LLM externos como OpenAI por motivos de confidencialidad. Además, el desarrollo de LLM personalizados más pequeños permite su despliegue directamente en los dispositivos de los clientes, como portátiles y teléfonos inteligentes, algo que empresas como Apple están actualmente explorando. Esta implementación local puede disminuir significativamente la latencia y reducir los costes relacionados con el servidor. Además, los LLM personalizados otorgan a los desarrolladores total autonomía, y les permiten controlar las actualizaciones y modificaciones del modelo según sea necesario. El proceso general de creación de un LLM incluye el preentrenamiento y el ajuste fino. El prefijo «pre» de la palabra «preentrenamiento» se refiere a la fase inicial en la que un modelo similar a un LLM es entrenado con un conjunto de datos amplio y diverso para desarrollar una amplia comprensión del lenguaje. Después, este modelo preentrenado sirve como recurso básico, que puede perfeccionarse mediante el ajuste fino, un proceso en el cual el modelo se entrena específicamente con un conjunto de datos más reducido y específico para tareas o campos concretos. En la figura 1.3 se representa este método de entrenamiento en dos fases: el preentrenamiento y el ajuste fino.

[image: Diagrama de flujo que muestra la arquitectura de un LLM (Large Language Model). Ilustra el procesamiento de datos desde la entrada de texto hasta la generación de respuestas, con componentes como bases de datos, procesamiento de información y módulos de entrenamiento. Las flechas indican el flujo de datos entre los diferentes elementos del sistema.]

Figura 1.3. El preentrenamiento de un LLM implica la predicción de la palabra siguiente en grandes conjuntos de datos de texto. Un LLM preentrenado puede afinarse utilizando un conjunto de datos etiquetados más pequeño.

El primer paso para crear un LLM es entrenarlo con un gran corpus de datos de texto, a veces denominado texto sin procesar. Aquí, «sin procesar» se refiere al hecho de que estos datos son simplemente texto normal sin ninguna información de etiquetado (se pueden aplicar filtros, como eliminar caracteres de formato o documentos en idiomas desconocidos).

NOTA: Los lectores con experiencia en machine learning observarán que la información de etiquetado suele ser necesaria para los modelos de ML tradicionales y las redes neuronales profundas entrenadas mediante el paradigma de aprendizaje supervisado convencional. Este no es el caso de la fase de preentrenamiento de los LLM. En esta fase, los LLM utilizan el aprendizaje autosupervisado, en el cual el modelo genera sus propias etiquetas a partir de los datos de entrada.

Esta primera etapa de entrenamiento de un LLM también se conoce como preentrenamiento, que crea un LLM inicial preentrenado, a menudo llamado modelo básico o modelo fundacional. Un ejemplo típico de un modelo como este es GPT-3 (el precursor del modelo original ofrecido en ChatGPT). Este modelo es capaz de completar textos, es decir, terminar una frase a medio escribir proporcionada por un usuario. También tiene capacidades limitadas con pocos ejemplos, pues puede aprender a realizar nuevas tareas basándose tan solo en unos pocos ejemplos, en lugar de necesitar muchos datos de entrenamiento.

Tras obtener un LLM preentrenado con grandes conjuntos de datos de texto, en los que el LLM ha sido entrenado para predecir la siguiente palabra del texto, podemos seguir entrenando el modelo con datos etiquetados, lo que también se conoce como ajuste fino.

Las dos categorías más populares de ajuste fino de LLM son el ajuste fino por instrucciones y el ajuste fino por clasificación. En el ajuste fino por instrucciones, el conjunto de datos etiquetados consiste en pares de instrucciones y respuestas, como una consulta para traducir un texto acompañada del texto traducido correctamente. En el ajuste fino por clasificación, el conjunto de datos etiquetados consiste en textos y etiquetas de clase asociadas como, por ejemplo, correos electrónicos asociados con etiquetas «spam» y «no spam».

Hablaremos de las implementaciones de código para el preentrenamiento y el ajuste fino de un LLM, y profundizaremos en los detalles específicos, tanto del ajuste fino por instrucciones como por clasificación tras el preentrenamiento de un LLM básico.

1.4. Presentación de la arquitectura Transformer

La mayoría de los LLM modernos se basan en la arquitectura Transformer, una arquitectura de red neuronal profunda introducida en el artículo de 2017 titulado «Attention Is All You Need» (La atención es todo lo que necesitas) (https://arxiv.org/abs/1706.03762). Para entender los LLM, debemos comprender el Transformer original, que se desarrolló para la traducción automática, traduciendo textos escritos en inglés al alemán y al francés. En la figura 1.4 se muestra una versión simplificada de esta arquitectura.

La arquitectura Transformer consta de dos submódulos: un codificador y un decodificador. El módulo codificador procesa el texto de entrada y lo codifica o encripta como una serie de representaciones numéricas o vectores que capturan la información contextual de la entrada. A continuación, el módulo decodificador toma estos vectores codificados y genera el texto de salida. En una tarea de traducción, por ejemplo, el codificador encriptaría el texto del idioma de origen en vectores, y el decodificador descifraría estos vectores para generar texto en el idioma de destino. Tanto el codificador como el decodificador constan de muchas capas conectadas por el denominado mecanismo de autoatención. Quizá tengas preguntas sobre cómo se procesan y codifican las entradas. No te preocupes, obtendrás tus respuestas en una implementación paso a paso que realizaremos en capítulos posteriores.

Un componente clave del Transformer y los LLM es el mecanismo de autoatención (no mostrado), que le permite al modelo sopesar la importancia de las distintas palabras o tókenes de una secuencia en relación con los demás. También le permite captar dependencias de largo alcance y relaciones contextuales dentro de los datos de entrada, y mejora su capacidad para generar resultados coherentes y contextualmente relevantes. Sin embargo, debido a su complejidad, aplazaremos su explicación hasta el capítulo 3, donde lo discutiremos e implementaremos paso a paso.

[image: El diagrama muestra un esquema del funcionamiento de un codificador-decodificador (encoder-decoder) en arquitecturas de procesamiento de lenguaje. En el centro aparecen dos bloques principales conectados: "Codificador" y "Decodificador", con flechas que indican el flujo de información entre ellos. Alrededor hay múltiples cuadros de texto que explican los procesos de entrada y salida, incluyendo transformaciones de vectores y generación de secuencias.]

Figura 1.4. Representación simplificada de la arquitectura Transformer original, un modelo de deep learning para la traducción de idiomas. El Transformer consta de dos partes: (a) un codificador que procesa el texto de entrada y produce una representación embedding (una representación numérica que captura muchos factores diferentes en distintas dimensiones) del texto que el (b) decodificador utiliza para generar el texto traducido palabra por palabra. Esta figura muestra la fase final del proceso de traducción, en la cual el decodificador sólo tiene que generar la palabra final («Beispiel»), dado el texto de entrada original («This is an example») y una frase parcialmente traducida («Das ist ein»), para completar la traducción.

Las variantes posteriores de la arquitectura Transformer, como BERT (abreviatura de Bidirectional Encoder Representations from Transformers, o representaciones codificadoras bidireccionales tomadas de Transformer) y los distintos modelos GPT (abreviatura de Generative Pretrained Transformers, o Transformer generativos preentrenados), se basaron en este concepto para adaptar esta arquitectura a distintas tareas. Si estás interesado, consulta el apéndice B para obtener sugerencias de lectura sobre este tema.

BERT, que se basa en el submódulo codificador del Transformer original, difiere de GPT en su método de entrenamiento. Mientras que GPT está diseñado para tareas generativas, BERT y sus variantes se especializan en la predicción de palabras enmascaradas, donde el modelo predice palabras enmascaradas u ocultas en una frase determinada, como se muestra en la figura 1.5. Esta estrategia de entrenamiento única dota a BERT de puntos fuertes en tareas de clasificación de textos, como la predicción de sentimientos y la categorización de documentos. Como ejemplo de sus capacidades, en el momento de escribir este artículo, X (antes Twitter) utiliza BERT para detectar contenido tóxico.

[image: Diagrama comparativo que muestra las diferencias entre BERT y GPT, dos modelos de lenguaje. Presenta sus arquitecturas, funcionamiento y aplicaciones en procesamiento de lenguaje natural. Incluye flechas de flujo y cajas que explican cómo procesan la información de manera bidireccional e unidireccional respectivamente.]

Figura 1.5. Representación visual de los submódulos codificador y decodificador del Transformer. A la izquierda, el segmento del codificador ilustra los LLM de tipo BERT, centrados en la predicción de palabras enmascaradas y utilizados principalmente para tareas como la clasificación de textos. A la derecha, el segmento del decodificador muestra modelos LLM de tipo GPT, diseñados para tareas generativas y para producir secuencias de texto coherentes.

GPT, por su parte, se centra en la parte decodificadora de la arquitectura Transformer original y está diseñado para tareas que requieren generar textos. Esto incluye la traducción automática, el resumen de textos, la escritura de ficción, la escritura de código informático, etc.

Los modelos GPT, diseñados y entrenados principalmente para realizar tareas de compleción de textos, también muestran una notable versatilidad en sus capacidades. Estos modelos son expertos en la ejecución de tareas de aprendizaje sin ejemplos y con pocos ejemplos. El aprendizaje sin ejemplos o zero-shot se refiere a la capacidad de generalizar tareas completamente desconocidas sin ningún ejemplo específico previo. Por otro lado, el aprendizaje con pocos ejemplos o few-shot implica aprender a partir de un número mínimo de ejemplos que el usuario proporciona como entrada, como muestra la figura 1.6.

[image: La imagen muestra un diagrama de flujo que ilustra el proceso de comprensión y traducción de textos. Incluye diferentes niveles: "COMPRENSIÓN DEL TEXTO" en la parte superior, seguido de "ZERO-SHOT" y "FEW-SHOT" en el medio. Cada nivel contiene cuadros con instrucciones sobre cómo completar tareas lingüísticas. El diagrama parece explicar metodologías para trabajar con modelos de lenguaje en diferentes contextos.]

Figura 1.6. Además de completar textos, los LLM de tipo GPT pueden resolver varias tareas basándose en sus entradas sin necesidad de reentrenamiento, ajuste fino o cambios en la arquitectura del modelo específicos para la tarea en cuestión. A veces es útil proporcionar ejemplos del objetivo que se desea alcanzar dentro de la entrada, lo que se conoce como configuración con pocos ejemplos o few-shot. Sin embargo, los LLM de tipo GPT también son capaces de llevar a cabo tareas sin utilizar un ejemplo específico, lo cual se conoce como configuración sin ejemplos o zero-shot.

Transformer frente a LLM

Los LLM actuales se basan en la arquitectura Transformer. De ahí que Transformer y LLM sean términos que a menudo se utilizan como sinónimos en la literatura del sector. Sin embargo, ha de tenerse en cuenta que no todos los Transformer son LLM, porque los primeros también se utilizan para la visión por ordenador. Asimismo, no todos los LLM son Transformer, pues existen LLM basados en arquitecturas recurrentes y convolucionales. La principal motivación de estos enfoques alternativos es mejorar la eficiencia computacional de los LLM. Queda por ver si estas arquitecturas LLM alternativas pueden competir con las capacidades de los LLM basados en Transformer y si se van a adoptar en la práctica. Para simplificar, utilizo la abreviatura «LLM» para referirme a los grandes modelos de lenguaje basados en Transformer similares a GPT (los lectores interesados encontrarán referencias bibliográficas que describen estas arquitecturas en el apéndice B).

1.5. Utilizar conjuntos de datos de gran tamaño

Los grandes conjuntos de datos de entrenamiento para modelos conocidos de tipo GPT y BERT representan corpus de texto diversos y exhaustivos que abarcan miles de millones de palabras e incluyen una amplia gama de temas y lenguajes naturales y de ordenador. Como ejemplo concreto, en la tabla 1.1 se resume el conjunto de datos utilizado para el preentrenamiento de GPT-3, que sirvió de modelo básico para la primera versión de ChatGPT.

Tabla 1.1. El conjunto de datos de preentrenamiento del conocido LLM GPT-3.

	
Nombre del conjunto de datos

	
Descripción del conjunto de datos

	
Número de tókenes

	
Proporción de datos de entrenamiento

	
Common Crawl (filtrado)

	
Datos recopilados mediante rastreo web

	
410 000 millones

	
60 %

	
WebText2

	
Datos recopilados mediante rastreo web

	
19 000 millones

	
22 %

	
Books1

	
Corpus de libros basado en Internet

	
12 000 millones

	
8 %

	
Books2

	
Corpus de libros basado en Internet

	
55 000 millones

	
8 %

	
Wikipedia

	
Texto de alta calidad

	
3 000 millones

	
3 %

La tabla 1.1 ofrece el dato de número de tókenes. Un token es una unidad de texto leída por el modelo, y el número de tókenes de un conjunto de datos equivale aproximadamente al número de palabras y caracteres de puntuación del texto. El capítulo 2 aborda la tokenización, el proceso de convertir texto en tókenes.

La principal conclusión es que el tamaño y la diversidad de este conjunto de datos de entrenamiento permiten que estos modelos funcionen bien en diversas tareas, incluidas la sintaxis, la semántica y el contexto del lenguaje, e incluso en algunas que requieren conocimientos generales.

Detalles sobre el conjunto de datos de GPT-3

La tabla 1.1 muestra el conjunto de datos utilizado para GPT-3. La columna de la tabla referida a proporciones suma el 100 % de los datos muestreados, ajustados por errores de redondeo. Aunque los subconjuntos de la columna Número de tókenes suman 499 000 millones, el modelo solo se entrenó con 300 000 millones de tókenes. Los autores del artículo sobre GPT-3 no especificaron la razón por la que el modelo no fue entrenado con los 499 000 millones de tókenes.

Para contextualizar, consideremos el tamaño del conjunto de datos Common Crawl, que por sí solo consta de 410 000 millones de tókenes y requiere unos 570 GB de almacenamiento. En comparación, las iteraciones posteriores de modelos de estilo GPT-3, como LLaMA de Meta, han ampliado su ámbito de entrenamiento para incluir fuentes de datos adicionales, como los artículos de investigación de Arxiv (92 GB) y las preguntas y respuestas relacionadas con el código de StackExchange (78 GB).

Los autores del artículo sobre GPT-3 no compartieron el conjunto de datos de entrenamiento, pero un conjunto de datos comparable disponible públicamente es Dolma, que aparece en el artículo «Dolma: An Open Corpus of Three Trillion Tokens for LLM Pretraining Research» (Dolma: un corpus abierto de tres billones de tókenes para la investigación del preentrenamiento de los LLM) publicado por Soldaini et al. en 2024 (https://arxiv.org/abs/2402.00159). Sin embargo, esta recopilación puede contener obras protegidas por derechos de autor, y las condiciones exactas de uso pueden depender de la situación específica para la que se deseen utilizar y del país.

La naturaleza previamente entrenada de estos modelos los hace increíblemente versátiles para su posterior ajuste en tareas derivadas, razón por la cual también se conocen como modelos básicos o fundacionales. El preentrenamiento de los LLM requiere tener acceso a recursos considerables y es muy costoso. Por ejemplo, el coste del preentrenamiento de GPT-3 se estima en 4,6 millones de dólares en términos de créditos de computación en la nube (https://mng.bz/VxEW).

La buena noticia es que muchos LLM preentrenados, disponibles como modelos de código abierto, pueden utilizarse como herramientas de uso general para escribir, extraer y editar textos que no formaban parte de los datos de entrenamiento. Además, los LLM se pueden afinar en tareas específicas con conjuntos de datos relativamente pequeños, lo cual reduce los recursos computacionales necesarios y mejora el rendimiento.

Implementaremos el código para el preentrenamiento y lo utilizaremos para preentrenar un LLM con fines educativos. Todos los cálculos pueden ejecutarse en hardware de consumo. Después de implementar el código de preentrenamiento, aprenderemos a reutilizar los pesos del modelo disponibles públicamente y a cargarlos en la arquitectura que crearemos; ello nos permitirá saltarnos la costosa etapa de preentrenamiento cuando apliquemos el ajuste fino a nuestro LLM.

1.6. Un vistazo más detallado a la arquitectura GPT

GPT fue introducida originalmente en el artículo «Improving Language Understanding by Generative Pre-Training» (Mejorar la comprensión del lenguaje mediante preentrenamiento generativo) (https://mng.bz/x2qg) de Radford et al., todos de OpenAI. GPT-3 es una versión ampliada de este modelo que tiene más parámetros y fue entrenado con un conjunto de datos de mayor tamaño. Además, el modelo original ofrecido en ChatGPT se creó afinando GPT-3 con un gran conjunto de datos de instrucciones utilizando un método tomado del artículo sobre InstructGPT de OpenAI (https://arxiv.org/abs/2203.02155). Como muestra la figura 1.6, estos modelos son competentes en la compleción de textos y pueden realizar otras tareas, como la corrección ortográfica, la clasificación o la traducción de idiomas. En realidad, esto es de una importancia notable, porque los modelos GPT son entrenados previamente en una tarea de predicción de la siguiente palabra relativamente sencilla, como se muestra en la figura 1.7.

[image: Texto en español que explica que "El modelo se entrena automáticamente para predecir la siguiente palabra", parte de un capítulo sobre comprensión de grandes modelos de lenguaje (LLM).]

Figura 1.7. En la tarea de preentrenamiento de predicción de la palabra siguiente para modelos GPT, el sistema aprende a predecir la palabra siguiente de una frase observando las palabras que la preceden. Este enfoque ayuda al modelo a entender cómo encajan las palabras y las frases en el lenguaje, formando una base que puede aplicarse a otras tareas.

La tarea de predicción de la palabra siguiente es una forma de aprendizaje autosupervisado, que es a su vez una forma de autoetiquetado. Esto significa que no necesitamos recopilar etiquetas para los datos de entrenamiento de forma explícita, sino que podemos utilizar la estructura de los propios datos, es decir, utilizamos la siguiente palabra de una frase o documento como la etiqueta que el modelo debe predecir. Como esta tarea de predicción de la palabra siguiente nos permite crear etiquetas «sobre la marcha», es posible utilizar conjuntos de datos de texto sin etiquetar para entrenar LLM.

En comparación con la arquitectura Transformer original abordada en la sección 1.4, la arquitectura general de GPT es relativamente sencilla. En esencia, es únicamente la parte del decodificador sin el codificador (figura 1.8). Debido a que los modelos de tipo decodificador, como GPT, generan texto mediante la predicción de texto palabra por palabra, se consideran un tipo de modelo autorregresivo. Los modelos autorregresivos incorporan sus resultados anteriores como entradas para predicciones futuras. Por consiguiente, en GPT, cada palabra nueva se elige en función de la secuencia que la precede, lo cual mejora la coherencia del texto resultante.

Arquitecturas como GPT-3 también son notablemente mayores que el modelo Transformer original. Por ejemplo, el Transformer original repetía los bloques codificador y decodificador seis veces. GPT-3 tiene 96 capas de Transformer y 175 000 millones de parámetros en total.

[image: Diagrama que muestra el flujo de procesamiento de texto en tres iteraciones de decodificación. Cada columna representa una iteración con un token de entrada, un decodificador y un token de salida, ilustrando cómo se construye una respuesta secuencialmente en modelos de lenguaje.]

Figura 1.8. La arquitectura GPT emplea únicamente la parte decodificadora del Transformer original. Está diseñada para un procesamiento unidireccional, de izquierda a derecha, lo que la hace muy adecuada para tareas de generación de texto y predicción de la palabra siguiente para generar texto de forma iterativa, palabra por palabra.

GPT-3 fue introducida en 2020, lo que, según los estándares del deep learning y el desarrollo de grandes modelos de lenguaje, se considera mucho tiempo. Sin embargo, arquitecturas más recientes, como los modelos Llama de Meta, siguen basándose en los mismos conceptos subyacentes, introduciendo solo pequeñas modificaciones. Por lo tanto, la comprensión de GPT sigue siendo muy relevante. Me centro en la implementación de la arquitectura prominente en la que se basa GPT, ofreciendo al mismo tiempo indicaciones sobre ciertas modificaciones empleadas por LLM alternativos.

Aunque el modelo Transformer original, compuesto por bloques codificadores y decodificadores, fue diseñado explícitamente para la traducción de idiomas, los modelos GPT (a pesar de su arquitectura más grande pero más sencilla, solo decodificadora y orientada a la predicción de la palabra siguiente) también son capaces de realizar tareas de traducción. En un principio, esta capacidad resultó inesperada para los investigadores, porque surgió de un modelo entrenado principalmente en una tarea de predicción de la palabra siguiente, una tarea no dirigida específicamente a la traducción. La capacidad de realizar tareas para las que el modelo no ha sido entrenado explícitamente se denomina comportamiento emergente. Esta capacidad no se enseña explícitamente durante el entrenamiento, sino que surge como consecuencia natural de la exposición del modelo a grandes cantidades de datos multilingües en diversos contextos. El hecho de que los modelos GPT puedan «aprender» los patrones de traducción entre idiomas y realizar tareas de traducción, aunque no hayan sido entrenados específicamente para ello, demuestra las ventajas y capacidades de estos modelos lingüísticos generativos a gran escala. Podemos realizar tareas diferentes sin necesidad de utilizar modelos distintos para cada una de ellas.

1.7. Creando un modelo de lenguaje de gran tamaño

Ahora que hemos sentado las bases para entender los LLM, vamos a codificar uno desde cero. Tomaremos como base la idea fundamental de GPT y la abordaremos en tres etapas, como se muestra en la figura 1.9.

[image: Diagrama de flujo que muestra el proceso de desarrollo de un LLM en 3 etapas. Incluye cajas y flechas que representan los pasos secuenciales: preparación de datos, entrenamiento del modelo y ajuste fino. El esquema ilustra el flujo de trabajo completo desde la recopilación de información hasta la implementación del modelo de lenguaje.]

Figura 1.9. Las tres etapas principales de la codificación de un LLM son la implementación de la arquitectura del modelo y el proceso de preparación de datos (etapa 1), el preentrenamiento del LLM para crear un modelo básico (etapa 2) y el ajuste fino del modelo fundacional para convertirlo en un asistente personal o clasificador de texto (etapa 3).

En la etapa 1, aprenderemos los pasos fundamentales del procesamiento previo de los datos y codificaremos el mecanismo de atención del corazón de cada LLM. A continuación, en la fase 2, aprenderemos a codificar y preentrenar un LLM de tipo GPT capaz de generar nuevos textos. También repasaremos los fundamentos de la evaluación de los LLM, esencial para desarrollar sistemas de PLN capaces.

Preentrenar un LLM desde cero es una tarea importante, que requiere entre miles y millones de dólares en costes de computación para modelos tipo GPT. Por lo tanto, el objetivo de la fase 2 es la implementación del entrenamiento con fines educativos usando un pequeño conjunto de datos. Además, también proporciono ejemplos de código para cargar pesos del modelo disponibles públicamente.

Por último, en la etapa 3, tomaremos un LLM preentrenado y lo afinaremos para que siga instrucciones como responder consultas o clasificar textos, las tareas más comunes en muchas aplicaciones e investigaciones del mundo real.

Espero que estés deseando embarcarte en este apasionante viaje.

Resumen

•Los LLM han transformado el campo del procesamiento del lenguaje natural, antaño centrada principalmente en sistemas basados en reglas explícitas y métodos estadísticos más sencillos. La llegada de los LLM introdujo nuevos enfoques basados en deep learning, que condujeron a avances en la comprensión, generación y traducción del lenguaje de las personas.

•Los LLM modernos son entrenados siguiendo dos etapas principales:

—En primer lugar, son preentrenados con un gran corpus de texto sin etiquetar utilizando la predicción de la siguiente palabra de una frase como etiqueta.

—A continuación, son perfeccionados con un conjunto de datos más pequeño y etiquetado para seguir instrucciones o realizar tareas de clasificación.

•Los LLM se basan en la arquitectura Transformer. La idea clave de esta arquitectura es un mecanismo de atención que le proporciona al LLM acceso selectivo a la secuencia de entrada completa cuando genera la salida palabra por palabra.

•La arquitectura Transformer original consiste en un codificador para analizar el texto y un decodificador para generarlo.

•Los LLM para generar texto y seguir instrucciones, como GPT-3 y ChatGPT, solo implementan módulos decodificadores, lo que simplifica la arquitectura.

•Los grandes conjuntos de datos compuestos por miles de millones de palabras son esenciales para el preentrenamiento de los LLM.

•Aunque la tarea general de preentrenamiento de los modelos tipo GPT consiste en predecir la siguiente palabra de una frase, estos LLM presentan propiedades emergentes, como la capacidad de clasificar, traducir o resumir textos.

2

Trabajar con datos de texto

En este capítulo encontrarás:

•Cómo preparar el texto para el entrenamiento de grandes modelos de lenguaje.

•Cómo dividir texto en tókenes de palabra y subpalabra.

•La codificación por pares de símbolos como una forma más avanzada de tokenizar texto.

•Muestreo de ejemplos de entrenamiento con un enfoque de ventana deslizante.

•Cómo convertir tókenes en vectores para alimentar un LLM.

Hasta ahora hemos estudiado la estructura general de los grandes modelos de lenguaje (LLM: Large Language Models) y hemos aprendido que se utilizan grandes cantidades de texto para preentrenarlos. En concreto, nos hemos centrado en los LLM basados en la arquitectura Transformer, la base de los modelos utilizados en ChatGPT, y en otros LLM conocidos de tipo GPT.

Durante la fase de preentrenamiento, los LLM procesan el texto palabra por palabra. Entrenando modelos de lenguaje con millones o miles de millones de parámetros y utilizando una tarea de predicción de la palabra siguiente se obtienen modelos con capacidades impresionantes, que después se pueden afinar para que sigan instrucciones generales o realicen tareas específicas. Pero antes de implementar y entrenar LLM, necesitamos preparar el conjunto de datos de entrenamiento, como se ilustra en la figura 2.1.

[image: El diagrama muestra el flujo de procesamiento de datos para LLM en tres etapas principales. Ilustra la implementación del muestreo de datos (Etapa 1), seguido por la preparación de los datos, tokenización y vectorización (Etapa 2), y finalmente el entrenamiento del modelo (Etapa 3). Cada fase está representada con sus componentes específicos y conexiones secuenciales.]

Figura 2.1. Las tres etapas principales de la codificación de un LLM. Este capítulo se centra en el paso 1 de la etapa 1, es decir, la implementación del flujo de muestreo de datos.

Aprenderás a preparar el texto de entrada para el entrenamiento de los LLM, lo que implica dividir el texto en tókenes individuales de palabra y subpalabra, que luego se pueden codificar en representaciones vectoriales para el LLM. También veremos cómo realizar esquemas avanzados de tokenización, como la codificación por pares de símbolos (utilizada en modelos como GPT). Por último, elaboraremos una estrategia de muestreo y carga de datos para producir los pares de entrada-salida necesarios para entrenar los LLM.

2.1. Comprender las representaciones vectoriales de palabras

Los modelos de redes neuronales profundas, incluidos los LLM, no trabajan directamente con texto sin procesar. Como el texto es categórico, no es compatible con las operaciones matemáticas utilizadas para implementar y entrenar redes neuronales. Por lo tanto, necesitamos una forma de representar las palabras como vectores con valores continuos.

NOTA: Los lectores que no estén familiarizados con los vectores y tensores en un contexto computacional pueden obtener más información en el apéndice A, sección A.2.2.

El concepto de convertir datos en vectores se denomina embedding o representación vectorial. Utilizando una determinada capa de red neuronal u otro modelo de red neuronal preentrenado, podemos representar mediante vectores distintos tipos de datos, por ejemplo, vídeo, audio y texto, como se ilustra en la figura 2.2. Sin embargo, es importante tener en cuenta que los distintos formatos de datos requieren modelos de representación vectorial diferentes. Por ejemplo, un modelo diseñado para texto no sería adecuado para obtener embedding de datos de audio o vídeo.

[image: Diagrama que muestra el proceso de tokenización de texto para modelos de lenguaje. Ilustra cómo los símbolos musicales, imágenes y documentos se convierten en secuencias numéricas mediante representación vectorial, mostrando el flujo desde datos de entrada no estructurados hasta su codificación estructurada.]

Figura 2.2. Los modelos de deep learning no pueden trabajar con formatos de datos como vídeo, audio y texto sin procesar. Por esta razón utilizamos un modelo de embedding para transformarlos en una representación vectorial densa que las arquitecturas de DL puedan comprender y procesar fácilmente. En concreto, esta figura ilustra el proceso de conversión de datos sin procesar en un vector numérico tridimensional.

En esencia, una representación vectorial o embedding es la asignación de objetos discretos, como palabras, imágenes o incluso documentos enteros, a puntos en un espacio vectorial continuo. El objetivo principal de las representaciones vectoriales es convertir datos no numéricos en un formato que las redes neuronales puedan procesar.

Aunque los embedding de palabras son la forma más común de representación vectorial de texto, también hay embedding de frases, párrafos o documentos completos. Estás últimas son opciones comunes para la generación aumentada con recuperación. Esta técnica combina la generación (como la producción de texto) con la recuperación (como la búsqueda en una base de conocimientos externa) para extraer información de un documento, pero queda fuera del alcance de este libro. Como nuestro objetivo es entrenar LLM de tipo GPT, que aprenden a generar texto palabra por palabra, nos centraremos en el embedding de palabras.

Se han desarrollado varios algoritmos y estructuras para generar representaciones vectoriales de palabras. Uno de los primeros y más populares es Word2Vec. Este método entrena una arquitectura de red neuronal para generar embedding de palabras mediante la predicción del contexto de una palabra dada la palabra objetivo, o viceversa. La idea principal de Word2Vec es que las palabras que aparecen en contextos similares tienden a tener significados similares. En consecuencia, cuando se proyectan en representaciones bidimensionales de palabras con fines de visualización, los términos similares se agrupan, como se muestra en la figura 2.3.

Los embedding de palabras pueden tener distintas dimensiones, desde una hasta miles. Una mayor dimensionalidad puede captar relaciones más matizadas, pero a costa de la eficiencia computacional.

[image: Diagrama que muestra representaciones vectoriales de palabras en un espacio bidimensional. Incluye puntos agrupados por categorías (como "aves") y señala cómo palabras con conceptos similares aparecen cercanas entre sí en el espacio de representación.]

Figura 2.3. Si las representaciones vectoriales de palabras son bidimensionales, podemos trazarlas en un diagrama de dispersión de dos dimensiones para poder visualizarlas, como se muestra aquí. Cuando se utilizan técnicas de embedding de palabras, como Word2Vec, las palabras que corresponden a conceptos similares suelen aparecer cerca unas de otras en el espacio de representación. Por ejemplo, los distintos tipos de pájaros aparecen más próximos entre sí que los países y las ciudades.

Aunque podemos utilizar modelos preentrenados como Word2Vec para generar embedding para modelos de ML, los LLM suelen producir sus propios vectores, que forman parte de la capa de entrada y se actualizan durante el entrenamiento. La ventaja de optimizar los embedding como parte del entrenamiento del LLM, en lugar de utilizar Word2Vec, es que los vectores se optimizan para la tarea en cuestión y los datos específicos de que se trate. Implementaremos estas capas de representación más adelante en este capítulo (los LLM también pueden crear embedding de salida contextualizados, como veremos en el capítulo 3).

Las representaciones vectoriales de muchas dimensiones suponen un desafío para la visualización, porque nuestra percepción sensorial y las representaciones gráficas comunes están inherentemente limitadas a tres dimensiones o menos, razón por la cual la figura 2.3 muestra vectores bidimensionales en un diagrama de dispersión de dos dimensiones. Sin embargo, cuando trabajamos con LLM, solemos utilizar vectores con una dimensionalidad mucho mayor. Tanto para GPT-2 como para GPT-3, el tamaño del embedding (a menudo denominado dimensionalidad de los estados ocultos del modelo) varía en función de la variante y el tamaño específicos del modelo. Se trata de un compromiso entre rendimiento y eficiencia. Los modelos GPT-2 más pequeños (con 117 y 125 millones de parámetros) utilizan un tamaño de vector de 768 dimensiones para ofrecer ejemplos concretos, mientras que el modelo GPT-3 más grande (175 000 millones de parámetros) utiliza un tamaño de embedding de 12 288 dimensiones.

A continuación, recorreremos los pasos necesarios para preparar las representaciones vectoriales utilizadas por un LLM, que incluyen dividir el texto en palabras, convertir las palabras en tókenes y transformar los tókenes en vectores de embedding.

2.2. Tokenización del texto

Hablemos de cómo dividir el texto de entrada en tókenes individuales, un paso de procesamiento previo necesario para crear representaciones vectoriales para un LLM. Estos tókenes son palabras individuales o caracteres especiales, incluidos los signos de puntuación, como se muestra en la figura 2.4.

[image: Diagrama de flujo que muestra el proceso de transformación de texto para entrenamiento de modelos de lenguaje. Comienza con "Texto de datos" y pasa por "Etapas de procesamiento gramatical" hasta llegar a "Transformador para clasificación de texto". Incluye ramificaciones y elementos como "Flujo de entrada" y "Tokens de entrada".]

Figura 2.4. Vista de los pasos del procesamiento de textos en el contexto de un LLM. Aquí dividimos un texto de entrada en tókenes individuales, que pueden ser palabras o caracteres especiales, como los signos de puntuación.

El texto que tokenizaremos para entrenar LLM es The Verdict (El veredicto), un relato corto de Edith Wharton, que ha sido liberado para dominio público y, por tanto, se permite su uso para tareas de entrenamiento de LLM. El texto está disponible en Wikisource en https://en.wikisource.org/wiki/The_Verdict, y puedes copiarlo y pegarlo en un archivo de texto. Yo lo copié en un archivo de texto denominado the-verdict.txt.

También puedes encontrar este archivo txt en el repositorio GitHub de este libro en https://mng.bz/Adng. Puedes descargar el archivo con el siguiente código Python:

import urllib.request

 url = (“https://raw.githubusercontent.com/rasbt/”

 “LLMs-from-scratch/main/ch02/01_main-chapter-code/”

 “the-verdict.txt”)

 file_path = “the-verdict.txt”

 urllib.request.urlretrieve(url, file_path)

A continuación, podemos cargar el archivo the-verdict.txt mediante las utilidades estándares de lectura de archivos de Python.

Listado 2.1. Lectura en Python de un relato corto como muestra de texto

with open(“the-verdict.txt”, “r”, encoding=”utf-8”) as f:

 raw_text = f.read()

print(“Total number of character:”, len(raw_text))

print(raw_text[:99])

El comando print imprime el número total de caracteres seguido de los 99 primeros caracteres del archivo txt con fines ilustrativos:

Total number of character: 20479

I HAD always thought Jack Gisburn rather a cheap genius--though a good fellow

 enough--so it was no

Nuestro objetivo es tokenizar esta breve historia de 20 479 caracteres en palabras individuales y caracteres especiales, que podamos convertir en embedding para el entrenamiento de LLM.

NOTA: Es habitual procesar millones de artículos y cientos de miles de libros (muchos gigabytes de texto) cuando se trabaja con LLM. Sin embargo, para fines educativos, es suficiente trabajar con muestras de texto más pequeñas, como un solo libro, para ilustrar las ideas principales que subyacen a los pasos del procesamiento de textos y para que sea posible ejecutarlo en un tiempo razonable en hardware de consumo.

¿Cuál es la mejor manera de dividir este texto para obtener una lista de tókenes? Para ello, haremos una pequeña excursión y utilizaremos la biblioteca re de expresiones regulares de Python con fines ilustrativos (no es necesario que aprendas o memorices sintaxis de expresiones regulares, pues más tarde utilizaremos un tokenizador ya creado de antemano).

Con un texto de ejemplo sencillo, podemos usar el comando re.split con la siguiente sintaxis para dividir un texto en espacios en blanco:

import re

text = “Hello, world. This, is a test.”

result = re.split(r’(\s)’, text)

print(result)

El resultado es una lista de palabras, espacios en blanco y signos de puntuación:

[‘Hello,’, ‘ ‘, ‘world.’, ‘ ‘, ‘This,’, ‘ ‘, ‘is’, ‘ ‘, ‘a’, ‘ ‘, ‘test.’]

Este sencillo esquema de tokenización funciona principalmente para separar el texto de ejemplo en palabras, pero algunas de ellas siguen conectadas a signos de puntuación que queremos tener como entradas diferentes en la lista. Tampoco ponemos todo el texto en minúsculas porque las mayúsculas ayudan a los LLM a distinguir entre nombres propios y comunes, a entender la estructura de las frases y a aprender a generar texto con las mayúsculas correctas.

Cambiemos las divisiones de la expresión regular por espacios en blanco (\s), comas y puntos ([,.]):

result = re.split(r’([,.]|\s)’, text)

print(result)

Vemos que las palabras y los signos de puntuación son ahora entradas de lista distintas, tal como queríamos:

[‘Hello’, ‘,’, ‘’, ‘ ‘, ‘world’, ‘.’, ‘’, ‘ ‘, ‘This’, ‘,’, ‘’, ‘ ‘, ‘is’, ‘ ‘, ‘a’, ‘ ‘, ‘test’, ‘.’, ‘’]

Un pequeño problema pendiente es que la lista sigue incluyendo espacios en blanco. De manera opcional podemos eliminar estos caracteres redundantes de forma segura de la siguiente manera:

result = [item for item in result if item.strip()]

print(result)

El resultado sin espacios en blanco es el siguiente:

[‘Hello’, ‘,’, ‘world’, ‘.’, ‘This’, ‘,’, ‘is’, ‘a’, ‘test’, ‘.’]

NOTA: Durante el desarrollo de un tokenizador sencillo, la decisión de codificar los espacios en blanco como caracteres distintos o simplemente eliminarlos depende de nuestra aplicación y de sus requisitos. Eliminar los espacios en blanco reduce los requisitos de memoria y computación. Sin embargo, mantenerlos puede ser útil si entrenamos modelos que son sensibles a la estructura exacta del texto (por ejemplo, el código Python, que es sensible a la sangría y al espaciado). En este caso, eliminamos los espacios en blanco por simplicidad y brevedad de los resultados tokenizados. Más adelante, cambiaremos a un esquema de tokenización que incluya los espacios en blanco.

El esquema de tokenización que hemos ideado aquí funciona bien con un texto de muestra sencillo. Modifiquémoslo un poco más para que también pueda tratar otros tipos de puntuación, como los signos de interrogación, las comillas y los guiones dobles que hemos visto antes en los 99 primeros caracteres del relato de Edith Wharton, junto con otros caracteres especiales:

text = “Hello, world. Is this-- a test?”

result = re.split(r’([,.:;?_!”()\’]|--|\s)’, text)

result = [item.strip() for item in result if item.strip()]

print(result)

El resultado es:

[‘Hello’, ‘,’, ‘world’, ‘.’, ‘Is’, ‘this’, ‘--’, ‘a’, ‘test’, ‘?’]

Como observamos en los resultados resumidos en la figura 2.5, nuestro esquema de tokenización puede manejar con éxito los distintos caracteres especiales del texto.

[image: Diagrama que muestra el proceso de tokenización de texto para modelos de lenguaje. Presenta dos filas: "Texto de entrada" conectado mediante una flecha a "Texto tokenizado", ilustrando cómo se divide el texto en unidades más pequeñas para su procesamiento en sistemas de inteligencia artificial.]

Figura 2.5. El esquema de tokenización que hemos aplicado hasta ahora divide el texto en palabras y signos de puntuación. En este ejemplo concreto, el texto de muestra se divide en 10 tókenes individuales.

Ahora que ya tenemos un tokenizador básico en funcionamiento, apliquémoslo al relato completo de Edith Wharton:

preprocessed = re.split(r’([,.:;?_!”()\’]|--|\s)’, raw_text)

preprocessed = [item.strip() for item in preprocessed if item.strip()]

print(len(preprocessed))

Esta sentencia de impresión produce 4690, que es el número de tókenes de este texto (sin espacios en blanco). Imprimamos los primeros 30 tókenes para una rápida comprobación visual:

print(preprocessed[:30])

El resultado muestra que nuestro tokenizador parece manejar bien el texto, porque todas las palabras y caracteres especiales están perfectamente separados:

[‘I’, ‘HAD’, ‘always’, ‘thought’, ‘Jack’, ‘Gisburn’, ‘rather’, ‘a’,

‘cheap’, ‘genius’, ‘--’, ‘though’, ‘a’, ‘good’, ‘fellow’, ‘enough’,

‘--’, ‘so’, ‘it’, ‘was’, ‘no’, ‘great’, ‘surprise’, ‘to’, ‘me’, ‘to’,

‘hear’, ‘that’, ‘,’, ‘in’]

2.3. Convertir tókenes en identificadores de token

A continuación, convertiremos estos tókenes de una cadena Python en una representación de enteros para producir los ID de token. Este es un paso intermedio antes de convertir los ID en vectores de embedding.

Para transformar los tókenes generados previamente en ID de token, primero tenemos que construir un vocabulario. Este vocabulario define cómo asignamos cada palabra y carácter especial a un número entero único, tal y como se muestra en la figura 2.6.

[image: Diagrama conceptual sobre tokenización de texto para LLM que muestra el flujo desde textos de entrada hasta vectores numéricos. Incluye etapas como conteo de ocurrencias, división en tokens, codificación por pares de símbolos y transformación a representaciones vectoriales con flechas conectando los procesos.]

Figura 2.6. Construimos un vocabulario dividiendo todo el texto de un conjunto de datos de entrenamiento en tókenes individuales. A continuación, los tókenes se ordenan alfabéticamente y se eliminan los duplicados. Los tókenes únicos se agregan después a un vocabulario que define una correspondencia entre cada token único y un valor entero único. El vocabulario representado en la figura es reducido de manera intencionada, y no contiene signos de puntuación ni caracteres especiales para simplificar.

Ahora que hemos tokenizado el relato de Edith Wharton y le hemos asignado a una variable de Python llamada preprocessed, creamos una lista con todos los tókenes únicos y la ordenamos alfabéticamente para determinar el tamaño del vocabulario:

all_words = sorted(set(preprocessed))

vocab_size = len(all_words)

print(vocab_size)

Tras determinar que el tamaño del vocabulario es de 1130 mediante este código, lo creamos e imprimimos sus 51 primeras entradas con fines ilustrativos.

Listado 2.2 Crear un vocabulario

vocab = {token:integer for integer,token in enumerate(all_words)}

for i, item in enumerate(vocab.items()):

 print(item)

 if i >= 50:

 break

El resultado es

(‘!’, 0)

(‘”’, 1)

(“’”, 2)

...

(‘Her’, 49)

(‘Hermia’, 50)

Observamos que el diccionario contiene tókenes individuales asociados a etiquetas de número entero único. Nuestro siguiente objetivo es aplicar este vocabulario para convertir texto nuevo en ID de token (figura 2.7).

[image: Diagrama que explica la tokenización de texto para modelos de lenguaje. Muestra ejemplos de textos de muestra, vocabulario extendido con flechas conectando palabras a tokens, y un esquema de codificación numérica representada en cuadros.]

Figura 2.7. A partir de una nueva muestra de texto, se tokeniza el texto y se utiliza el vocabulario para convertir los tókenes de texto en identificadores. El vocabulario se construye a partir del conjunto de entrenamiento y puede aplicarse al mismo y a cualquier muestra de texto nueva. Para simplificar, el vocabulario representado no contiene signos de puntuación ni caracteres especiales.

Cuando queremos convertir los resultados de un LLM de números a texto, necesitamos una forma de transformar los ID de token en texto. Para ello, creamos una versión inversa del vocabulario que reasigne los ID de token a los tókenes de texto correspondientes.

Implementemos una clase tokenizadora completa en Python con un método encode que divida el texto en tókenes y lleve a cabo la asignación de cadena de texto a entero para producir ID de token mediante el vocabulario. Realizaremos también un método decode que lleve a cabo la correspondencia inversa de entero a cadena de texto para convertir los ID de token de nuevo en texto. El siguiente listado muestra el código para la implementación de este tokenizador.

Listado 2.3 Implementación de un tokenizador de texto sencillo

	
class SimpleTokenizerV1:

	
 def __init__(self, vocab):

	
◂ Almacena el vocabulario como un atributo de clase al que pueden acceder los métodos encode y decode

	
 self.str_to_int = vocab

	
 self.int_to_str = {i:s for s,i in vocab.items()}

OEBPS/image/01_01.jpg
Red neuronal profunda GenAl implica el uso de redes
para analizar y generar —— neuronales profundas para
crear contenidos nuevos,

texto similar al humano

Machine learning S irnise mcitie
conredes neuronales - lengua
de varias capas

Dosp leaming Algoritmos que aprenden reglas

automaticamente a partir de datos

Sistemas con inteligencia

Intoligencia artificial 4
o lar ala humana

OEBPS/image/02_01.jpg
Implementa el flujo de Afina el LLM preentrenado

'“"“"f“ de datos para crear un modelo de
clasificacién \
/ ETAPA1 ETAPA2 ETAPA3
k Conjuno de datcs
/ con etiquetas de clase
(T erepara | () vecanisme) [0 arquteo 5 Bucke & () Evalua-| (7) Cargar
| Vestos erirena- || cien el | | pesospre-

1 !] Clasificador
| constucion de unum

f f

| !

Modelo fundacional

Asistente personal

J Y
Implementa el muestreo Preentrena el LLM con datos no
de datosy comprende el etiquetados para obtener un modelo 1 .
mecanismo basico basico que pueda perfeccionarse de nstrucsiones

)
Ajusta el LLM preentrenado
para crear un modelo de
asistente personal o de chat

OEBPS/image/01_05.jpg
BERT GPT

{oThis is an example of how concise | can be| | | [This is an example of how concise I can be

¥

Decodificador
Rellena las A
palabras que
faltan para Aprende a
generarla generar una
frase original (Etapas de procesamiento previo) (Etapas de procesamiento previo) palabra
T N cada vez
Thisis an _ of how concise | _be This is an example of how concise | can

£
S {
Recibe entradas con palabras Recibe textos incompletos

enmascaradas de manera aleatoria
durante el entrenamiento

OEBPS/image/02_05.jpg
Texto de entrada—4[Hello, world. Is this- a test?

!

Texto tokenizado_—«

Hello] [[worid] [] [Ts] [this][] [a] [test

OEBPS/image/01_07.jpg
El modelo es entrenado sencillamente para
predecir la siguiente palabra

OEBPS/image/9788441552883-23.jpg
& Compartir ++

O @ ChatGPT ~
Entrada del usuario

Escribe un poema de 4 lineas que contenga las palabras] (instrucciones)

Méstoles, 1A y pizza.

| Resultado ofrecido
/ porel modelo
n Méstales o una il

una 1A escribe con sutil destreza,
mientras una pizza humea en a orilla
sabores y versos en justa pieza.

6PV

Pregunta lo que quieras

+ 2 Heromientas 9

vefcarla iformacén impartante. Ve peleen

ChatGPT puede cometererors.

OEBPS/image/02_04.jpg
Texto de salida
)
Etapas de procesamiento posterior
[}

Transformer
solo decodificador

de tipo GPT

Embedding de token: [11 O |
4
ID de token: |40134 2052 133 389
)
Texto tokenizado: This is an lexample’
Esta seccién explica el [}

concepto de dividir
texto en tokenes Texto de entrada: This is an example.

OEBPS/image/01_04.jpg
4-El codificador devuelve
vectores de embedding como
entrada para el decodificador

8. La salida completa
(traduccion)

\

¥
«Das ist ein Beispiel»

Embedding

3.El codificador tiene
acceso al texto de.

Capas de salida

entrada completo
para producir las
codificaciones de
texto usadas por
el decodificador

ficador

Decodificador

2. Eltexto de entrada

es preparado para

Etapas de pocesamiento previo)

7.El decodificador genera
eltexto traducido
palabra por palabra

6. El'texto de entrada

((Etapas ge procesamiento previd)]~ es preparado para

el codificador

Texto de entrada

1. El texto de entrada

Texto de entrada

que se va a traducir—7

«This is an example»

«Das ist ein»

el decodificador

5.Un texto de salida

~Z pardial: el modelo
completa la traduccion
palabra por palabra

OEBPS/image/raschka.jpg

OEBPS/image/01_08.jpg
Creala palabra

siguiente apartirdel |toracion 1 Iteracién 2 Iteracion 3
texto de entrada L

“This “This i “This is an example”
Capas de salida Capas de salida Capas de salida
))
icador
i)
(Eiapas de provesamiento provic) | (Elapas de procesamiento provie) | ((Elapas de procesamiento provi)
¥)
Texto de entradal Texto de entrada) Texto de entrada)
“This" | “This is” L—e! “This is an”

/

El resultado de la ronda anterior sirve de entrada
para la ronda siguiente

OEBPS/image/02_03.jpg
Representaciones vectoriales
de distintos tipos de aves

_Representacién vectorial
de la palabra ardilla

® ardilla

Segunda)
dimension | Alemania .Be"'" rofo
blanco,
. ° ® e
® londres
Inglaterra

Primera dimension

OEBPS/image/01_03.jpg
Tras el entrenamiento,
_ el LLM dispone de algunas
funciones basicas

UnLLM es previamente entrenado
con datos de texto sin etiquetar

« Textos de Internet | '
- Libros

 Clasificacion
+ Resumen

+ Traduccion

- Asistente personal
- Etc

Entrenar Entrenar

- Wikipedia
* Articulos de

investigacion ¥
LLM preentrenado
Texto sin procesar ni efiquetar (modelo fundacional)
(billones de palabras)

- LLM afinado
S

Un LLM preentrenado puede

seguir siendo entrenado con un Conjunto de datos
conjunto de datos etiquetados etiquetados

para obtener un LLM afinado

para tareas especificas

OEBPS/image/MU006334_cubierta.jpg
(onstruccion de

desde cero

Sebastian Raschka

/'l MANNING

OEBPS/image/02_07.jpg
La tokenizacién descompone el conjunto
de entrenamiento en tékenes individuales

/\

Texto de muestra Texto de muestra tokenizado
The brown dog :
playfully chased The | [brown] [dog El nuevo texto de muestra tokenizado
the swift fox se asigna a ID de token usando un

/ vocabulario existente

ID de token

Vocabulario existente

brown | —» 0

dog |—» [1

fox |— 2

\— —

OEBPS/image/01_09.jpg
Afina el LLM preentrenado
para crear un modelo de
clasificacién \

ETAPA 1 ETAPA 2 ETAPA 3
Conjunto de datos
e)] (o amiteo &) Bucke o] (@) Evalua- | (7) Cargar & on efiquetas de clase
datos. etrena- | | cién del | | pesos pre-
ey | (e | | g e e i

Clasificador

Asistente personal

I
‘ Construcién de un LLM w

i]

|

Modelo fundacional

Implementa el muestreo Preentrena el LLM con datos no
de datos y comprende el etiquetados para obtener un modelo S
mecanismo basico basico que pueda perfeccionarse \ de nstrucciones

Ajusta el LLM preentrenado
para crear un modelo de
asistente personal o de chat

OEBPS/image/9788441552883-3.jpg
(Construccion de

GRANDES
MODELOS DE
LENGUAJE

desde cero

Sebastian Raschka

AR

OEBPS/image/02_02.jpg
Muestra
de video

Muestra
de audio

Datos de
entrada no
etiquetados

Muestra
de texto

iE

=

Modelo de embedding de video

R — B —

Modelo de embedding de audio

Modelo de embedding de texto

i

Vector

de embedding de video

1.23

-0.31][0.89

Vector

de embedding de audio

-0.15

045] 211

Vector

178

de embedding de texto

[0.18][-2.10 —
Representacion vectorial
de la entrada

El modelo de embedding convierte la entrada
sin procesar en una representacion vectorial

OEBPS/image/02_06.jpg
1. La tokenizacién descompone 2. Cada token Unico se
el texto de entrada en afnade al vocabulario
tokenes individuales en orden alfabético

/\/\

Conjunto de datos de
entrenamiento completo Conjunto de datos de Vocabulario
entrenamiento tokenizado

Texto de entrada The quick | | brown B brown| —= [0
(1 2
dog |—=[1
The quick brown fox jumps Elvocabulario contiene,
over the | do . P
o S todos los tékenes Unicos del fox | —[2
conjunto de entrenamiento
y suele estar ordenado Jumps | —= [3
: . alfabéticamente
El conjunto de entrenamiento lazy | — [4
consta de una sola frase a
efectos ilustrativos o w|oer|—[5
A cada token Gnico
se le asigna un nUmero quick | —= | 6
entero Unico denominado
ID de token e | —[7

[S
nt A%

Tokenes Unicos ID de token

OEBPS/image/01_06.jpg
Crea un texto verosimil a partir
de un texto de entrada parcial

Salida

Entrada

COMPLECION DEL TEXTO Breakdast is the most important meal of the day.

Transiate English to German:

ZERO-SHOT broakfast=> Frilstick

_ Completauna
tarea sinun
ejemplo explicito

FEW-SHOT phone.

Completa una tarea una vez dados
algunos ejemplos de la misma

