
		
			
				[image: React práctico. Desde cero a desarrollos web avanzados]
			

		

	
		
			
			[image: Pello Xabier Altadill Izura. React práctico. Desde cero a desarrollos web avanzados. Anaya Multimedia]

		

	
		
			Introducción

			Hace algunos años, se podía afirmar que React era la librería más importante del momento, aunque se decía con la boca pequeña, habida cuenta de lo variado que era el ecosistema JavaScript. Si bien han surgido otros frameworks alternativos, los más importantes siguen siendo los mismos. Y, media década después, una eternidad en el ámbito del front-end, React sigue siendo la librería más popular para desarrollo de aplicaciones web. Al margen de la web, también se consolida como una opción muy válida para desarrollar aplicaciones híbridas o para móviles. Ahora está yendo un poco más lejos y se adentra incluso en el back-end llevando el renderizado en el servidor al siguiente nivel. De lo que no cabe duda es que es una de esas tecnologías que cualquier desarrollador web debería conocer. Gracias a su estilo abierto como librería y no como framework rígido, la cantidad de herramientas auxiliares, así como la comunidad, sigue siendo inmensa, y React está más que consolidado.

			
A quién va dirigido este libro

			Este libro está dirigido a todos los desarrolladores que quieran iniciarse en la programación de aplicaciones front-end basadas en React o para aquellos que no parten de cero, pero quieren ampliar o actualizar conocimientos en torno a esta librería. La ventaja de React es que obliga a ponerse al día en JavaScript y en muchas técnicas de desarrollo modernas. Este libro procura dar esa información de forma progresiva: partiendo del lenguaje básico, presentando características más novedosas y explicando los fundamentos de React y de otras librerías auxiliares. Además, también se presenta el lenguaje TypeScript, que se ha convertido en uno de los lenguajes de programación más importantes del momento y que se fomenta también en otros frameworks importantes. Hay capítulos que sin duda podrían merecer un libro específico, pero se ha tratado de condensar lo esencial para resultar útil. En definitiva, el libro permite iniciarse en el desarrollo de React y expone los fundamentos de lenguajes que son útiles en muchos otros ámbitos.

			
Organización del libro

			El libro que tienes entre tus manos comienza con una introducción al lenguaje JavaScript, seguida de las novedades que se han ido añadiendo a este lenguaje desde la especificación ES6. Seguidamente ofrece una introducción a la programación funcional, ya que React ha ido convergiendo hacia ese paradigma y conviene presentar algunos conceptos clave. A continuación, una vez sentadas las bases de programación, se introduce a la librería React, explicando sus conceptos clave como propiedades, estado, contexto, rutas, etc. Seguidamente se introducen más conceptos como la aplicación de estilos y el acceso a la red. Sobre esos conceptos se muestran aplicaciones de ejemplo y las variantes para gestionar el estado, desde lo más simple hasta varias maneras de aplicar Redux. Una vez sentadas las bases del desarrollo de aplicaciones web con React, se pasa al desarrollo de aplicaciones para móviles mediante React Native, una transición que resulta muy natural, pero donde obviamente hay detalles a tener en cuenta. También se presentan, de forma mas breve, las aplicaciones PWA o Progressive Web Applicactions con esta librería.

			En el bloque final, se introducen temas necesarios para asimilar las técnicas más cercanas al mundo profesional como son el testing (tanto unitario como de cliente), la introducción al lenguaje TypeScript y su aplicación en React y un último capítulo dedicado a NextJS, que permite introducirte en el desarrollo de aplicaciones full-stack con React.

			Todos los capítulos presentan los conceptos basándose en ejemplos, que acompañan a esta obra organizados en carpetas por capítulo. Sin duda, conviene utilizar los ejemplos como referencia para una mejor comprensión de los conocimientos aquí expuestos. Además, en el código que acompaña al libro podrás encontrar ejemplos de código extra que amplían los contenidos de los capítulos.

			
Código fuente

			Para desarrollar los ejemplos, puede optar por introducir de forma manual el código o utilizar los archivos de código fuente que acompañan al libro. En el sitio Web de Anaya Multimedia: http://www.anayamultimedia.es/, vaya al botón Selecciona Complemento de la ficha del libro, donde podrá descargar el contenido para poder utilizarlo directamente.

		

	
		
			
			1. JavaScript

			Me veo obligado a empezar de la misma manera que hace 6 años. No por falta de ideas, sino porque, aunque muchas cosas hayan cambiado, la premisa se mantiene intacta: la vigencia del contenido de este capítulo es perecedera, pero no por ello es menos importante. Presenta la base y la evolución de uno de los lenguajes más importantes de programación: JavaScript.

			React.js forma parte de esa masa multiforme que es el universo JavaScript. Un lenguaje interpretado que comenzó su andadura allá por los años 90 como un extra del navegador Netscape, y que ha derivado en un lenguaje multiparadigma, multiplataforma y omnipresente en aplicaciones para web tanto en cliente como en servidor, móviles, escritorio etc. Probablemente, JavaScript es, sin duda, uno de los 3 lenguajes de programación que debería conocer.

			Como React.js se basa en JavaScript, es preciso comenzar con un rápido repaso a este lenguaje, partiendo de su sintaxis básica. Seguramente, no haga falta, pero, si no se tiene ni idea de JavaScript o hace tiempo que no lo utiliza, conviene detenerse para refrescar la memoria. En cualquier caso, no está de más echar un ojo, ya que puede descubrir alguna nueva cualidad o feature de la que no tenía noticia.

			A continuación, se ofrece una visión de las últimas actualizaciones de JavaScript, desde ES6 en adelante. Ahora ya se pueden declarar clases con JavaScript, aplicar herencia, crear librerías e importarlas y un largo etcétera. Muchas de estas cualidades son necesarias para estar al día y, lo que es más importante en este libro, para poder entender las aplicaciones React. Ya sea con JavaScript o con otro lenguaje como TypeScript, que tiene un capítulo aparte, es necesario poder sacar todo el jugo necesario de estos lenguajes y de las nuevas posibilidades que ofrecen.

			El código presentado es bastante sencillo y puede probarlo en cualquier intérprete de JavaScript, desde la consola del navegador en las herramientas de desarrollo o bien con cualquier entorno online como jsfiddle.com, codepen.io, jsbin.com, repl.it, etc.

			En cuanto a los ejemplos que verá a lo largo del libro optamos por utilizar el inglés en todo momento para hacer más legible el código. Los lenguajes de programación tienen palabras reservadas en inglés que son inevitables y mezclar idiomas en un listado de código dificultaría su comprensión. Es además una práctica común en este ámbito profesional donde los equipos de trabajo son cada vez más heterogéneos.

			
Sintaxis básica

			JavaScript es un lenguaje de programación interpretado, débilmente tipado, orientado a objetos, case-sensitive y con una sintaxis básicamente similar a la del lenguaje C.

			
Comentarios

			Se pueden hacer comentarios tanto de una o varias líneas, al estilo C.

			// This is a single-line comment

			 /*

			 This is

			 a multiline

			 comment

			 */

			Aunque exista la posibilidad de comentar, no pierda de vista que, siguiendo los preceptos del clean code, es un recurso que debe usarse en contadas ocasiones.

			
Variables

			Al no haber tipos, no se necesita especificar nada y por tanto se puede definir una variable directamente asignando un valor. Para declarar la variable lo que se utiliza normalmente es let o const.

			let number = 42;

			const number = 42; // you can’t assign again

			Anteriormente, se utilizaba la palabra reservada var para definir variables.

			var number = 42;

			Definir algo con var ya es una práctica muy desfasada, por lo que no debería usarla y, si la ve, debería cambiarla a let o const.

			Advertencia: Si se omite var, la variable se convierte en global.

			other = 42; // global!!

			Nota: Existe otra controversia que lleva a una de esas eternas discusiones de programadores, como el debate entre tabulaciones y espacios. En JavaScript, no es imprescindible poner el “;” al final de cada sentencia, a menos que se quiera poner varias sentencias en una misma línea.

			let evil = 666

			let evil = 666; var good = 3

			La mayor parte de las veces la verás con “;” al final.

			Existen distintas maneras de declarar y asignar:

			let number;

			let counter = 0;

			let a, b = 42, c = 4;

			let x, y, z;

			x = y = z = 0;

			Lo recomendable es declarar una variable por línea y en general tener una sentencia por línea.

			Cadenas

			En las siguientes declaraciones, se muestra cómo declarar cadenas, que permiten usar tanto comillas dobles como simples; y el backslash para caracteres especiales (tabulaciones \t, saltos \n, comillas \”, el propio backslash \\, etc.).

			let name = ‘Pello’;

			let surname = “Altadill”;

			let phrase = “These aren’t the droids you’re looking for”;

			let greet = ‘Hello world’;

			let sheSaid = “We’ll be ”friends””;

			Números

			let counter = 0;

			let age = -35;

			let weight = 5.673;

			let huge = 23e3;

			let chuckNorrisStrength = Infinity;

			let chuckNorrisFear = -Infinity;

			En el caso de números muy grandes, se pueden añadir guiones bajos como separadores numéricos:

			let money = 5_673_453; // 5674453

			let price = 1034_45; // 1034.45

			null

			Es un valor existente en otros lenguajes, que indica algo definido pero vacío o de valor nulo.

			let something = null;

			undefined

			Con un matiz un poco diferente, undefined indica que algo ni siquiera ha sido definido. Si se trata de usar una variable que no ha sido definida o declarada, el intérprete de JavaScript dirá que no está definida.

			let a = b + 1; // ERROR, b is undefined

			NaN

			Not a Number es un resultado que JavaScript devuelve cuando el resultado es algo que no es un número:

			let number = ‘example’;

			typeof number * 666; // NaN

			typeof y delete

			Estos dos operadores nos permiten sacar el tipo de una variable y, por otro lado, eliminar el contenido de una variable:

			let beast = 666;

			typeof beast; //”number”

			delete beast;

			typeof beast; // undefined

			Booleanos

			Solo hay dos valores, true o false.

			let reactRules = true;

			let iAmInmortal = false;

			Existen algunos valores que también se consideran falsy o que JavaScript considera false, lo que resulta útil para crear expresiones condicionales:

			•null.

			•“” (String vacío).

			•undefined.

			•0.

			•NaN (Not a Number).

			
Operadores

			Los operadores son los habituales en todos los lenguajes, tanto en aritméticos, comparación o booleanos.

			Aritméticos

			Tabla 1.1. Operadores aritméticos en JavaScript.

			
				
					
					
					
				
				
					
							
							TIPOS

						
							
							OPERADORES

						
							
							EJEMPLO

						
					

					
							
							Aritméticos

						
							
							+ (suma)

						
							
							a+b

						
					

					
							
							
							–(resta)

						
							
							a-b

						
					

					
							
							
							 * (multiplicación)

						
							
							a*b

						
					

					
							
							
							 / (división)

						
							
							a/b

						
					

					
							
							
							 % (módulo)

						
							
							a%b

						
					

					
							
							Unarios

						
							
							++ (incremento)

						
							
							a++, ++a

						
					

					
							
							
							 — (decremento)

						
							
							a—, —a

						
					

					
							
							Asignación

						
							
							+= (suma y asigna)

						
							
							a+=b // a=a+b

						
					

					
							
							
							 -= (resta y asigna)

						
							
							a-=b // a=a-b

						
					

					
							
							
							 *= (multiplica y asigna)

						
							
							a*=b // a=a*b

						
					

					
							
							
							 /= (divide y asigna)

						
							
							a/=b // a=a/b

						
					

					
							
							
							 %= (módulo y asigna)

						
							
							a%=b // a=a%b

						
					

					
							
							Cambio de signo

						
							
							- (cambia signo)

						
							
							a=5;

						
					

					
							
							
							
							b=-a; // b=-5

						
					

				
			

			Además, también se puede convertir tipos.

			Por ejemplo, una cadena a números:

			a = “5”;

			Integer.parseInt (a); // a = 5

			b = “4.22”;

			Float.parseFloat (b); // b = 4.22

			De forma abreviada se puede conseguir lo mismo poniendo el símbolo + por delante:

			a = “5”;

			console.log (a); // “5”

			console.log (+a); // 5

			Comparación

			Los operadores de comparación permiten comparar expresiones, valores o variables y devuelven un resultado booleano, es decir, verdadero o falso. Estas tablas resumen las operaciones de comparación disponibles:

			Tabla 1.2. Operadores de comparación JavaScript.

			
				
					
					
					
				
				
					
							
							OPERADORES

						
							
							DESCRIPCIÓN

						
							
							EJEMPLO

						
					

					
							
							>

						
							
							mayor que

						
							
							5>4 // true

						
					

					
							
							<

						
							
							menor que

						
							
							5<4 // false

						
					

					
							
							>=

						
							
							mayor o igual que

						
							
							5>=4 // false

						
					

					
							
							<=

						
							
							menor o igual que

						
							
							5<=4 // false

						
					

					
							
							==

						
							
							igual que

						
							
							5==4 // false

						
					

					
							
							!=

						
							
							distinto de

						
							
							5!=4 // true

						
					

					
							
							≡

						
							
							igual en valor y tipo

						
							
							5===4 // false

						
					

					
							
							!==

						
							
							distinto en tipo

						
							
							5!==4 // true

						
					

				
			

			Por si queda alguna duda, así es como se comporta JavaScript en casos dudosos:

			2 == 2 // true

			2 == ‘2’ // true

			2 != 4 // true

			2 != 2 // false

			2 === ‘2’ // false

			42 === 42 // true

			2 !== ‘2’ // true

			2 !== 2 // false

			Booleanos

			Los operadores booleanos son también los viejos conocidos de los lenguajes tipo C. Estos operadores permiten comparar expresiones booleanas con las que se construyen condiciones que se pueden aplicar en las funciones, bucles, etc.

			Tabla 1.3. Operadores booleanos JavaScript.

			
				
					
					
					
					
				
				
					
							
							OPERADORES

						
							
							SÍMBOLO

						
							
							DESCRIPCIÓN

						
							
							EJEMPLO

						
					

					
							
							AND

						
							
							&&

						
							
							Solo devuelve true cuando ambos operandos lo son.

						
							
							true && true // true

							true && false // false

							false && true // false

							false && false // false

						
					

					
							
							OR

						
							
							||

						
							
							Devuelve true si cualquiera de ambos operandos lo son.

						
							
							true || true // true

							true || false // true

							false || true // true

							false || false // false

						
					

					
							
							NOT

						
							
							!

						
							
							Operador unario que devuelve lo contrario al operando.

						
							
							!true // false

							!false // true

						
					

				
			

			Cabe recordar que los operadores && y || aplican un atajo para evitar evaluar la expresión completa. Si al aplicar && el primer operando es false, el siguiente no se evalúa, porque el resultado ya será false. De igual manera, con el operador ||, si el primer operando es true, el segundo no se evalúa porque ya sabemos que el resultado será true.

			Si se quiere usar la operación AND y OR evaluando ambos operandos, se utilizan estos operadores:

			•operando1 & operando2

			•operando1 | operando2

			Inicializaciones booleanas

			JavaScript permite inicializar variables de manera condicional utilizando los operadores booleanos. Por ejemplo, si no se sabe si el valor de una variable es asignable o no, mediante el operador | se puede asignar un valor alternativo. En el siguiente caso, si a es falsy, b se iniciará con 0.

			let b = a || 0;

			Por el contrario, también se puede utilizar el operador & para asignar algo solo si es truthy:

			let b = a & a.field:

			Se amplían estas inicializaciones más adelante.

			
Arrays

			Los arrays en general son variables que contienen un conjunto de valores indexados numéricamente, comenzando desde 0. Son estructuras clave en JavaScript y pueden contener cualquier tipo de dato.

			let numbers = [3, 5, 7, 38, 0, -4, 3];

			let names = [‘John’, ‘Alice’, ‘Bob’];

			También se pueden iniciar así:

			let myArray = new Array ();

			myArray[0] = 36;

			myArray[1] = 33;

			myArray[2] = 23;

			let myNames = new Array ();

			myNames[0] = ‘John’;

			myNames[1] = ‘Alice’;

			myNames[2] = ‘Bob’;

			O incluso así:

			let names = new Array (‘John’, ‘Alice’, ‘Bob’);

			let weights = new Array (34.5, 24.76, 45.6, 20.56, 45.4);

			También se pueden definir con un tamaño concreto. Si se pasa un número, sin hacer new, se genera un array de elementos vacíos con ese tamaño.

			let numbers = Array(5); // numbers = [,,,,]

			O, lo que es mejor, los arrays se pueden inicializar con un tamaño y un relleno concreto:

			let numbers = Array (5).fill (0); // numbers = [0,0,0,0,0]

			No tienen por qué ser del mismo tipo, pero todos los elementos suelen serlo.

			
Estructuras de control

			Estas estructuras nos permiten aplicar condiciones para que el código haga cosas diferentes según las circunstancias.

			if

			La condición entre paréntesis y el bloque con llaves. Si solo hay una sentencia, se pueden omitir.

			if (a > b) {

			 a = 0;

			}

			if-else

			Mediante la cláusula else se puede definir un bloque alternativo cuando la condición del if no se cumple.

			if (a == b) {

			 a = 1;

			} else {

			 a = 34;

			}

			if-else-if

			En JavaScript no existe una instrucción tipo elseif o elsif, así que se deben anidar los if else. Conviene utilizar las llaves para evitar confusiones.

			if (a == b) {

			 a = 1;

			} else if (a < b) {

			 a = -1;

			} else {

			 a = b;

			}

			Switch-case

			Cuando se quiere hacer una estructura condicional según el valor que tenga una variable o expresión, se puede utilizar una estructura switch-case. A diferencia de C, en JavaScript se puede hacer el switch-case sobre más tipos aparte de los números.

			switch (name) {

			 case “gandalf”:

			 age = 1230;

			 break;

			 case “aragorn”:

			 age = 532;

			 break;

			 case “frodo”:

			 case “sam”:

			 age = 34;

			 break;

			 default:

			 age–1;

			 break;

			}

			Elvis/Ternario

			El operador ternario permite crear una instrucción de una sola línea para asignar un valor u otro según una condición. Por ejemplo, si a es mayor que b, a será asignado a c, y si no, lo será b.

			let c = (a > b) ? a : b;

			Es decir, sería equivalente a:

			if (a > b) {

			 c = a;

			} else {

			 c = b;

			}

			Este operador permite tener mucha lógica en una única línea, aunque hay a quien no le gusta porque resta legibilidad al código.

			
Iteraciones

			Las iteraciones o bucles clásicos de JavaScript son los viejos conocidos de todos los lenguajes estilo C.

			while

			Utilizado para repetir instrucciones siempre que se cumple la condición.

			while (a < 100) {

			 a++;

			}

			do while

			Utilizado para ejecutar instrucciones al menos una vez y luego repetirlas siempre que se cumpla la condición.

			do {

			 b++;

			} while (b < 100);

			for

			Utilizado para repetir instrucciones según una condición que generalmente tiene un inicio y un fin prefijado. Es la estructura clásica para tratar con arrays.

			for (a = 0; a < 10; a++) {

			 // do stuff

			}

			let names = [‘Bob’, ‘Alice’, ‘Peter’];

			for (i = 0; i < names.length; i++) {

			 console.log (names[i]);

			}

			El for del JavaScript actual tiene muchas variantes y el tratamiento de arrays puede hacerse de distintas maneras, como se mostrará más adelante.

			break/continue

			Estas dos sentencias alteran la ejecución de un bucle.

			•break: Termina la iteración de forma abrupta.

			•continue: Interrumpe la iteración actual y continúa con la siguiente.

			while (a < 100) {

			 a++;

			 if (a == b) {

			 b = 0;

			 break;

			 }

			 b—;

			}

			
Funciones

			En JavaScript se puede agrupar código en funciones. A diferencia de otros lenguajes, en JavaScript solo hay funciones, no hay distinción de procedimiento y funciones. Eso sí, las funciones no tienen por qué retornar nada. Pueden tener parámetros y, al igual que las variables, no se indican los tipos.

			Veamos un ejemplo simple:

			function sayHello{

			 console.log (‘Hello world’);

			}

			También se pueden usar parámetros:

			function withParams (param1, param2) {

			 let local = 0;

			 local = param1 + param2;

			 console.log (“Result is: “ + local);

			}

			Y pueden tener retorno:

			function mul (x, y, z) {

			 let local = 0;

			 local = x * y * z;

			 return local;

			}

			Para llamar a las funciones, simplemente ponemos su nombre y los parámetros, si los tiene, entre paréntesis:

			function calculate () {

			 let a = 4;

			 let b = 45;

			 let c = 2;

			 let total = 0;

			 total = mul (a, b, c);

			}

			Más adelante se exploran las nuevas posibilidades que ofrecen las funciones en JavaScript en sus nuevas actualizaciones.

			
Objetos

			En el JavaScript anterior a ES6 no existen las clases, pero sí los objetos, los cuales son estructuras que se crean entre llaves: {}

			let emptyObject = {};

			// One single object

			let oneUser = {

			 login: ‘falken’,

			 password: ‘josua’

			};

			typeof oneUser; // Object

			otherUser = oneUser;

			otherUser.login = ‘root’;

			// Other way to access property

			oneUser[‘password’] = ‘1234’;

			// The reference to the same!

			console.log (‘One: ‘)

			console.log (oneUser); // Object { login=”root”, password=”1234”}

			console.log (‘Other: ‘);

			console.log (otherUser); // Object { login=”root”, password=”1234”}

			Si necesitamos comprobar si un objeto tiene determinada propiedad, podemos utilizar la función hasOwn:

			Object.hasOwn(oneUser, “password”); // true

			Si ha oído hablar de JSON, precisamente se trata de objetos JavaScript: JavaScript Object Notation. Si viene de otros lenguajes, quizá los objetos JavaScript le recuerden a los hashtables o arrays relacionales, una estructura de datos donde se guardan pares clave:valor.

			Claves y comillas

			Para las claves se pueden omitir las comillas, a menos que necesitemos utilizar caracteres no ASCII, caracteres especiales, espacios en blanco, etc. En el siguiente ejemplo se muestra cómo acceder a distintos atributos de una clase de dos maneras diferentes y cómo tratar los objetos anidados. Como se puede ver, se puede jugar con múltiples combinaciones:

			let oneCustomer = {

			 name: ‘John Doe’,

			 ‘Customer address’: ‘c/ unknown’,

			 ‘-+-+-+’: ‘wtf’,

			 payment: {

			 ptype: ‘Visa’,

			 card: ‘33442324234’,

			 ‘expiry date’: ‘never’

			 }

			};

			oneCustomer[‘name’] = ‘’;

			oneCustomer[‘-+-+-+’] = ‘Something’;

			oneCustomer.payment[‘ptype’] = ‘Account’;

			oneCustomer[‘payment’].card = ‘666’;

			oneCustomer[‘payment’][‘expiry date’] = 0;

			Cada elemento de un objeto JSON puede ser de distinto tipo:

			•number.

			•String.

			•boolean.

			•array.

			•Object (se puede anidar).

			•Function.

			Se pueden anidar y complicar tanto como haga falta.

			Métodos como datos

			Si se necesita que un objeto JavaScript se comporte como los objetos de otros lenguajes, se le deben añadir funciones o métodos. Es muy sencillo, ya que una función es como otro tipo de dato:

			let student = {

			 id: 2,

			 name: ‘John Doe’,

			 sayHello: function () {

			 return ‘Hello’;

			 }

			}

			console.log (student);

			console.log (student.sayHello ()); // Hello

			Añadir métodos

			JavaScript es un lenguaje interpretado y débilmente tipado, pero cuidado: no se está tratando con clases, sino con objetos. Por lo tanto, si quiere añadir atributos o funciones a un objeto se puede usar su propiedad prototype.

			…

			// Adding new properties and methods:

			student.age = 28;

			student.sayGoodbye = function () {

			 return ‘bye’;

			};

			console.log (student.sayGoodbye ());

			this

			Si viene de Java o similares, esta palabra reservada debe ser bien conocida, también está disponible en JavaScript. Se refiere al objeto actual. Resulta de utilidad cuando necesitamos referirnos a nuestras propiedades en las funciones del objeto.

			let invoice = {

			 description: ‘Sample invoice’,

			 price: 100.0,

			 vat: 5.0,

			 subtotal: function () {

			 return this.price;

			 },

			 total: function () {

			 return this.price + ((this.price * this.vat) / 100);

			 }

			}

			console.log (invoice);

			console.log (invoice.total ());

			En realidad, el this de JavaScript encierra muchos más matices que en otros lenguajes. En el apartado de ES6 lo veremos aparecer en las clases.

			Constructores

			Bien, hasta el momento se habían utilizado instancias u objetos únicos, pero ¿cómo se hace en JavaScript para crear distintas instancias de un mismo objeto? Hasta EcmaScript 6 no existe la palabra clave class, aunque sí que se puede definir una función constructor e invocarla utilizando la palabra reservada new para crear una nueva instancia.

			El siguiente ejemplo muestra una especie de clase en JavaScript. Es una función cuyo nombre comienza en mayúsculas, lo que indica a los ojos acostumbrados a otros lenguajes a reconocer la nomenclatura de una clase: es una convención que deja claro que no se trata de una función cualquiera, sino un constructor. Dentro de la misma simplemente añadimos atributos y métodos.

			function Web () {

			 this.url = ‘http://localhost’;

			 this.name = ‘Localhost’;

			 this.showInfo = function () {

			 return this.url + ‘: ‘ + this.name;

			 }

			}

			let oneWeb = new Web ();

			oneWeb.url = ‘http://www.pello.io’;

			oneWeb.name = ‘Home sweet home’;

			console.log (oneWeb);

			console.log (oneWeb.showInfo ());

			let otherWeb = new Web ();

			otherWeb.url = ‘http://www.elmundo.es’;

			otherWeb.name = ‘El Mundo’;

			console.log (otherWeb);

			console.log (otherWeb.showInfo ())

			console.log (otherWeb.showInfo ())

			Constructores con parámetros

			Añadir un argumento no tiene ningún misterio:

			function Web (url, name) {

			 this.url = url;

			 this.name = name;

			 this.showInfo = function () {

			 return this.url + ‘: ‘ + this.name;

			 }

			}

			let oneWeb = new Web (‘http://www.pello.io’, ‘Home sweet home’);

			console.log (oneWeb);

			console.log (oneWeb.showInfo ());

			console.log (oneWeb);

			console.log (oneWeb.showInfo ());

			
ES6 y más allá

			No hay que olvidar todo lo que acaba de leer. No está de más saber cómo se hacían las cosas en ES5 para poder identificar un código cuando lo veamos. En cualquier caso, es probable que se encuentre código que mezcla ambos estilos. Y, en el caso de React, seguramente encontrará componentes con forma de función en lugar de tener forma de clase. Por otro lado, no todos los entornos (el navegador, la versión de Node.js local, etc.) tienen soporte para las últimas novedades del estándar. Para cubrirse las espaldas se pueden utilizar librerías como Babel, las cuales permiten utilizar esas novedades y luego se traducen a JavaScript compatible en cualquier plataforma. En cualquier caso, se puede consultar el estado actual del soporte en https://caniuse.com/es6.

			
Declaración de variables

			ES6 introduce dos novedades para declarar variables: const y let. Con ellas se pueden crear variables cuyo ámbito no excede del bloque en el que se declaran, ya sea una función, un bucle, etc.

			El problema que tiene la declaración var es que el navegador aplica el hoisting y las variables declaradas en bloques internos pueden trasladarse al inicio de las funciones, de manera que el ámbito se escapa del control del programador.

			const

			Mediante esta palabra se pueden declarar constantes, es decir, variables a las que no se va a asignar nada nuevo a lo largo del código. Por defecto, esta debería ser la mayoría de declaraciones y solo debería pasarse a let en el caso de que se le vaya a reasignar algo:

			const pi = 3.1415;

			// pi = 666 This would cause errors

			No se debe confundir const con algo cuyo valor no cambia nunca. const evita que se puede asignar algo distinto. Pero se puede asignar a const:

			const names = [];

			names.push (‘Sam’); // This is ok

			names.pop ();

			let

			Con let se definen variables cuyo valor puede volver a ser asignado:

			let number = 0

			number = number + 1;

			…

			number = 666;

			Pese a que no dé errores, conviene dejar de utilizar var o evitar declarar globales.

			
Desestructuración: extracción de valores

			Otra interesante característica de ES6 es la posibilidad de extraer determinados valores de arrays y objetos, tal y como se hace en otros lenguajes como Perl, Python, etc.

			En el caso de los arrays, se pueden extraer los valores del array a variables, así:

			const names = [‘Sam’, ‘Gimli’, ‘Frodo’, ‘Legolas’, ‘Pippin’];

			const [loyal, dwarf, hero, elf, naughty] = names;

			Lo interesante es que, quitando variables, se pueden omitir o saltar valores del array:

			const names = [‘Sam’, ‘Gimli’, ‘Frodo’, ‘Legolas’, ‘Pippin’];

			const [loyal, , hero, , naughty] = names;

			// loyal = ‘Sam’

			// hero = ‘Frodo’

			// naughty = ‘Pippin’

			Con los objetos se puede hacer lo mismo:

			const character = {

			 name: ‘Gandalf’,

			 nickname: ‘The Grey’,

			 age: 1024,

			 weapons: [‘Foe Hammer’, ‘Staff’]

			};

			const {name, weapons} = character;

			Se trata de una herramienta simple pero sumamente útil.

			
Atajo para la asignación de propiedades en objetos

			A la hora de asignar valores a los objetos, se pueden utilizar variables:

			name = ‘Legolas’;

			const race = ‘Elf’;

			const weapons = [{type: ‘bow’, qty: 1}, {type: ‘arrows’, qty: 10}];

			const character = {

			 name: name,

			 race: race,

			 weapons: weapons,

			 age: 666

			};

			En el caso de que los nombres de variables coincidan con el de los campos, se puede resumir la expresión a lo siguiente:

			character = {

			 name,

			 race,

			 weapons,

			 age: 666

			};

			Ese tipo de asignación es muy habitual en ES6.

			
Cadenas como plantillas

			También conocido como string interpolation. En muchas ocasiones se necesita mostrar una cadena con un mensaje que incluye variables. Hasta ahora, la manera de hacerlo era concatenando con el operador + o bien con el método concat:

			let result = ‘OK’;

			let prices = [666, 15, 42, 0, 35];

			let customer = {name: ‘Juan’, country: ‘ES’};

			let message = ‘The result for ‘ + customer.name + ‘ is ‘ + result + ‘ value is ‘ + prices[2];

			En este tipo de concatenaciones es fácil cometer errores.

			Con la interpolación de strings o cadenas, se puede crear una cadena utilizando comillas invertidas (’) y meter las variables directamente en el mensaje, sin necesidad de esas molestias concatenaciones. Para cualquier variable que se quiera introducir, ya sea una variable simple, una parte de un array o cualquier expresión, hay que incluirla entre los símbolos ${}:

			let message = ’The result for ${customer.name} is ${result} value is ${prices[2]}’;

			Lo interesante es que, si se crea una cadena con saltos de línea, ¡estos se respetan! Ya no es necesario incluir los caracteres de salto de línea en todas partes.

			let longMessage = ’The result

			 for ${customer.name}

			 is ${result}

			 value is ${prices[2]}’;

			
Bucles for

			Ahora, gracias a ES6, disponemos de tres tipos de bucles for, incluyendo el clásico bucle que existe en muchos lenguajes: el for clásico. Para definirlo, utilizamos un índice que definiremos con let.

			let names = [‘John’, ‘Alice’, ‘Bob’, ‘Jane’];

			for (let i = 0; i < names.length; i++) {

			 console.log (names[i]);

			}

			// John

			// Alice

			// Bob

			// Jane

			for..in

			Es similar al for normal, pero no tendremos que preocuparnos de actualizar el índice. Se define una variable que hará de índice, cambiando en cada bucle de manera automática. Por ejemplo, con el mismo array de antes se podría hacer:

			for (i in names) {

			 console.log (i, names[i]);

			}

			// 0 John

			// 1 Alice

			// 2 Bob

			// 3 Jane

			Si tenemos un objeto, también se pueden recorrer todas sus propiedades con for..in:

			let book = {

			 title: ‘Atomic book of React’,

			 author: ‘Pello Altadill’,

			 ISBN: ‘none’,

			 isGood: true,

			 score: 9,

			 topics: [‘React.js’, ‘Redux’, ‘React Native’, ‘ES6’]

			};

			for (b in book) {

			 console.log (’${b}: ${book[b]}’);

			}

			// title: Atomic book of React

			// author: Pello Altadill

			// ISBN: none

			// isGood: true

			// score: 9

			// topics: React.js,Redux,React Native,ES6

			for..of

			Puede hacer bucles con cualquier objeto que sea iterable. En este caso, nos ahorramos el índice.

			for (name of names) {

			 console.log (name);

			}

			// John

			// Alice

			// Bob

			// Jane

			O en un array de objetos:

			let people = [

			 {name: ‘John’, age: 44},

			 {name: ‘Alice’, age: 43},

			 {name: ‘Bob’, age: 20},

			 {name: ‘Jane’, age: 21}

];

			for (person of people) {

			 console.log (person);

			}

			// { name: ‘John’, age: 44 }

			// { name: ‘Alice’, age: 43 }

			// { name: ‘Bob’, age: 20 }

			// { name: ‘Jane’, age: 21 }

			
Operador spread

			Este es un nuevo operador para arrays, que toma todos los elementos y los despliega. Esto resulta especialmente útil cuando se mueven valores de estructuras de datos, para concatenar arrays, etc.

			const heroes = [‘Frodo’, ‘Sam’];

			const kids = [‘Merrin’, ‘Pippin’];

			const hobbits = […heroes, …kids];

			// hobbits = [‘Frodo’, ‘Sam’, ‘Merrin’, ‘Pippin’]

			
Parámetros por defecto

			ES6 incorpora a JavaScript la posibilidad de definir valores por defecto para los parámetros de las funciones, cosa muy común en otros lenguajes (Php, Ruby, C++).

			Se puede hacer con parámetros normales. Basta con asignar un valor a un parámetro:

			function log (msg, prefix = ‘JsLogger’) {

			 console.log (’${prefix}> ${msg}’)

			}

			log (‘Hello’); //JsLogger> Hello

			log (‘Hello to you’, ‘MyPrefix’); // MyPrefix> Hello to you

			Se puede hacerlo con todos:

			function sample (name = ‘Candyman’, repeat = 3){

			 let result = ‘’;

			 for (let i = 0; i < repeat; i++) {

			 result += name;

			 }

			 return result;

			}

			console.log (sample (‘John’, 5)); // JohnJohnJohnJohnJohn

			Parámetros tipo array

			Se puede pasar un array de valores como parámetros para luego asignar esos valores a parámetros concretos. Además, estos pueden tener a su vez valores por defecto:

			function paint ([r = ‘ff’, g = ‘ff’, b = ‘ff’]) {

			 return ’color: #${r}${g}${b}’;

			}

			paint ([‘03’, ‘FF’, ‘CC’]); // color: #03FFCC

			paint ([‘CC’, undefined, ‘CC’]); // color: #CCffCC

			paint ([]); // color: #ffffff

			paint ([‘DE’, ‘AD’]); // color: #DEADff

			¿Pero qué pasaría si no pasamos ningún argumento, ni siquiera un array vacío?

			paint();

			Nos saldría un Type error. Así que se puede dar a ese parámetro un valor por defecto:

			function paint ([r = ‘ff’, g = ‘ff’, b = ‘ff’] = []) {

			 return ’color: #${r}${g}${b}’;

			}

			Parámetros como objetos

			También se permite definir los parámetros como un objeto, de tal manera que se pueden pasar los parámetros en un orden cualquiera, como si fuera un hashtable o array relacional.

			function render ({tag = ‘div’, cssClass = ‘title’, text = ‘ok’}) {

			 return ’<${tag} class=”${cssClass}”>

			 ${text}

			 </${tag}>’

			}

			render ({});

			// <div class=”title”>

			// ok

			// </div>

			render ({tag: ‘h1’, cssClass: ‘big’, text: ‘ES6 rlz’});

			// <h1 class=”big”>

			// ES6 rlz</h1>

			Combinaciones

			Esa forma de parametrizar se puede anidar y combinar de cualquier manera que se requiera, por ejemplo, un escenario en que se necesita crear un método que valide una serie de campos en función de expresiones regulares. El método no valida realmente, pero se puede comprobar cómo se pueden crear configuraciones más complejas de parámetros.

			function validate ({fields = […{fields}], regex = […regexp]}) {

			 for (f of fields) {

			 console.log (f.name);

			 }

			 for (r of regex) {

			 console.log (r);

			 }

			}

			validate ({

			 fields: [{name: ‘login’, value: ‘falken’},

			 {name: ‘password’, value: ‘josua’}

],

			 regex: [‘\w{8,50}’, ‘\w\W{8,15}’]

			 }

);

			// login

			// password

			// \w{8,50}

			// \w\W{8,15}

			Que esto se pueda hacer no significa que hay que hacerlo siempre ni que haya que abusar de esta capacidad. Las reglas de refactorización clásicas hablan de no pasar más de tres parámetros a una función. Aquí se está pasando un objeto que debería convertirse en una clase específica.

			
Parámetros rest

			En el caso de que queramos pasar parámetros variables a una función, se puede usar la palabra arguments.

			function average () {

			 if (arguments.length === 0) return 0;

			 let avg = 0;

			 let i = 0;

			 for (i = 0; i < arguments.length; i++)

			 avg += arguments[i];

			 return avg / (i–1);

			}

			average (); // 0

			average (5, 10, 15); // 15

			Desde ES6 también se pueden usar los parámetros rest que funcionan igual que arguments: es un array que contiene todos los parámetros:

			function add (…numbers) {

			 let result = 0;

			 for (n of numbers)

			 result += n;

			 return result;

			}

			add (3, 5, 8, 5); // 21

			Los parámetros rest también pueden combinarse con otros:

			function mul (a, b, …others) {

			 let result = a * b;

			 for (o of others)

			 result *= o;

			 return result;

			}

			mul (3, 2, 7, 1); // 42

			
Arrow functions

			A partir de ES6 ya se puede utilizar una forma abreviada de escribir funciones, en las que no se necesita ni la palabra function ni las llaves ni el return:

			function add (a, b) {

			 return a + b;

			}

			Puede escribirse como:

			const add = (a, b) => { return a + b; }

			Si lo único que hay es un return, se puede omitir y dejar únicamente la expresión que devuelve el valor final:

			const add = (a, b) => a + b;

			Un único parámetro

			Si solamente hay un parámetro, pueden omitirse los paréntesis:

			const inc = (a) => ++a;

			const dec = a => —a;

			inc (41); // 42

			dec (43); // 42

			Un cuerpo más grande

			Si el cuerpo tiene algo más que un return, debe incluir las llaves:

			const imcDiagnose = (weight, height) => {

			 let imc = (weight / (height * height)) * 10000;

			 if (imc < 18) {

			 return ’${imc} Go and eat something.’;

			 } else if (imc >= 18 && imc < 24) {

			 return ’${imc} meh, not bad.’

			 } else {

			 return ’${imc} run away or just run.’;

			 }

			};

			imcDiagnose (80, 175);

			
Métodos para arrays

			JavaScript dispone de métodos francamente útiles para aplicar a los arrays, sin necesidad de crear bucles for. Se trata de aplicar funciones (de forma convencional o con arrow-functions) a todos los elementos de un array. Todos estos métodos se pueden combinar creando cadenas de órdenes que permiten filtrar, ordenar y generar todo tipo de resultados partiendo de un array.

			Los ejemplos que se muestran a continuación solo manejan arrays simples, pero no es más que para facilitar su presentación. Lo cierto es que la gestión de arrays es fundamental en JavaScript. En una aplicación web que utilice JavaScript, ya sea en front-end con librerías como React o en back-end, los datos son arrays. Y, por eso, estas funciones, que son las más relevantes, son imprescindibles en cualquier proyecto.

			El buen uso de estas funciones permite desarrollar más funcionalidad con menos código, además de forma limpia y elegante.

			forEach

			Esta función se puede aplicar sobre un array para recorrerlo como un for, pero, en lugar de crear un cuerpo para el bucle, se aplica un método para cada elemento del bucle:

			const numbers =[4, 5, 6, 3, 2];

			numbers.forEach (number => {

			 console.log(number);

			});

			También se puede utilizar el índice actual creando una función que tenga dos parámetros. El índice irá en el segundo parámetro, llamado index:

			numbers.forEach ((number, index) => {

			 console.log(index + “: “+ number);

			});

			Map

			La función map se usa con un array para aplicar determinada función a cada uno de sus elementos. El resultado es otro array, que se puede asignar a un nuevo array:

			const numbers = [7, 5, 3, 0, 4];

			const dup = numbers.map (n => n * 2);

			console.log (dup); // const = [14, 10, 6, 0, 8]

			filter

			La función filter se usa sobre un array para aplicar una condición y extraer aquellos elementos que cumplan esa condición, formando un nuevo array filtrado. En caso de no encontrar nada, devolvería un array vacío.

			const numbers = [7, 5, 3, 0, 4];

			const evens = numbers.filter (n => n % 2 === 0);

			console.log (evens); // evens = [0, 4]

			find

			Este método busca un elemento del array que cumpla con la condición que se indica. A diferencia de filter, que devuelve un array, el método find solo devuelve un resultado. En caso de no encontrar nada, devuelve undefined.

			const numbers = [4, 5, 6, 3, 2];

			const number = numbers.find (element => element === 6); // 6

			console.log (number); //6

			Si en lugar de usar una arrow-function se utiliza una función convencional, quedaría de la siguiente forma, algo menos limpia:

			const number = numbers.find (function (element) {

			 return element === 6;

			}); // 6

			findIndex

			Este método hace lo mismo que find pero, en lugar de devolver el elemento que cumple la condición, devuelve el índice de ese elemento en el array.

			const numbers = [4, 5, 6, 3, 2];

			const index = numbers.findIndex (element => element === 6);

			console.log (index); //2

			reduce

			La función reduce, a diferencia de map, permite extraer un único valor aplicando una función a los elementos de un array. Para ello puede definir un valor inicial que, al aplicarse el reduce, irá variando. El ejemplo típico es el de usar reduce para sacar la suma de todos los valores de un array de números.

			const numbers = [4, 5, 6, 3, 2];

			const sum = numbers.reduce ((a, b) => a + b, 0);

			console.log (sum); //20

			includes

			Este método es similar al find o filter, pero en su caso lo que hace es devolver verdadero o falso si un array contiene un elemento concreto.

			const numbers = [7, 5, 3, 0, 4];

			const result = numbers.includes (3);

			console.log (result); // true

			sort

			Este método ordena los elementos de un array según el criterio que se le dé en la función. El caso típico sería para ordenar de forma ascendente, cosa que se consigue de la siguiente manera:

			const numbers = [4, 5, 6, 3, 2];

			const sorted = result = numbers.sort ((a, b) => a > b);

			console.log (sorted); // [2, 3, 4, 5, 6]

			at

			Por fin disponemos de un método que nos permite acceder un elemento concreto del array. Una de las ventajas de este método es que se pueden usar números negativos para indicar un valor que empieza desde el final.

			const numbers = [4, 5, 6, 3, 2];

			numbers.at(3); // 5

			numbers.at(-1); // 6

			flat

			Los arrays pueden contener otros arrays anidados. Mediante el método flat, se extraen los elementos de esos arrays anidados y se integran en el array padre:

			const numbers = [[2, 4, 2], 3, 7, [5, [9, 8], 9], 2];

			numbers.flat(); // [2, 4, 2, 3, 7, 5, Array(2), 9, 2]

			numbers.flat().flat(); // [2, 4, 2, 3, 7, 5, 9, 8, 9, 2]

			
Métodos para strings

			Además de los viejos conocidos, se han añadido algunos métodos nuevos.

			at

			También se puede utilizar at con strings.

			const name = “Gandalf”;

			name.at(-1); // “f”

			replace

			Este método nos permite reemplazar partes de una cadena:

			const phrase = ‘this_is_a_phrase’;

			phrase.replace(/_/, ‘ ‘); // this is_a_phrase

			phrase.replace(/_/g, ‘ ‘); // this is a phrase

			Recientemente se añadió un nuevo método para reemplazar todas las ocurrencias en un string:

			const phrase = ‘this_is_a_phrase’;

			const removedUnderlines = phrase.replaceAll(‘_’, ‘ ‘) // this is a phrase

			
Operadores de asignaciones lógicas

			Esto se mencionó anteriormente y ahora lo ampliamos. JavaScript dispone de unos tipos de asignación que nos permite evitar comprobaciones antes de asignar un valor:

			•AND e igual &&=

			•OR e igual ||=

			•Nullish e igual ??=

			Se trata de asignar o no un valor a una variable dependiendo de si la variable es falsy o truthy. Los ejemplos lo permiten ver mejor. Con el operador &&= se asignará el valor solo si la variable a la que se asigna es truthy, es decir, un valor no falso (como null, undefined, etc.):

			let value = 42;

			value &&= 15;

			// Also: value = value && 15;

			// Same as

			let value = 42;

			if (value) {

			 value = 15;

			}

			Con el operador ||= se asignará el valor solo si la variable a la que se asigna es falsy:

			let value = null;

			value ||= 15;

			// Also value = value || 15

			// Same as

			let value = null;

			if (!value) {

			 value = 15;

			}

			Y finalmente el operador ??= se asignará el valor solo si la variable a la que se asigna es null o undefined:

			let value = null;

			value ??= 15;

			// Also: value = value ?? 15

			// Same as

			let value = null;

			if (!value) {

			 value = 15;

			}

			
Optional chaining

			Cuando se manejan objetos y sus campos, es frecuente que tengamos errores en el momento que uno de los campos es null o undefined resultando en un error que detiene el programa. El optional chaining permite que nuestro código no falle en esos casos.

			let person = {name: ‘ Mike’, age: 5)};

			name.address // error

			name?.address // null, but not error

			name?.address?.street // null but not error

			
Clases

			JavaScript introduce, por fin, la palabra class para poder definir nuestras propias clases. Dentro de ellas, utilizamos un método especial llamado constructor, que será el método que se invoca al crear una instancia de esta clase:

			class Device {

			 constructor () {

			 console.log (‘Device was created’)

			 }

			 doStuff () {

			 console.log (‘Doing some stuff’)

			 }

			}

			const myPhone = new Device ();

			myPhone.doStuff ();

			Una de las peculiaridades de estas clases es que no se pueden definir atributos como en otros lenguajes. Por lo general, tendremos que utilizar el constructor para definir las variables de instancia utilizando la palabra this. Si reescribimos la clase anterior:

			class Device {

			 constructor (name, price = 66.6) {

			 this.name = name;

			 this.price = price;

			 }

			 start () {

			 console.log (‘Starting…’)

			 }

			 doStuff () {

			 console.log (’${this.name} doing stuff’)

			 }

			}

			const myPhone = new Device (‘iSimov’, 42.0);

			myPhone.doStuff ();

			Lo cierto es que, aunque se permita usar la palabra class, JavaScript sigue gestionando todo utilizando funciones.

			Getters/setters

			ES6 es una fiesta de azúcar sintáctico que nos permite declarar métodos get/set para los atributos. Estos nos “obligan” a llamar a los métodos como get/set seguidos del nombre del atributo, lo que obliga, a su vez, a declarar los atributos con un nombre ligeramente distinto. Un recurso habitual es añadir un guion bajo, lo que se considera como un atributo privado en distintos lenguajes.

			class Customer {

			 constructor (name, age) {

			 this._name = name;

			 this._age = age;

			 }

			 get name () {

			 return this._name;

			 }

			 set name (name) {

			 this._name = name;

			 }

			 get age () {

			 return this._age;

			 }

			 set age (age) {

			 this._age = age;

			 }

			}

			customer = new Customer ();

			customer.age = 66;

			customer.name = ‘John Doe’;

			Métodos y variables privadas

			Otra de las recientes capacidades de las clases en JavaScript es la posibilidad de declarar métodos y variables privadas. Para ello se utiliza el símbolo # tal y como se muestra a continuación.

			class Name {

			 #length = 8;

			 #surname = ‘’;

			 constructor(surname) {

			 this.#surname = surname;

			 }

			 generateTitle() {

			 return this.#addPrefix() + “ “ + this.#surname;

			 }

			 #addPrefix() {

			 return “Mr. “

			 }

			 get length() {

			 return this.#length;

			 }

			}

			const name = new Name(“Smith”);

			//name.#length; // Error

			console.log(name.length) // 8

			console.log(name.generateTitle()) //”Mr. Smith”

			static

			También pueden crearse métodos definidos como static, lo que permite llamar métodos de una clase sin necesidad de crear una instancia.

			class Logger {

			 static prefix = “Logger>”;

			 static log (msg) {

			 console.log (this.prefix + msg);

			 }

			}

			Logger.log (“Hello”); // Logger> Hello

			Logger.prefix // Logger>

			Al igual que en otros lenguajes, ahora en las clases también se pueden incluir bloques de inicialización static:

			class Logger {

			 static prefix = “Logger>”;

			 static {

			 this.prefix = new Date().toString() + this.prefix;

			 }

			 static log (msg) {

			 console.log (this.prefix + msg);

			 }

			}

			Herencia

			La herencia por fin se puede hacer de forma explícita en JavaScript, simplemente utilizando la palabra extends en la declaración. Además, en todo momento se puede usar la palabra super para referirnos a la clase de la que se hereda y llamar a sus métodos.

			class Tablet extends Device {

			 constructor (name, price, battery = 0) {

			 super (name, price);

			 this.battery = battery;

			 }

			 use () {

			 super.doStuff ();

			 this.battery—;

			 }

			 getStatus () {

			 console.log (’${this.name} batt: ${this.battery}%’)

			 }

			}

			const myTablet = new Tablet (‘qb’, 1042.0, 100);

			myTablet.use (); // qb doing stuff

			myTablet.getStatus (); // qb batt: 99

			Al igual que ocurre con la palabra class, extends no es más que sintactic sugar, es decir, una forma más sencilla que ofrece el lenguaje para aplicar herencia. En realidad, JavaScript utiliza el mecanismo de añadir nuevas funciones al prototype.

			
Símbolos

			Se trata de un nuevo tipo de dato primitivo (como number, String, boolean, null o undefined) que permite identificar de forma inequívoca e inmutable la propiedad de un objeto.

			const something = Symbol ();

			// something = Symbol()

			const other = Symbol (‘Just a description’);

			// other = Symbol(Just a description)

			Tras la definición formal, conviene una visión más práctica. Imagine un escenario donde un objeto representa una mochila. En esa mochila se van a ir introduciendo otros objetos:

			backpack = {

			 ‘bottle’: {brand: ‘Laken’, color: ‘silver’},

			 ‘helmet’: {brand: ‘Petzl’, color: ‘red’},

			 ‘pick’: {brand: ‘Petzl’, color: ‘black’},

			 ‘helmet’: {brand: ‘Petzl’, color: ‘yellow’}

			};

			console.log (backpack);

			// { bottle: { brand: ‘Laken’, color: ‘silver’ },

			// helmet: { brand: ‘Petzl’, color: ‘yellow’ },

			// pick: { brand: ‘Petzl’, color: ‘black’ } }

			Resulta que, si se necesita introducir dos objetos con el mismo identificador, uno machaca al otro. Para eso se pueden utilizar los símbolos, ya que crearán un identificador único:

			backpack = {

			 [Symbol(‘bottle’)] : { brand: ‘Laken’, color: ‘silver’},

			 [Symbol(‘helmet’)] : { brand: ‘Petzl’, color: ‘red’},

			 [Symbol(‘pick’)] : { brand: ‘Petzl’, color: ‘black’},

			 [Symbol(‘helmet’)] : { brand: ‘Petzl’, color: ‘yellow’}

			};

			// { [Symbol(bottle)]: { brand: ‘Laken’, color: ‘silver’ },

			// [Symbol(helmet)]: { brand: ‘Petzl’, color: ‘red’ },

			// [Symbol(pick)]: { brand: ‘Petzl’, color: ‘black’ },

			// [Symbol(helmet)]: { brand: ‘Petzl’, color: ‘yellow’ } }

			En resumidas cuentas, Symbol() permite crear un tipo de dato que representa un identificador único. El parámetro que se le pasa a Symbol no es más que una descripción.

			const helmet1 = Symbol (‘helmet’);

			const helmet2 = Symbol (‘helmet’);

			// helmet1 == helmet2 = false

			
Iteradores

			ES6 introduce dos interfaces o protocolos para que cualquier objeto pueda ser iterable, es decir, se pueda recorrer pasando por todos sus elementos. Se trata de iterable e iterator.

			Todos los tipos de datos que son iterables pueden hacer uso del bucle for..of y las estructuras Map y Set que se muestran más adelante también son iterable.

			¿Qué se precisa para que un objeto sea iterable? Debe implementar el método next(). Se puede añadir ese método

			[Symbol.iterator]

			Symbol.iterator es, en realidad, una función sin argumentos que genera un iterator. Gracias a ese iterator, ya se dispondrá del método next().

			Cada vez que se llama al método next() de un iterator se devuelve un objeto con dos valores:

			•value: El siguiente valor del conjunto.

			•done: true o false si ya no quedan más elementos.

			Un ejemplo:

			const numbers = [5, 42, 15];

			const iterator = numbers[Symbol.iterator] ();

			iterator.next (); // { value: 5, done: false }

			iterator.next (); // { value: 42, done: false }

			iterator.next (); // { value: 15, done: false }

			iterator.next (); // { value: undefined, done: true }

			
Set

			Los Set son una nueva estructura de datos en los que los elementos NO se pueden repetir. En cierto modo, son como arrays sin valores repetidos. Eso los convierte en una estructura muy útil si queremos la garantía de que no haya repeticiones. Así es como se define un Set:

			const players = new Set ();

			// players = Set {}

			const bestPlayers = new Set ([23, 99, 15, 4]);

			// bestPlayers = Set { 23, 99, 15, 4 }

			A diferencia de los arrays, en una estructura Set NO se utiliza un índice numérico para acceder a los valores, y se deben usar otros métodos para añadir, eliminar o para saber si un elemento existe dentro del conjunto.

			players.add (34); // Set { 34 }

			players.add (45); // Set { 34, 45 }

			players.add (6); // Set { 34, 45, 6 }

			players.add (34); // Set { 34, 45, 6 } }

			A la hora de eliminar, debemos usar delete pasando el valor que queremos eliminar. Si existe, se elimina y se retorna true; si no, no se borra y se devuelve false:

			players.delete (6); // true

			players.delete (666); // false

			Para saber simplemente si un elemento existe o no, se puede usar el método has:

			if (players.has (34)) {

			 console.log (‘Player 34 is in.’)

			}

			players.has (34); // true

			players.has (10); // false

			El número de elementos que contiene el Set se consigue mediante la propiedad size:

			console.log (players.size); // 2

			players.add (23); // players.size = 3

			Y si se necesita dejar todo vacío, usamos clear:

			players.clear (); // players = Set {}

			En este caso, Set contiene valores simples, pero podrían ser objetos o cualquier otra cosa.

			SetIterator

			Mediante el método values() se puede crear un objeto SetIterator, con el que se obtienen todos los valores del Set. El método keys() tiene el mismo efecto en un Set.

			players.values (); // SetIterator { 34, 45, 23 }

			players.keys (); // SetIterator { 34, 45, 23 }

			En un Set simple, estos iteradores tendrían el mismo resultado:

			for (p of players) {

			 console.log (p);

			}

			for (p of players.values ()) {

			 console.log (p);

			}

			for (p of players.keys ()) {

			 console.log (p);

			}

			La diferencia es que, con values() o keys(), se obtiene un iterator y se puede llamar al método next():

			const playerIterator = players.values ();

			playerIterator.next (); // { value: 34, done: false }

			playerIterator.next (); // { value: 45, done: false }

			playerIterator.next (); // { value: 23, done: false }

			playerIterator.next (); // { value: undefined, done: true }

			WeakSet

			Los WeakSets son un caso específico de Set, con las siguientes diferencias:

			•Solamente pueden contener objetos.

			•No son iterables.

			•No tienen un método clear.

			•Si se elimina uno de sus elementos, el GarbageCollector de JavaScript lo borra.

			const friends = new WeakSet ([{name: ‘Will’}, {name: ‘Mike’}]);

			friends.add ({name: ‘Dustin’});

			friends.add ({name: ‘Lucas’});

			
Map

			Maps son estructuras de almacenamiento clave/valor, similares a los hashtables o arrays relacionales tan comunes en otros lenguajes.

			const family = new Map ();

			// family = Map {}

			No se pueden inicializar con datos, pero estos se pueden agregar con el método set:

			const swords = new Map ();

			// swords = Map {}

			swords.set (‘Orcrist’, ‘Thorin’);

			swords.set (‘Foehammer’, ‘Gandalf’);

			swords.set (‘Sting’, ‘Bilbo’);

			// Map {

			// ‘Orcrist’ => ‘Thorin’,

			// ‘Foehammer’ => ‘Gandalf’,

			// ‘Sting’ => ‘Bilbo’ }

			La clave puede ser cualquier cosa (tipos primitivos, objetos); lo mismo pasa con los valores, que pueden ser cualquier cosa:

			const tech = new Map ();

			// tech = Map {}

			tech.set (‘React’, {lang: ‘JavaScript’, type: ‘Frontend’});

			tech.set (‘Angular’, {lang: ‘TypeScript’, type: ‘Frontend’});

			tech.set (‘Rails’, {lang: ‘Ruby’, type: ‘Backend’});

			// Map {

			// ‘React’ => { lang: ‘JavaScript’, type: ‘Frontend’ },

			// ‘Angular’ => { lang: ‘TypeScript’, type: ‘Frontend’ },

			// ‘Rails’ => { lang: ‘Ruby’, type: ‘Backend’ } }

			Obviamente, si se vuelve a hacer set sobre un elemento con una clave existente, su valor se modificará:

			tech.set(‘Angular’, {lang: ‘Dart’, type: ‘Frontend’});

			// Map {

			// ‘React’ => { lang: ‘JavaScript’, type: ‘Frontend’ },

			// ‘Angular’ => { lang: ‘Dart’, type: ‘Frontend’ },

			// ‘Rails’ => { lang: ‘Ruby’, type: ‘Backend’ } }

			Si se quiere acceder a un elemento concreto del Map, usamos el método get:

			tech.get (‘Rails’); // { lang: ‘Ruby’, type: ‘Backend’ }

			tech.get (‘Spring’); // undefined

			Los Maps comparten muchos métodos con los Set. Para eliminar determinado elemento, se utiliza delete y la clave:

			tech.delete (‘Angular’);

			Al igual que con los Set, delete devuelve true o false dependiendo de si ese elemento existe en el conjunto o no.

			Se puede consultar si una clave existe con el método has:

			tech.has (‘React’); // true

			tech.has (‘Angular’); // false

			Se puede sacar su tamaño con size:

			tech.size; // 2

			Y vaciar todo con clear();

			tech.clear (); //tech.size = 0

			Bucles

			Existen distintas formas de iterar sobre las estructuras Map.

			Mediante el for of:

			for (s of swords) {

			 console.log (s);

			}

			// [‘Orcrist’, ‘Thorin’]

			// [‘Foehammer’, ‘Gandalf’]

			// [‘Sting’, ‘Bilbo’]

			for (sk of swords.keys ()) {

			 console.log (sk);

			}

			// Orcrist

			// Foehammer

			// Sting

			for (sv of swords.values ()) {

			 console.log (sv);

			}

			// Thorin

			// Gandalf

			// Bilbo

			También se puede usar el forEach que se utiliza para los arrays. Al aplicarlo sobre una estructura tipo Map, forEach es un método que toma como parámetros cada uno de los pares clave/valor (primero el valor y luego la clave) y ejecuta un código por cada uno de ellos.

			swords.forEach((v, k) => {

			 console.log(’${v} wields ${k}’);

			});

			// Thorin wields Orcrist

			// Gandalf wields Foehammer

			// Bilbo wields Sting

			Y también se pueden utilizar los Iterators:

			swords.keys (); // MapIterator { ‘Orcrist’, ‘Foehammer’, ‘Sting’ }

			swords.values (); // MapIterator { ‘Thorin’, ‘Gandalf’, ‘Bilbo’ }

			const swordIterator = swords.values ();

			swordIterator.next (); // { value: ‘Thorin’, done: false }

			swordIterator.next (); // { value: ‘Gandalf’, done: false }

			swordIterator.next (); // { value: ‘Bilbo’, done: false }

			swordIterator.next (); // { value: undefined, done: true }

			const swordIterator = swords.keys ();

			swordIterator.next (); // { value: ‘Orcrist’, done: false }

			swordIterator.next (); // { value: ‘Foehammer’, done: false }

			swordIterator.next (); // { value: ‘Sting’, done: false }

			swordIterator.next (); // { value: undefined, done: true }

			WeakMaps

			Al igual que sucede con los WeakSet, los WeakMap comparten las mismas propiedades: solo contienen objetos, no son iterables y no disponen del método clear. Su comportamiento al eliminar elementos es el mismo.

			const cities = new WeakMap ();

			cities.set ({name: ‘Hobbiton’}, {land: ‘Shire’, visited: true});

			cities.set ({name: ‘Minas Tirith’}, {land: ‘Gondor’, visited: true});

			cities.set ({name: ‘Minas Morgul’}, {land: ‘Mordor’, visited: false});

			
Promesas

			Una de las características esenciales de JavaScript es el asincronismo. Se trata de código que no bloquea el programa. Cuando ese código termina se nos notifica y ya se puede procesar el resultado, normalmente llamando a una función callback.

			El problema que tiene ese tipo de código es que, si al procesar el resultado se vuelve a llamar a otro método asíncrono, se acaba generando una estructura llamada callback hell, que hace que el código del programa se ofusque tremendamente.

			ES6 introduce por fin las promesas como parte del lenguaje JavaScript. Las promesas nos permiten crear código asíncrono que resulta mucho más fácil de gestionar. El mecanismo consiste en que una función, en lugar de devolver un resultado, devuelve una promesa. Este sería un ejemplo sencillo:

			const hello = function (msg) {

			 // Return a new promise.

			 return new Promise (function (resolve, reject) {

			 setTimeout (function () {

			 if (msg.length > 0) {

			 resolve (msg);

			 } else {

			 reject (Error (‘Msg not valid’));

			 }

			 }, 1000);

			 });

			}

			A la hora de ejecutar el método hello, para recoger su resultado se debe utilizar la cláusula then:

			hello(‘Epa’).then(…);

			La cláusula then puede aceptar dos parámetros: un método que recoge el resultado de la promesa al llamar a resolve (correcto), y otro método que recoge el valor de reject. Dicho de otro modo, cuando se crea la promesa solo puede haber dos resultados: resolve o reject; y a través del then se establece qué se hace con cada resultado.

			Si se ejecuta el método hello pasando un parámetro correcto, la promesa se resolverá correctamente y se ejecutará la primera función:

			hello (‘Epa’).then (function (msg) {

			 console.log (‘Ok, mesg is: ‘ + msg);

			}, function (error) {

			 console.log (error);

			});

			// Ok, mesg is: Epa

			En cambio, si el parámetro es incorrecto, se llamará a reject:

			hello (‘’).then (function (msg) {

			 console.log (‘Ok, mesg is: ‘ + msg);

			}, function (error) {

			 console.log (error);

			});

			// Error: Msg not valid

			// + … errors

			Una forma más limpia de recoger el error podría ser introduciendo la cláusula catch.

			hello (‘’).then (function (msg) {

			 console.log (‘Ok, mesg is: ‘ + msg);

			}).catch ((err) => {

			 console.log (’Errors under control. ${err}’)

			});

			// Errors under control. Error: Msg not valid

			Mediante esta sintaxis, si tras una llamada asíncrona se tuviera que llamar a otra, se podrían encadenar las cláusulas then, de una forma más clara que un conjunto de callbacks anidados. Incluso al final se puede poner una cláusula catch para capturar cualquier error.

			hello (‘Epa’).then (

			…

).then (

			…

).then (

			…

).catch ((err) => {

			 console.log (’Errors under control. ${err}’)

			});

			Y al final del todo se podría añadir la nueva cláusula finally que se ejecuta cuando la promesa se resuelve o falla.

			
async/await

			Las promesas mejoraron el aspecto de los métodos que encadenaban un callback tras otro, pero, al final, se acabaron convirtiendo en estructuras que, si bien no parecían anidadas, no dejan de ser una cadena de órdenes algo compleja de mantener. Ahora JavaScript permite utilizar la palabra clave await para expresiones, generalmente llamadas a funciones asíncronas. El programa no avanzará hasta que termine esa llamada. El uso de await tiene un precio: obliga a que el código con una cláusula await deberá estar dentro de una función con una cláusula async.

			En el siguiente ejemplo se muestra un método llamado getIpAddress, que saca la dirección IP de una API remota. Es una petición a la red; por tanto, se declara como asíncrona. Las llamadas al método fetch y json son asíncronas; por tanto, se utiliza await para que la función no avance hasta que haya terminado esas operaciones.

			async function getIpAddress () {

			 const data = await fetch (“https://api6.ipify.org?format=json”),

			 result = await data.json ();

			 return result;

			}

			Se le llama desde el método main, que debe declararse como async y utiliza await para la llamada. Como se aprecia en la salida, “Finished: “ no aparecerá hasta que la llamada a getIpAddress haya terminado.

			async function main () {

			 console.log (“Ready?”);

			 const result = await getIpAddress ();

			 console.log (“Finished: “, result.ip);

			}

			main ();

			// Ready?

			// Finished: ip

			También se puede añadir la cláusula async a toda función que contenga código asíncrono, de tal manera que se podrá invocar utilizando la palabra await. En el siguiente caso se define un método asíncrono llamado add, que debe ser invocado con await.

			async function add (a, b) {

			 return a + b;

			 }

			async function main () {

			 console.log (“Result is: “);

			 const c = await add (40, 2);

			 console.log (c);

			}

			main ();

			// Result is

			// 42

			Hasta hace poco no se podía usar await fuera de una función async, pero por fin se introdujo el top-level await para no tener que hacer hacks extraños en nuestro código. Por ejemplo, si crea un simple listado con sentencias JavaScript y necesita un await, se puede hacer sin tener que introducir funciones.

			Además, el top-level await nos permite interesantes features, como cargar módulos en tiempo de ejecución o incluso recuperarnos si ocurre una excepción al importar librerías.

			const translations = await import(’/i18n/${user.language}’);

			let library;

			try {

			 library = await import(‘https://mycdn.com/library’);

			} catch {

			 library = await import(‘https://othercdn.com/library’);

			}

			
Proxies

			Uno de los patrones clásicos de software es el proxy. Gracias a este patrón, se evita que se pueda utilizar directamente un objeto y solo se permite acceder a él a través de un intermediario, de manera controlada y restrictiva.

			JavaScript habilita esta posibilidad mediante Proxy. Su constructor tiene dos parámetros:

			•El objeto que se quiere proteger con el Proxy.

			•Las funciones que se interceptarán.

			Este sería un ejemplo sencillo, donde se interceptan todas las modificaciones de atributos.

			const account = {owner: ‘Harry P.’, balance: 634225.34};

			const proxy = new Proxy (account, {});

			A ese proxy se le pasan como objeto los datos de una cuenta bancaria. Para que el proxy pueda hacer algo, se va a introducir al menos un handler: se trata de un método que capturará todas las peticiones que traten de modificar alguno de los valores.

			const account = {owner: ‘Harry P.’, balance: 634225.34};

			const handler = {

			 get (target, property) {

			 console.log (’Proxy> called ${property}’);

			 return target.owner;

			 }

			}

			const proxy = new Proxy (account, handler);

			let owner = proxy.owner; // Proxy> called owner

			// owner = ‘Harry P.’

			Los parámetros del método handler son target y property: el primero se refiere al propio objeto que envuelve el proxy, property es la propiedad que queremos sacar. Obviamente, si dentro del proxy se necesita acceder a cualquier valor del objeto, basta con combinar target y property:

			target.owner;

			O bien:

			target[owner];

			En este caso, el proxy sí devuelve el dato requerido.

			Se podría hacer un proxy que restringiera esos accesos:

			const secHandler = {

			 get (target, property) {

			 console.log (’Proxy> ${property} is confidential’);

			 return null;

			 }

			}

			const secProxy = new Proxy (account, secHandler);

			secProxy.balance; // Proxy> balance is confidential

			Al igual que el get, también se puede crear un acceso controlado al set, para controlar los cambios de valor en las propiedades.

			const balanceHandler = {

			 get (target, property) {

			 return null;

			 },

			 set (target, property, value) {

			 if (property === ‘balance’) {

			 if (value <= 0) {

			 console.log (’Proxy> tried to set ${value}’);

			 } else {

			 target[‘balance’] += value;

			 }

			 }

			 }

			};

			const protectProxy = new Proxy (account, balanceHandler);

			protectProxy.balance = -6;

			// Proxy> tried to set -6

			Dentro del handler que se asigna en el proxy se pueden meter hasta 11 traps o métodos que se disparan automáticamente cuando se intenta acceder de una u otra forma al objeto que estamos cubriendo.

			
Generators & Iterators

			ES6 introduce la posibilidad de crear funciones cuya ejecución puede detenerse y continuar cuando sea preciso. Para eso se crean funciones tipo generator, que se caracterizan por tener un * entre la palabra function y el nombre de la función:

			function* count () …

			El asterisco puede ir pegado a function o a count, siempre que esté entre los dos. Una vez definido así el método, se pueden añadir cláusulas yield. Estas cláusulas interrumpen la ejecución del código:

			function* count () {

			 for (var i = 0; i < 3; i++) {

			 // This is stops the execution

			 yield i;

			 }

			}

			const iterator = count ();

			iterator.next (); // { value: 0, done: false }

			iterator.next (); // { value: 1, done: false }

			iterator.next (); // { value: 2, done: false }

			iterator.next (); // { value: 0, done: false }

			Enviar datos a un generador

			Los generadores también pueden recibir datos y ser utilizados dentro del código. Basta con pasar parámetros a través de la llamada next.

			function* greet () {

			 let msg = yield;

			 console.log (’The message is ${msg}’);

			}

			const greetIterator = greet ();

			greetIterator.next (); // Starts running.

			greetIterator.next (‘Hello there’);

			// The message is Hello there

			Otro ejemplo un poco más elaborado, en el que se genera una especie de factura a la que le vamos pasando los precios de cada item:

			function* invoice (items) {

			 let total = 0;

			 for (item of items) {

			 let cost = yield item.id;

			 console.log (cost, item);

			 total = total + cost * item.qty;

			 }

			 yield total;

			}

			const prices = {1: 42.0, 5: 66.6}

			const purchase = [{id: 1, qty: 3}, {id: 5, qty: 2}];

			const invoiceIterator = invoice (purchase);

			invoiceIterator.next (); // Starts running.

			invoiceIterator.next (prices[1]); // { value: 1, done: false }

			invoiceIterator.next (prices[5]); // { value: 5, done: false }

			invoiceIterator.next (); // { value: 259.2, done: false }

			
Librerías

			Los proyectos se componen de múltiples ficheros y generalmente se pueden utilizar y hacer referencia a otros componentes creando e importando librerías. Existen diferentes maneras de conseguir esto, dependiendo de la configuración que se disponga para el desarrollo.

			Módulos Node.js

			Si se utiliza el sistema de Node.js se utiliza la palabra module.exports, con lo que se puede exportar cualquier elemento, desde variables, objetos, funciones, etc. Se puede hacer en el momento de definir elementos o al final del fichero.

			const myFunction = () => console.log (“Hello”);

			module.exports = myFunction;

			Y, para reutilizar ese elemento desde otro fichero, se utiliza la palabra clave require:

			const myFunction = require (“./exporting”);

			myFunction ();

			Módulos ES6

			Desde ES6 se permite exportar el contenido de un fichero, pueden exportarse uno o más componentes: clases, variables, estructuras, etc., mediante la palabra reservada export. Si además se quiere indicar algo que se exporta por defecto, cosa habitual cuando solo se exporta un elemento, se puede usar export default.

			export default class SomeClass {

			 hello () {

			 console.log (“Hey, it works”);

			 }

			}

			También se podría exportar al final del fichero:

			class SomeClass {

			 hello () {

			 console.log (“Hey, it works”);

			 }

			}

			export default SomeClass;

			A la hora de importar el módulo, se haría de la siguiente manera. Cuando se trata de módulos estándar o descargados a través de npm, entonces se pone el nombre del mismo, sin rutas. Si se hace referencia a un fichero propio, debe indicarse el fichero con su ruta relativa o absoluta. En este caso se indica la ruta relativa ./, que significa que el otro fichero está en el mismo directorio.

			import SomeClass from “./classes”;

			const someClass = new SomeClass ();

			someClass.hello ();

			Y, por último, ahora se puede simplificar la forma de importar y exportar un módulo dentro de un fichero. Por ejemplo, en lugar de tener que usar dos comandos separados:

			import * as OneModule from “./one-module.js”;

			export {OneModule};

			Ahora ya se puede hacer simplemente:

			export * as OneModule from “./one-module.js”;

			En el capítulo de TypeScript se profundiza un poco más en las distintas variantes de exportación e importación ES6, que son las habituales en React.

OEBPS/font/BentonSans-RegularItalic.otf

OEBPS/font/MetaOT-Norm.otf

OEBPS/image/MU005861_cubierta.jpg
DESDE CERO
A DESARROLLOS
WEB AVANZADOS

OEBPS/font/BentonSans-Regular.otf

OEBPS/image/logo_anaya_multimedia.png
Pello Xabier Altadill Izura

REACT

PRACTICO

DESDE CERO
A DESARROLLOS

WEB AVANZADOS

ANAYA

EMULTIMED| A

OEBPS/font/BentonSans-Bold.otf

OEBPS/font/BentonSans-Light.otf

OEBPS/font/BentonSans-LightItalic.otf

OEBPS/font/SourceCodePro-Regular.otf

OEBPS/font/SerifaStd-Bold.otf

OEBPS/font/ArialMTStd.otf

OEBPS/font/MetaOT-Bold.otf

