

[image: Portada del libro "Revolución No Code" de Alex Vaughtton. Editorial Anaya Multimedia.]

[image: Portada del libro "Revolución NO CODE" de Alex Vaughton. El subtítulo indica "Construye negocios sin aprender a programar", Editorial Anaya Multimedia.]

		
			A mis padres, por inculcarme la pasión por compartir mi conocimiento; a Xoán, por animarme a dar el primer paso. A Danny, por abrirme la puerta a soñar en grande y, en especial, a Iria, que ha vivido cada página de este libro en primera persona.

		

	

1. Las revoluciones tecnológicas

Cada vez que aparece una nueva tecnología, nos transformamos como sociedad.

Esta máxima lleva cumpliéndose desde que la sociedad es sociedad. Los grandes pasos adelante que hemos dado como especie están marcados por grandes invenciones que revolucionan la manera en la que somos y la manera en la que nos comportamos.

Asociamos, no obstante, tecnología a lo tecnológico: el mundo de la computación, los móviles, los microchips y toda la revolución relacionada con esta última iteración. Sin embargo, esto lleva sucediendo desde tiempos inmemoriales.

Antes del papiro, el conocimiento era oral

Remontémonos a la antigüedad. Pongamos que estamos hace unos cuatro mil años, en la época de los faraones y las grandes pirámides.

La cultura era oral. La manera de transmitir el conocimiento y todo lo que somos como cultura era a través de las historias, los cuentos y las leyendas que pasaban de padres a hijos a lo largo de generaciones. Conservar estas historias, condensadas de una forma fácil de recordar, era vital, puesto que traían consigo aprendizajes de generaciones anteriores. Ejercitar la memoria era superimportante, pero al final siempre hay un límite de lo que somos capaces de recordar como persona individual.

Existen maneras de hacer que la información sea más permanente, como por ejemplo las tablillas; sin embargo, esto es algo caro, reservado únicamente a las cosas más importantes del Estado, como puede ser la recaudación de impuestos. Hace aproximadamente mil años que se inventó (que tengamos constancia) la escritura, pero está lejos de ser algo común.

Esta tradición oral hace que sea realmente difícil evolucionar como especie. Si el conocimiento se pierde y no permanece registrado en ningún lugar, es difícil acceder a él.

Te pido que eches la vista atrás unos dos mil años aproximadamente. La época de los romanos. Sería impensable para un romano de aquella época imaginarse en lo que se convertiría su pequeña ciudad de Lucus Augusta, o entender que podría tener todo el conocimiento del mundo al alcance de su mano en un smartphone.

Sin embargo, si nos remontamos seis u ocho mil años atrás, la vida de aquellas personas era realmente similar a la que tenían sus antecesores de miles de años antes. La vida fundamentalmente no cambiaba. Evolucionaba, sí, pero a un ritmo tremendamente lento.

Entonces, ¿qué pasó para que se acelerara esta evolución?

Una de las causas la podemos encontrar en la invención del papiro. La planta del papiro se encuentra en los cursos de agua tropicales, como por ejemplo en el río Nilo o el río Níger. A través de un proceso, era posible convertir el tallo de esta planta en una lámina u hoja que permitiera escribir sobre este papiro de una manera mucho más sencilla, y sobre todo barata, en comparación con las tablillas. Ya no está reservado a las cosas más importantes del Estado, sino que es algo a lo que mucha más gente puede acceder.

Este pequeño cambio significa que ya no estamos limitados como sociedad a lo que tenemos en nuestras cabezas, sino que podemos preservar este conocimiento en forma de rollos de pergaminos, en los que se traspasen las historias orales, pero también conocimiento de medicinas, enfermedades y mucho más.

Adelanta hasta el día de hoy: el papel es algo tan común que ni te imaginas que hace miles de años supusiera una revolución tan grande. Pasamos de una sociedad oral a una sociedad escrita, todo gracias a la tecnología.

Del papiro al libro

Si bien el papiro permitía escribir y transmitir el conocimiento, seguía siendo algo caro y reservado a las élites, compitiendo con su archienemigo, el pergamino (hecho con pieles). La mayoría de los libros eran objetos de lujo, ya que tenían que ser copiados a mano por copistas especializados que podían tardar meses o años en terminar un libro.

El conocimiento estaba reservado a la nobleza, a la clase más alta, lo que ayudaba a que se mantuvieran estables en el poder y hacía de la transferencia de clase un reto mayúsculo.

Sin embargo, hace unos cuantos años, exactamente en el año 1450, un pequeño invento de nuevo transforma de manera esencial nuestra vida: la imprenta de Gutenberg.

Mediante un sistema de planchas y de pequeñas letras prefabricadas que se empapaban en tinta, permitía hacer copias de libros a una velocidad jamás vista hasta entonces. Desde aquel momento, el acceso a los libros cambió para siempre. Ya no era algo reservado a la nobleza, sino que cualquier persona podía tener su propia copia de libros importantes para la época como fue la Biblia de Gutenberg.

Con el paso del tiempo, esto permitió que cada vez más gente pudiera acceder al conocimiento que encierran las páginas de los libros, haciendo que este movimiento social fuera algo mucho más sencillo, ya que ahora casi cualquier persona puede tener acceso a un libro que le facilite aprender y formarse.

Pero demos un paso más y aceleremos hasta principios del siglo xx, en el que llegan otros inventos para revolucionar el mundo: la máquina de escribir y el ordenador personal.

De repente, cualquier persona puede escribir documentos a una velocidad vertiginosa a comparación con hacerlo a mano. Con una máquina de escribir puedes llegar a trescientas palabras por minuto, algo que sería impensable hacer a mano.

Esto supone que, de nuevo, sea más fácil escribir y hacer que más gente pueda llegar a publicar su propio libro. Hoy en día, publicar un libro es algo muy sencillo, simplemente escribe en tu ordenador el manuscrito, encuentra alguien que te lo publique (u opta por la autoedición) y puedes tener tu libro listo y publicado en semanas. Esto hace que el número de libros y el número de personas que pueden escribir un libro aumente de manera exponencial.

[image: Gráfica lineal que muestra el crecimiento del número de nuevos títulos de libros por millón de personas. La línea muestra un aumento gradual que se acelera dramáticamente en los años recientes, ilustrando la explosión en la publicación de libros.]

Número de nuevos libros publicados por millón de persona.

Las revoluciones exponenciales en la música

El ritmo de cambio y evolución de la sociedad se está acelerando. Si hablábamos de que hace dos mil años el mundo era fundamentalmente diferente, ahora este periodo se puede reducir a una o dos generaciones. La generación de mis padres no nació con un ordenador en casa. Los niños que están entrando ahora mismo en el colegio no concebirían la vida sin un smartphone. En menos de cincuenta años, la tecnología ha dado saltos espectaculares, haciendo que cosas de nuestro día a día (como escribir este libro en un ordenador portátil) fueran impensables hace solamente unas décadas.

Pongamos el ejemplo del mundo de la música.

Si a principios del siglo pasado querías triunfar en el mundo de la música necesitabas dos cosas: técnica musical y una suerte descomunal.

Y es que el simple hecho de conseguir que alguien grabara para ti un vinilo con tu música era realmente complicado. Para ello no bastaba con hacer buena música, sino que tenías que ser capaz de convencer a una discográfica de que tu música era buena, pero de que además iba a gustar al público.

Estas discográficas hacían apuestas un poco a ciegas, pero también tenían la posibilidad de hacer o romper carreras de artistas, influyendo en qué canciones sonaban en la radio, qué álbumes recibían más promoción y jugaban un factor esencial en el mundo de la música.

Ahora, en pleno 2024, esto está al alcance de cualquier persona que tenga un teléfono móvil. Si cantas/tocas bien, es posible que te grabes en tu propia habitación, subas un vídeo a YouTube, te descubra un representante de una discográfica y empiece tu carrera fulgurante en el mundo de la música, como le pasó a Justin Bieber.

Sin embargo ahora ya ni siquiera es necesario tener una discográfica detrás para dar tus primeros pasos en la música. Con la llegada de los ordenadores, tenemos al alcance de nuestras manos software de grabación de música profesional que te permite crear música, grabarla y distribuirla sin necesitar a nadie. Con las redes sociales, como Instagram, TikTok o el mismo YouTube, puedes incluso llegar directamente a la audiencia y conseguir tener fans, dar conciertos y lanzar una carrera por tu cuenta sin necesitar una discográfica de por medio para poder empezar.

Esto, de nuevo, permite que ser músico o música sea un sueño al alcance de millones de personas y que cada día surjan cientos de artistas, miles de canciones y decenas de miles de minutos de música nueva.

[image: Gráfica que muestra el crecimiento exponencial de grabaciones musicales nuevas por año desde 1860 hasta 2010, alcanzando 6.210.902 en el punto más reciente, con una curva que se dispara dramáticamente después del año 2000.]

Número de nuevas grabaciones musicales al año.

Democratización a través de la tecnología

Como hemos visto, una tecnología nueva nos permite dar un salto como sociedad y permite que esta sea cada vez más democrática. Cualquier persona puede componer una canción, grabarla y subirla, así como puedes escribir un libro, autopublicarlo y convertirte en best-seller. Es difícil, por supuesto, pero es algo al alcance de cualquier persona. Después, la suerte y la aleatoriedad juegan su papel en que suceda: cuantas más personas puedan tener acceso a una tecnología, más evolucionaremos como sociedad.

Pero, sin duda, una de las revoluciones que más nos ha impactado como sociedad es la aparición de los ordenadores y el mundo de la programación; es por eso por lo que vamos a adentrarnos de lleno en esta revolución tecnológica, que sienta las bases del ecosistema No-code/Low-code que dan pie a este libro.

Referencias

https://resources.formstack.com/reports/rise-of-the-no-code-economy/history

https://historia.nationalgeographic.com.es/a/asi-se-origino-escritura-antigua-mesopotamia_20605#:~:text=Hace cinco mil años%2C en, delicado oficio en las escuelas.

https://webflow.com/resources/ebooks/the-no-code-revolution

https://historia.nationalgeographic.com.es/a/gutenberg-inventor-que-cambio-mundo_11140

2. El desarrollo visual

Hemos visto cómo, cada vez que aparece una nueva tecnología, significa cambios a nivel de sociedad. Sin embargo, cuando hablamos de No-code, la palabra correcta para definirla sería «movimiento» o «revolución»; de aquí el título de este libro.

Como tantas cosas que nos parecen nuevas e innovadoras, este movimiento lleva décadas entre nosotros. Si quisiéramos buscar su origen, tendríamos que remontarnos a principios de la década de los ochenta, momento en el que el mundo estaba dominado por la primera generación de ordenadores personales.

Ya habíamos dado un salto de gigante desde los antiguos mainframes de IBM, ordenadores que literalmente ocupaban lo mismo que una habitación, a ordenadores con un tamaño reducido, gracias a una pequeña compañía por aquel entonces llamada Intel.

Con la invención del Intel 4004, se dio el primer paso para que los ordenadores, reservados a centros de investigación y centros educativos, pudieran reducir su tamaño hasta conseguir algo que realmente fuera práctico en un hogar. Si bien este chip no tenía potencia más que para hacer funcionar una calculadora, dio comienzo a una carrera hacia construir más y más microprocesadores, cada vez más y más potentes, permitiendo que se vislumbrara un futuro cercano en el que todo el mundo tuviera un ordenador en su hogar.

Probablemente, si ahora estuvieras viviendo esta época es muy probable que pensaras que esto era una absoluta locura, puesto que estos primeros ordenadores eran caros, difíciles de usar y de mantener. Pero el potencial estaba ahí.

Es en ese momento cuando empieza una carrera fascinante por abrir el mercado de los microprocesadores y los ordenadores más pequeños, pensados para ser usados por personas en sus casas y no por grandes empresas. Probablemente te suenen los nombres de las empresas que fueron pioneras en el movimiento, como Hewlett-Packard o Sun Microsystems, tal vez conozcas una pequeña compañía llamada Apple que se sumó a esta carrera en el año 1976 con su Apple I.

Todas ellas competían contra el gigante de aquellos tiempos, IBM, la empresa encargada de vender la mayoría de los ordenadores que utilizaban las empresas, los referentes de la innovación y el desarrollo de la computación. En 1981, deciden atender a un mercado diferente, el del gran consumo, lanzando lo que daría origen al término PC, ya que lanzaron en ese año su primer ordenador personal, el IBM Personal Computer (PC por sus siglas en inglés).

[image: Computadora personal IBM de los años 80, con monitor monocromático gris sobre una base blanca y teclado completo. Representa los primeros ordenadores personales que revolucionaron la informática doméstica.]

Este ordenador, aunque ahora pueda parecer rudimentario, era un paso de gigante de cara a acercar la visión de que todo el mundo tuviera un ordenador en su casa. Sin embargo, era realmente difícil de utilizar para una persona normal y corriente, sin mencionar lo difícil que era poder permitirse un ordenador personal en aquella época. Fue el primer paso de un avance imparable, tratando de seguir las tendencias del mercado y la evolución de la velocidad de procesamiento de los microprocesadores, que aumentaba exponencialmente.

Pero todo cambia en el año 1983.

El nacimiento de la interfaz visual

Aunque ahora el término «escritorio» o abrir una ventana de una aplicación pueda sonar a algo común y obvio, los ordenadores antes de 1983 eran algo totalmente diferente. Líneas de comandos, pantallas monocromáticas…; la interacción con un ordenador era mayormente basada en texto.

Es entonces cuando Steve Jobs anuncia en 1983 el Apple Lisa, el primer ordenador del mundo que tiene una interfaz visual.

[image: Interfaz de un antiguo sistema operativo con ventanas que muestra una calculadora digital y varios paneles de herramientas. La imagen ilustra los primeros entornos gráficos de usuario que revolucionaron la interacción con ordenadores personales en los años 80-90.]

En vez de interactuar mediante texto, este ordenador ofrecía un entorno visual en el que podías ver los archivos de tu ordenador, pudiendo navegar literalmente por la pantalla gracias a otro invento realmente revolucionario: el ratón. Fue también la primera vez en la que teníamos el concepto de ventanas de aplicaciones que se sobreponían unas a otras, como si estuvieran unas más cerca que otras. Fue el comienzo de las tipografías dentro de un ordenador y en definitiva un hito realmente revolucionario en el mundo del ordenador personal.

Sin embargo, fue un auténtico fracaso comercial. Su precio de 10 000 dólares hacía que fuera prácticamente inalcanzable, y se vendieron solamente 10 000 unidades del Apple Lisa. Pero el primer paso hacia el mundo de la interacción visual con un ordenador estaba ya dado.

Tras este producto, los sistemas operativos basados en texto tuvieron que apartarse y sumarse a esta nueva experiencia visual, momento en el que otra pequeña compañía de desarrollo de software llamado Microsoft llega con su versión de Windows 3.0 en 1990.

[image: Captura de pantalla de un antiguo sistema operativo con interfaz gráfica, probablemente Windows 3.0. Muestra el Program Manager con iconos de aplicaciones organizados en grupos, junto con varias ventanas pequeñas abiertas que incluyen un reloj y un panel de control. La imagen ilustra las primeras interfaces visuales para ordenadores.]

El mundo había cambiado y evolucionado, los PC clónicos (copias de IBM) acercaron a mucha más cantidad de gente la posibilidad de tener un ordenador en su hogar y Windows 3.0 hizo que la experiencia de utilizar un ordenador no fuera algo reservado a gente con experiencia programando, sino que casi cualquier persona pudiera utilizarlo de manera intuitiva, gracias a un teclado, un ratón y una pantalla. El pasar de una interfaz basada en texto a una interfaz visual supuso una democratización del ordenador personal.

Desde aquella época hasta ahora, el mundo de los ordenadores personales ha cambiado, sí, pero continuamos utilizando los paradigmas y experiencias de usuario que se definieron hace más de treinta años por estos primeros ordenadores personales.

El nacimiento de la programación visual

El sistema operativo (pongamos Windows 3.0) te permitía utilizar el ordenador y aprovechar lo que traía por defecto. Sin embargo, cuando querías hacer algo un poco más personalizado, era necesario escribir código, texto puro y duro, que diera vida a las aplicaciones que después los usuarios utilizaran. Este paradigma de que el código se cree mediante texto ha continuado manteniéndose hasta hoy, ya que es posible construir cualquier cosa que te puedas llegar a imaginar simplemente escribiendo texto.

El lenguaje de programación de esas primeras versiones de Microsoft era conocido como BASIC, probablemente uno de los primeros lenguajes que acercaron la programación al mundo más personal. Que fuera texto tenía sentido en el año 1980; al fin y al cabo, el sistema operativo también estaba basado en texto. Sin embargo, con la llegada de las interfaces gráficas y las versiones posteriores de Windows, cabía la posibilidad de imaginar un paradigma diferente.

Una interfaz visual, en la que te puedes mover mediante tu ratón, permite maneras diferentes de interactuar con el ordenador, al igual que permite maneras diferentes de escribir el código que da vida a las aplicaciones de estos ordenadores. Por eso en 1991, Microsoft lanza Visual BASIC, el primer programa que te permitía desarrollar una aplicación en BASIC mediante una interfaz visual. Aprovechando el ratón como manera de interactuar, disponías de elementos como botones, campos para introducir datos, textos, imágenes y otras muchas funcionalidades que estaban preconstruidas y que podías ver cómo eran en tiempo real.

Construir la interfaz era tan sencillo como crear una ventana y arrastrar dentro de ella los componentes que necesitaras en tu programa. Cuando quisieras hacer la lógica posterior, podías entrar al detalle y continuar utilizando el código basado en texto para cosas más complejas. Es lo que se conoce como un sistema WYSIWYG (lo que ves es lo que tienes, por sus siglas en inglés).

[image: Interfaz de Microsoft Visual Basic de los años 90, mostrando una calculadora en desarrollo. Se observa el entorno de programación con ventanas de código, botones numéricos y menús desplegables característicos de Windows 3.0, ilustrando las primeras herramientas de desarrollo visual.]

Combinar la interfaz visual para desarrollar la parte con la que el usuario interactúa con el código más «tradicional» para la parte lógica hizo que tuviera una muy buena acogida entre los desarrolladores, especialmente entre aquellos que se sentían un poco intimidados por el mundo del código más tradicional. Para miles de personas esta herramienta fue su primer acercamiento a desarrollar un software gracias a que era mucho más intuitivo.

¿Qué nivel de abstracción quieres?

Estas herramientas de desarrollo visual no son más que pequeñas abstracciones del código que está por debajo. Por ejemplo, imagina que el código para añadir un botón en HTML es:

<button type=«button»>Click Me!</button>

Yo podría escribirlo literalmente en un editor de texto, pero si dispongo de una interfaz que me permite simplemente hacer clic en un lugar y que eso añada un botón a mi aplicación, estaremos haciendo realmente lo mismo.

Cuando yo añado un botón mediante una interfaz visual, por detrás se está generando el código correspondiente que hace que mi aplicación tenga este botón y que sea completamente funcional. Literalmente, es una manera más rápida de escribir el código —sucede sin que nos demos cuenta—.

Sin embargo, incluso ese código que veíamos anteriormente es una simplificación y abstracción de lo que sucede realmente. Los ordenadores no entienden de interfaces visuales, ni de líneas de código ni nada por el estilo. Son una combinación de bits, pequeños elementos que pueden estar en dos estados (1 y 0). Combinando estos bits, es posible hacer operaciones lógicas con ellos para conseguir lo que nosotros buscamos.

No verás a nadie programar con 1 y 0 hoy en día, entonces, ¿cómo hacemos que nuestros programas funcionen?

La respuesta es que buscamos hacernos la vida un poco más sencilla gracias a la creación de herramientas que simplifiquen la tarea de desarrollar. Una primera aproximación podría ser el lenguaje ensamblador, que es lo más cercano que existe a desarrollar con bits. Un ejemplo de código podría ser:

MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

MOV DL, 3h ; Load DL with immediate value 3

Este lenguaje nos permite interactuar con la memoria de nuestro ordenador mediante una serie de instrucciones que nos facilitan el realizar las operaciones que queremos que nuestro código pueda hacer.

Pero continúa siendo un lenguaje difícil de gestionar, ya que es un lenguaje de programación de bajo nivel, muy muy cerca de cómo se interactúa con estos bits. La realidad es que, al final, todos los programas que utilizamos hoy continúan siendo —bajo unas cuantas capas— código de este estilo. Lenguajes como JavaScript, que probablemente te suenen, son lenguajes de alto nivel que permiten escribir un código mucho más legible y entendible por humanos.

Buscamos de nuevo la sencillez a la hora de conseguir que los ordenadores hagan lo que nosotros buscamos, por lo que creamos simplificaciones que por detrás hacen lo mismo. Sin embargo, por detrás habrá un compilador que se encargará de convertir el código legible por humanos en código que el ordenador pueda entender.

Veámoslo con un ejemplo, en este caso en JavaScript. Esta es una función que coge dos números y los suma:

const sumar = (a, b) => a + b;

Si te fijas, lo que está ocurriendo es que paso dos números, pongamos 1 y 3, y los suma, devolviéndome en este caso 4. Pero para que esto suceda, es necesario que el ordenador entienda que estás queriendo definir una constante con el verbo «const», que esa variable se llama «sumar» y que el signo «+» significa que quieres sumar dos números. Esto es completamente transparente para ti; sin embargo, por detrás alguien ha tenido que programar que esto suceda.

El desarrollo visual es, simplemente, un nivel de abstracción más del código.

La abstracción visual

Con la aparición de la interfaz visual y Visual Basic, empezaron a evolucionar los lenguajes y con ello vinieron mejoras a la hora de escribir ese código, como los IDE (entornos de desarrollo), que facilitaban enormemente la tarea de escribir código.

Estos entornos son pequeñas herramientas que proporcionan una experiencia más refinada a la hora de desarrollar, permitiéndote, entre otras cosas, tener mejor organizados los archivos de un proyecto, instalar las librerías y dependencias necesarias o colorear el texto de un programa para mejorar su legibilidad.

Entre esas funcionalidades que añaden estos IDE está el autocompletado, que sugiere componentes y elementos que añadir a tu aplicación. De esta manera es mucho más rápido crear el código, ahorrando tiempo innecesario para, por ejemplo, añadir un nuevo contenedor, un nuevo botón o implementar una determinada función.

Sin embargo, tienes que dar un salto entre la aplicación construida (que vive en un servidor o en un entorno de pruebas) y el código. No están intrínsecamente relacionadas una y otra, teniendo que volver al código para realizar cualquier modificación, actualizar los cambios y ver el resultado en la aplicación desarrollada.

Si llevamos esto un paso más allá y convertimos estas sugerencias del autocompletado en botones y accesos directos —como hacía Visual Basic—, estaremos más cerca de tener una interfaz visual que nos ayude a construir ese código. Pero si además de esto hacemos que la propia aplicación sea accesible dentro de lo que estamos construyendo, estaremos en el entorno del desarrollo visual. En este entorno, tendremos directamente nuestra aplicación a la vista y podremos interactuar con sus elementos, seleccionándolos directamente con nuestro ratón.

Puedo añadir nuevos elementos y componentes simplemente arrastrándolos hasta mi aplicación y posteriormente modificar cada una de las propiedades haciendo clic en botones, en vez de escribir el código.

[image: Interfaz de diseño web en modo oscuro con un panel central mostrando un mensaje de acceso y paneles laterales con herramientas de edición. La pantalla muestra una aplicación de desarrollo visual tipo no-code con múltiples barras de herramientas.]

Por ejemplo, yo puedo añadir un texto y en vez de escribir el siguiente código:

<body>

<p style=«font-family: ‘Arial’, sans-serif; color: #0066cc; font-size: 24px; text-decoration: underline;»>

Este es un texto estilizado con CSS inline

</p>

</body>

En mi interfaz visual, puedo definir cada uno de estos elementos, poniendo el texto en Arial, el color correspondiente y su tamaño. Al hacer clic en estos botones, iré construyendo el mismo código que hemos visto, con la ventaja de que puedo ver en tiempo real cómo los cambios que hago en el código al pulsar estos botones se traducen a mi aplicación. Pero por detrás, sin que nos demos cuenta, está sucediendo la magia de los desarrollos visuales. El código se escribe de manera transparente para nosotros.

La clave del desarrollo visual reside precisamente en permitirnos interactuar con el lenguaje de programación de una forma diferente, con un nivel de abstracción mayor que permite que cualquier persona pueda arrastrar un botón a la pantalla sin tener que saber cómo es el código para añadir un botón.

[image: Interfaz de una aplicación de desarrollo con diseño oscuro. Se muestra un panel de navegación a la izquierda, un área central con código o texto estructurado, y un panel derecho que muestra una vista previa o información adicional sobre el contenido que se está editando.]

La lógica también puede ser visual

Cuando hablábamos de Visual Basic, lo veíamos como una manera de poder construir el frontal de la aplicación, lo que el usuario toca y con lo que interactúa de manera visual. Decíamos también que, para la lógica, el usuario podía añadir código, haciendo que esto funcionara de la manera que esperábamos.

Escribir la lógica en código es programar. Traducir las necesidades de la aplicación a una lógica que pueda ser descrita de una manera concisa es lo que hace que programar sea realmente atractivo. El hecho de convertir el «quiero que cuando pulse en este botón me lleve a una página de detalle y me muestre una notificación» a una serie de pasos lógicos que tiene que hacer la aplicación.

Y aunque la manera más pragmática de escribir esta lógica ha sido mayoritariamente el código escrito, hay campos, como el desarrollo de videojuegos, que han adoptado paradigmas diferentes, tratando de simplificar esta lógica y de nuevo acercar a las personas con menos conocimiento de código —o que buscan una mayor rapidez— la posibilidad de desarrollarlo.

Para construir esta lógica se pueden utilizar también nodos, como hace el lenguaje de programación de Unity.

[image: Diagrama de flujo visual en fondo oscuro que muestra un sistema de nodos interconectados con líneas blancas. Representa una programación visual o interfaz de desarrollo no-code, relacionada con el tema del desarrollo visual en computación.]

Si volvemos al concepto de abstracción, cada uno de los nodos que vemos es una «caja negra» que hace una acción. Por ejemplo, una caja puede obtener la pulsación de teclado del usuario, mientras que otra caja puede hacer que el personaje se mueva una cierta cantidad de píxeles hacia delante y otra hacia los lados.

De esta manera, conectando estas cajas entre sí es posible hacer la misma lógica que si escribiéramos en código, ya que cada caja negra es cada una de las funciones que es posible hacer en código. Esto permite que este lenguaje sea uno de los preferidos para las personas que empiezan en el mundo del desarrollo de videojuegos, ya que es una manera mucho más visual y sencilla de aprender que hacerlo con lenguajes como C#.

De nuevo, lo importante aquí no es cómo funciona cada uno de los nodos por dentro, sino que seas capaz de conectarlos entre sí para hacer que tu programa haga lo que realmente quieres.

Aprender a programar es fácil con Scratch

La programación ha entrado en el currículum de la mayoría de los centros educativos de todo el mundo. Es sin duda uno de los grandes objetivos y retos de los colegios, especialmente de primaria, dando en las asignaturas de tecnología pequeñas nociones de programación que sirvan para encender la chispa de algunos de estos niños que acabarán convirtiéndose en programadores cuando sean mayores.

Si intentáramos enseñar a niños de entre ocho y doce años a programar, probablemente se sentirían abrumados ante la perspectiva de tener que aprender a escribir el código en una interfaz complicada y no conseguiríamos despertar la creatividad de los alumnos. Por eso han aparecido distintas herramientas que acerquen la programación a los más jóvenes de una manera simplificada. Y la pionera en esto y la más conocida es, sin duda, Scratch.

Esta herramienta nace como un desarrollo del MIT Media Lab, con el concepto de hacer que pequeños caracteres, como dinosaurios, tortugas o ratones, se puedan mover con una serie de instrucciones. Por ejemplo puedes añadir un bloque que haga que se mueva dos pasos a la derecha, o que se gire, o que diga una palabra.

Para crear esta lógica, han desarrollado una serie de bloques que se conectan entre sí y que permiten hacer toda la lógica necesaria, con una interfaz realmente intuitiva pensada para que los niños lo vean como un juego y no como algo complejo y anticuado.

Pero tras esta interfaz en apariencia amigable y sencilla, se esconde un auténtico lenguaje de programación que te permite hacer prácticamente cualquier lógica que tengas en mente, ya que incluye funciones tan avanzadas como loops o bucles, condicionales o guardar variables, permitiendo construir auténticos desarrollos a base de unir los pequeños bloques entre sí, despertando la imaginación de los más jóvenes, que sin darse cuenta están aprendiendo a programar.

[image: Interfaz de una plataforma de desarrollo visual mostrando un panel de navegación a la izquierda con varias opciones, un área de diseño central con un elemento gráfico (silueta oscura), y controles de edición en la parte inferior. Representa una herramienta de desarrollo No-code.]

Bajando la barrera de entrada a la programación

Al final, el mundo del desarrollo visual solo es una abstracción más sobre el código que posteriormente el ordenador ejecutará. Entonces, ¿por qué tiene sentido?

La gran diferencia que permite el desarrollo visual es bajar la barrera de entrada a la hora de desarrollar software. Aprender a programar no es algo que sea extremadamente sencillo, ni que en semanas o meses puedas dominar, sino que requiere una gran inversión de tiempo y esfuerzo, y puede que ni aun así sea algo para todo el mundo. Lenguajes como Scratch acercan esto a los más jóvenes, que disfrutan de crear estos pequeños juguetes, divirtiéndose en el proceso, para más adelante tener que aprender un lenguaje más tradicional si quieren dedicarse a esto profesionalmente.

OEBPS/image/image_5_1.jpg
Hoode fcomumes | d Somnds

@ s

o TS

sauna

o U

o BIENEEX)

sz

plysound O+ untldone

@
Q

[

-

0
¢ -}

e

'3
0

L)

Sore | sorvr

°

o 06

OEBPS/font/EBGaramond-Regular.otf

OEBPS/image/cleanshot_2024_09_21_at_11_29_402x.jpg
‘Custom Functions.
fnctorscrt

Pubspec
pubepecyom

Firestore Indoxes

Py,

ot e ot e ' L

1 TomPopidet stends Stateutildoet £
e escmpeapetesur i

Class JomeagedetState extends SttesmPgsilae

emerrise
o nrstate ¢
o nittntels

et scren v, posmeerss C:scee. s omaase)
Miets1g6 5 st S e o) o safeeiSatel) O

amerrise
e sipare) ¢

iy

aerrise
P
oo 0 = Focussape.ofcontextntocatl,

&

Quitate el sindrome del
impostor, anda.

T —

OEBPS/image/color_istock_862480892.jpg
M _

OEBPS/image/image_1_1.jpg
New music
recordings per year 6,210,002

[1900 1950 2000

OEBPS/image/color_image_1_1_1.jpg
" Desk File/Print Edit

]

Lisa Paper

LisaDraw Paper 08/30

Clipboard
3.14285714286

Format
Reverse Polish
vFour Function
Adding Machine

vVShow Tape

Hide Tape
Advance Tape

Hide Registers

TIAazTiazee

OEBPS/image/image_2_1.jpg
=[Clock= B = Program Manager
Settings File_Options_Window _Help
ST Main

=0
File Manager Contiol Panel PrintManager Clipboard DOS Frompt
% =] Accessories
e [@ oa &

=

Wiite Paintbrush Terminal Notepad Recordef

= File Manager [+~ = Re S

File Disk Tree View Options Game Skill _Help
- | Calendar Cacuator
Window _Help

CAWINDOWS
Eacy
[—EaseTup

&3 WINDO'

Selected 1 file(s] [0 bytes] out of 76

OEBPS/image/color_image.jpg
Number of new book titles
per 1 million people

s

1810 1850 190

1950

OEBPS/image/image_3_1.jpg
= Microsoft Visual Basic [design] ~1-

File Edit Code Run Window Help

Caption | B] 120,600 |3 ussxuss
P = Calculator BE B CALC.MAK ~
= 31
B o] (Ve]
e) Global.bas Global
Ciof 15t o1 (51 (=1 (=) e cue
X|®
4 IB el [

Et|El =] CALC.FRM [~1-]
&= B 1 IE Object: [Number() *] Proc: [Click :
Bl= " Click event procedure for number Keys (0-9).

= * Appends new number to the number in the display.
[im) .

Sub Number_Click (Index As Integer)

| If Lastinput <> “"NUMS" Then
Readout.Caption = "
DecimalFlag = FALSE

End If

Readout.Caption = Readout.Caption + Number(Index).Ca
LastInput = “NUHS"
}E End Sub
a g

File Manager Program Manager

OEBPS/image/cleanshot_2024_09_21_at_11_26_042x.jpg
s snisrtionio e

00= mm® v 02 @ e «» (e8>
ogew g "™ @
= ® ® L1
[
Lo——

-
Quitate el sindrome del ad

o mpettoranca — -
: = e —— e

@ SRR ooe

e T -

00 ¥ : . .

o=
sl = g s a

OEBPS/image/MU006332_cubierta.jpg
Alex Vaughtton

Revolucion

<[>
COBE

CONSTRUYE NEGOCIOS
SIN APRENDER A PROGRAMAR

ANAYA

OEBPS/image/9788441552869-5.jpg
Revolucion

<NO>
COLE

ANAYA

OEBPS/image/image_4_1.jpg
Suiten

)
Eae

o o

Sa

Eh e

—
| Update
Event
=
nput
OB Getinputsting

K s

oA AxB®

o0 @ xmde
o vag

