
[image: cover]


© Georg E. Schäfer, September 2020

The contents of this book were compiled and edited with great care. All the same, the author and the publisher accept no liability and provide no guarantee that there will be no errors in this book. Whenever the reader finds errors or misleading information and reports this to the author, the information will be used to improve the next edition. If a copyright or trade mark symbol is not attached to product names or other information, this does not indicate that there is no copyright. Contributions and comments are welcome especially from ‘veterans’ who worked for many years with Information and Communication Technology.

Please mail to georg-ernst.schaefer@web.de.


This book is dedicated to Hilde, Julia, Florian and Paul, Leon and Jona. May it inspire them and all other readers.


INTRODUCTION

Computer Science is no longer limited to the delivery and operation of services to simplify our daily life. Ten years ago we were happy with services like navigation of our cars through places where we have never been, the automatic update of our mobile devices and simple possibilities to communicate with friends and relatives using social networks. Today computing power accompanies us day and night. Avatars considered in 2000 a dream of a faraway future now work for us imperceptibly. Computing in one of the many instances find new proofs for century old mathematical problems. Social networks find mates from our early childhood by automatic face recognition no matter where they live and clouds provide automatic synchronization of documents on the globe. Analysing big databases with medical data, computers propose cures your medical expert might not have considered. Some smartphone apps or health bands around our arm tell us more about the state of our body than intensive traditional medical check-ups. But hate messages, fake news, cyber attacks and political misuse e.g. to influence national elections are a fact, too.

Substitutions of human reasoning by computer algorithms occur in today’s world in a perpetually faster way. Exponentially growing knowledge, financial crisis, COVID-19 therapies, rapid establishment of a mobile phone infrastructure in Africa, matchless economic rise of China, and military and cultural conflicts now coexist on a global level. New biological viruses, found in one part of the world, are neutralized a few days or weeks later with universal knowledge from other parts of the world. Open and fast processing of information provides the only possibility to manage this diversity in a prosperous, peaceful world with the freedom of speech, research and of stability. Computer Science is at the heart of this transformation.


Fuzzy borders in timelines

Throughout this book, information about the date of inventions and discoveries is provided. We recall what most experts know. The first version of a product or specification is rarely a mature tool for practical use. A product, released in 1970, needs a sales force to explain it to the customers, delivery to customize and install it, field engineers to maintain and update it and teachers to explain the potentials. So the reader should add three or five more years to the release date to imagine the computing reality of the past.



In spite of such concussions, computers – except quantum computes - still work in a step by step calculation mode. Their simple arithmetic operations are not much different from the early instructions of the central processing units. What efforts were taken? What concepts were used?

In spite of all achievements, there seem to be white islands. All computer intelligence installed in the world could not tell what had happened in March 2014 to flight MH 370. This flight of a Boeing-777 disappeared from the radar screens and got lost in the Indian Ocean with 390 people in it. There are good reasons to understand the relative position between humans and computers. What are computers doing? Where can we trust this new virtual world and where is suspicion mandatory? In mid-2020, people desperately hope that computers could find medication and vaccine for COVID-19.

Computing empowers billions of people, rich and poor. Computing was used successfully in settling conflicts, building new companies and creating jobs. Computing is not positive by itself. Many organizations and politicians felt painful consequences of social media systems and revelations of documents. Some social changes were successful because interested groups used advanced computing technology, like video servers and smartphones. Computing needs to be organized and shaped to serve us. If we do that, and there is no alternative, computers will never take control of our mind and world.

The language of today’s global information and knowledge society is English. The rise of ubiquitous use of Information and Communication Technology (ICT) is connected to the world wide use of English. That is why this book is also written in English. The history of English informs us about a variety of English languages like American, British, Indian, African, European or Australian English.1 Like the different versions of English language the ways to the information and knowledge society are and will be individual paths on a mainstream progress.

Tomorrow, robots might help us at home, when we are sick, or at work. More powerful information and picture processing will help us to become more productive and thus cope with demographic challenges. Some readers may smile when they read this, thinking that this will never happen. They are in respectable company. Even the researchers and inventors of information and communication systems regularly thought so in the 1950s. They should have been insiders at the time. Nevertheless they did not see the technologies and methods emerge that shaped today's world, forty to sixty years later.

One or two big computers will be enough for the whole world, a CEO of a leading computer company said, when that “big computer” had less computational power than a cheap cell phone in the 1990s. Are we more aware of the technologies and methods that pioneers develop today for the next 40 years?

A closer look, how transformation happened in about 100 years from 1910 till 2020, is time well spent. History uncovers timelines of industrial, financial and sociological progress. Extrapolating these trends, history empowers us to navigate our understanding of the future.

Born in 1950, the author studied Mathematics, Physics and Computer Science. During his professional career, he worked with the computer systems of all major manufacturers and in different application areas. Starting as system analyst, he later supported the sales division, implemented new projects and infrastructures. When he joined the government, he helped to build up the privacy commissioner’s agency and later coordinated information and communication technologies (ICT) on European level as well as on Local, Federal and State level in Germany for two decades. As an employee of a American company and later as customer, the author got a deep insight into the laboratories and production sites of the leading American and European ICT companies.

Much of this book’s information derives from the author’s personal documents and his own experience. The emphasis is on general computing and not on the microprocessors in machines like laboratory equipment. For readers with interest in this area, we recommend Stephen G. Nash’s “History of Scientific Computing”.2 Our goal is to provide an easy to understand, fascinating report on the history of computing for all people interested in computing, no matter what their professional training was.

“A historian who merely reads about a field without getting deeply involved and making significant contributions himself is apt to be a mere voyeur. He will not understand the act of creation, and hence he will miss the essence of what we want …”.3 The author hopes the reader gets more profit from this book than from a heartless report of an ignorant voyeur.

Most insiders of Computer Science saw their work utterly misunderstood by some. The author remembers a discussion with jurists in his team. They seriously asked him to develop a police computer that can only function according to the law. The response, that a bread knife can always be used to kill people, opened their perspective. Technology conquers new and unexpected applications. In 1948, Howard Aiken, designer of the MARK I calculator, saw only a commercial market for five or six of such calculators.4

We hope that this easy to read presentation of some basic ideas, that brought global knowledge in our homes and mobile phones, will allow readers to assess computing comparable to other evolutionary technologies. If humans live in an incomprehensible environment, they lose orientation and motivation to design life and society. Computing needs to be explained in an easy way, just like biology, electricity, gas networks and transportation with motor vehicles, bikes and solar vehicles. There is a further objective: The reader should see that computing is built on very simple ideas. Much innovation is possible. We only just made the first step in computing.

The overall objective is to reduce the myths many get in mind when dealing with computers. Some feel, computers are mathematics and much more of the things they never ‘really understood’ in school. There must be some magic about it. Myths should be instanced to assess the realistic implications.5

We hope many readers see in the timelines the dominant trends of progress in the areas covered by this history book. The trends enforced each other and brought, again and again, new functionality to the market. Piling up material goods, provides only a linear increase in a pile of goods. Who piles up information gets an exponential increase of knowledge. How that? Adding “-“ and “>” produces an arrow “→”. If we change the position of these two items we get “↓” or “↑” with different meanings. This meaning was not transmitted with “-“ and “>”. Art, poetry and architecture work on this “growth” basis. Computing and knowledge management work likewise. Considerations about the nature of knowledge and information are part of Information Theory.6 Since around 2000, we understand content syndication and the way it empowers our systems. Mashup web applications combine geo-referenced data with other content like cyclone warnings, traffic information, burglary incidents or house prices. The technical aspects are reduced to one of many considerations, although still of great importance, in this context.

Law, contracts, other regulation and politics protect, organize and shape modern technology and how it is applied. There are ideas like freeware, community built open source systems, and proprietary, quality assured software as well as net neutrality as one basis of social and commercial development of multibillion euro and dollar markets. The privacy laws rule the way we process personal data with computers. Copyright legislation says who can use programs and design concepts. A history of technology is not complete without looking at these subjects.

The author asked veterans from computer technology to provide further details. These experts felt uneasy about possible contributions humbly referring to their narrow view on the technology. A few former colleagues provided valuable information and support. The author especially thanks his wife Hilde for sustainable encouragement and help and his brother Fred Schäfer for a lot of invaluable information and constant motivation.

Some papers about the history of Artificial Intelligence, Neural Networks etc. tell us that these concepts were first introduced in the 1940s and 1950s. No doubt, researchers of this time speculated and projected computing power to learn by itself, to solve existential problems for mankind and to “think”. All this was not what today we consider project work delivering results in a financially defined time frame. This history book reduces its report to the events when precise algorithms or solutions became available.


1. INTENTIONS OF THIS HISTORY OF COMPUTER SCIENCE

Although we live in the information society, where computers and microprocessor are the basis of prosperity and everyone’s daily companions, we do not have a picture of the history of computer science as a whole. Many books and other documents were published on specific historical aspects of computer science.7 Researchers and inventors told their lives and explained their achievements.8 9 10 11 A free collection “Computer Science Bibliographies” is available in the Internet.12 There is no integrated documentation of the development of computer science, customer’s needs and legal solutions, applications and the mathematical and logical foundations. “The history of technology in general is not well documented. In fact, it is hardly documented at all.”13

A book outlining a 70-year timeline of ideas around computers – technological, mathematical, organizational, financial and legal - that shaped society will undoubtedly provide a lot of insight. Information and Communication technology are either the reason for transformation or a catalyst. When the veterinarians found out that the mating of animals according to pre-calculated strategies based on some algorithms (using animal characteristics) improves food supply, European politicians passed a law introducing animal registers. Soon other continents, like the U.S.A., followed. Robots, e.g. for medical hip operations, improved the health systems worldwide. “Just-in-time” logistics revolutionized industry. These are only a few examples that demonstrate the power of computing based transformations. Where are we going? What transformations come next? How can we foresee and manage them? These are vital questions. One answer results from an extrapolation of the history of computing.


THINK is the slogan of IBM since 1924. Charles Flint integrated three little companies June 16, 1911, and Thomas Watson Sr. joined him in 1914. Howard Aiken built the first calculator Harvard Mark I for IBM, a non-binary but programmable calculator. The commercial success of IBM began with the IBM 603 Electronic Multiplier. Later IBM proved to be particularly successful with its mainframes using for decades the same basic code and instruction set architecture. IBM set quality standards with its architectures (like e.g. System Network Architecture SNA, System Application Architecture SAA, with several cryptographic architectures). IBM’s PC operating system OS/2 had important advantages over DOS / Windows for the computing environments of big customers. IBM was the first company that invented “computing on demand” which it developed to cloud computing. IBM is still a leading technology provider, research company and an important service provider e.g. with the Smarter Planet Concept. (Kevin Maney, Steve Hamm, Jeffrey M.O’Brien, Im Dienst der Welt, IBM Press – Pearson Plc, 2011)



We decided to try to fill that gap in library shelves of the history books. For the author, it was a pleasure to compose it. If someday others will, under the same objective, write another book and highlight other aspects, we could get further help to understand ICT history. To further advance computer science it is helpful to look back. Many ideas, we might feel being new, were already drawn up by others.

Gottfried Wilhelm Leibniz (1646 – 1716) considered clear human thinking as a kind of calculation. God – he thought – calculated with his more powerful means the world. Therefore, he invented a suitable language and algebra (called characteristica universalis ) with many other concepts like e.g. binary digits. He built a calculation machine (supra hominem, “better than mankind”), based on the decimal system, in 1673 and demonstrated it at the Royal Society in London.14 From today’s point of view, Leibniz abilities stayed much behind his expectations. A long row of similar bold and far thinking personalities worked together, some developing methods, others developing devices and hardware, and some extremely industrious and intelligent people coded millions of lines. The history of computing science is not only a history of technology but also a history of motivation, tenacity and industry.

Industry indeed was necessary, because Kurt Gödel disappointed in 1931 philosophers and mathematicians by establishing that the correctness of models and theories cannot be proved. Error-free computer systems and theories are impossible to be built, except for trivial and simple situations. So students of computer science learned that the absence of errors can never be proved. A lot of time has to be spent to find the obvious errors with elaborated testing for hours, day and night. Students of law schools learned that computer users have to pay providers of software and computer systems to get information about the errors and deficiencies of products. Such legal constructs are not possible for “conventional” products like cars, buildings or dish washers. Normally, guarantees, that come with the products, allow us to give malfunctioning merchandise back to those who produced or sold it. As computer systems are never faultless, computer and software manufacturers provide guarantees only through costly maintenance. Maintenance costs of much of modern commercial software are currently about 20% per year of the price of the original licence, in Europe.

Gödels findings about the extremely limited possibilities of mathematicians to prove a theorem still hold today. We are never sure if a set of axioms of practical importance is really non-contradictory and non-redundant. What mathematicians find even more difficult to prove is the existence of the objects they defined with their axioms. But scientists are working hard to find automated provers. Several methods were found and are currently applied. Computers proved mathematical theorems, first in the 1960s. The hope is that they could check mathematical proofs of 100 pages or more. In 2012/2013 experts from all over the world met in Princeton, NJ, and discussed the current state of the art. Many theorems could already be proved with computers and new insight was found. But the state of the art in 2014 would best be described by: “Although automation is an exciting and ambitious goal, there is little realistic hope of having automated provers routinely prove assertions with real mathematical depth.”15 Writing software could be seen as creating a mathematical theory on the application area of this software. Automatic provers for mathematical theories could test large software systems. The pessimistic result of the mathematicians working in this filed is an important reason why software quality is restricted and will be restricted for the next decades.

The thinking of Leibniz and Abu Dscha'far Muhammad ibn Musa al-Chwarizmi (780 B.C. – 850 B.C.), whose name is the origin of the word “algorithm”, lead to the idea of a calculation, which is done in a sequential and step-by-step approach. Parallel computing or associative computing was not seriously investigated at that time. Alan Turing formalized that concept with his Turing Machine. Its calculation steps were thought to be on a tape illustrating in that way a sequential processing mode. When Johann Neumann (John von Neumann) looked at the problem from an engineering point of view he envisaged the computer as a device with data and instructions being in one single memory.16 17 This single memory was structured in cells numbered from 0 to any integer which looked technologically feasible and realistic at the time. Thus the machine architecture, as we still know it, was drawn up.

We here use the concept of pseudo code to demonstrate the concept. The integrated circuit had still to be invented, and the microprocessor was not yet on the market:



	Number of Memory Cell
	Content



	0
	Start program e.g. for the calculation of 5!



	1
	Read starting number from cell number 1000



	2
	Do one or more operations with the starting number



	3
	Go back to memory cell 2 if the endpoint is not yet reached



	4
	….



	1000
	starting number, let’s say: 5




These ideas may look rather simple, like many ideas in Computer Science. However, Computer Science proofs from the beginning that considerable theoretical efforts are necessary to achieve small practical success. At a time when technicians were still experimenting with mechanical solutions, with slow tubes, practically no memory and poor quality, the software engineers and scientists produced visionary concepts. The following table shows some milestones18:



	Year
	Software / Methods
	Hardware



	1941
	Alan Turing presents the concept of a universal machine (Turing machine).
	



	1943-1944
	John Mauchly and J. Presper Eckert (members of the University of Pennsylvania) build with vacuum tubes the Electronic Numerical Integraor and Calculator (ENIAC).
	The ENIAC (1942) was mostly programmed by plugboards not by languages. Rotating magnetic memory follows the early insufficient thermal and mechanical concepts.



	1947
	Flowcharts developed (Goldstine, John v. Neumann)
	



	1945-1950
	Machine-level instructions, Code generating algorithm
	Most machines were of bit serial designs and devices with mixed serial/parallel design



	
1952
	First compilers
	UNIVAC I had a main memory of 1000 words of 12 characters each. Input/output was done externally on separate devices.



	1956
	Mark I DB IBM 702, early database manager, FORTRAN developed
	The machines could be viewed as tabulating calculators that justified first ideas of more systematic and powerful digital computers.




Advances in other scientific fields were necessary to achieve technological breakthrough. When the microprocessor was developed in a further step, programming languages with data structures, re-usability and code sharing became a necessity. It was then that far looking scientists and engineers found an Operating System (OS) a convenient way to use the fast processors. The OS allowed first parallel running programs and later using the same computer in a time sharing mode.



[image: ]

Fig. 1: Storage Media from the 1970’s till today





Like today, people were thinking that the computing power of their time would be more than anyone needed. That was and is short sighted. After the time sharing systems were marketed, e.g. the Multi Virtual System (MVS) of IBM, engineers found that the path length (calculated in terms of ‘number of instructions’) to control the terminals was too long for such an expensive machine. Little and cheap microprocessors in the terminals could make the whole system cheaper. Although IBM did an excellent job developing computers in that direction, they did not clearly enough see that semi-intelligent terminals are the natural father of the PC and the 3-tier computing architecture.


Konrad Zuse (June 22, 1910 – December 18, 1995) began in 1935 in Berlin to construct a computer in his parents’ home. In 1938, he presented his concept based on tubes and conventional lamps. He told it could achieve up to 10.000 clock cycles per second. His audience considered his imagination running wild. Zuse constructed prototype computers Z1, Z2 and finally his Z3. In May 1941, the world’s first Turing-complete computer Z3 became operational with binary 22 Bit operations, floating point arithmetic, 64 word storage, and controlled by tapes with 8 channels. Output was displayed on lamps and the speed was 3 sec. for multiplication, division and square root operations. In 1945 during World War II, Zuse developed his Z4 and a high level programming language “Plankalkül”. His company ZUSE KG came into trouble in 1960, as in the U.S. many people understood the potential of computers much better than in Europe. (Konrad Zuse, Der Computer Mein Lebenswerk, Springer Verlag Berlin, 1984)



The PC came, and a hierarchy (or ‘farm’) of servers challenged the mainframe and – in some people’s minds – even the super computer. The three tier concept worked well with the technology at hand at the time for database technology, application and network servers.

The process of challenge and response is not only a concept of cryptography. It is the way of technological progress. The market now offers smartphones and car media systems. Soon we may look through Internet-driven spectacles, from Google or other companies.

Although the path of development was, is and will forever be long and difficult (‘stony’), computer science is rapidly developing, not only as a science itself but as a motor for the development of all areas of today’s society.



[image: ]

Fig. 2: Why Main Memory was so expensive!





We now live in the information and knowledge society and computers. This became evident when in 1999 enterprises and governments were anxious whether computer systems process properly the change from 31.12.1999 to 01.01.2000. Many old and badly maintained application programs had hundreds of lines of program code with hard coded “19xx” date fields. These application programs could not be used after 1st January 2000. In 1999, a migration to other provider's programs was compulsory. Shares of the efficient ICT companies listed on the share market of the “New Economy” rose to unprecedented heights. In 2000 - 2001, the Dotcom bubble of the share market collapsed. Although many inefficient companies left the market, and the share prices of ICT companies listed considerably lower, the share market recovered soon on a stable level. Another example for the speed of changes and the extraordinary level of transparency inherent to the information and knowledge society provides the global financial crisis 2007 to 2008. The data and the problems were soon understood. Of course, the political and social protagonists needed and – looking especially at the Euro zone – still need time to reorganize society and economy. This is one reason for the Open Government movement that started prominently with Barak Obamas presidency. One could even go back to the fall of the Soviet Union with e.g. the re-unification of Germany. It is a fact that, after 1989, the treaty for the reunification of Germany could only be completed and unanimously approved by all parliaments and parties concerned within less than one year after the fall of the Berlin Wall on November 9, 1998, because electronic Office Automation Systems and other ICT applications were used.

What strikes everyone, who begins to study Computer Science as an amazing area of human thinking, is the gap between the incredible achievements (like artificial intelligence or big data analysis) and the difficulties to produce error-free software. Handling errors under a framework of limited budget, insufficient time and tough objectives is a substantial occupation of a project manager.

In 1978, a computer with a central processing unit (CPU), able to do about 1 million calculations per second, cost about 1 million Euros. Today we use “Ultrabooks” or smartphones, slate or tablet computers with several processing units working in parallel, each 1000 times faster than those earlier CPUs. This computing power is on sale today for a fraction of the prize. 30 years ago we were happy to have a hundred or so electric motors to help us vacuum cleaning or starting our cars. Today, one person uses even more electric gear plus a hundred or more artificial intelligence units (‘avatars’) that help us manage daily life: Cell phone, television, translator, DVD device and navigation unit in the car. Hundreds of Apps and App-management tools are daily companions. People trust these ubiquitous intelligent avatars, although there is no way to prove their correctness.







