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Zusammenfassung

Software, die im automobilen Umfeld eingesetzt wird, hat in der Regel mit sicherheitskritischen Systemen zu tun. Aus diesem Grund ist die funktionale Korrektheit der Software von großer Bedeutung. Ein Mittel zum Nachweis derselben ist die Statische Software Analyse, welche Laufzeitfehler in Software identifizieren kann und ein Standard im Automobilbereich geworden ist. Der kritischste Laufzeitfehler ist einer, der nur sporadisch auftritt und daher nur sehr schwer auffindbar und reproduzierbar ist. Eine Ursache für einen solchen Fehler ist zum Beispiel eine Race Condition. Die Einführung von Multicore Hardware erlaubt eine tatsächliche parallele Ausführung der Software, was zur Folge hat, dass die Wahrscheinlichkeit für das Vorkommen einer kritischen Race Condition zunimmt.

In der vorliegenden Thesis wird MEMICS, ein Ansatz zur Verifikation von Software, vorgestellt. Um genaue Ergebnisse zu erzielen, arbeitet MEMICS basierend auf Bounded Model Checking, einer Technik aus dem Bereich der formalen Verifikation. Das interne Modell kann ein Steuergerät aus der Automobil-Branche inklusive der Hardware-Konfiguration und des dazugehörigen Betriebssystems, zum Beispiel AUTOSAR oder OSEK, abbilden. Die Verifikations-Einheit in MEMICS ist ein neu entwickelter Interval Constraint Solver mit einem integrierten Speichermodell. MEMICS kann sowohl herkömmliche Laufzeitfehler, wie eine Division durch Null, als auch nebenläufige Laufzeitfehler, zum Beispiel eine kritische Race Condition, identifizieren.



Abstract

Automotive software is mainly concerned with safety critical systems and the functional correctness of the software is very important. Thus static software analysis, being able to detect runtime errors in software, has become a standard in the automotive domain. The most critical runtime error is one which only occurs sporadically and is therefore very difficult to detect and reproduce. A reason for such an error is e. g., a race condition. The introduction of multicore hardware enables an execution of the software in real parallel. Hence, the risk of critical race conditions increases.

This thesis introduces the MEMICS software verification approach. In order to produce precise results, MEMICS works based on the formal verification technique, bounded model checking. The internal model is able to represent an entire automotive control unit, including the hardware configuration as well as real-time operating systems like AUTOSAR and OSEK. The proof engine used to check the model is a newly developed interval constraint solver with an embedded memory model. MEMICS is able to detect common runtime errors, like e. g., a division by zero, as well as concurrent ones, like e. g., a critical race condition.
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Chapter 1

Introduction

Most of the new features – invented in the past few decades – in the automotive domain are based on embedded systems, the so-called electronic control units (ECUs). These ECUs are mainly driven by software and are e.g., used in the following areas:


	Powertrain Electronics: Most common usage is the engine- and transmission-control.

	Chassis Electronics: Monitoring of several safety critical systems, like the anti-lock braking system (ABS) or the electronic stability program (ESP).

	Driver Assistance: Management of several assist systems, like a lane assist, an adaptive cruise control (ACC), or a park assist.

	Active Safety: Most common feature is the airbag-control.

	Infotainment Systems: Management of the navigation system, in-car audio/video and so on.



Many of these systems are safety critical, since a malfunction has the potential to risk human life. Hence, there exists a standard demanding for the functional correctness of the software used in these ECUs. In order to guarantee a correct functional behavior of the software one of the techniques postulated by this standard is the application of static software analysis. In static software analysis the software is analyzed for all different kind of runtime errors without executing the software itself. Since the amount of software used in the automotive domain is growing very fast, the analysis tools must be able to handle up to several million lines of source code. Therefore, most of them work with some kinds of abstraction mechanisms. Hence, the consequence is a lack of precision in their output. Thus, a manual review of the error candidates is necessary. Since most of the ECUs control time critical features, their basis is a real-time operating system implementing several tasks with different priorities. These tasks can interrupt each other depending on their priority, which results in a concurrent execution. This concurrent execution can cause one of the most critical types of runtime errors, the so-called race conditions. Such a race condition is e. g., the concurrent access to the same hardware resource from two different tasks. These race conditions usually only occur sporadically and are therefore very difficult to detect and reproduce. Since an analysis tool has to report any possible race condition over the entire software, the result is an even bigger number of error candidates.

It is not only the software, which is evolving very quickly in the automotive domain, but also is the hardware. The latest innovation in the past few years, is the introduction of multicore hardware to the automotive domain. This new hardware allows the software to be truly executed in parallel. Thus, the probability for critical race conditions increases strongly. Simultaneously, a real parallel execution of software results in more possible interleavings of tasks. Hence, with the strongly increasing amount of error candidates, a manual review is in most cases not feasible any more.

This thesis introduces Memory Interval Constraint Solving (MEMICS), a new software verification approach. MEMICS is able to detect common runtime errors in C/C++ source code, as well as critical concurrent ones. The main goal of MEMICS is to offer precise results. Therefore, it is working based on formal verification, using a technique called bounded model checking. To offer even more precision its internal model is based on an assembly language, instead of directly on the high-level languages C/C++. In addition this model offers structures to configure the entire ECU, including the operating system with tasks, interrupts, and so on, as well as parts of the actual hardware. In order to reduce the search space, MEMICS is equipped with an efficient unrolling mechanism. The heart of the approach itself is a newly developed interval constraint solver with an embedded memory model.

The foundations required in this thesis are located in Chapter 2, including the related work section. In Chapter 3 the new software verification approach (MEMICS) is introduced in detail. The results of test cases, with an additional comparison to related state of the art tools, and the according discussion is located in Chapter 4. An industrial tool-chain is introduced in Chapter 5, in which MEMICS is used to investigate error candidates produced from industrial static software analysis tools. The conclusion and future work is located in Chapter 6.



Chapter 2

Foundations

2.1 Automotive Software

Automotive software is often implemented in the programming languages C [1] or C++ [2]. In this work the term software is restricted to the executable code and nothing else, like e. g., documentation. The focus of this work is – as aforementioned – on the functional correctness of the implemented software, especially on safety critical systems. Since most of these systems have to meet specific timing constraints, they are mainly implemented in real-time systems.

Real-Time Systems

A real-time system [3, 4] has to meet strict timing requirements. The main difference between real-time software and other programs is in their definition of functional correctness. For a common program functional correctness is defined by the valid result of the implemented function(s). In the case of real-time software, functional correctness is defined by the correct result and the amount of time required to compute it.

Such real-time systems are often built on a task basis, where each task is scheduled in a defined time slot and has to provide some functionality in defined deadlines. A common example of such a real-time system is OSEK, which is used in the automotive domain.

2.1.1 OSEK

In the year 1993 the standard “Open Systems and their Interfaces for the Electronics in Motor Vehicles” (OSEK) [5, 6] was introduced by a consortium composed of original equipment manufactures (OEMs) from the automotive domain and Tier 1 suppliers. Since this time, the OSEK-OS has been used as a basis in almost any electronic control unit (ECU) in the automotive domain. The standard provides a lot of features to describe and build task based real-time systems. Another main standard introduced by the OSEK consortium is the “OSEK Implementation Language” (OIL) [7]. This implementation language represents the standard system configuration. It includes the specification of tasks, interrupts, events, resources and so on. Each of the tasks in OSEK has a certain priority. The scheduler of OSEK uses this priority for the execution of tasks. The task – waiting for execution – with the highest priority is selected by the scheduler. In order to avoid problems like deadlocks or priority inversion, OSEK uses the priority ceiling protocol [8, 9], for details see [6]. Since this standard is quite old, the configuration is for single CPUs, only.



