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Abstract—New methods of approximation of step functions with an estimation of the error of the approximation are suggested. The suggested methods do not have any of the disadvantages of traditional approximations of step functions by means of Fourier series and can be used in problems of mathematical modeling of a wide range of processes and systems.
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1. INTRODUCTION


Step functions are widely applied in various areas of scientific research. Technical and mathematical disciplines, such as automatic control theory, electrical and radio engineering, information and signal transmission theory, equations of mathematical physics, theory of vibrations, and differential equations are traditional fields of application [1–3].


Systems with step parameters and functions are considered highly nonlinear structures to emphasize the complexity of obtaining solutions for such structures. Despite the simplicity of step functions in segments, the construction of solutions in problems with step functions on the whole domain of definition requires using special mathematical methods, such as the alignment method [4] with the coordination of the solution by segments and switching surfaces. Generally, application of the alignment method requires overcoming substantial mathematical difficulties, and intricate solutions represented by complex expressions are obtained rather often.


In many cases, researchers rely upon approximation methods using Fourier series [image: ], where {φ1 , φ2 ,… , φn ,…) is an orthogonal system in functional Hilbert space L2[–π,π] of measurable functions with Lebesgue integrable squares, f ∈ L2[–π,π], ck = (f · φk)/ | φk |2. The trigonometric system of 2π periodic functions {1, sin nx, cos nx; n ∈ N} is often taken as an orthogonal system. In this case, the following is fulfilled in the vicinity of discontinuity points [image: ], where Sn(x) is the partial sum of the Fourier series. It is how Gibbs’ phenomenon shows itself [5]. Thus, in the case of a function


f0(x) = sign (sin x)


(1)


the point x = π / m, where m = 2[(n + 1)/2], and [A] is the integral part of the number A , is


the maximum point of the partial sum Sn(f0) of the trigonometric Fourier series [6] with


[image: ]


i.e., the absolute error value [image: ]. It should be noted that [image: ].


The graph of the partial sum S20( f0 ) of the trigonometric series on the interval [-π,π], which illustrates the presence of the Gibbs phenomenon is presented in Fig. 1.




[image: ]


Fig. 1. Presence of the Gibbs phenomenon





What is unpleasant in this case is that the Gibbs effect is generic and is present for any function f ∈ L2[a, b], which has limited variation on the interval [a, b], with isolated discontinuity point x0 ∈ (a, b). The following condition is fulfilled for such functions [6] [image: ], where d = f(x0 + 0) – f(x0 –0).


We show that absolute Δ = Δ(x) and relative δ = δ(x) errors of approximation in the vicinity of discontinuity points may be as large as we please. In fact, [image: ] [image: ].


The function Δ(d) is an infinitely large value, as [image: ]. Such expression as [image: ], where [A] is the integral part of the number A, may be taken as d*.


The proof is identical for the relative error δ(x) = Δ(x)/|f(x)|. Moreover, even when d ∈ R (d ≠ 0) is fixed for any M > 0, the function f(x) ∈ L2[a, b] may be selected in such a way that δ(x0 + 0,d) = Δ(x0 + 0, d)/|f(x0 +0)| > M. The function with |f(x0 + 0)| < Δ(x0 + 0,d)/ M f(x0 + 0) ≠ 0 may be taken as an example for this case.


It should be noted that it is not necessary for the Fourier series to converge at each point even on the set of continuous functions C [–π, π], which is commonly known.


The presence of the Gibbs phenomenon leads to extremely negative consequences of the use of the partial sum of a trigonometric series as an approximating function in fields such as radio engineering and signal transmission.


2. DESCRIPTION OF THE METHOD


In order to eliminate the mentioned disadvantages, new methods of approximation of step functions based on the use of trigonometric expressions represented by recursive functions are suggested in the present paper.


For example, consider the step function (1) in more detail. This function is often used as an example of the application of Fourier series, and, therefore, it is convenient to take this function for comparative analysis of a traditional Fourier series expansion and the suggested method.


Expansion of (1) into Fourier series has all the above mentioned disadvantages. In order to eliminate them, it is proposed to approximate the initial step function by a sequence of recursive periodic functions


{fn(x) | fn(x) = sin((π/2) · fn–1(x)), f1(x) = sin x; n – 1 ∈ N }⊂ C∞[–;π,;π]


(2)


Graphs of the initial function (a thickened line) and its five successive approximations for this case are presented in Fig. 2. It can be seen that, even when n values are relatively small in the iterative procedure (2), the graph of the approximating functions approximates the initial function (1) rather well. In addition, approximating functions obtained using the suggested method do not have any of the disadvantages of Fourier series expansion. There is absolutely no sign of the Gibbs phenomenon.




[image: ]


Fig. 2 Graphs of the initial function and its successive approximation





Certain peculiarities of the proposed approximating iterative procedure are to be mentioned.


It should be noted that functions fn(x) and f0(x) are uneven and periodic ones with a period of 2π. Functions fn(x + π/2) and f0(x + π/2) are even and periodic. Therefore, it is sufficient to consider the sequence of approximating functions (2) on the interval [0, π/2].


Let {fn(x)}⊂ L2 [0, π/2] and f0(x) ∈ L2 [0, π / 2]. As [image: ] (due to the boundedness of functions fn(x)) and [image: ] (due to the monotonicity of functions fn(x) on the interval [0,π/2]), then, a subsequence converging at each point of [0, π/2] to a certain function f with [image: ] may be extracted from the sequence {fn(x)} based on Helly’s theorem. The possibility of taking the initial function f0(x) as such function f will be shown below.


Theorem 1. A sequence of functions fn(x) converges to the initial function fo(x), with the convergence being point -by-point, though not uniform.


Proof. We have fn(x) – f0(x) = 0, ∀n ∈ N at x = 0 and x = π/2. Therefore, [image: ] at these points, as [image: ]. We may set n* = 1 as an example.


As sin x >(2/π) · x, ∀x ∈ (0, π/2), then the condition fn(x) = sin((π/ 2) · fn–1 (x)) > fn–1 (x) > … > f1(x) > 0 is fulfilled for any x ∈(0, π/2). Then, the sequence fn(x), ∀x ∈ (0, π/2) is positive, ascending, and limited, and, therefore, it has the finite limit, which will be indicated as [image: ] We obtain [image: ], based on which we find that A = 0 or A = 1. As the sequence is of positive terms and ascending, then A = 1 = f0(x). Then, [image: ] on the considered interval. With the conclusion on convergence of the sequence at x = 0 and x = π/2, which was made above, we conclude that [image: ]
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