

[image: cover]




[image: ]


Dissertation


zur Erlangung des akademischen Grades


Doktor der Ingenieurwissenschaften


(Dr.-Ing.)


der Technischen Fakultät


der Christian-Albrechts-Universität zu Kiel


eingereicht im Jahr 2016





About this Series


The Kiel Computer Science Series (KCSS) covers dissertations, habilitation theses, lecture notes, textbooks, surveys, collections, handbooks, etc. written at the Department of Computer Science at the Christian-Albrechts-Universität zu Kiel. It was initiated in 2011 to support authors in the dissemination of their work in electronic and printed form, without restricting their rights to their work. The series provides a unified appearance and aims at high-quality typography. The KCSS is an open access series; all series titles are electronically available free of charge at the department’s website. In addition, authors are encouraged to make printed copies available at a reasonable price, typically with a print-on-demand service.


Please visit http://www.informatik.uni-kiel.de/kcss for more information, for instructions how to publish in the KCSS, and for access to all existing publications.








	
1. Gutachter:

	Prof. Dr. Reinhard von Hanxleden Kiel University, Kiel, Germany






	2. Gutachter:

	Prof. Florence Maraninchi VERIMAG Institute, Grenoble, France







Datum der mündlichen Prüfung: 21. April 2017





Zusammenfassung


Sicherheitskritische Systeme sind eine Unterklasse von reaktiven Systemen, welche heutzutage eine der wichtigsten und größten Klasse von Computersystemen darstellt. Solche Systeme kontrollieren die Airbags unserer Autos, die Landeklappen eines Passagierflugzeugs, Kernkraftwerke oder Herzschrittmacher. Software für solche Systeme muß absolut zuverlässig sein. Daher werden Computersprachen und Werkzeuge benötigt, die es erlauben, zuverlässige Softwaremodelle zu erstellen und zu warten. Weiterhin braucht es zuverlässige Kompiler, die aus solchen abstrakten Modellen korrekten maschinenlesbaren und ausführbaren Code erzeugen.


Mit SCCharts präsentiert diese Arbeit eine zustandsmaschinenbasierte und synchrone Modellierungssprache für den Entwurf und zur Implementierung sicherheitskritischer Systeme. Es wird betrachtet, warum sich dafür eine kontrollflußorientierte und synchrone Sprache besonders gut eignet und welche Wahl inkrementeller Sprachbestandteile die Lernkurve senken können. Die Arbeit zeigt, wie ein als SLIC bezeichneter, interaktiver, inkrementeller und auf Modelltransformationen basierender Kompilierungsansatz sowohl dem Modellierer dabei helfen kann, zuverlässige Modelle zu erstellen, als auch den Werkzeugentwickler darin unterstützt, einen zuverlässigen Kompiler bereit zu stellen. Es wird ein auf SLIC basierender SCCharts Kompiler inklusive seiner high-level Modelltransformationen vorgestellt. Weiterhin wird der vorgestellte Ansatz mit Hilfe der beispielhaft umgesetzten KIELER SCCharts Sprach- und Werkzeugimplementierung auf seine Praktikabilität hin überprüft.





Abstract


Safety-critical systems are a subclass of reactive systems, a dominating class of computer systems these days. Such systems control the airbags in our cars, the flaps of an aircraft, nuclear power plants or pace makers. Software for these systems must be reliable. Hence, a language and tooling is needed that allows to build and maintain reliable software models. Furthermore, a reliable compiler is required to obtain decent machine-understandable and executable code from highly abstract models.


This thesis presents SCCharts, a Statecharts-based visual and synchronous modeling language for specifying and designing safety-critical systems and for deriving their implementations. It elaborates on why a control-flow oriented and synchronous language is desirable and how incremental language features are chosen to flatten learning curve. It presents an interactive incremental model transformation based compilation approach termed SLIC. It shows how SLIC helps in supporting both, the modeler and the tool smith for building reliable models and maintaining a reliable compiler, respectively. A SLIC-based compiler for SCCharts including its high-level model transformations is presented. Furthermore, practicality aspects of the KIELER SCCharts language and tooling implementation complete the considerations to validate the proposed approach.





Abbreviations






	API

	Application Programming Interface






	ASCII

	American Standard Code for Information Interchange






	CEC

	Columbia Esterel Compiler






	CFG

	Control-Flow Graph






	CISC

	Complex Instruction Set Computer






	COTS

	Commercial Off-The-Shelf






	CPU

	Central Processor Unit






	CT

	Continuous Time






	DE

	Discrete Events






	DSL

	Domain-Specific Language






	ELK

	Eclipse Layout Kernel






	EMF

	Eclipse Modeling Framework






	ESO

	Esterel Input Output Trace






	FPGA

	Field Programmable Gate Array






	FSM

	Finite-State-Machine






	GMF

	Graphical Modeling Framework






	GUI

	Graphical User Interface






	HDL

	Hardware Description Language






	HTTP

	Hypertext Transfer Protocol






	
HW


	Hardware






	ID

	Identifier






	IDE

	Integrated Development Environment






	I/O

	Input/Output






	ISA

	Instruction Service Architecture






	ISE

	Integrated Synthesis Environment






	IUR

	Initialize-Update-Read






	JSON

	JavaScript Object Notation






	JVM

	Java Virtual Machine






	KCSS

	Kiel Computer Science Series






	KEP

	Kiel Esterel Processor






	KiCo

	KIELER Compiler






	KIEL

	Kiel Integrated Environment for Layout






	KIELER

	Kiel Integrated Environment for Layout Eclipse Rich Client






	KIEM

	KIELER Execution Manager






	KITS

	KIELER Textual SyncCharts






	KlePto

	KIELER leveraging Ptolemy






	KlePto

	KIELER leveraging Ptolemy






	KLighD

	KIELER Lightweight Diagrams






	LED

	Light-Emitting Diode






	M2M

	Model-to-Model






	MDE

	Model Driven Engineering






	
MDSD


	Model Driven Software Development






	MoC

	Model of Computation






	MOML

	Modeling Markup Language






	NXT

	NeXT Generation






	OS

	Operating System






	PC

	Personal Computer






	PHP

	PHP Hypertext Preprocessor






	PN

	Process Networks






	RAM

	Random Access Memory






	RISC

	Reduced Instruction Set Computer






	RTL

	Real-Time Logic






	SC

	Synchronous C






	SCADE

	Safety Critical Application Development Environment






	SCCharts

	Sequentially Constructive Statecharts






	SCEst

	Sequentially Constructive Esterel






	SCG

	Sequentially Constructive Graph






	SCL

	Lightweight Synchronous C






	SCT

	SCCharts Textual Language






	SDF

	Synchronous Data-Flow






	SJ

	Synchronous Java






	SJL

	Lightweight Synchronous Java






	SLIC

	Single-Pass Language-Driven Incremental Compilation






	
SR


	Synchronous Reactive






	SSA

	Static Single Assignment






	SSM

	Safe State Machines






	STG

	State Transition Graph






	SW

	Software






	TCP

	Transmission Control Protocol






	UI

	User Interface






	UML

	Unified Modeling Language






	URI

	Uniform Resource Identifier






	USB

	Universal Serial Bus






	VHDL

	Very High Speed Integrated Circuit Hardware Description






	 

	Language






	WCRT

	Worst Case Reaction Time






	WTO

	Write Things Once






	WWW

	World Wide Web






	WYSIWYG

	What You See Is What You Get






	XML

	Extensible Markup Language










List of Figures


1.0.1 Computer system classes


1.0.2 Reactive system cyclic control loop


2.1.1 Synchrony Hypothesis


2.1.2 A Statecharts example


2.2.1 Argos example


2.3.1 SyncCharts notation and example


2.3.2 A Reactive Cell of SyncCharts


2.3.3 Statechart semantic problem example


2.4.1 A simple SCADE automaton


2.4.2 UML Statecharts


2.4.3 Stateflow example


2.6.1 Advantages and limits of SCChart’s sequentially constructive semantics


a Concurrent causality


b Sequential causality


2.6.2 Synchronous program classes


2.7.1 Elements of an SCG


2.7.2 Different types of SCG dependencies


2.7.3 SCG meta model


2.7.4 SCG for the AO example


3.0.1 KIELER SCCharts textical modeling tool


3.1.1 ALDO SCCharts example


3.2.1 Overview of the SCCharts visual syntax


3.2.2 Hiding complexity using extended SCCharts features


a ALDO Extended SCChart


b ALDO Core SCChart


3.2.3 Transition priorities as a tie breaker


3.2.4 Weak abort transitions triggered from the inside


3.2.5 Causally wrong use of a strong aborts


3.2.6 Weak abort or termination do not induce any further constraints


3.2.7 Visibility pitfall when replacing during actions


3.2.8 Example use-case of count delay


3.2.9 Example use-case of history transition


3.2.10 Example use-case of complex final state


3.2.11 Example use-case for static keyword


3.2.12 Example use-case of deferred transition


3.3.1 Host code usage suggestion example


3.4.1 SCCharts meta model (simplified)


4.0.1 High-level interactive model-based compilation user story in KIELER tool


4.1.1 Single-Pass Language-Driven Incremental Compilation as an incremental model-based compilation strategy


4.1.2 Example SLIC features


4.1.3 Example SLIC transformations


4.1.4 Example SLIC schedule


4.1.5 SCCharts transformation dependency details


4.1.6 SCCharts transformation dependencies


4.1.7 SCCharts transformation dependencies without groups


4.2.1 Traditional vs. interactive model-based compilation user story


a Traditional compilation


b Interactive compilation


4.2.2 Element tracing with Single-Pass Language-Driven Incremental Compilation (SLIC) and usage


a Building tracing tree for model elements


b Utilizing tracing tree by convergecasting information


4.2.3 SLIC concept mapped onto KIELER SCCharts tool


5.0.1 SCCharts compilation tree (from [MSvH14])


5.0.2 Five patterns for Normalized (Core) SCCharts and their direct mapping to SCG elements


5.1.1 The SyncCharts-S compiler of KIELER 0.8.0 release


a SyncCharts-S compiler


b SyncCharts compiler transformations


5.1.2 SCCharts compilation tree


5.2.1 KiCo compiler selection for ALDO


5.2.2 High-level compilation from Extended to Core ALDO I/II


5.2.3 High-level compilation from Extended to Core ALDO II/II


5.2.4 High-level compilation from Normalized to SCG ALDO


a Normalized SCChart


b Sequentially Constructive Graph (SCG)


5.2.5 KiCo compiler selection showing all high-level transformations


5.2.6 Statecharts feature transformations


5.2.7 Connector feature expansion transformation


5.2.8 Entry feature expansion transformation


5.2.9 Entry action combined with a strong abort


5.2.10 Exit feature expansion transformation


5.2.11 Exit action combined with a strong abort


5.2.12 Initialization feature expansion transformation


5.2.13 Initialization combined with existing entry action


5.2.14 Simple abort example


5.2.15 Weak abort of cyclic action — before transformation


5.2.16 Weak abort of cyclic action — after transformation (wrong)


5.2.17 Weak abort of cyclic action — after correct transformation


5.2.18 Abort: Ease down-stream compilation


5.2.19 Abort transformation for delayed weak aborts


5.2.20 Abort transformation for delayed weak aborts (similar example)


5.2.21 Abort transformation termination elimination


5.2.22 Abort transformation — further optimizations (I/II)


5.2.23 Abort transformation — further optimizations (II/II)


5.2.24 General case: Abort transformation (WTO)


5.2.26 Abort transformation: Dealing with the (dynamic) transient forking state


5.2.27 Abort: Further ease down-stream compilation and reduce complexity


5.2.28 Abort (non-WTO): Mixing immediate and delayed aborts should not lead to an earlier termination


5.2.29 Abort (non-WTO): Mixing delayed strong aborts with other transformation types should not lead to priority inversion.


5.2.30 Abort (non-WTO): A final state but no termination should not lead to an undesired leaving of a state


5.2.31 General case: Abort transformation (non-WTO)


5.2.32 Enhanced abort transformation with correctly omitted control region (non-WTO)


5.2.33 Nested abort example (original and non-WTO)


5.2.34 Abort feature expansion transformation with connectors


5.2.35 Scheduling problem for self-loops


5.2.36 Complex final state feature expansion transformation


5.2.37 Complex final state feature expansion transformation for two complex final states


5.2.38 Complex final state feature expansion transformation in the hierarchical case


5.2.39 Complex final state feature expansion transformation optimizing regions with final states only


5.2.40 Complex final states in the root state


5.2.41 During action feature expansion transformation


5.2.42 During action examples with termination


5.2.43 During action examples with termination


5.2.44 Simple during transformation and advanced during transformation


5.2.45 During action should continue as long as state S1 is active and not aborted


5.2.46 Simple during action original vs. new transformation


5.2.47 SyncCharts feature transformations


5.2.48 Signal feature expansion transformation


5.2.49 Valued signal feature expansion transformation


5.2.50 Pre operator feature expansion transformation, wrong (b), correct (c), and alternative (d)


5.2.51 Pre operator for states with a termination transition


5.2.52 Nested pre operator feature expansion transformation


5.2.53 Pre operator feature expansion with signals


5.2.54 Pre operator feature expansion with valued signals


5.2.55 Suspend feature expansion transformation


5.2.56 First proposed count delay transformation


5.2.57 Current count delay feature expansion transformation


5.2.58 Count delay combined with suspend feature expansion


5.2.59 Count delay feature with during action


5.2.60 SCADE / QUARTZ / Esterel v7 feature transformations


5.2.61 History feature expansion transformation


5.2.62 Deep history feature expansion transformation


5.2.63 Mixed deep history and shallow history features


5.2.64 Static feature expansion transformation


5.2.65 Deferred feature expansion transformation


5.2.66 Shallow deferred feature expansion transformation


5.2.67 Deep deferred feature expansion transformation


5.2.68 Weak suspend expansion transformation


5.2.70 Weak suspend expansion and scoping


5.2.71 Weak suspend and hierarchy


5.2.72 Normalization transformations


5.2.73 Five allowed patterns for Normalized (Core) SCCharts


5.2.74 Sandwich SCCharts example and S code generation


5.2.75 Trigger/effect normalization transformation examples


5.2.76 Surface/depth normalization transformation and optimization


5.2.77 Apparent priority inversion when normalizing SCCharts


5.2.78 AO example as Extended SCChart, Normalized SCChart and SCG


a AO example as Extended SCChart


b Mapping between Normalized SCCharts pattern constructs and SCG elements


5.4.1 S intermediate language in the context of SCCharts and SyncCharts SW compilation


5.4.2 SCCharts compilation tree (cf. Figure 5.0.1 on page 114): Priority low-level synthesis part


5.4.3 S intermediate language example


5.4.4 S intermediate language meta model


5.4.5 Simulation with the SCCharts compiler predecessor


5.4.6 Priority-based code generation from S


5.5.1 SCCharts compilation tree: Circuit-based low-level synthesis part


5.5.2 Circuit-based code generation from S


5.5.3 Sequentialized SCG examples


a Sequentialized SCG for AO


b Sequentialized SCG for ALDO


5.6.2 Circuit vs. priority SCCharts compilation: Code size


5.6.3 Comparison of Extended SCCharts (CISC) with equivalent Core SCCharts (RISC)


5.6.4 Comparison of C code synthesis paths for SCCharts


5.7.1 SCCharts SW and HW targets


5.7.2 Ardoino microcontroller platform


5.7.4 Targeting the Arduino platform from KIELER


5.7.5 The SCCharts-Arduino demonstrator: ABROINO


5.7.6 SCCharts to Esterel during CEC simulation


5.7.7 Running SCCharts on FPGAs: The ISE tool


5.7.8 AO SCChart visualized as HW circuit inside the KIELER SCCharts tool during simulation


5.7.9 Simulation and visualization of SCCharts compiled to electrical HW circuits


6.1.1 Ptolemy graphical model editor “Vergil”


6.1.2 Simulating a Ptolemy model


6.1.3 ABRO synchronous state machine within the SCADE suite and its model simulation GUI


6.1.4 Esterel Studio GUI


6.1.5 Esterel v5.92 simulator running ALDO


a Tick 0


b Tick 1


c Tick 2


d Tick 3


6.2.1 Eclipse IDE with editors and views


6.2.2 Eclipse extension point mechanism


6.3.1 GUI of the KIELER simulation infrastructure while simulating the ALDO SCCharts model


6.3.2 Schematic overview of KIEM


6.3.3 GUI for input/output and debugging: KIELER Data Table and Synchronous Signals view


6.3.4 Benchmarking user story for SCCharts


6.4.1 GMF dashboard for graphical editor generation


6.4.2 Evolution of KIELER SCCharts editor


a KIEL tool (SyncCharts)


b ThinKCharts editor (SyncCharts)


c Yakindu SCCharts editor


d Xtext and KLighD-based SCCharts editor (current)


6.4.3 KIELER ThinKCharts editor


6.4.4 Yakindu statecharts tools overview


6.4.5 KIELER SCCharts modeling tool implementation


6.5.1 KiCo 1.0 prototype implementation overview


6.5.2 KiCo 1.0 advanced selection algorithm example


6.5.3 KiCo 2.0 advanced prototype implementation overview


6.5.4 KiCo 2.0 advanced selection algorithm example


6.5.5 Example of final SLIC order for processing transformations in a compilation run


6.5.6 The graphical user interface plugin infrastructure of KiCo


6.5.7 Different compiler selection views for the user and the developer of KiCo


6.5.8 KiCo server infrastructure


6.5.9 KiCo server GUI


6.5.10 KiCo command line usage


6.5.11 KiCo online compiler


6.6.1 KIEM JUnit integration running regression tests


6.6.2 KIEM JUnit integration schematics


6.6.3 Creating ESO files manually (left) or automatically (right)


6.6.4 KIEM JUnit integration schematics enhanced with benchmarking


6.6.5 Benchmark output during SCCharts regression tests


6.6.6 KIEM schedule for SCCharts regression tests


7.0.1 Model railway demonstrator


7.1.1 Conceptional view to the communication of the 4th generation compared to the 3th generation


7.1.2 SCCharts controller topology scenario


7.2.1 SCCharts train controller vs. Harel Wristwatch


a Harel’s Wristwatch example


b Top layer of SCCharts train controller


7.2.2 SCCharts SLIC-based compilation approach turns out to be practically usable


a Hiding complexity by using Extended SCCharts features


b Tickets as opened and closed in the bug tracker


7.2.3 Performance of SCCharts SLIC-based compiler


7.2.4 Performance of SCCharts SLIC-based compiler


7.3.1 The SCCharts language compared to other languages


8.1.1 Ptolemy actor model example


8.1.2 A hierarchical and heterogeneous Ptolemy model


8.1.3 SCChart (left) and an automatically generated Ptolemy model (right)


8.1.4 Generated Ptolemy model with optimized inputs and outputs


8.1.5 Traffic Light model automatically generated by KIELER leveraging Ptolemy (KlePto)


8.1.6 Transformation and execution scheme of the Ptolemy-based SyncCharts/SCCharts KlePto simulation


8.1.7 New immediate transitions in Ptolemy


8.2.1 Eclipse EMF Esterel meta model (simplified)


8.2.2 External compiler integeration and simulation visualization concept


8.2.4 External (blackbox) compiler integeration and simulation visualization concept


8.2.5 The KIELER Esterel simulator with visualization is running ALDO by leveraging the CEC


8.2.6 ALDO simulation with KIELER SCEst compiler integration as a CEC alternative


8.2.7 Size and speed comparison of compilation with SCEst and the CEC


8.3.1 Interactive transformations for visual models


8.4.1 Comparison of Lightweight Synchronous Java (SJL) and coroutine thread concepts


8.4.2 SCChart of SJL example


8.4.3 State diagram of an SJL program’s life cycle


8.4.4 Worst-case runtimes, SJL vs. Synchronous Java (SJ) vs. standard Java threads


9.1.1 SCCharts reliable modeling and compilation





Listings


3.3.1 ALDO example as SCCharts Textual Language (SCT)


3.3.2 SCCharts feature overview visualized in Figure 3.2.1 as its textual SCT equivalent


3.3.3 SCT Xtext based grammar excerpt


5.1.1 SyncChartsSSimulationDataComponent.java: Snippet of simulation component applying “SyncCharts extended” feature transformations before calling the SyncCharts to S core compiler Synccharts2S


5.2.1 A snippet from SyncCharts2S compiler, handling transformation for the depth of a state


5.4.1 S intermediate language Xtext grammar


5.7.1 Arduino code generated from AO SCCharts example


8.2.1 ALDO example as an Esterel program


8.2.2 Esterel source-to-source visualization transformation for a statement P


8.2.3 Simple Esterel IO.strl example before simulation visualization transformation


8.2.4 Transformed version IO.simviz.strl after applying the visualization transformation to IO.strl


8.4.1 tick() method of SJL example from Figure 8.4.2





List of Tables


2.6.1 SCCharts transition trigger and effect examples


4.2.1 Comparing transitional and interactive model-based compilation user stories


5.1.1 Advantages and drawbacks of SyncCharts/SCCharts compilers


5.2.1 During actions in root state


5.6.1 Design choices for SCCharts compilation


5.7.1 Advantages of using SCCharts for modeling Arduino software vs. programming the C-like code directly


5.7.2 Comparing the predecessor SCL2VHDL with the current SCG2Circuit SCCharts circuit project


6.1.1 Ptolemy Vergil vs. KIELER Execution Manager (KIEM) simulation features


6.4.1 Graphical vs. Textual vs. Combined Textical Modeling


6.6.1 Semantic vs. syntactic validation


8.4.1 Similarities and differences of coroutines and SJL cooperative thread scheduling





Chapter 1


Introduction


Nowadays, computer systems are present all around. There are different classes [PBEB07] of computer systems which often overlap and are hard to differentiate. Figure 1.0.1 illustrates these classes and gives examples.


PCs already can be found on many desks and are used to program and run simulations, calculations, and to store or query data. Such systems are termed transformational systems.


Transformational systems get some inputs from an environment which is a user or another program. From these inputs, the transformational system computes its outputs by applying a computation function to the inputs.




[image: ]


Figure 1.0.1. Computer system classes (based on [PBEB07])





Transformational systems typically do not run continuously. They also have no time constraints imposed by the environment. Examples for such systems are calculators or weather simulations.


1.0.1 Definition (Environment). An environment of a system is the source of inputs and/or the target of outputs of a system.


A system interacts with its environment using its system interface.


1.0.2 Definition (System Interface). A system interface is the part of internal state variables that are manipulatable and/or visible from the outside (environment). Manipulatable state variables are called inputs, visible state variables are called outputs.


To ease programming of a computer, abstraction layers were invented, namely the Instruction Service Architecture (ISA) and operating systems (OS) [Tan09]. These abstraction layers made programs independent from a concrete hardware. Computer programs were also written in higherlevel programming languages instead of using non-portable and hardly maintainable assembly code. Using programming languages has the benefit of portability and maintainability. However, this comes with a drawback: Since computers only understand low-level assembly code, a program written in a higher-level programming language has to be translated into a computer-understandable machine language. Hardware and OS-specific compilers [ASU07] were needed for this task and these compiles also have to be maintained.


Operating systems are an example of a different class of systems that became common: Interactive systems. They typically handle multiple executing programs at the same time and manage resources. Simultaneously, they often allow interaction with the user, i. e., their environment.


Like transformational systems, interactive systems compute a function, have inputs and outputs and do not have any time constraints imposed by the environment. However, they typically are non-terminating and continuously interact with their environment. Examples are flight booking systems, database systems in general, or operation systems.




[image: ]


Figure 1.0.2. Reactive system cyclic control loop and synchronous tick abstraction (figure based on [MvH14])





Computers have spread in all manners of daily life. Today, computers control traffic lights, they control electronic toothbrushes, they even control our refrigerator and smart homes. A computer may not always be visible in the sense of a typical desktop PC or laptop. Still, a microprocessor is present to do computational tasks which are often control tasks.


Reactive Systems: Reactive systems [HP85] are today’s largest class of computer systems. According to Berry [Ber15], 98% of all manufactured CPUs are not built into a conventional PC but run in (often embedded) reactive systems. Such systems compute functions and have inputs and outputs. Like interactive systems, reactive systems also continuously interact with their environment. However, in contrast to interactive systems, reactive systems have to fulfill their computations in a certain amount of time which is typically imposed by the environment. Reactive systems often not only interact with but also control their environment or at least parts of it by their computed outputs. Inputs for a reactive system typically are sensor information. Examples for reactive systems are temperature regulators but also traffic light controllers, airbag controllers, pace makers, flight controllers, dome light controllers in cars, or electrical toothbrushes.


Key properties of reactive systems are: 1. Reactive systems compute a function, 2. reactive systems run continuously, and 3. reactive systems control their environment by their reaction. Reactive systems often have time constraints derived from the dynamics/physics of their controlled environment.


Figure 1.0.2 visualizes the control loop of a reactive system. In a cyclic fashion it reads inputs from the environment, computes a reaction by the given inputs, and writes the reaction, i. e., the outputs to the environment. The reactive system reacts with computed outputs, i. e., the reaction, to given inputs. Adapting the synchronous approach [BCE+03], we call one reaction computation a tick which is an abstraction of physical time and hence logically assumed to be computed in zero time (cf. Section 2.1 on page →).


1.0.3 Definition (Tick). A tick is one reaction computation of a reactive system based on inputs and a potential internal state.


Embedded Systems: Embedded systems are a subclass of reactive systems that have been in use since the 1970s [LS11]. A simplified but common definition is that embedded systems are computers that are not perceived as such. More specifically, these are systems that are tightly embedded into their environment in order to control it. Typically, these systems have lots of interfacing with sensors and actuators of their environment and must work under harsh conditions such as dust, bad weather, under water, or extreme temperatures. Examples for these systems are temperature regulators, many controllers in cars, or mars robots.


Real-Time Systems: Real-time systems are another subclass of reactive systems. Real-time systems often are embedded systems, i. e., they are embedded into their environment. A correct real-time system must 1. compute the correct value and 2. additionally meet its timing requirements. Examples for real-time systems are traffic light controllers, airbag controllers, or flight controllers.


Safety-Critical Systems: Safety-critical systems are reactive systems that control environments whose overall correct behavior is crucial. The failure of such a system or parts of it typically means extreme danger to human lives or the environment. It is essential that these systems do not fail and guarantee safety. Hence, many real-time and embedded systems also are safety-critical systems. Examples for safety-critical systems are airbag controllers, pace makers, or flight controllers.


Safety-Critical System Development: Since computers are mostly programmed in higher-level programming languages, compilers are around to translate the human readable computer language into bytes that a microprocessor is able to execute.


Especially when it comes to safety-critical systems, it must be ensured that there are no errors in computer software that could lead to system failure. This typically means that safety and liveness properties must be ensured. Safety properties specify that nothing bad ever happens, e. g., failure states are unreachable. Liveness properties specify that something good eventually happens, e. g., a sent communication message is eventually received. [Lyn96, p. →]


Liveness properties for synchronous systems often become (inverted) safety properties because something good must happen in bounded time. This is much stricter than eventually and hence it is observable and decidable whether something good has happened or not happened before a concrete point in time. Model checking helps to verify that safety properties hold.


This is the reason why software or at least critical parts of software for safety-critical systems is often model checked [BBF+01]. Verification of properties using model checking or similar techniques is time consuming and requires significant effort. Hence, validation and well-organized careful testing using simulations is often the only practical alternative in reality for most parts of a system.


Most reactive systems are still programmed in C today [Rus10, p. →]. In order to be able to verify or validate safety and/or liveness properties, usually a model of the software or at least from certain software parts is required.


Modeling is a process of gaining a deeper understanding of a system through imitation. [LS11]


Speaking about models of a software systems, the above statement also holds in the following sense: In order to define safety or liveness properties usually only certain aspects of software, e. g., invariants, loop bounds, or value ranges are considered. As a result of focusing on certain parts, one automatically abstracts from other parts of software like interface code, glue code, low-level driver parts, or network communication. Summarizing, a software model emphasizes certain aspects or parts of software only. Principally, there are two scenarios for retrieving a software model:




	Extracting a model afterwards from software [CDH+00] or from parts of a software implemented in a programming language. This is out of the scope of this thesis.


	Starting with a model in the first place and deriving software code from the model using code generation techniques.





The general process of starting from models in the first place when designing and implementing systems is also termed Model Driven Engineering (MDE) or more specifically w.r.t. engineering/developing software components, Model Driven Software Development (MDSD).


MDSD has the advantage that the software development for a safetycritical system can start at a very high abstraction level which is also very close to the (control) problem that the software is supposed to solve in the end. The higher the abstraction level of a model, the more it is usually understandable also for non-computer scientists such as engineers or domain experts. Additionally, the model for the software is already available at the beginning of the development process and certain (safety) properties can already be checked to be met by the model.


Computer simulations [Fis95] are an established means to analyze the behavior of a system. There are basically two categories of computer simulations: On the one hand one wants to be able to predict and better understand physical systems and train humans to better interact with them (e. g., weather forecasts or flight simulators). On the other hand one aspires to emulate computer systems themselves prior to their physical integration in order to increase safety and cost effectiveness (e. g., airbag controller or mars robot). Software models can also be used for a simulation in order to gain a deeper understanding of the dynamics of the software. Additionally, software simulations of a reactive system can be combined with a co-simulation of a model of the controlled environment that will be used to embed the reactive system later on.


States and Deterministic Concurrency: Reactive systems often not only consider inputs from an environment but have also an internal state that impacts on the computed reaction. Such system states should be expressed in a modeling language that is designed for reactive systems.


Additionally, reactive systems typically fulfill more than one concurrent task. E. g., a mars robot moves forwards while concurrently searching for obstacles to avoid getting stuck or an electrical tooth brush is concurrently observing its on/off button state and additionally a timer to stop brushing. A modeler should be able to express this inherent system concurrency also directly in the software model they build.


Reactive and especially safety-critical systems are expected to work reliably. One important factor for a reliable system is determinism. I. e., a system in any defined and reachable internal state S should always react to the same inputs I with the same outputs O and by changing to the same possibly other internal state S'. Specifying and implementing deterministic concurrency is a hard task as shown for threads by Lee [Lee06]. A modeling language for reactive and safety-critical systems should also be able to maintain determinism for specified concurrency.


Motivation: As discussed before, reactive systems require implementations with a deterministic behavior even if concurrency is involved as it is often the case. Since synchronous languages [BCE+03] cope very well with specifying and implementing deterministic concurrency, it seems reasonable to apply the main concepts from synchronous languages such as the separation of timing and functionality. Using a synchronous language for specifying and implementing software for reactive systems, one advantage is to be able to check such a program against system properties (cf. Section 1.0.3).


Since reactive systems often involve states, a statechart-based [Har87] synchronous language, where the modeler is able to reflect system states directly with states of the modeling language, is reasonable. An advantage of a graphical modeling language is that models can even be read and understood by non-computer scientists such as domain experts. SyncCharts [And96] is one major representative of a synchronous and graphical statechart dialect.


Typically, synchronous languages have a common drawback. This is a steep learning curve especially for the majority of programmers that are used to imperative languages such as C or Java. These imperative languages naturally allow to specify sequential parts such as :


... if (!done) { ...; done = true; } ...


In contrast, synchronous languages tend to restrict the usage of variables/signals in the sense that for each tick a consistent value must exist. E. g., the code above would often be conservatively rejected because done would not be allowed to have both values false and true in one and the same tick. Sequential constructiveness [vHMA+13c] overcomes this typical drawback by allowing multiple value assignments to a variable per tick if these are ordered sequentially (non-concurrent). This seems naturally more appealing and intuitive for programmers that have experience in classical imperative languages and to still preserves the deterministic nature of synchronous languages.


For the above reasons, a statechart dialect such as SyncCharts is a reasonable choice for modeling reactive systems. However, a sequential constructive semantics is preferable in order 1. to accept more models, 2. to lower the learning curve, and 3. to be more intuitive for the majority of imperative language programmers.


Reactive systems often are safety-critical systems that require reliable software. Hence, reliable models need be build in the first place. A modeling environment, i. e., the tooling, should support the modeler in (a) building reliable models




	by providing abstraction mechanisms,


	by supporting the modeler to understand the language, its features, and whole models,
 

	
by providing a simulation for analyzing, understanding, and validating dynamic behavior,
 

	by offering optimizations to make models more compact and more readable, and
 

	by supporting fine-tuning to optimize the speed or size of the final code.





Such a tool chain must also be practically usable. Additionally, a compiler for a modeling language which targets safety-critical systems needs to (b) be reliable itself:




	It should be well-structured,


	it should be easy to understand every single part of it,


	it should be extensible such that new functionality can be added easily, and
 

	it should be maintainable such that parts that break can be fixed in isolation, i. e., without breaking other parts.





Any new modeling, tooling, and compilation concepts that lead towards (a) a reliable tool chain and (b) a reliable compiler should be evaluated for a concrete modeling language. This language should include well known and common features in order to validate the practicality and the reasonableness of the overall approach.


1.1 Contributions of this Thesis


The major contributions of this thesis are threefold:




	A novel synchronous statechart dialect termed SCCharts which for the first time leverages the sequentially constructive semantics and all of its benefits in a ready-to-use modeling language (cf. Chapter 3). SCCharts focus the development of safety-critical systems, since this primary usecase was considered when the language and its features were designed.
 

	A novel interactive incremental compilation strategy based on model transformations termed Single-Pass Language-Driven Incremental Compilation (SLIC) (cf. Chapter 4). SLIC is specifically designed to facilitate building reliable compilers and models as required in the context of safety-critical system development.
 

	An application of SLIC for compiling SCCharts language features. These language features are common and well known from other synchronous languages. SLIC-based model transformations were defined and are studied in this thesis by giving relevant examples and pseudocode (cf. Chapter 5).





The KIELER SCCharts tool (cf. Chapter 6) is implemented in order to validate the SCCharts language, the SLIC approach, and the proposed model transformations. The language, a generic interactive incremental compiler, and the model transformations are parts of this implementation. To show the practicality of the proposed approach, the reference implementation for the SCCharts modeling tools and compiler were used and validated in the context of medium-sized, real world safety-critical systems (cf. Chapter 7). Related projects (cf. Chapter 8) deal for example with integrating other synchronous languages such as Esterel into the KIELER SCCharts tools for validation purposes or with providing a Java-based runtime for a software-targeted compilation path of SCCharts.


1.2 Related Publications


The following publications contain parts of this thesis. A brief summary of each publication and its relation to this thesis is given. Additionally, a list of student theses advised by the author is given. The publications are sorted by importance w. r. t. this thesis.


1.2.1 Major Publications


The following listed publications are stronger connected to this thesis.


[MSvH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Compiling SCCharts— A Case-Study on Interactive Model-Based Compilation.


In Proceedings of the 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2014), volume 8802 of LNCS, page 443–462, Corfu, Greece, October 2014


This paper introduces the novel interactive incremental model-based compilation approach termed SLIC. It further exemplifies SLIC for the use-case of incrementally compiling SCCharts. This paper summarizes the main results of this thesis that are discussed here in Chapter 4 and Chapter 5.


[vHDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’14), Edinburgh, UK, June 2014


This paper introduces the SCCharts language and its incremental features (cf. Chapter 3). It further summarizes the circuit-based and the priority-based low-level compilation paths for SCCharts (cf. Chapter 5).


[vHDM+13c] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. Technical Report 1311, Kiel University, Department of Computer Science, December 2013


This technical report gives details on categorization of SCCharts features. It further explains how these features are incrementally compiled. This is described as an application of model transformations which are presented by examples. These transformations, in some cases an updated version, are discussed here in Chapter 5.


[SMSR+15] Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Nis Boerge Wechselberg, Carsten Sprung, and Reinhard von Hanxleden. SCCharts: The Railway Project Report. Technical Report 1510, Kiel University, Department of Computer Science, August 2015


This technical report is a publication of the experiences when trying to solve realistic medium-sized real world problems with SCCharts and its tool chain. Results of this model railway practical student course are presented in Section 7.2 on page →.


[RSM+16] Francesca Rybicki, Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. Interactive modelbased compilation continued — interactive incremental hardware synthesis for SCCharts. In Proceedings of the 7th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2016), LNCS, Corfu, Greece, October 2016.


This paper reports on how to leverage the interactive incremental SLIC compilation for hardware synthesis. The interactive incremental synthesis of electrical circuits from SCCharts is part of the discussion in Section 5.7.2 on page → about reasonable targets. It further validates that the SLIC approach is not limited to software code generation.


[MvHH12] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. Synchronous Java: Light-Weight, Deterministic Concurrency and Preemption in Java. Technical Report 1213, Kiel University, Department of Computer Science, October 2012


[MvHH13] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. Programming Deterministice Reactive Systems with Synchronous Java (Invited Paper). In Proceedings of the 9th Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS 2013), IEEE Proceedings, Paderborn, Germany, 17/18 June 2013


[MvH14] Christian Motika and Reinhard von Hanxleden. Light-weight Synchronous Java (SJL) — An Approach for Programming Deterministic Reactive Systems with Java. Journal of Computing, Special Issue on Software Technologies for Embedded and Ubiquitous Systems, 97(3):281–307, 2014


These three papers present Synchronous Java (SJ) and its lightweight successor SJL, which both bring language concepts and constructs well known from synchronous programming to Java. This can help achieving deterministic concurrent Java programs either as a target for code generation or as a language for programming deterministic (embedded) Java software directly. Synchronous Java is discussed in Section 8.4 on page → as a software target for the priority-based SCCharts compilation path (cf. Section 5.4 on page →).


1.2.2 Other Publications


The following listed publications are also partially connected to this thesis.


[vHMA+13c] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. Sequentially Constructive Concurrency–A Conservative Extension of the Synchronous Model of Computation. Technical Report 1308, Kiel University, Department of Computer Science, August 2013


[vHMA+13a] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, and Owen O’Brien. Sequentially Constructive Concurrency–A Conservative Extension of the Synchronous Model of Computation. In Proc. Design, Automation and Test in Europe Conference (DATE’13), page 581-586, Grenoble, France, March 2013


[vHMA+14] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. Sequentially Constructive Concurrency–A Conservative Extension of the Synchronous Model of Computation. ACM Transactions on Embedded Computing Systems, Special Issue on Applications of Concurrency to System Design, 13(4s):144:1–144:26, July 2014


The above three papers introduce the sequentially constructive model of computation and compare it to other synchronous models of computation. It is the semantical foundation of SCCharts (cf. Section 2.6 on page →).


[SSM+13] Miro Spönemann, Christoph Daniel Schulze, Christian Motika, Christian Schneider, and Reinhard von Hanxleden. KIELER: Building on Automatic Layout for Pragmatics-Aware Modeling (Showpiece). In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’13), San Jose, CA, USA, September 2013


This paper focuses advantages of textical modeling, i. e., textual modeling combined with a graphical view by utilizing automatic layout as a keyenabler. This kind of modeling is also proposed for modeling SCCharts (cf. Section 6.4.4 on page →) and an integral part of the interactive compilation user story (cf. Section 4.2 on page →).


[MFvH10] Christian Motika, Hauke Fuhrmann, and Reinhard von Hanxleden. Semantics and Execution of Domain-Specific Models. In 2nd Workshop Methodische Entwicklung von Modellierungswerkzeugen (MEMWe 2010) INFORMATIK 2010, GI-Edition - Lecture Notes in Informatics (LNI), page 891-896, Leipzig, Germany, September 2010


This paper reports on the results of my diploma thesis [Mot09]. This work dealt with defining semantics for high-level modeling languages based on model transformations and about using the Ptolemy tool to practically realize this for arbitrary semantics (KlePto). It further described how this technique can be leveraged to execute models. The simulation infrastructure discussed in Section 6.3 on page → and more specifically the Execution Manager discussed in Section 6.3.1 on page → are strongly rooted in that work. Also the extensions of the KlePto project described in Section 8.1.2 on page → are based on that work.

OEBPS/Images/image01a.jpg
OS5 -
= _/>





OEBPS/Images/image02.jpg
Environment

Input Event Output Event
\ /

Reactive System

Compute
Reaction

Read Input Write Output

An Instant / Tick (zero duration)






OEBPS/Images/image01.jpg
Computer System

Weather ¢
station

Electrica
Toothbrush

Reactive
System

Real-Time
System

Embedded

System
Temperature
Regulator

pace

X-Ray Unit Maker

Flight
Controller






OEBPS/Images/cover.jpg
SCCharts — Language and
Interactive Incremental
Compilation

Christian Motika

2017/2
Kiel Computer Science Series





