
[image: cover]


To my wife
who had to endure too long
absences from my family life



Foreword


This book presents two aspects of embedded software development: software quality and software development itself as well as the key methods, processes and techniques.

The software quality in companies may cover many variants. Applied to the web design or general public applications, it does not represent the same stakes as those of embedded computing. Embedded software has many special features that other kinds of software do not have. They need to work well 24/7, and they are not easily updated or corrected. They may affect human life or require long operational guarantees (automotive, industrial, military, nuclear, and medical). Usually, they must respect strong development constraints (cost, development time, memory size, reaction time, and processing power).

Embedded Software is a software associated with an electronic board and may be some mechanical parts that helps to ensure a large part of the smart functions of a mobile product or a more complex machine. A complete definition can be found in chapter 1, Embedded Software

When software quality is discussed in the literature, embedded and onboard electronics are rarely examined even though this area, strangely, has higher expectations than other industries.

The development of embedded software requires both high efficiency (to minimize costs) and great caution as a coding error could have important consequences.

Software development needs the choice of a development life cycle: waterfall cycle, V-cycle, W cycle, prototype life cycle, spiral life cycle, incremental life cycle, Lean Software Development, and Agile. Processes help software development: ISO 9001, CMMI, and SPICE. While these processes are somehow different, they also have similarities. We will propose a merged version of major processes CMMI, SPICE and Automotive SPICE. This will give you a basis if you are applying for a CMMI or SPICE certification or if not, it will simply give you a panorama of the best practices used today. We will include requirements from ISO 262622 and DO-178C.

We will also discuss different types of software tests: white box, black box, gray box, unit tests, integration tests, verification and validation test, robustness tests and model testing.

Quality tools will be explained: PDCA, FTA, 5W, 5W2H, Jidoka, Poka-Yoke, San Gen Shugi, 4M, Kaizen, Kanban, as well as their application in software development.

We will present the main kinds of development rules: design, presentation, coding and defensive programming. Next, tools that help to check theses rules and help to find defects will be discussed.

To evaluate software quality, we need to explain some software measurements: code, project tracking, reviews, and software quality metrics.

Finally, we will go through the main verification methods: inspection, reviews, pair programming, code refactoring, TDD, FDD, and BDD.


Purpose of this book

This book deals with all general aspects of embedded software development and software quality. It will help the reader to have a good view of software quality challenges and the associated best practices.

This book will be very useful not only for engineers who want to deepen their knowledge of embedded software development and quality but also for the project leader, the Research and Development department manager, the software team leader and all software related people. Even human resources will be able to use this book to develop and recruit appropriate profiles and to put methods in place that launch the company in a continuous improvement dynamic.


Conventions

The book is designed to be read in the order that suits you, following your personal interest in subjects discussed. When necessary, references to related chapters are proposed.

Specific focus is given to certain subjects in the book, and tips and examples are given. When this happens, the paragraph in question is framed.

When source code examples are given, they are presented in italics and are framed.


Acknowledgments

I would like to thank my wife who lets me spend many hours preparing and writing this book instead of spending time with my family. I would like to thank my parents who guided me towards a career in software engineering and who allowed me to thrive and finally write this book. I am most especially grateful to Clare Reilly, who helped me to reread and correct this document. I thank Fergus Bolger, CTO, Programming Research Ltd, who participated in chapter 13.1 and Boris Baldassari from SQuORE for his participation in chapter 14. I also thank the Valeo Group, who has given me a long and rich experience by offering me exciting projects and by allowing me to participate in many initiatives of advanced topics and standardization.



1.Embedded Software


Embedded software is software that is closely related to a specific electronic board making it possible to provide a whole range of complex services or to ensure the inner working of the system. If it is more difficult to update embedded software than traditional software, it has the advantage of bringing some flexibility regarding hardware problem correction and functionality additions.

Another name for embedded software is “firmware”: proprietary (“firm”) software (“ware”), which shows the dependence of embedded software on the electronic board. Another name, “microcode”, indicates more precisely microcontroller software, software for an “intelligent” electronic board. A microcontroller is a special microprocessor that integrates some elements of a computer: memory, peripherals, input, and output interfaces. The goal of a microcontroller is to reduce development time, electrical consumption, the board size and to add flexibility.

However, these names are not perfect, because, in certain cases, traditional microprocessors are used and not microcontrollers. A more realistic name could have been “buried software” or “encapsulated software”.

We can give the following definition of embedded software: “Embedded software is software working with a specific electronics board which does not allow easy access or updates. A failure of this software can imply large disturbances or a total product/system operation stop and sometimes can affect the physical integrity of people.” Embedded software can have one or more of the following attributes:


	
Autonomous: it makes it possible to ensure an autonomous working of a system or subsystem, starting from inputs; it produces exits.

	
Real-time: most equipment with embedded software in varied fields are real-time (DVD writers, numerical decoder, automobile Electronic Control Units, avionics, railways, military, industrial, and medical systems).

	
Mobile: Embedded software is included in moving equipment or movable equipment (cars, planes, trains, boats, and portable devices)

	
Difficult to access: difficult or impossible to repair, update, and replace the equipment (automobile, avionics, metrology, military, medical, electric household appliances). This difficulty is related to the mobile aspect of the equipment or its hidden aspect (e.g. software of a domestic tool). This difficulty is also related to the isolated aspect of the equipment (lack of connector or lack of wireless connectivity). This attribute will be less and less true as more and more objects are connected to the internet.

	
Critical: Embedded equipment can ensure some important and critical tasks in industrial processes. Their failure can result in serious blocking, injuries, and deaths.

	
Thrifty: Sometimes while working on battery power or while working in environments where electric power is critical and rare, embedded equipment must manage the electronic board consumption. For example, a smart watch, which would require to be recharged every 6 hours, would lose all its attraction for the end user. Thrifty aspect is carried out by:

	Implementing standby or sleep mode strategies,

	Advanced peripherals consumption management,

	Periodic peripheral activation,

	Internal clock management,

	Display strategies.





	
Available and reliable: The maximum number of errors must be eliminated. The effects of temporary or permanent software errors or material errors must be minimized. In the case of errors, main functions can be degraded in performance or functionality, but must be permanently ensured as even a shortstop can have terrible or expensive consequences (e.g.: automobile engine control, nuclear equipment, missile, rocket, and large product recall).

	
Lawful: the software must be in conformity with local regulations (such as the power of radio-frequency emissions, sound level, electrical consumption, safety, confidentiality, security, and inviolability).



The embedded software must then have precise specifications and constraints related to cost, software size, processing capability, energy consumption, connectivity, real-time, reliability, availability, maintainability, regulation, and safety. For all of these reasons, embedded software development is not similar to other software developments (i.e. computers software).

We estimate that today there are more embedded systems that humans: five billion hidden computers.

1.1.Real-time

It is necessary to give a definition of real-time software. A real-time software is a software that guarantees the maximal time between an incoming request (inputs) and the software reaction to this request (outputs), whatever the situation is. Laplante gives the following definition: “A real-time system is a system that must satisfy explicit (bounded) response-time constraints or risk severe consequences, including failures. A failed system is a system that cannot satisfy one or more of the requirements laid out in the formal system specification.”1 Real-time systems are classified into 3 categories:


	Hard real-time systems cannot miss any deadline, or it is considered as a system failure,

	Firm real-time systems can infrequently miss some deadlines, and it will lead to a degradation of the system's service quality. In this category, late results are not useful,

	Soft real-time systems have temporal behavior that is not always predictable. In this category, late results are less useful and lead to a degradation of the system’s service quality.



The following fields can make use of embedded software:


	Transportation (such as automotive, avionics, and railways),

	Communication systems (such as phones, network equipment),

	Medical systems (such as measurements equipment or artificial organs),

	Mechatronics and Automation (such as industrial automation systems),

	Security technologies (such as building security devices or transportation security),

	Military

	Consumer electronics industries (such as TV, hi-fi systems, video projectors, and household appliances, demotic),

	IoT, Internet of Things,

	Low consumption applications such as battery powered devices (such as autonomous measurement devices or robots).




1.2.Microcontrollers


Microcontrollers are a type of microprocessor that may embed some RAM, Flash, EEPROM and some peripherals. In most embedded applications, microcontrollers are used instead of microprocessors because of their compactness, ease of use, cost, and low consumption.

Microcontrollers today exist in 8, 16, 32 and 64 bits. The choice of a microcontroller for a given application depends on the application complexity (needed computing power), its size (memory needs), needed connectivity (included peripherals) and the target cost. 8 bits are reserved for small, cheap and low consumption products such as sensors. 16 bits are for medium/low and cheap applications such as measuring instruments or cheap automotive applications. The majority of complex projects use 32 bits microcontrollers. These microcontrollers can run multi-tasking operation systems. 64 bits is quite rare in 2015 but will be used more and more in the future.

There are two kinds of microcontrollers (and microprocessors): RISC and CISC. RISC means Reduced Instruction Set Computer and CISC means Complex Instruction Set Computer. RISC processors are efficiently implementing only frequently used instructions, less common operations are implemented with less efficient subroutines. These instructions are fixed size instructions with fixed execution time for a lower cost. RISC processors are emphasizing efficiency at the expense of fewer basic instructions. Examples of RISC processors are ARM, AVR and AVR32, V850, MIPS, PowerPC. Most embedded microcontrollers are RISC processors.

At the opposite, CISC has many specialized instructions even those that are not used very often but with less optimization of these instructions. Examples of CISC processors are Z80, x86, 65k, 68k, RXx00. Some microcontrollers have both advantages of CISC and RISC like the ST10 family.

Another special kind of processor is sometimes used in embedded applications: DSP, Digital Signal Processor. DSP is a specialized microprocessor with an architecture optimized for the needs of digital signal processing that was created in 1978. Applications, which need DSPs, are measurement, real-time filtering or compression of analog signals. DSPs are preferred to microcontrollers because they have greater power efficiency for a given computing power and a lower price. They are usually used also to classical microcontrollers. DSPs have efficient memory architectures, which can fetch multiple data and instructions at the same time. DSPs are mainly used for computation-intensive applications such as audio and video processing. They can apply complex calculations on a large series of data sample.

A microcontroller interrupt is a processor signal generated by hardware or software, which indicates events that need immediate attention. It alerts the processor of an event requiring the interruption of the current code execution. The processor suspends the current code execution, saves its state and executes a special function called an Interrupt Service Routine (ISR) or an interrupt handler. After the interrupt handler finishes, the processor resumes to its previous activities. Either interrupt can be hardware or software interrupt.

Hardware interrupts are caused by internal peripherals or external devices connected to the microcontroller, which request attention. Hardware interrupts are asynchronous and can occur nearly anytime during the embedded program execution. A hardware interrupt request is called IRQ.

A software interrupt is generated by either an exceptional processor state or the execution of some special software instruction. A trap or exception happens when exceptional errors or events are occurring during the program execution through a division by zero. Functions associated with software interrupts are similar to subroutine calls and are used, for example, by low-level device drivers.

Each interrupt has its interrupt handler. The number of IRQ lines to the processor defines the number of hardware interrupts while software interrupts are not limited. All these interrupt vectors are gathered in the interrupt vector table. Some of these vectors are used and defined by embedded programs such as a timer or a serial interface interrupt. If an interrupt does not have a defined vector and it happens, the microcontroller will enter the interrupt vector table to load the instruction corresponding to the interruption that may hopefully contain zero. The program thus will jump to address zero, which corresponds to a reset. However, if this vector does not contain a null value, the program will jump to an unknown address, with an unexpected behavior. That is why all interrupt vectors should be initialized. Interrupts, which are not used, must have a vector that lead to a reset, do an infinite loop (to trigger the watchdog, see Chapter 4.1) or store an error for debugging.

1.3.Programming languages

Microcontrollers can be programmed using Assembly language, C, C++ Ada and Java. Small 8 bits microcontrollers can be programmed in assembly language or sometimes in C language. 16 bits microcontrollers are all accessible in C and sometimes in C++. 32 bits microcontrollers can be programmed in C or C++. Programmers can switch to one language to another, but it takes time to become proficient, to know the traps and pitfalls, and to use all capabilities of each language.

Assembly language is the native language of microprocessors and microcontrollers. For that reason, the execution speed of this language is the highest possible with the drawback of being hard to be understood and mastered by humans. The CPU manufacturer defines the assembly language that can be used with the CPU. For this reason, assembly is not portable across platforms but it is more or less portable within a processor family. Assembly code is written as text files, and we need to use a program called “assembler” to translate the assembly statements into binary machine code for the target CPU. As assembly is a very low-level language, the assembler performs a one-to-one mapping from the assembly instructions to the machine instructions. In general, assembly should be avoided when possible. Mastering a big and assembly program is very difficult. For that reason, applications fully programmed in assembly language are relatively rare today. This language is often combined with C or C ++, to optimize execution time. This can useful for low layer drivers with direct access to hardware, or small algorithms that require intensive calculations. Less than 5-10% of all embedded applications are programmed totally or partially in assembly language (0.751% of overall software developments in February 20152).

The C programming language is the reference language to program microcontrollers with real-time requirements. Dennis Ritchie at Bell Telephone Laboratories originally developed it between 1969 and 1973 for the UNIX operating system. By 1973, most of the UNIX operating system kernel was rewritten in C instead of assembly language. C is a hardware-oriented language. The machine code generated by the compiler is nearly optimal concerning memory usage and execution speed. This is why C programming is used by about 60-65% of embedded applications (this is also the first worldwide programming language with 16.4% of overall software development in February 2015). However, the speed of C compiled programs has its drawbacks. C has weak typing, allows hiding variables, allows pointer access to computer memory, has a small set of reserved keywords, and uses not-so-clear compound operators (such as, + =, - =, * =, and ++). A C program is a free-format and text using a semicolon to terminate statements. If C is speedy, this is mainly because there are no runtime verifications. For example, accesses to arrays are not controlled and may lead to an “out of bound access” with dangerous potential consequences. Pointers usage can also lead to illegal memory access (like address zero) with undefined results. As C has many traps and pitfalls, it is necessary to use coding standards like the Motor Industry Software Reliability Association’s C coding standard (see Chapter 12.1). The language has been standardized by the American National Standards Institute (ANSI), International Standards Organization (ISO), and International Electrical Technical Commission (IEC).

Bjarne Stroustrup at Bell Labs introduced C++ in 1979 as an enhancement to C. C++ was named C with Classes before being renamed C++ in 1983. Inheriting from C, it has both high-level and low-level language features. C++ is a statically typed, general-purpose, high-level programming language. It is used for applications, embedded software, device drivers, and high-performance server and client applications. C++ adds the following enhancements to C: classes, virtual functions, multiple inheritance, operator overloading, exception handling, and templates. Usually, C++ compilers can also compile C. C++ for embedded application is usually a stripped version of C++. Embedded C++ has been used in several safety-critical systems, with restricted object-oriented features. C++ requires more memory and processor resources than C (between 10-20%). This supplementary need is due to the C++ language features (such as polymorphism). This language, similar to C language brings the power of object-oriented programming to complex applications. Today, about 25-35% of embedded applications use this language (6.6% of overall software development in February 2015).

Ada language was developed to avoid having hundreds of languages used on DoD projects at the request of the U.S. Department of Defense (DoD). The DoD decided to create and standardize a language for real-time embedded and mission-critical applications. Ada was introduced in 1983 in a version known as “Ada-83”. It was based on the Pascal and ALGOL languages and was named after Augusta Ada King, Countess of Lovelace, who is believed to be the first computer programmer. Ada includes the following features: strong typing, packages, run-time checking, tasks, and exception handling. Ada 95 and Ada 2005 version add the object-oriented programming capability. The language has been standardized by the American National Standards Institute (ANSI), International Standards Organization (ISO), and International Electrical Technical Commission (IEC). Unlike most ISO/IEC standards and language standards (like C and C++), the Ada language definition is freely available. In 1997, the DoD removed its mandate to use Ada. Ada is favored by those most committed to safety because it has such a strong feature set available.

Java was created by James Gosling at Sun Microsystems in 1995. Based on C and C++, Java is a general-purpose, high-level programming language designed to be portable: “Write Once, Run Anywhere” (WORA) means that code running on one platform can run on a different platform. Java applications are transformed into Bytecode. This Bytecode can be executed on any Java virtual machine regardless of the computer architecture. Java includes class-based, concurrent, and object-oriented. A real-time Java has been developed as well as a safety-critical subset, but it is still not considered mature enough for safety-critical software. This is why Java is only used by 3 to 5% of embedded applications (15.3% of overall software development in February 2015).

Drafts version of ISO 26262 (see Chapter 8.5) highly recommends using ADA and C with programming guidelines (see Chapter 12) as well as graphical modeling language with code generators (see Chapter 2.1). For ASIL A, B, and C, highly recommended languages are C++ and Java with programming guidelines. Assembler is only recommended for low-level and time-critical algorithms. This information as nearly disappeared in the final version of the norm.



1 “Real-Time Systems Design and Analysis: An Engineer’s Handbook”, [33].

2 Figures from monthly TIOBE index of the popularity of programming languages. The index ratings are based on the number of skilled engineers worldwide, courses, third party vendors, popular search engines. However, TIOBE is not based on the number of lines of code that have been written: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html. First used language is C, then Java, then C++ and, in fourth place, Objective-C.



2.Development tools and debugging


Several tools need to be used while developing embedded software. They can be classified into the following categories:


	Development tools: requirement management tools, design tools, Modeling tools, source code editors (see Chapter 2.2), Compilers and linkers (see Chapter 2.3), automatic code generation, configuration file generation.

	Verifications tools can be: debuggers, static analysis (see Chapter 13), code naming and style checking tools, unitary tests (see Chapter 10.4), simulators (see Chapter 3.2), emulators (see Chapter 3.4), worst-case execution (see chapters 13.5, 13.6, 13.7, 13.8, and 13.9), automatic test generation, formal verifiers,

	Supporting tools can be Project management, configuration management (see Chapter 9.15), Problem and change management (see Chapter 9.18), review management.



DO-178C (see Chapter 8.6) introduce a tool qualification process to gain certification credit for unverified tools’ outputs if the tool eliminates, automate or reduce any process required by DO-178C. It provides some confidence in tool functionality than similar results obtained manually. The qualification effort varies based upon potential error effect on safety and development life cycle. This subject is out of the scope of this book. See also chapter 8.6.

2.1.CASE tools

CASE tools are Computer-Aided Software Engineering tools used to design and implement software programs. They can deal with automating life cycle phases, software processes, and prototyping. CASE tools are useful for project management, requirement management, specifications, metrics computation, static analysis, documentation, quality assurance, configuration management, design, programming, integration, testing, dynamic analysis, and re-engineering.

One important type of case tool is modeling tools. Models are an unambiguous abstract representation (usually graphical) of a part of a system. It allows specification, analysis, verification, simulation and code generation. So models are related to requirement management (see Chapter 9.9), design (see Chapter 9.11) and testing process (see Chapter 10.9). Usage of modeling tools seems to save much time and to be easier but also associated with risk and new types of software tasks.

DO-331 document related to DO-178C is related to this subject. Benefits are reducing some activities, focusing on requirements, offering a way to exchange with a customer, is tool supported, and providing a way to tests earlier in the development cycle. Risks are: fuzzy frontier between system and software and their roles, complex model can replace complex text requirements; poor requirement traceability feature of some tools, test completeness is difficult to reach on complex models, models can merge the specification and design, using models can strongly modify life cycles, model documentation is still needed to allow maintenance, and challenging modeling tool limitations.

2.2.Source code editors

Editors are dedicated tools that help the developer to create, edit, modify and understand a Source Code. Modern editors are powerful tools that can understand Source Code to highlight syntax and grammatical and logical problems in the code. Some of them can produce automatic documentation or can check some coding rules.


2.3.Compilers and linkers


Compilers are software development tools that can transform a source code that is written in a high-level programming language (such as C language) to a language that the microcontroller can understand. This microcontroller target language is called an assembly language. An assembly language is a human-readable textual language that needs to be transformed by a computer tool called an assembler into a binary file called machine code file. A cross-compiler is a compiler that generates a binary file for another processor (or operating system). A compiler needs to carry out several operations to produce the corresponding assembly code:


	Lexical analysis transforms a textual source code into a sequence of tokens (keywords),

	Preprocessing carries out simple manipulations on the Source Code to simplify it (such as removal of comments in source code, processing preprocessor command beginning by “#” in a C and C++ source code).

	Parsing is a process carried out on tokens found by lexical analysis to understand some more complex grammatical constructions (such as sentences in a human language). This is linked to the grammar of the language.

	Semantic analysis will produce actions attached to the result of previous parsing,

	Code generation will generate assembly code,

	Code optimization is not mandatory but is very common in the use of a compiler. It allows the production of target-efficient codes that are of optimal code size (smallest code size) or maximal speed (fastest code). Code optimization must be used carefully because it can generate bugs.



As a software gets bigger and bigger, it is not possible to put a full program into one single file. That is why any software is built from several source files that are compiled together. A linker is a tool that merges several compiled files together to build an executable binary. Linkers have some limitations, and they sometimes introduce bugs.

Notice that some compiler provides a real-time and safety-critical subset. DO-178C level A projects are required to verify the compiler output to prove that it does not generate unintended code and that the generated code is consistent with the source code.



3.Debugging software


Finding defects in the code is called “debugging.” Debugging uses some hardware and software tool. The following options are available for debugging embedded software: ROM-Monitor, Simulator, JTAG, and Emulator.

However, we have to remember that we had better not to debug too much the code because “Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.” as said Brian Kernighan3. This also means that code should be kept simple.

3.1.ROM-Monitors

While ROM-Monitors are a cheap way to test an embedded application, they use host CPU computation time and additional hardware resources (memory, serial interface). A monitor is a program executed on the target hardware. It communicates with the development environment to:


	Provide a program binary upload

	Manage Breakpoints

	Carry out a step by step execution

	Display the variable’s contents



3.2.Simulator

A simulator can test the code without having a hardware available. The behavior of the microcontroller and RAM / ROM storage components is simulated on the PC. Most simulators are also used to control the behavior of the input and output pins in a limited way.

Simulators are often used in the starting phase of development until hardware prototypes are available. They are also used to test the performance of algorithms.

3.3.JTAG Interface

Some microcontrollers have a built-in interface for debugging called JTAG. In 1985, an industry group was formed to develop a method to test circuit boards after manufacture and to assist with device, board, and diagnosis and fault isolation. This group created the JTAG interface. The IEEE Std.1149.1-1990 standard created in 1990 specify JTAG interface. Intel 80486 was the first processor with a JTAG connection. For embedded software, some JTAG debugs extensions are used to access a debug module inside the target CPU to behave as an in-circuit emulator (see below). Possibilities include processor halt, single step, free run and the ability to:


	Set code breakpoints,

	Set data breakpoints,

	Access registers,

	Read internal and external memory,

	Moreover, flash the program.



An adapter provides the communication between both the PC and the microcontroller to both the JTAG port (2 to 20 pins) and the host PC USB port. JTAG device connections can be chained. The JTAG debug interface requires no additional computing power. However, JTAG increases the price of the microcontroller (because of the need for more silicon).


3.4.In-Circuit Emulator (ICE)


In the case of ICE, an external hardware emulator that simulates it replaces the microcontroller. The emulator is often made with special versions of microcontrollers, called “bond-out processors” that give an external access to many internal signals to provide information about the processor’s internal state. ICE is also connected to a host PC to display and modify the microcontroller’s internal data and to set breakpoints and run the source code in a step-by-step manner. The main differences between JTAG and ICE are that ICE contains circuitry such as RAM for the emulation of both RAM and EEPROM allowing it to provide deep memory trace and to navigate execution history and memory changes. It can also be used to trigger breakpoints on memory changes. Emulators offer powerful real-time debugging that is great for finding complex bugs. However, these advanced possibilities have some disadvantages. ICE is expensive and may have slight working differences with the real microcontroller, which sometimes can lead to a working emulated code that does not work on the real target. As the processor gets faster and faster, it is more and more difficult for emulation to be carried out in real-time.



3 From “The Elements of Programming Style” [38], chapter 2



4.Microcontroller’s peripherals


4.1.Watchdog

The role of the watchdog device is to avoid deadlock in software. The principle is simple: Watchdog peripheral must be refreshed (by establishing a communication with it) before a defined deadline (timeout). Therefore, if an endless loop occurs, the watchdog will not be refreshed, the timeout will be reached and watchdog will be activated. When activated it can reset the microcontroller, generate a special microcontroller trap or interruption.

The watchdog is a peripheral that avoids software being locked for more than the defined watchdog refresh timeout. The choice of the timeout depends on the associated risk and the project requirements for product availability. Possible risks are often related to safety and dreaded actions because if the software is not in its normal state it may execute unwanted code. Regarding product availability, we have all experienced that electronic devices can sometimes stay unresponsive. Unplugging the power or battery resolve the problem.

Refresh locations in the software are weaknesses because looping around these points will continue to refresh the watchdog while having blocked software. That is why watchdog refresh must not be put everywhere but limited to one location per software mode (such as normal mode, industrial tests mode, and bootloader). On the other hand, we also want to avoid a reset if there is no deadlock; that is why we also need to refresh it on a regular basis with a large margin regarding the triggering time (timeout). On multi-tasking systems, the watchdog refresh must be carried out in the lowest priority task or else in the background loop. We need to avoid refreshing in an interruption of course because, in this case, it does not protect the software.

Some watchdogs are called “windowed watchdogs.” In this case, refresh can occur only in a defined time window (minimum time and maximum time). Such watchdogs are mainly used for safety related projects where we also want to detect abnormal loops around a refresh point. These loops can appear because of a bug, memory corruption or a hardware problem. These watchdogs are difficult to use because they require perfect real-time mastering or else refresh time will not be precise enough and lead to unwanted watchdog activation.

Refreshing the watchdog can be carried out conditionally: the condition can be a correct value for a path variable to ensure that some static software execution path is always the same.

Watchdogs can be internal or external. Internal watchdogs are less secure than external ones. An abnormal microcontroller hardware state can also affect internal watchdog behavior. Some simple internal watchdogs share the same clock as the microcontroller: this is also a weakness in the case of a clock failure. External watchdogs can also carry out the power supply and clock supervision. On a safety-related project, the use of both an internal and external window watchdog is a good idea.

Some watchdogs start automatically at the same time as the power on. Others start with a software request. The former are more secure than the latter but need a robust and mastered software design. When started by software, the watchdog must be started as soon as possible to avoid unprotected time windows.

4.2.Digital input and output

All embedded microcontrollers have digital input and output ports also called GPIO (General Purpose I/O). The ports can set or get a zero or one signal. These are usually multifunctional I/O grouped together in groups of eight ports (1 byte). The usage of GPIO is to read a digital input coming from another component or electronic board and set the state of a digital output connected to another component, electronic board or actuator. We must ensure that the microcontroller output’s current (a few mA) is enough for driving the connected components. If the current is not enough, it is necessary to add an amplification circuit. Usually these I/O ports need to be protected against over-voltage from input (such as a 5V logic signal sent to a 3V3 logic input), output short-circuit and ESD (Electro-Static Discharge).

When the I/O are grouped into one or more bytes, setting or getting one single value can be carried out with binary AND and OR operations. Example:


P1 |= 1; /* Set the port 1, pin 0 to 1 */

P1 &= ~1; /* Clear the port 1, pin 0 */



The first line will set the pin 0 of port 1 (P1.0) to logical value 1 by doing a binary “OR” operation between the current pin value and 1 (so port value will be set to one). The second line will clear the pin 0 of port 1 by doing a binary “AND” between the current port value and ~1 (logical “NOT” of 1 so 11111110 binary on 8 bits). Providing general-purpose macros or inline functions for doing so is a good idea:


#define SET_BIT(reg, bit) reg|=(1<<bit)

#define CLR_BIT(reg, bit) reg&=~(1<<bit)

#define SETVAL_BIT(reg, bit, value) (value==0? reg&=~(1<<bit):reg|=(1<<bit))

#define GET_BIT(reg, bit) ((reg>>bit)&1)



4.1.ADC

An analog-to-digital converter is a peripheral that converts a continuous voltage to a digital number that represents the voltage's amplitude. The quantization process introduces a precision error. ADC can be used to acquire several samples of the input periodically or to provide a single conversion.

The maximum signal frequency that can be measured with a given ADC (the bandwidth), signal to noise ratio (SNR) and the dynamic range are the main characteristics that define an ADC. Its sampling rate characterizes the bandwidth. The dynamic range is mainly defined by the resolution (the number of bits used in the conversion, usually from six to 24 bits), linearity, accuracy and timing errors (jitter).

From the sampling theorem (called also the Shannon or the Nyquist theorem), a continuous signal can be properly sampled (and then rebuilt from samples by a Digital-to-Analog Converter) if it does not contain frequency components above one-half of the sampling rate.

A single ADC conversion can be used to convert the state of an analog signal to a number. Examples can be for measuring battery voltage, current consumption, the temperature or the state of a multi-state button encoded by voltage.

There are several types of ADC, but the successive approximation ADC is popular in microcontrollers because it is low-cost and easy to interface. They use a comparator to narrow a range including the input voltage successively. In several steps, the converter compares the input voltage to an internal digital to analog converter output voltage. The ADC works by dichotomy. It starts a voltage at the midpoint of the input voltage range. From the result of the comparison, the internal reference voltage goes up or down until the desired resolution is reached.


4.2.PWM


PWM, Pulse Width Modulation, is an encoding technique where a logic signal is cycled to provide a sequence of pulses. A PWM cycle consists of a time span with a signal at a high level followed by a time span with the signal set to a low level. A characteristic of the PWM signal is the ratio between the pulse’s time widths divided by the cycle duration. This is usually expressed in the form of a percentage and is called the “duty cycle.” The PWM cycle is constantly repeated in the form of a pulse train, with a duty cycle that can vary from 0% (signal is always low) to 100% (signal is always high). A 50% PWM is a square signal (half time high and half time low).

The cycle period is usually fixed for a given application device. It is defined as a ratio of the pulse width to the cycle period. This is not usually a very important PWM signal characteristic since the encoding does not depend on the period alone. This means that the PWM period need not be known or constant a priori (with certain restrictions). This makes the PWM immune from clock skew and temperature or voltage variations.

PWM is frequently used to control the speed of DC motors using an H-bridge. In this case, the duty cycle can vary between 0% and 100%, making the motor average to the pulses’ values. They are interpreted as a voltage varying between 0 (corresponding to a stopped motor) and maximum signal voltage (full motor speed). In this case, an unsuitable cycle time value may introduce some motor noises. PWM signal can also be used to control servomotors, and the pulse width encodes the rotation angle of the motor.

PWM can also be used to provide a dimming mechanism for LEDs. By using a pulse frequency faster than the LED can flash, the effective voltage (and thus brightness) can be varied by varying the PWM duty cycle.

Some devices or sensors provide a PWM signal to output a value. For example, the Analog Devices™, ADXL202 accelerometer produces a PWM to output the value of the acceleration between -2g (12.5%) and +2g (87.5%). A microcontroller can read this PWM, avoiding the need for an Analog to Digital converter. On the other hand, a digital signal can be encoded by a PWM with a convention for a duty cycle for a zero and another duty cycle for a one. PWM can also be used as an encoding method with a PWC (Pulse Width Coding).

4.1.Timer and counter

Most microcontrollers have several integrated timers. They also provide additional features, such as input capture and output compare as described below. They can be used for


	Clock frequency generation like for serial communication,

	Counting external events or time elapsed,

	Generating PWM signal,

	Measuring of time of input signals.



Timers are using registers that are hardware incremented (or decremented) at regular programmable clock intervals or regarding external signal changes. These registers can have a 8, 16 or 32 bits size. When they reach their maximum value (or zero if decremented), a flag or an interruption is raised.

Timers can have an auto-reload feature: after reaching a maximum value (or zero), they are reloaded with a selected value, which is stored in the auto-reload register. This can be used for clock generation.

Output compare is special timer feature that allows PWM signals to be generated. The counter can reach a maximum value and a selected comparison value. In both cases, an output pin state can be set or inverted.

Input capture is another special feature of timers that is useful for the acquisition of timings of state changes of an input signal. This can be used to capture external events and give them a time-stamp indicating the time of occurrence. The timestamps can then be used, for example, to calculate the frequency, the duty cycle or to log events. Each event raises a dedicated flag or an interrupt.



5.Communication buses


There are several possible communication buses in embedded software. They differ in their usage, goal, speed, the number of connected nodes and bus length. There is a description of these buses in the following few chapters as well as a summary comparison table:




	Bus
	Max Speed
	Max length (m)
	Max nodes
	Wires



	LIN
	19,6 Kbit/s
	10
	16
	1



	CAN
	1 Mbit/s
	5000
	128
	2-9



	I2C
	5 Mbit/s
	8
	1023
	2+1



	UART
	10 Mbit/s
	1000
	256
	2-6



	SPI
	10 Mbit/s
	3
	25
	>=3



	FlexRay
	20 Mbit/s
	24
	22-352
	2 or 4



	MOST
	150 Mbit/s
	5
	64
	1



	LVDS
	3000 Mbit/s
	10
	2
	>=2






[image: ]

Table 1: Data bus comparison4

5.1.SPI

The SPI (Serial Peripheral Interface) is a high-speed, synchronous, full duplex, low-cost serial bus. It can be used for short distance single master communication with LCD displays, touchscreen, analog-digital converters, EEPROM, Flash, sensors, microcontrollers or electronic components.

This serial communication interface communicates in master-slave mode. The master initiates the communication by sending a data frame to one or more connected slaves. Multiple slaves can be connected in a serial way (daisy chain configuration, one slave output being connected to the second slave input) or in parallel (Independent slave SPI configuration, all connected to the same lines except for the need to have an independent “chip select”5 line for each slave).

The SPI is three to four logical signals:


	SCLK: Serial Clock (output from master). Can also be called SCK, CLK.

	MOSI: Master Output, Slave Input (output from master). Can also be called SDO (master), SDI (slave), DO, DOUT, SI, MTSR.

	MISO: Master Input, Slave Output (output from slave). Can also be called SOMI, SDO (slave), SDI (master), DI, DIN, SO, MRST.

	SS: Slave Chip Select (active low). Can also be called nCS, CS, CSB, CSN, nSS, STE, SYNC. This is needed if slaves are connected in parallel.



Some peripherals add a new line for raising interruptions on the host microcontroller (e. g. pen-down event on a touch screen).

To initiate a communication, the master configures the clock. The used frequency must conform to the maximum frequency supported by the slave.

The master then selects the slave by setting a zero level (negative logic) on the corresponding SS line. Some peripherals need a waiting period before starting clock cycles. A full duplex data transmission occurs during each SPI clock cycle: the master sends a bit on the MOSI line, and the slave sends a bit on the MISO line. Bits are stored in “shifts registers”6 to gather exchanges in a word (such as 8 bits, 12 bits or 16 bits). A complete transmission may involve as many bits as needed (and supported by the slave) by clock cycles. The transmission ends when the master stops generating the clock and, normally, deselects the slave. Slaves that are not selected by the SS line must disregard data received on other lines.

5.2.I2C

Designed in 1982 by Philips™ Semiconductor (NXP™ Semiconductors now), I2C is a low-speed medium range (few meters) peripherals communication bus initially dedicated for home automation applications. It is a multi-master, multi-slave serial bus. Intel™ with SMBus defined a strict subset of I2C protocol. This bus can be used for communication with EEPROM, SDRAM, analog-digital converters, LCD displays, sensors, real-time clocks and another microcontroller for example.

An advantage of the I2C bus is that it can be implemented by using only two wires open-drain pulled up with resistors:


	SDA (Serial Data Line) is a bidirectional data line,

	SCL (Serial Clock Line) is a bi-directional synchronization clock.



Bus speeds are 3.4 Mbit/s in “High-Speed mode”, 1 Mbit/s in “Fast-mode plus”, 400 kbit/s in “Fast mode”, 100 kbit/s in “standard mode” and 10 Kbit/s in “low-speed mode”.

Several nodes can be connected. Each node has an address. The maximum number of nodes depends on address sizes and a maximum bus capacitance of 400 pF.

The master generates the clock and initiates the communication with a START signal. Then it sends the destination slave address on 7 bits, then on one bit to indicate a write (0) or a read (1) request. The addressed slave answers with an acknowledge (ACK) bit. The master then starts reading or writing depending on the request type; it is the same (but opposite) for the addressed slave. Bytes are repeatedly sent or received with an ACK per byte. A STOP signal indicates the last byte. START signal is a HIGH to LOW transition of the SDA line while the SCL is high. STOP condition is an LOW to HIGH transition of the SDA line while the SCL is high. ACK is the SDA pulled down during a clock pulse.

Master and slaves can exchange their roles between each finished transmission.

5.3.UART

Universal Asynchronous Receiver/Transmitter or UART, is a hardware peripheral to transmit (or receive) parallel data with a serial bus. UART can be used with communication standards such as RS-232, RS-422 or RS-485. Special UARTs are double UART in a single chip called DUART, eight UART called OCTART, and a synchronous version called Universal Synchronous/asynchronous receiver/transmitter called USART.

UART physical signal transmission can be carried out using electrical wires, infrared, Bluetooth or optical fiber. Communication can be one way only (simplex), two ways turn-by-turn (half duplex) or two ways at the same time (full duplex). Possible speeds are all multiples or sub-multiples of 9600 bits per second such as 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1843200 and 3686400 bits per second.

Communication starts with a start bit; characters are then transmitted on 5 to 9 bits depending on UART type. Least significant bits are sent first. If the character is less than 9 bits long, a parity bit7 can be added. The character transmission ends with a stop bit. When a character is ready, the UART raises a flag or an interruption. UART chips are double byte buffered (one buffer for the character already received and another for the one being received) or can even have an FIFO buffer.

In synchronous transmission, the communication clock is separated from the message and, therefore, there is no need to have a start or stop bits. Communication must always be maintained and if no data needs to be sent a dummy character must be continuously sent (usually the ASCII “SYN” character).

UART exchanges can detect some errors such as:


	“overrun error” (when reception buffer is full),

	“underrun error” (when the transmit buffer is empty),

	“framing error” (error on start/stop bits),

	“parity error” (when parity bit is not respected) and

	“break condition.”



Serial communication costs less than parallel communication, and a hardware resource is not even needed as UART can be emulated by software using a technique called “bit banging” to save money and space.

5.4.LIN

LIN (Local Interconnect Network) is a serial network used for communication between several electronic devices mainly in the automotive industry. As more and more devices are used in cars, the need for a cheap serial network arose as the CAN bus was too expensive.

In the late 1990s, BMW, Volkswagen Audi Group, Volvo Cars, and Mercedes-Benz founded the LIN Consortium, with the support from Volcano Automotive Group and Motorola. While the first version dates back to 1999, the first fully implemented version was published in November 2002. The latest version is 2.2A from 2010; it expands LIN capabilities, and it extends the diagnostic’s features 8. Currently, the LIN specification is being transcribed to ISO to be accepted as ISO standard ISO 17987 Part 1-7. LIN bus can be implemented using existing serial peripheral such as I2C, SPI, and UART.

LIN is used for connecting simple sensors (such as rain sensors, light sensors or switches) and actuators (such as electric mirrors, window lift, seat control, door lock, car headlights or small motors for climate control).

LIN bus is quite slow (20 Kbit/s maximum) but cheap and reliable in comparison to other buses such as CAN and FlexRay. Each connected device is called a “node.” The bus supports one master and up to 16 slaves. It offers an auto-synchronization of slaves and a temporal deterministic transmission, which is well adapted for a real time usage. The master initiates the communication by sending a message. The message is composed of synchronization signals, an identification field (plus 2 parity bits), one or several data field (1, 2, 4 and 8 bytes) and a Checksum for error detection. The targeted slave answers by sending data response bytes and a Checksum. Six frame types are defined: Unconditional, Event triggered, Sporadic, Diagnostic, User-defined and reserved type.


5.5.CAN


CAN (Controller Area Network) were developed in 1981 by Robert Bosch, Intel, and Karlsruhe University. While, at the beginning, CAN was intended for the automotive industry only, it is now also established in industrial automation (CANopen) and avionics (with ARINC and CANaerospace). Thanks to a large number of CAN chips available, CAN bus usage have become relatively cheap. They are available as external or internal microcontroller peripheral. CAN buses are not expensive and are reliable, flexible, standardized and message-oriented. Concerning CAN usage in automation, users are organized in a CiA (CAN in Automation) nonprofit organization9. CiA has defined several standards for industrial automation. CAN is standardized by ISO 11898-1 (data link layer), ISO 11898-2 (CAN physical layer for high-speed CAN) and ISO 11898-3 (CAN physical layer for low-speed, fault-tolerant CAN).

CAN bus implements an approach known as multiplexing that consists of connecting the same line (or bus) to a large number of electronic devices that then communicate in turn. The use of multiplexed buses (mainly CAN) in the car has reduced a huge amount of vehicle wires. It has led to an explosion in the number of sensors and electronic devices in vehicles. This allows, for example, reduced vehicle consumption, pollution control, comfort features, active and passive safety, and fault detection.

With some restrictions, CAN bus may be used for real-time applications. The reaction times are guaranteed by using messages with high priority ID or by using single Master/Slave (instead of Multi-master).

CAN bus is a serial bi-directional half-duplex bus. Each connected device is called a “node” and can be as much as 20 nodes in the low-speed version of CAN and 30 in the high-speed version. Nodes are connected to the bus through a host processor, a CAN controller, and a CAN transceiver. Each node may send and receive messages but not simultaneously. A message is a frame consisting of the following fields: arbitration, control, data, CRC, and acknowledge fields. A start and an end of frame signal border each message. The arbitration field mainly contains the ID identifier, which represents the priority of the message. The data field can have up to eight data bytes, but the improved Bosh CAN FD version allows a data length of up to 64 bytes per frame. The frame is transmitted serially onto the bus and may be received by all nodes.

The total CAN bus wire length depends on the needed speed, from 30 meters for 1 Mb/s to 5 Km for 10 Kb/s. Nodes are connected by a wired AND logical gate leading to the domination of “zero” signal over “one” signal. Communication on a CAN bus is ensured by using a twisted pair of wires (for pair signals) in a shielded cable to minimize RF emission and reduce noise and interference susceptibility. The most commonly used connector is the 9-pin D-sub type connector.

Vehicle diagnostics OBD-II (mandatory for all cars and light trucks sold in the United States since 1996) and the European equivalent EOBD (mandatory for all petrol vehicles sold in the European Union since 2001 and all diesel vehicles since 2004) may use a CAN bus.

Communication on a CAN bus uses several frames:


	Data frame,

	Remote frame,

	Error frame,

	Overload frame.




5.6.LVDS


LVDS (Low-voltage differential signaling) is a physical serial communications protocol. LVDS can operate at low power and run at very high speeds using inexpensive twisted-pair copper cables. Introduced in 1994, LVDS has become popular for video products such as TVs, cameras, computers, notebooks, tablets, automotive, industrial, and robots. Typical applications include high-speed graphics, video camera, and even general purpose computer buses. LVDI is used for example in SCSI, Serial ATA, PCI Express, FireWire, and Camera Link.

LVDS transmits information by using voltage differences on a pair of wires, and the receiver compares the two wires’ voltages to decode the data. This way of transmitting information reduces the generation of electromagnetic noise as well as providing a reduced susceptibility to external electromagnetic noise.

5.7.MOST

MOST10 (Media Oriented Systems Transport) is an automotive high-speed serial multimedia bus. MOST uses a ring or virtual star topology and synchronous or asynchronous data communication to transport audio, video, voice and data signals over a plastic optical fiber or an electrical conductor. Up to 64 nodes can be connected. MOST technology is widely used among car brands. The MOST specification defines all layers of the ISO/OSI-Model (see Chapter 10.5).

MOST bus exists in three versions MOST25, MOST50, and MOST150. The last one provides a physical layer implementing Ethernet. It has a bandwidth about six times the speed of MOST25 (which is 23 M bit/s).

5.8.FlexRay

A consortium including BMW, DaimlerChrysler, Motorola, and Philips has developed FlexRay. Usage of this bus is related to automotive powertrain and chassis control, and it was designed a faster (up to 10M bit/s on two channels) and more reliable protocol than CAN. It is fault tolerant and deterministic.

FlexRay can use a simple multi-drop bus topology, a “Star” configurations or a hybrid topology (combination of a multi-drop bus and star topologies).

Bus operations are divided periodically into two segments: the static segment (for periodic flow) and dynamic one (for aperiodic flow). Periodic segment access uses a TDMA (Time-Division Multiple Access) mechanism: the time is shared between the different network nodes. Each node has an allocated time slot to communicate to others. Aperiodic segment access uses FTDMA (Flexible TDMA) mechanism, which manages priorities.



4 Data may depend on cables, protocol, and minimum needed speed.

5 “Chip select” (CS) is a special digital line that must be set to 1 (or 0 if negative logic is used) to inform a device that it is selected/activated, and may receive or send information. It can also be called “Salve Select” (SS). CS is also used to save power of unused electronic chips.

6 This electronic circuit shifts a “bit array” by one position to store or output a new bit in the array. They are used to serialize parallel information, or to parallelize serial data.

7 A “parity bit” (also called “check bit”) is a bit added to the end of data that indicates whether the number of bits in the data with the value of 1 is even or odd. Parity bits are used as a simple form of detecting transmission errors.

8 See http://www.lin-subbus.org/

9 www.can-cia.org

10 MOST is registered trademarks of Standard Microsystems Corporation (SMSC™), owned by Microchip Technology. See http://www.mostcooperation.com



6.Software Quality


Software quality is essential for customer and end users satisfaction. A faulty software can be misleading and leads to unhappy users, substantial financial losses, future contract losses and, in some cases, bodily injury to people and even deaths. There are many examples of software disaster.

6.1.What is a software bug?

Before defining a software fault, let us first look at how a defect is defined. According to Six Sigma, a defect concerns any product, service, or variation in the process which prevents the customer’s needs and satisfaction being met, or which adds costs, whether they are detected or not. According to the ISO 9000:2000, faults are non-compliance with an obligation related to a planned or specified use.

In the field of embedded software, we could define a defect as “a software behavior, which, in certain conditions, is incompatible with implicit or explicit customer requirements.” Implicit requirements because, among other things, we are not allowed to injure or kill people, not allowed to violate the law or data confidentiality, to impede the major intended product usage, or to have any unpredictable behavior not requested by the customer.

6.2.A short story of software bugs

Before getting to the heart of the matter, it is important to give an abbreviated list of the most salient embedded software problems. This list clearly highlights the role and the need for quality in software development teams. This chronological list is not exhaustive and does not represent the number of problems per decade. While many areas of human activity are represented (computing, military, aerospace, automotive, medical, finance, electronics), the list has no vocation to cover all areas and it is limited primarily to embedded software defects.


	
1947: At the Harvard University computer laboratory, operators of the Mark II computer found an error, which, in fact, was due to a moth stuck in an electronic relay. The bug was removed, and the incident was recorded in the computer logbook. This is the first known use of the word “bug” in the computing domain. While this story is not about embedded software, it is, however, a classic in the field of computer science, and it had to be mentioned.

	
1962: The NASA Mariner 1 rocket was destroyed for security reasons 294 seconds after its takeoff due to an unexplained and uncontrolled deviation from its trajectory. Even today, the exact reasons for this problem are uncertain. The most commonly found justification is an error in the retyping of a mathematical formula in source code with a minus sign missing.

	
1983: Air Canada Flight 143, a brand new Boeing 767, had to do an emergency landing on an abandoned airfield. The problem came from an electronic board managing fuel that had cut the engines and electrical supply. The problem had not been seen and corrected because Boeing engineers had thought that it was impossible to lose both engines and electrical supply.

	
1985: The Therac-25 radiotherapy machine of AECL Canada and CGR MeV France had been implicated in at least six accidents. The defective software was causing a mass irradiation (one hundred times the programmed dose) and was potentially lethal to patients by not detecting a bad operation of the X-ray generator. Five of these patients died. The project, its organization, the independence of source code evaluation, the software documentation, the tests, and the code itself were accused.

	
1990: AT&T long-distance calls were no longer possible because of a computer in New York who had wrongly decided that it was overloaded. The computer started to reject all calls. Spare computers automatically took the relay but as they were affected by the same software problem, they behaved in the same manner.

	
1991: Radiation protection doors of the Sellafield nuclear reprocessing plant in England opened too early while highly radioactive equipment was still present. The accident was caused by a control software’s bug. The original software was simple but functional, and the problem happened when a faulty patch was applied to add missing functions.

	
1991: During the Gulf War, a Patriot American missile did not manage to intercept a Scud, and 28 soldiers were killed. This failure was caused by a badly rounded calculation of the time of the missile launch. This calculation error led to a lack of precision of 0.34s. Knowing that the Scud had a speed of 1676 meters per second, the error was around 569 meters! This problem was known but had only been partially corrected.

	
1994: A problem in a floating point unit of Intel Pentium™ led to some wrong division instructions and a recall evaluated at more than $400 million. The problem came from a script that’s purpose was to copy constants to PLA (Programmable Lookup Array) hardware. See the article: “Statistical analysis of floating point flaw in the Pentium processor.” H. P. Sharangpani and Mr. L. Barton. (1994).

	
1994: A RAF Chinook Mk 2 helicopter crashed in Scotland, killing all 25 passengers. The investigation revealed that the accident coincided with the introduction of a new FADEC (Full Authority Digital Engine Control) control engine. The inspection, therefore, focused naturally on this equipment. A code review was stopped after it was only 18 percent completed because 486 anomalies had already been found. 10 % of these errors were considered critical. An extrapolation gave an estimate of 2700 problems and 270 critical issues with the whole software. What is interesting about this accident is that, in October 1993, “l’Aeroplane and Armament Experimental Establishment” (A&AEE) had informed the MoD that, because of the unverifiable nature of FADEC software, they should not recommend this software for the Chinook Mk 2. EDS-SCICON and A&EEA recommended rewriting the FADEC software, but this was not carried out. In November 1993 the Chinook Mk 2s was put into operational service, with some restrictions regarding its maximum transported load and the height at which it could fly; restrictions that had not been applied to the Chinook Mk 1. Also, intermittent engines stoppages were regularly reported by Chinook Mk 2s crews as well as abnormal motor speeds, both up and down, as well as incomprehensible helicopter movements.

	
1996: Ariane 5 rocket from the European Space Agency was destroyed 36 seconds after its launch because it had dangerously deviated from its trajectory. The cost of this failure is evaluated to at least 400 million euros. A report produced by experts, two weeks after the accident, point out the defective software of inertial measurement unit. This module was exactly the same as the one used in Ariane 4 where it worked correctly. However, used in Ariane 5, which had much more powerful motors, a 64 bits floating number representing rocket’s horizontal speed, was truncated to 16 bits, causing an overflow.

	
2004: ISS International Space Station had received a massive update to its software to correct 500 to 1000 computer problems affecting virtually everything in the station, from the robotic arm to the air filtration system. Among them, there were 39 critical problems. 4 of these problems could not be corrected. Some NASA controllers felt that “it was only a matter of time before someone was injured”. Consisting of 4 million lines of codes, the software, since early 2004, received 41 corrections introducing two new errors.

	
2007: Six Lockheed Raptor F-22 aircrafts, one of the most powerful aircrafts in the world, flying from Hawaii to Okinawa in Japan encountered a serious problem. When crossing the International Date Line, multiple onboard computers stopped: navigation, fuel, and communications management. As the weather was good, and as they were following their fuel supply plane, they succeeded to return to Hawaii. The problem in the source code was finally corrected after 48 hours.

	
2011: In the Still, Ford Edge, Ford Explorer, and Lincoln MKX vehicles, the MyFord Touch graphic console restarted when its internal software state was incoherent. This restart produced a visual blackout sometimes lasting around three minutes. The equipment state during this restart was sometimes very awkward (for example sound volume set to maximum, and air-conditioning started). It seemed that the developers had so little confidence in their software that they had provided a systematic restarting of the console every 24 hours after a car stop. One of the possible explanations is that the product development was late and that it had to be delivered a little quickly.11


	
2013: Orbital Sciences Cygnus capsule, long awaited by the six members of the crew of Station ISS because it transports 590 kilos of goods (including food and clothing), took one week to be fastened to ISS because of a computer software problem.

	
2013: Chrysler Corporation had to organize several car recalls including one on pickup Dodge RAM Airbags: if there were an accident, the airbag would be spread on the wrong side because software was testing the sensor on the opposite side.

	
2013: Honda recalled FIT Sports models because of incorrect behavior found in the Stability Assist device. Stability Assist helps to maintain car trajectory in conformity with the driver’s wishes by actively acting on wheels. The software was calibrated with specific data for a given tire’s brand, and when another brand was used, Stability Assist did not behave correctly. This problem raises the question of genericity of algorithms used.

	
2014 has already seen many automobile recalls. Takata, the second biggest supplier of airbags, has recalled 10 million vehicles in just five years. New York Times indicates that with more than 20 million affected vehicles this year; GM will have recalled more vehicles in 2014 than all the automotive industry in 2013. If we reflect on the fact that in 2013 GM produced 9.7 million vehicles and that they spent 2 billion dollars on second quarters’ recalls, the vertiginous aspect of these figures is clear. The last vehicles concerned are GM’s most popular and profitable cars, but they are not the most complex ones. The pursuit of profit seems to be the main reason. Both the impoverishment of engineering and the decline in the quality of resources over many years are identified as the root causes according to Mary Barra (CEO of GM). However, others manufacturers must also take these warnings into account because they are not immune from these massive recalls. Aren't we undergoing the effects of economy plans following financial crisis?12


	
2015: Boeing reported an issue regarding all 787 model airplanes to the FAA, which could result in loss of control of the airplane. This issue happens in “airplane that has been powered continuously for 248 days” and can lead to “lose all alternating current (AC) electrical power due to the generator control units (GCUs) simultaneously going into failsafe mode. This condition is caused by a software counter internal to the GCUs that will overflow after 248 days of continuous power.” The issue was found during laboratory testing13. The workaround requires “a repetitive maintenance task for electrical power deactivation on Model 787 airplanes”.

	
April 2015: American Airlines flights were delayed after the iPad app used by pilots crashed. In 2013, he cockpit iPads were introduced to replace a 16kg (35lb) of paper manuals required on flights called kitbag. American Airlines had indicated that “Removing the kitbag from all of our planes saves a minimum of 400,000 gallons and $1.2 million of fuel annually based on current fuel prices […] Additionally, each of the more than 8,000 iPads we have deployed to date replaces more than 3,000 pages of paper previously carried by every active pilot and instructor. Altogether, 24 million pages of paper documents have been eliminated.”



As you can see in these examples, a variety of fields is involved. Software bugs affect medical, automotive, space, military, and nuclear power fields. The seriousness of each situation varies. It can generate users’ embarrassment, damage to the environment, user injuries and financial losses. All periods are concerned. Old problems are more documented than new ones, as companies do not like to communicate on these subjects today.

Studies show that in commercial products, most common known problems are related mainly to software rather than other causes. In a Japanese study carried out in 2010, it was found that software accounts for 58.8% of problems, far more than the problems created by the two following major causes: electronic problems (11.7%) and specification problems (10.3%). This situation is due to the increasing importance of software in commercial products, the increasing size and complexity of software, and the general difficulty involved, with software development, and in particular embedded software.

This irrefutable fact, as overpowering as it is, did not however cause the necessary awakening among managers. Several factors can explain this situation. The first factor, which is not to be neglected, is that most managers still do not come from the software development background. A generation of leaders will be replaced gradually. This situation is particularly visible in industries, which traditionally did not have product-integrated software (transport, machine tool, mechanics, domestic equipment, audio/video, etc.). The second factor, which is related to the first, is that software, unlike mechanics and even electronics, is a virtual and impalpable product. It is not possible to look at a software defect whereas it is easy enough to see mechanical errors and electronic defects. Consequently, software is perceived as a delicate and strange element, which cannot be understood, and it thus brings many problems and is very expensive to produce. For traditional leaders, software is thus a necessary evil used to control production costs.

As long as organization management staff does not include a representative proportion of people coming from a software development background, software stakes will not be understood and will not be managed as they should be.


[image: ]

Figure 1: Distribution problems according to their origin14



For data concerning problems’ origin in embedded software, see the Chapter 14.4, Software Quality Metrics. The majority of current software problems come from the following causes:


	Team information sharing and communication problems,

	Lack of completeness and level of detail of activities,

	Company know how ignorance or incomprehension (rule, method, process, tool),

	
Incomplete work (missing or incomplete specifications, missing reviews, missing tests coverage, forgotten tasks, and simplified activities).



Solving pitfalls thus consists of working in integrated and co-localized project teams, decreasing the pressure on the development teams, increasing quality controls, training systematically, and completely new recruits.

6.3.Cost of software problems’ correction

It is obvious that defects’ prevention is a better option than eradication. What is less well known is the exorbitant cost of bugs correction and especially the cost of a late detection. However, it is fundamental to detect the defects as soon as possible: the closer detection of defects is to their introduction, less the cost of the correction will be.

To illustrate this exponential cost, which is particularly true in embedded software15, we can refer the following study:


[image: ]

Figure 2: Relative cost of problem correction16



In embedded software, the situation is worse. I can remember a particular case involving a remote control car that was worth just a few dollars. Following a recall, it cost $ 500 per recalled unit. When one multiplies this figure by the number of products to be recalled and replaced, the cost of correction can reach up to one million dollars.

In the book “The Economics of Software Quality” [37] it is stated that a very good schedule for a given development last 12.4 month and 15.6 months for a bad one. If a high quality development cost $ 846,636, a bad one costs $ 1,039,889. Maybe this is because of the average number of bugs goes from 22 (high quality) to 142 (poor quality).

In a 2014 survey17, development stages where people spent the most time was writing code (52.3%) and testing (48.0%), design (36.4%), rework (30.1%) and requirements analysis (22.5%). The biggest causes of delay to software projects were changes to the requirements and specifications (58.6%) and the complexity of the application (51.5%).

6.4.What is a safety-critical software?

It is difficult to discuss embedded software without introducing software safety.

Usually, the software is a part of a larger system and safety must be ensured at system-level. Software can, therefore, contribute directly or indirectly to the system safety, as we will see in chapter 6.2, “A short story of software bugs”, it can cause or contribute to unsafe conditions in a system.

Software is everywhere, and the associated risk grows. The complexity of software is increasing18. The reasons are that more and more advanced functions are offered to the end-users, like automated driving in the car industry, and more and more functions are gathered in the same electronic board (and software) for cost savings. The software industry also suffers from the “more with less” trend that leads to increased outsourcing and offshoring. This can lead to a loss of domain knowledge but also a loss of technical and safety knowledge. The automated driving example shows us that technology changes at a rapid rate. When I started to work in the automotive industry fifteen years ago, only old-fashioned technology were used, and I was very frustrated. Now automotive industry uses Bluetooth Low Energy, image processing, radars, Sensor fusion, machine learning and artificial intelligence. As a result, software sizes are also increasing. As an example, from Boeing 777 to Boeing 787, code sizes have increased eightfold to tenfold, and this will continue. Electronic devices like drive-by-wire and flight-by-wire progressively replace mechanical devices. They improve performance, features and flexibility but also increase the software criticality significantly.

For all these reasons, software safety is more and more important. However, we lack competent software safety engineers, which is a paradox. Several definitions of safety are available but the following one is clear: the safety is the “freedom from those conditions that can cause death, injury, illness, damage to or loss of equipment or property, or environmental harm”19. Regarding safety-critical software, the Institute of Electrical and Electronic Engineers (IEEE) defines it as “software whose use in a system can result in unacceptable risk. Safety-critical software includes software whose operation or failure to operate can lead to a hazardous state, software intended to recover from hazardous states, and software intended to mitigate the severity of an accident”20.

The U.S. National Aeronautics and Space Administration (NASA)21 propose to identify safety-critical software if at least one of the following criteria is satisfied:


	It is included in safety-critical system and at least one of the following:

	Controls safety-critical functions,

	
Causes/contributes to a hazard,

	Processes safety-critical data or commands,

	Provides control/mitigation for hazards,

	Mitigates damage if a hazard occurs,

	Detects/reports/takes corrective action, if a hazard state is reached,

	Is executed on the same processor as other safety-critical software.





	It works on data or analyzes trends that lead directly to safety decisions,

	It contributes to full or partial verification/validation of safety-critical systems.



6.5.What is software quality?

What is quality and software quality? Many definitions are possible and valid; they represent slightly different points of view. The international standard ISO 9001 indicates that it is about the “degree to which a set of inherent characteristics fulfills requirement.” Philip B. Crosby gives a similar definition: it is “conformance to requirements (requirements meaning both the product and the customer's requirements).” For Watts Humphrey, it guarantees “achieving excellent levels of fitness for use”. IBM sees total customer satisfaction by “market-driven quality.” All of these definitions are general definitions to indicate that the purpose of software quality is to make sure that the software is in conformity with its specifications and customer or the end users’ expectations. These definitions are far from being satisfactory because they do not take into account risk control, capitalization and conformity to the standards requested by the customer or required by the state of the art.

We will reformulate together a definition closer to the field of embedded electronics:

Software quality is a set of practices and methods used to ensure that throughout the software development standards, state of art, regulations and methodologies are respected with effectiveness while being in conformity with the explicit and implicit, customer and end users functional and non-functional requirements.









