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INTRODUCTION: 
AI’S LIGHT BULB MOMENT

They are called light bulb moments: the instant an idea materializes from the dark corners of the unconscious and assumes tangible, almost physical form. Individuals experience light bulb moments, and so do whole societies, moments of public realization that mark the borderline between one era and the next. Such moments occur when a technology is married to a device or software that people without any specialized knowledge can use, and which instantly gives them a new view of the future.

The light bulb itself sparked one such moment. On December 31, 1879, Thomas Edison flicked a switch in his lab in Menlo Park, New Jersey, and his incandescent light bulb illuminated a brave new world: one powered by electricity, not gas or steam. Inventors and scientists on both sides of the Atlantic had been racing one another for close to a decade to commercialize electric power. But many of their inventions were industrial, technical, esoteric. The light bulb was different. Here was a device everyone could hold and behold—and understand.

We’ve experienced a succession of light bulb moments around digital technology in the past three decades: the internet existed before the web browser, but it was only after the launch of Netscape Navigator in 1994 that the internet era truly dawned. There were MP3 players before the iPod debuted in 2001, but they didn’t spark the digital music revolution. There were smartphones before Apple dropped the iPhone in 2007—but before the iPhone, there wasn’t an app for that. On November 30, 2022, artificial intelligence had its light bulb moment. That’s the day OpenAI debuted ChatGPT.

As a journalist, I have been covering artificial intelligence since 2016 and have watched as the technology made continual strides. AI has long been a topic of fascination among business executives and technologists, but before ChatGPT, it never quite made it to the center ring of public conversation. For those of us closely following the technology, progress seemed incremental. When ChatGPT debuted, I thought it would be yet another shuffle forward. After all, it didn’t seem much different from an AI model called Instruct GPT that OpenAI had launched almost a year before. I had written about Instruct GPT. It was an important refinement of OpenAI’s large language model GPT-3. Instruct GPT was easier to control through text-based instructions, or prompts, than GPT-3. It was less likely to produce racist, sexist, homophobic, or otherwise toxic content. And it could do many natural language tasks, from translation to summarization to coding. But Instruct GPT made not the barest ripple in the ocean of public discourse.

So when ChatGPT debuted, I was surprised by the surprise. I shouldn’t have been. Form factors—or those interfaces, like Google’s search bar, that we use to interact with a technology—matter. The Ford Model T was more than just an internal combustion engine and a set of wheels. And with its simple chatbot interface, OpenAI hit upon a winner. This was a light bulb moment for me too.

During most of the previous decade, AI’s advance occurred in narrow domains. A number of the AI achievements I covered before ChatGPT involved software that could beat humans at games. Google’s cutting-edge AI lab DeepMind created software called AlphaGo that triumphed over the world champion Lee Sedol at the ancient strategy game Go in March 2016. It was a seminal achievement in computer science: Go has so many possible move combinations that an algorithm cannot use brute calculation to analyze every one, as AI software can with chess. Instead, it has to act on probabilities, learned from games it has played, to decide which move is best. But games are just games. While they can be proxies for skills we would like an AI system to master, by their very nature games abstract away much of life’s complexity. On a Go board, everything is literally black and white, and both players can see the position of every stone.

DeepMind later showcased an AI system that could beat the best human players at a complicated video game called StarCraft II, whose imaginary world bears a bit more resemblance to our own messy reality. OpenAI, the same AI research company that would later create ChatGPT, built a team of AI-powered agents that could beat a team of human players at a fast-paced video game called Dota 2. But these were not light bulb moments. Too few people were familiar with StarCraft II or Dota 2. And the software that mastered these games could not be immediately applied to real life.

Before ChatGPT, AI tended to work its magic behind the curtain. It helped familiar products do stuff, like recommend a movie or tag a person in a photo on social media. These AI models were impressive, but they were not general-purpose technologies, and most people didn’t consider the products they made possible AI. My editors would sometimes shrug when I’d suggest a story on one of these narrow AI advances, and, in retrospect, I don’t blame them. This kind of AI seemed a far cry from the artificial intelligence we’d all seen in movies, the malevolent sentience of HAL 9000 in Stanley Kubrick’s 2001: A Space Odyssey, the benign Star Trek computer, or even the beguiling digital assistant in 2013’s Her.

That started to change in 2018, when AI researchers began making rapid progress with large language models, the type of AI technology that ChatGPT is based on. Their advances showed that a sufficiently large AI system, trained only to predict words in a sentence, could be used for a variety of tasks, from translation to summarization to question-answering. Before, each of those capabilities would have required a different AI system. In the world of AI, this was a big deal, and I wrote about the potentially far-reaching impact on business for Bloomberg and then Fortune. But even then, the technology was in the backend of existing software. Because it wasn’t embodied in an easy-to-use, consumer-facing product, it was hard for most people—including many experts—to grasp just how much the world was about to change. This tendency to discount progress in AI has a name: the Tesler effect, coined for the computer scientist Larry Tesler, who had quipped that “AI is whatever hasn’t been done yet.” What has been done, he said, we simply took for granted. What’s more, once an AI program could do it, we excised that skill from our definition of “intelligence”—an amorphous quality that required a humanlike combination of abilities that was forever beyond software’s grasp.

With ChatGPT, AI finally surmounted the Tesler effect—and then some. Suddenly, people could grasp that AI had arrived. You could talk to it. It could answer, cogently and confidently, if not always correctly. You could ask it for recipes based on the ingredients in your fridge. You could get it to summarize your meeting—in prose, or, if you wished, in verse! You could ask for ideas to improve your business or advice on how to ask for a raise. It could build you a website or write you custom software that could wrangle data and analyze it. Combined with other generative AI models, it could produce images of almost anything you could describe.

Now, AI was getting somewhere. This was more like the AI of Kubrick and Star Trek. Our attitude toward the technology transformed from blasé to bewildered overnight. What did this moment mean? What future was AI ushering in? Would we even have a future? There were certainly frightening pronouncements, some from the very executives and researchers closest to the technology’s bleeding edge: that AI could displace 300 million jobs worldwide; that ChatGPT was like “a pocket nuclear bomb” that had detonated amid an unsuspecting public; that it would destroy education; that it would destroy trust; that it would obliterate democracy; that even, if we weren’t careful, AI could mean “lights out for all of us,” as OpenAI’s co-founder and chief executive Sam Altman famously warned.

This book is my attempt to answer the many questions posed by ChatGPT. In researching it, I was struck by the extent to which many of our concerns, as well as some of the moral panic greeting the AI revolution, also attended the introduction of earlier technologies, from the printing press to television to the internet. Some fears about AI date back to the dawn of the computer age. Others have arisen more recently, with the introduction of the internet, GPS, social media, and mobile phones. There are important lessons to be drawn from how we, collectively, met the challenges these earlier inventions posed—in the ways we were changed and, perhaps more importantly, in the ways we weren’t. AI represents an acceleration, an extension, and in many cases an exacerbation of trends these earlier technologies set in motion. When it comes to social isolation or distrust in media, AI represents a difference of degree, not necessarily of kind.

But AI is different from these earlier innovations in three key ways. It is a more general-purpose technology than most we have encountered previously. This makes it much more akin to the invention of writing or metal smelting or electricity than to the telephone or even the automobile or airplane. It is, as several thinkers on AI have opined, perhaps “the last invention” we need ever create. That’s because it holds the promise of helping to create all future technologies we may require. It has the potential to impact almost every aspect of society.

Second, the pace of AI’s progress, as well as its adoption, is faster than prior technologies. ChatGPT reached 100 million users within a month of its release, a milestone that took Facebook, the previous fastest-growing consumer software product, almost four and a half years to reach. Spending on the technology is surging, with more than half of Fortune 500 companies planning to implement ChatGPT-like AI in the coming few years.

The speed at which all this is happening matters because it gives us humans less time: less time to adjust to the new reality AI is helping to create; less time to think about AI’s implications and how we want to govern the technology; and less time to act before it becomes too late, before harms, both small and large, occur.

Finally, more than any previous technology, AI strikes at the heart of our perception of what makes us unique as a species: our intelligence and our creativity. When the John Henrys of the world eventually lost out to the steam drill, it devalued human labor. But human physical strength was never dominant. We’d long known creatures that could outrun us, outclimb us, outswim us, and overpower us. But nothing could outthink us. Microprocessors and previous generations of software rivaled some of our cognitive abilities: They could run calculations far faster and more accurately than we could. They could follow any rote set of procedures more exactly and speedier, too. But we wrote those rote steps. Computers did not challenge the core of our intellect, our ability to reason, to invent new ways of solving problems, and our creative power to express ideas and emotions in novel ways. AI challenges most, if not all, of these things. This is why it is so profound and unsettling, and why we regard it with such fascination and dread. We are, for once, in a position where we might not be the preeminent intelligence on the planet—at least not for much longer.

While this is vertigo-inducing, we have much to look forward to in this AI-defined future. AI can grant us all superpowers, if we make the right design choices and adopt the right policies. It can alleviate the burden of routine tasks, enabling us to work faster and smarter. It will set off an unprecedented productivity boom that will accelerate economic growth. Rather than destroying education, as some teachers and parents fear, AI will allow each of us to have a personal tutor in our pocket. AI will help us push the boundaries of science and medicine, offering us new cures and more personalized medicine. It will help us advance our understanding of chemistry, biology, and even our own history and prehistory. It will aid us in monitoring our planet and safeguarding biodiversity, as well as helping us use renewable power more efficiently. It will give many of us a constant companion, possibly alleviating loneliness and allowing those who struggle socially to improve their interpersonal skills. Used correctly, it could enhance our democracy.

But there are grave dangers here too. If we make the wrong choices, AI will enfeeble us individually and collectively. Our social skills may atrophy. At work, we may wind up being disempowered and demotivated, slaves to the machine, rather than its master. Without the right government action, inequality will become worse, and power more concentrated. The explosion of synthetic content may obliterate trust and shred the already threadbare fabric of our democracy. AI’s power consumption could hurt our efforts to fight climate change. The technology might help engineer bioweapons. It could make our wars more deadly for civilians and soldiers alike. In the wrong hands, it could be a tool for terror. If we were to automate decisions concerning nuclear weapons, the risk could be world-ending. A future AI superintelligence could even pose a threat to our species.

In the following pages, you will also encounter arguments about AI’s impact that don’t get as much attention as the stories about the end of democracy or even the world. Chief among them is the threat AI poses to our minds and the way we think. We should not let AI’s cognitive prowess diminish our own. Another critical risk that is too little discussed is AI’s potential to shove empathy out of the central position it ought to occupy in our decision-making. Finally, AI could worsen the divisions along racial and class lines that already trouble our society.

On a more hopeful note, I also showcase opportunities that are frequently overlooked. Just as AI has the potential to worsen inequality, it will offer us a chance to pull more people into the middle class; to help people create new businesses and become entrepreneurs. It could lead to a flourishing of creativity and culture. And it could improve learning and expand both our personal and collective knowledge.

This exploration of AI begins with a brief history, explaining how we have arrived at the threshold of this new age. We will then examine AI’s impacts, starting with how it could profoundly alter our own thinking. Expanding outward, we will explore AI’s effects on our social relationships, our jobs, the companies we work for, and the economy as a whole. From there, we will investigate AI’s reshaping of art and culture and science and medicine. We will confront AI’s complicated role in our efforts to foster sustainability, the dangers facing democracy, and the threat from the unrestricted use of AI in weapons systems. Finally, we will look at the possibility that AI might result in our extinction.

Across all these dimensions, AI poses unsettling questions around authenticity and trust, and around what philosophers call ontology (our beliefs about being and reality) and epistemology (how we construct those beliefs). In our AI-driven future, we should insist on maintaining a distinction between the authentic and inauthentic—between a simulation of something and the thing itself. AI is excellent at mimicry, at imitating understanding, writing, thought, and creativity. In most cases, it is incapable of the thing itself—and probably always will be. It can complement and extend key aspects of our humanity, but we should not be fooled into thinking it can substitute for us. We must remember that AI’s superpower is its ability to enhance, not replace, our own natural gifts.

In this book, I hope to illuminate a path toward the superpowered future AI can enable. But it is a narrow path. We must step carefully. We must be deliberate in how we build AI models and, as importantly, how we interact with them.

In the end, how we use AI is up to us. We have choices to make as a society—decisions that are rarely discussed in the public realm, whether it’s in political campaigns or on earnings calls. Only such careful choices will ensure AI complements our best human skills, rather than supplants them. Government and corporate policies will make all the difference to AI’s impact. I outline some of these policies throughout this book.

More than the capabilities of AI models themselves, the precise nature of how we interact with this software will matter tremendously. To get this right, we need to value the insights of researchers who specialize in human–computer interaction and human cognitive biases as much as we do those building ever more powerful AI.

Humans must be teammates with AI software, not mere inspectors of its output. We must insist that processes, not just results, matter. And those processes must encompass empathy—one person’s understanding for another, born of lived experience. As humans, this is our most precious and enduring gift. It is the bedrock of our morality. And it is a thing AI is unlikely to ever possess. We must not let our rush to embrace AI’s technical efficiency dislodge empathy, that most human trait, from its preeminence in our civilization. Keeping this lodestar in sight won’t be easy. But if we can, we will succeed in mastering AI.







CHAPTER

1

THE CONJURERS

In the spring of 2020, in a vast windowless building the size of twenty football fields on the plains outside Des Moines, Iowa, one of the largest supercomputers ever built crackled to life. The supercomputer was made up of rack upon rack of specialized computer chips—a kind originally developed to handle the intensive work of rendering graphics in video games. More than ten thousand of the chips were yoked together, connected with high-speed fiber-optic cabling. The data center belonged to Microsoft, and it cost hundreds of millions of dollars to construct. But the supercomputer was designed to serve the needs of a small start-up from San Francisco that, at the time, few people outside the niche computer science field known as artificial intelligence had ever heard of. It was called OpenAI.

Microsoft had invested $1 billion in OpenAI in July 2019 to gain access to its technology. As part of the deal, Microsoft promised to build this supercomputer. For the next thirty-four days, the supercomputer worked around the clock training one of the largest pieces of AI software ever developed. The software could encode the relationship between 175 billion data points. OpenAI fed this AI software text—more than 2.5 billion web pages collected over a decade of web crawling, millions of Reddit conversations, tens of thousands of books, and all of Wikipedia. The software’s objective was to create a map of the relationships between all of the words in that vast dataset. This statistical map would allow it to take any arbitrary text sequence and predict the next most likely word. By doing so, it could output many paragraphs—in a variety of genres and styles—that were almost indistinguishable from human writing.

OpenAI called the software GPT-3, and its debut in June 2020 stunned computer scientists. Never before had software been so capable of writing. GPT-3 could do far more than just assemble prose and poetry. It could also code. It could answer factual questions. It was capable of reading comprehension and summarization. It could determine the sentiment of a piece of writing. It could translate between English and French, and French and German, and many other languages. It could answer some questions involving commonsense reasoning. In fact, it could perform dozens of language-related tasks, even though it had only ever been trained to predict the next word in a sequence. It did all this based on instructions that were conversational, the way you would speak to a person. Scientists call this “natural language,” to differentiate it from computer code. The potential of GPT-3 convinced Satya Nadella, Microsoft’s chief executive, to quietly double, and then triple, his initial $1 billion investment in the small San Francisco AI lab. GPT-3 would, in turn, lead two years later to ChatGPT.

ChatGPT was not the first AI software whose output could pass for human. But it was the first that could be easily accessed by hundreds of millions of people. It awakened the public to AI’s possibilities and set off a race among the largest technology companies and well-funded start-ups to turn those possibilities into reality. Within months, Microsoft would commit even more money to OpenAI, another $10 billion, and begin incorporating OpenAI’s even more powerful GPT-4 model into products such as Microsoft Word and PowerPoint, which hundreds of millions of people use daily. Google, scrambling to catch up, created a general-purpose chatbot of its own, Bard, and began integrating generative AI into its search engine, potentially destabilizing the business models of entire industries, from news and media to e-commerce. It also began training even larger, more powerful AI systems that analyze and create images, sounds, and music, not just text. This model, called Gemini, has since replaced Bard and been integrated into several Google products. Meta began releasing powerful AI models freely for anyone to use. Amazon and Apple started building generative AI too.

This competition is propelling us toward a single general-purpose AI system that could equal or exceed human abilities at almost any cognitive task—a moment known as the singularity. While many still doubt that moment is at hand, it is closer than ever.

Why did ChatGPT seem so remarkable? Because we could talk to it. That a computer’s conversational skills—and not its fluency in multiplying five-digit numbers or detecting patterns in stock market gyrations—should be the yardstick by which we measure machine intelligence has a long and contentious history. The vision of an intelligent digital interlocutor was there at the dawn of the computer age. It has helped guide the entire field of AI—for better, and for worse.

THE TURING TEST—AI’S ORIGINAL SIN

The idea of dialogue as the hallmark of intelligence dates to the mid-twentieth century and the writings of one of that era’s most exceptional minds, Alan Turing, the brilliant mathematician best known for helping to crack the Nazis’ Enigma code during World War II. In 1936, when he was just twenty-four, Turing proposed the design of a hypothetical device that would serve as the inspiration for modern computers. And it was Turing who, in a 1948 report for a British government laboratory, suggested that computers might one day be considered intelligent. What mattered, he argued, was the quality of a machine’s output, not the process that led to it. A machine that could beat a person at chess was more “intelligent,” even if the machine arrived at its moves through a method, brute calculation, that bore little resemblance to the way its human opponent thought.

Two years later, in 1950, Turing expanded on these ideas in his seminal paper entitled “Computer Machinery and Intelligence.” He suggested a test for machine intelligence that he called “the Imitation Game.” It involved an interrogator asking questions of a person and a computer. All three are isolated from one another in separate rooms. The interrogator receives responses in the form of typewritten notes that are labeled X or Y depending on whether the human or the machine produced them. The interrogator’s job is to determine, based on the typed answers, whether X is a person or a machine. Turing proposed that a computer should be considered intelligent if the interrogator can’t tell the difference.

Critically, Turing explained that the test was not about the accuracy or truthfulness of answers. He fully expected that to “win” the game, both the human and the machine might lie. Nor was it about specialist knowledge. In describing the game, he postulated that it would be a machine’s mastery of the form of everyday conversation, as well as an apparent grasp of common sense, that would make it indistinguishable from the human.

The Imitation Game, later dubbed “the Turing Test,” has had a profound impact on how computer scientists have regarded machine intelligence. But it proved controversial almost from the start. Wolfe Mays, a philosopher and professor at the University of Manchester, was among the contemporary critics who attacked Turing’s test because of its focus on the machine’s output, instead of its internal processes. He called machines’ cold, logical calculus “the very antithesis of thinking,” which Mays argued was a far more mysterious, intuitive phenomenon. Mays was among those who believed intelligence was closely linked to human consciousness, and that consciousness, in turn, could not be reduced to mere physics. Turing, he wrote, seemed “implicitly to assume that the whole of intelligence and thought can be built up summatively from the warp and woof of atomic propositions.”

Decades later, the philosopher John Searle constructed a thought experiment to highlight what he saw as the Turing Test’s fatal flaw. Searle imagined a man who can neither read nor speak Chinese being locked in a room with a Chinese dictionary, some sheets of paper, and a pencil. Notes with Chinese characters are slipped through a slot in the door, and the man’s job is to look up the symbols in the dictionary and transcribe the Chinese characters he finds there onto a fresh slip of paper and push these slips out through the slot. Searle said it would be ridiculous to say that the man in the room “understood” Chinese just because he could produce accurate definitions of Chinese words. So, too, Turing was wrong, Searle wrote, to consider a computer intelligent just because it could mimic the outward characteristics of a human dialogue.

Debates about these issues have become louder with the advent of ultra-large language models, such as GPT-4. It certainly doesn’t help that cognitive science has yet to resolve the nature of human intelligence, let alone consciousness. Can intelligence be distilled to a single number—an intelligence quotient, or IQ—based on how someone performs on a standardized test? Or is it more appropriate, as the Harvard psychologist and neuroscientist Howard Gardner argued, to speak of multiple intelligences that take into account the athletic genius of a Michael Jordan, the musical talents of a Taylor Swift, and the interpersonal skills of a Bill Clinton? Neuroscientists and cognitive psychologists continue to argue.

Beyond elevating outcomes over process, the Turing Test’s emphasis on deception as the hallmark of intelligence encouraged the use of deceit in testing AI software. This makes the benchmark fundamentally unethical in the eyes of many modern AI ethicists, who blame the Turing Test for encouraging a tradition of AI engineers testing their systems on unwitting humans. In recent years, companies have tested AI software that could play strategy games like Go and Diplomacy against unsuspecting human players. Researchers defended the deception as necessary: humans might alter their playing style and strategies if they knew they were up against a software opponent. Ethicists and journalists lambasted Google when, in 2018, it showed off its new Duplex digital assistant by having the software phone a restaurant and make a reservation, fooling the maître d’ into thinking she was interacting with a person. Today most “responsible AI” policies state that people should always be informed when they’re interacting with AI software—and yet companies sometimes find justifications for not doing so.

Perhaps the Turing Test’s most enduring and troubling legacy concerns its framing as a game of wits in which a human is pitted against a computer whose goal is to mimic and equal the human. As the technology writer John Markoff notes in his book Machines of Loving Grace, one effect of this was that generations of AI researchers would try to create software that matched or exceeded human performance at some tasks, and, as a result, were evaluated for their potential to replace humans. An alternative, Markoff says, would be to view AI software as having different but complementary capabilities. This framework would encourage the development of AI systems designed to augment people, rather than replace them.

But this complementary perspective has struggled to gain traction. When they wish to prove their software’s capabilities, AI researchers still tend to follow Turing’s example and benchmark their systems against human performance. Some of this is simply good marketing, of course—software besting humans at a familiar board game or some professional exam makes for better headlines. But among AI researchers, the desire to equal or exceed human performance runs deeper than just a clever media strategy, and much of that is down to Turing. More recently, the latest generation of AI language models has been subjected to a battery of tests designed to evaluate people, including the bar exam and the U.S. medical licensing exam. Today’s most powerful AI systems have passed all of these tests, often scoring better than the average person. And of course, ChatGPT’s mastery of the original Turing Test—its convincing dialogue—has helped make it such a sensation. But dig a little deeper and the software’s imitation of us begins to slip. As anyone who has played around with ChatGPT soon discovers, the intellectual abilities of today’s generative AI can be frustratingly brittle and weirdly alien: it can answer a tough question about particle physics with mastery, and then botch a simple logic problem an eight-year-old could ace. Such inconsistency, brilliance and stupidity commingled, is certainly not what Turing had in mind.

BUILDING TURING’S INTELLIGENT MACHINES

The possibility of such a paradox—that a computer could master conversation without any real understanding of what it was saying—wasn’t even a distant flicker in the imaginations of the scientists who first took up the challenge of trying to turn Turing’s vision of a thinking machine into reality. Around the time Turing dreamed up the Imitation Game, the first universal computers, which owed much to his prewar conceptual designs, were being plugged in. These were colossal machines: ENIAC, one of these early computers, took almost the entire basement of the University of Pennsylvania engineering department, occupying 1,500 square feet and consisting of thirty tons of wiring and vacuum tubes. It could perform five thousand addition calculations per second, which was much faster than previous mechanical calculating machines, but almost one trillion times slower than the powerful chips that run today’s AI software. Yet a small group of pioneers believed they could teach machines like ENIAC to think.

John McCarthy, a young mathematics professor at Dartmouth College, was one of them. By the early 1950s, the idea of imbuing these new computers with intelligence began to take hold. As a key step toward that goal, scientists were also trying to discover algorithms that could accurately describe how the human brain itself worked. McCarthy was at the heart of this intellectual fervor, working on what was called automata theory. Others were carrying out similar research but calling it cybernetics and information processing. In early 1955, McCarthy had the idea of bringing some cohesion to these efforts by hosting a two-month workshop the following summer at Dartmouth. He would invite about a dozen academics—mostly mathematicians, but also electrical engineers and psychologists—to figure out how to get a computer to learn and think.

In writing a funding proposal for the workshop, McCarthy coined the term “artificial intelligence” to refer to the emerging field. McCarthy and his fellow workshop organizers set an ambitious agenda. “An attempt will be made to find how to make machines use language, form abstractions and concepts, solve [the] kinds of problems now reserved for humans, and improve themselves,” they wrote in their grant application to the Rockefeller Foundation. They believed that, with a “carefully selected” group of scientists working together, “a significant advance could be made in one or more of these problems” that summer.

As it turned out, McCarthy and his fellow organizers had been wildly optimistic. The 1956 workshop failed to unify the field around a singular vision and research program, disappointing McCarthy. Some of the attendees even disliked the name “artificial intelligence,” believing it connoted something phony. Heated debate over the term diverted time and attention from more substantive discussions. McCarthy defended his choice—arguing that it emphasized that the field’s goal was intelligence, and not merely automation. The name stuck. And, while the Dartmouth workshop failed to braid the various strands of AI research into a single rope, it showcased many of the conceptual threads—and many of the challenges—that would define the pursuit of AI over the next six decades, including one idea that has sparked the current AI revolution.

That idea was called the artificial neural network. By the late 1940s, neuroscientists had discovered that human neurons began life undifferentiated from one another—any difference in the way the mature neurons functioned in the brain must, they concluded, be learned. They also knew that neurons fed electro-chemical signals to other neurons in what seemed to be a sort of hierarchy. These two insights prompted scientists to search for ways to duplicate this structure, first using vacuum tubes and later using digital computers and software.

The earliest neural networks had just two layers. In the input layer, neurons would each take in data from a different portion of whatever image, audio recording, or text the network was analyzing. Every input neuron applied a mathematical formula to its bit of data and passed the result along to a single output neuron. The output neuron summed the answers from all the input neurons and then applied its own mathematical formula, with the result determining the answer it gave to a user. If that answer was wrong, variables, called weights and biases, that are part of each neuron’s formula, were adjusted. The neurons closest to having the right answer had their weights and biases increased, while the others had theirs decreased. Then the whole network tried again with another example from a dataset. This process enabled the network to gradually learn, over the course of many examples, how to produce the right answer.

A number of computer scientists thought these early neural networks would be the way to achieve artificial intelligence. The approach worked well for teaching computers to make simple binary classifications, determining whether something was light or dark, a circle or a square. But it couldn’t do much else. Marvin Minsky, a brilliant young Harvard mathematician who helped McCarthy organize the workshop, built one of the first analog neural networks using parts salvaged from a B-24 bomber. He presented his work on neural networks at Dartmouth that summer. But much of Minsky’s presentation dwelled on neural networks’ many limitations.

Soon Minsky, who went on to found MIT’s AI Lab, emerged, with the zeal of a convert, as the technique’s harshest critic. He would turn instead to a different idea about how to build machines that could learn and think, one that used logical rules to tell a computer how to reason. For example, to create a system that could identify cars, motorcycles, and bicycles in images, you would program the computer to recognize features that humans knew were important in making this determination—things like handlebars, the number of wheels, doors and windows and exhaust pipes. Then you would write code that would instruct the computer in how to reason about these features: If it has handlebars, but no doors or exhaust pipe, it is a bike. If it has an exhaust pipe, but no doors, it’s a motorcycle. In the years following the Dartmouth workshop, these symbolic reasoning methods yielded what seemed like steady progress toward humanlike AI. Scientists created software that could play backgammon, checkers, and then chess about as well as the average person. Then, in 1966, an AI system using Minsky’s rules-based approach came within a whisker of passing the Turing Test.

THE ELIZA EFFECT

The achievement was the work of an engineer working at Minsky’s MIT lab named Joseph Weizenbaum. Born in Berlin in 1923 to a well-to-do Jewish family, he wound up in Detroit at thirteen after fleeing the Nazis. Weizenbaum’s relationship with his parents was strained and, finding himself socially isolated as he struggled to learn English, he sought refuge first in mathematics, and later on his psychoanalyst’s couch. He gravitated to the nascent field of computing and eventually landed a job as a programmer, writing software for the giant computers that General Electric was building in the emerging tech hub of Silicon Valley. He became intrigued by the possibility of interacting with a machine, not in code, but in natural language. Knowing his interests, a mutual friend introduced him to the Stanford University psychiatrist Kenneth Colby, who thought computers might open up new avenues for therapy, as well as providing interesting ways to research mental illness by modeling the human brain. They collaborated on a project to create a kind of software therapist. Weizenbaum took the idea with him when he joined the MIT faculty in 1963. The result, three years later, was the world’s first chatbot, Eliza, named after Eliza Doolittle from Pygmalion.

Eliza was designed to mimic, in text, the interaction between a patient and a psychoanalyst. Weizenbaum chose this “persona” for Eliza deliberately because it helped mask the chatbot’s relatively weak language understanding. The system analyzed the text a user gave it and, according to a complex series of rules, tried to match the text to one of several pre-scripted replies. If it was uncertain, it would sometimes simply parrot the user’s input back in the form of a question, as a psychoanalyst might. In other cases, it would lean on something vague and sympathetic, such as, “I see,” or “Go on,” or “That’s very interesting.”

The coding behind Eliza was not particularly sophisticated, even by the standards of the day. Instead, what made Eliza groundbreaking was people’s reaction to it. Many of the students whom Weizenbaum observed interacting with Eliza were convinced it was a human therapist. “Some subjects have been very hard to convince that Eliza (with its present script) is not human,” Weizenbaum wrote. He would later recall that his secretary requested time with Eliza and then, after a bit, requested he leave the room. “I believe this anecdote testifies to the success with which the program maintains the illusion of understanding,” he noted. Even computer scientists found themselves making intimate confessions to the chatbot.

In other words, Eliza came pretty close to pulling off the sort of deception Turing envisioned. But Eliza also made glaringly apparent the Turing Test’s weaknesses. Chief among these is our own credulity. The people who interacted with Eliza wanted to believe they were talking to a person. This tendency, to anthropomorphize chatbots—and to suspend our own disbelief despite their obvious shortcomings—became known as “the Eliza effect.” It remains a powerful force in AI today.

The Eliza effect’s biggest impact may have been on Eliza’s creator. Rather than experiencing triumph, Weizenbaum was depressed. What did it say about his fellow humans that we were so easily duped? He began to see how difficult it was to distinguish real human thought from its imitation—and yet how vital. Weizenbaum’s early collaborator Colby would maintain that if patients found a chatbot like Eliza helpful, then it was a worthwhile invention. But the deception at Eliza’s core troubled Weizenbaum. This debate continues today with a new wave of chatbots designed to sound empathetic or be used in therapy.

Minsky, Weizenbaum’s MIT colleague, saw no difference between the reasoning a computer performed and the brain—Minsky famously quipped that humans were nothing more than “meat machines.” Weizenbaum made a radical break from this view. He came to see certain realms as beyond the scope of AI because they depended on lived experience—and ultimately emotions—that a computer could never have. Even if the rules of language could be mathematically formalized, something he had come to doubt, AI software could never actually “understand” language. Drawing on the later philosophical writings of Ludwig Wittgenstein, Weizenbaum argued language was insufficient for conveying meaning even between two people—because none of us shares the same lived experience as anyone else—let alone between a person and a piece of software, which has no lived experience. Plus, so much of communication is nonverbal. Weizenbaum related the story of standing next to his wife, looking over their children as they lay asleep in bed. “We spoke to each other in silence, rehearsing a scene as old as mankind itself,” he later wrote. Then he quoted the playwright Eugene Ionesco: “Not everything is unsayable in words, only the living truth.”

Weizenbaum argued that this fundamental difference between human and machine—the computer’s incapacity for true empathy—meant that even if AI could learn to perform every human task as well as or better than a person, it ought to be banned from doing certain things. He thought software should never be allowed to make decisions with irreversible consequences or “where a computer system is proposed as a substitute for a human function that involves interpersonal respect, understanding, and love.” He worried that even as we all too readily anthropomorphized our machines, we all too eagerly embraced machines as a metaphor for ourselves, devaluing our humanity.

In 1976, Weizenbaum laid out these critiques in a book, Computer Power and Human Reason: From Judgment to Calculation. It was a searing indictment of his own field. He accused his fellow AI researchers of having a “hacker mentality” that was more concerned with getting software to perform some task, rather than trying to answer scientifically meaningful questions about the nature of intelligence and thought. Not only did these so-called computer scientists lack scientific rigor, in his view, but both their approach and the potential impact of the AI software they were trying to build were antihuman. Weizenbaum, who had a commitment to left-wing causes and civil rights, was particularly disturbed by the U.S. government’s use of early AI software in the Vietnam War.

Weizenbaum recognized that many AI systems were so complex that their decision-making was inscrutable, even to their creators. He worried that made these systems difficult to control. But he also recognized that people could use the software’s opacity as a convenient excuse to duck accountability. The political economy of AI alarmed him, too. In his neo-Marxist critique, postwar American capitalism might have collapsed under its own weight if the computer had not saved it. Software allowed big business and the federal government to exercise control in ways that would have been impossible before. “The computer, then, was used to conserve America’s social and political institutions,” he wrote. “It buttressed them and immunized them, at least temporarily, against enormous pressures for change.” AI made totalitarian government easier, a concern heightened by Weizenbaum’s own experience as a refugee from Nazi Germany.

Weizenbaum’s fellow computer scientists dismissed Computer Power and Human Reason as anti-scientific and vitriolic. But most of his criticisms of AI, and of those building it, remain valid—in fact, his nightmares about AI are more germane than ever.

RESURRECTING THE NEURAL NETWORK

The reason it was easy to ignore Weizenbaum’s critiques in the 1970s and it is impossible to do so now has everything to do with one old idea, the neural network, and three new developments: vastly more powerful computer chips, oceans of digital data made easily available thanks to the internet, and a dash of algorithmic innovation.

Most computer scientists had abandoned work on neural networks by the early 1970s, in no small measure due to Minsky’s harsh criticism. But a small group of iconoclasts continued to pursue the idea. In the mid-1980s, one of them, a psychologist named David Rumelhart at the University of California, San Diego, alongside his colleague Ronald Williams and a young English postdoctoral student named Geoffrey Hinton, hit upon a breakthrough that finally allowed neural networks to start doing some interesting things. Their breakthrough was called backpropagation—or backprop, for short.

Backprop solved a key problem. One reason the earliest neural networks could only learn simple binary classifications was because they had just two layers. It turned out that adding additional layers of neurons between the input neurons and the output neuron enabled the network to make much more complex determinations. By the 1980s, the neural networks that Rumelhart, Hinton, and Williams were experimenting with had several layers. But the middle layers of neurons created a problem. In a simple two-layer neural network, figuring out how to adjust the settings—the weights and biases—of each input neuron so the network could learn during training was fairly simple. But with the addition of these extra layers, knowing how to credit each neuron for its contribution to the output became a daunting challenge. Backprop used ideas from calculus to solve this problem. It allowed the weights and biases of every neuron to be adjusted in a way that would allow a multilayered network to learn effectively.

Thanks to backprop, multilayer neural networks could decipher handwriting on envelopes and checks, learn the relationships between people in a family tree, power a program that could recognize printed words and read them aloud through a voice synthesizer, and even keep an early self-driving car between the lane lines on a highway. But there was still a lot that neural networks could not do. They couldn’t classify complex objects in images—no cat or dog detector yet. They struggled with speech recognition and language translation. And there were other drawbacks: training neural networks required vast amounts of data, and in many domains enough data simply wasn’t available. What’s more, processing all that data in large neural networks was agonizingly slow on the computer chips of the day. At the same time, other machine-learning methods using advanced statistics were showing promise. The result was that many AI researchers and engineers once again wrote off neural networks as a dead end.

DEEP LEARNING TAKES OFF

Hinton, who had now moved to the University of Toronto, remained convinced that neural networks were the right path to humanlike AI. He kept plugging away. In 2004, he founded a research collective devoted to continuing work on neural networks, an approach he soon rebranded as “deep learning.” It was clever marketing: deep referred simply to the multiple layers of a neural network, but it also implied that neural networks somehow arrived at insights that were more profound than other “shallow” machine-learning methods. Deep learning was about to live up to the promise that had eluded neural networks for more than fifty years.

What changed were two things: the internet made vast amounts of information available, solving neural networks’ hunger for data; and a new kind of computer chip, called a “graphics processing unit,” or GPU, hit the market. The American semiconductor company Nvidia debuted the first GPU, the GeForce 256, in late 1999. It was a separate printed circuit board, or card, that could be inserted into a computer or data server. It was designed to handle the fast graphics rendering necessary for video games. It did this by computing several data streams in parallel, not sequentially, and by handling other key computations directly on the graphics card, rather than handing these off to a more general-purpose central processing unit (or CPU), as had been the case with a previous generation of graphics cards. GPUs drew a lot of power and produced a lot of heat; each card came with its own fan. But the new chips made home gaming consoles like the Xbox and PlayStation possible. And they were about to change AI research forever.

In 2005, a team of researchers at the University of Maryland showed that the parallel processing power of GPUs might work well for a simple two-layer neural network. The following year, a team at Microsoft demonstrated that the newest GPUs could also much more efficiently calculate the weights of the neurons in a complex deep learning system. Then, in 2009, Hinton and two of his graduate students built a deep learning system using GPUs for Microsoft that, in just a few months, matched the performance of the company’s existing speech recognition system—software that had taken a decade of painstaking work to develop. It helped that Microsoft had tremendous quantities of speech data to train the network—deep learning systems got better and better the more data they ingested. Other graduate students of Hinton’s were farmed out to IBM and Google, where they repeated the feat. At Google, its existing state-of-the-art speech recognition software for Android smartphones got the word being spoken wrong 23 percent of the time. In just a week, Hinton’s student achieved an error rate of 21 percent and then, two weeks later, 18 percent.

Deep learning was taking off. But there were still doubters who thought neural networks could not classify complex images. In 2012, Hinton and two graduate students, Ilya Sutskever and Alex Krizhevsky, silenced them. They built a deep learning system on GPUs—called AlexNet after Krizhevsky—that won a contest run by Stanford University called ImageNet. It required an AI system to classify images of one thousand different categories of objects. AlexNet had an error rate—just 15 percent—more than twice as good as the next best contestant. Deep learning had arrived. Hinton, Sutskever, and Krizhevsky formed a company around the idea of building deep learning systems for computer vision tasks. Within weeks, Google bought it for $44 million. The trio went to work for Google Brain, the advanced AI research lab the company had launched in 2011.

TO SOLVE INTELLIGENCE—THE HEADLONG RACE FOR AGI

The dam holding back deep learning had begun to crack before AlexNet. After AlexNet, it collapsed. The big American tech companies—Google, Microsoft, Meta (then called Facebook), Amazon, and Apple—and their Chinese equivalents, Baidu and Tencent, raced to implement deep learning. They competed to hire deep learning experts, shelling out high six- and even seven-figure salaries to newly minted PhDs. Most of the applications of deep learning were still very narrow—a system that could tag people in photos on social media, or better recognize spoken commands. They were not general intelligences but specific ones. What’s more, deep learning still seemed inaccessible to most businesses outside the tech sector because they had neither the human expertise needed to build it nor the data needed to train it.

At the time, relatively few researchers held the conviction that deep learning might match Turing’s vision of AI. One of them was Shane Legg. A New Zealand native with a background in mathematics and computing, Legg had gone to work for an early AI start-up in New York during the dot-com boom. While there, he had helped popularize the term “artificial general intelligence,” or AGI—by which Legg meant software that could do most cognitive tasks as well or better than the average person. Legg distinguished the broader idea of AGI from the more narrow AI that could do just one thing exceptionally well. After the start-up went bust, Legg went back to school. Like previous generations of AI researchers, Legg thought the best way to figure out how to build AGI was to study the brain—so he went to the Gatsby Computational Neuroscience Unit at University College London, which did research at the intersection of neuroscience and AI. There he met Demis Hassabis. A former child chess prodigy–turned–computer scientist and video game entrepreneur, Hassabis was also interested in building AGI. Like Legg, he too suspected deep learning was the way to do it. The two, together with a childhood acquaintance of Hassabis’s who had a background in social entrepreneurship, Mustafa Suleyman, co-founded an AI start-up called DeepMind in 2010. The small, secretive London company had an audacious—some would say ludicrous—mission: “To solve intelligence, and then use that to solve everything else.”

That mission began to look less ludicrous in 2013, when DeepMind demonstrated a deep learning system that, starting from almost zero knowledge, could, through trial and error, learn to play fifty different old Atari games at superhuman levels in a matter of hours. The result stunned technologists, including one of DeepMind’s early investors, Elon Musk. Like Legg and Hassabis, Musk was fascinated by the idea of AGI—but also terrified of it. Once people invented AGI, it might only be a quick hop to achieve artificial superintelligence, or ASI, a system that was far more intelligent than all of us. ASI would be extremely difficult to control. Such a system might even develop consciousness, raising profound philosophical and practical questions. ASI could come into conflict with humans, perhaps leading to our extinction or enslavement as a species. This was the sort of worry that preoccupied Musk and others familiar with DeepMind’s progress.

While sharing a private jet flight with Musk, Google’s co-founder Larry Page overheard him discussing DeepMind’s Atari breakthrough with another Silicon Valley investor. Immediately, Page was interested in buying the start-up. Google had invested more in neural networks at that time than any other Big Tech company. Page didn’t want a competitor possibly jumping ahead. Shortly after the flight, he dispatched Google’s top AI researchers to examine DeepMind. He then outbid Microsoft and Meta to buy the small London company for $650 million.

The DeepMind purchase alarmed Musk. He was friends with Page but didn’t trust him, despite Google’s “don’t be evil” motto, to be the sole steward of AGI. “He could produce something evil by accident,” Musk told the journalist Ashlee Vance in 2013. Musk thought building powerful AI was “like summoning the demon.” He also warned that companies building AI “recognize the danger, but they think they can shape and control the digital superintelligences and prevent bad ones from escaping into the internet. That remains to be seen …”

Musk wasn’t the only one who feared AGI would wind up under Google’s sole control. Sam Altman, a thirty-year-old Silicon Valley venture capitalist, who at the time was president of Y Combinator, America’s most prestigious start-up incubator, shared Musk’s views about AGI, its significant potential benefits, and its possible existential risks. He also agreed that Google alone should not monopolize such powerful technology. In late 2015, Musk, Altman, and a group of others, including Hinton’s former student Sutskever, co-founded a San Francisco AI lab designed to be a counterweight to DeepMind. They named the lab OpenAI. Like DeepMind, OpenAI was explicitly committed to working toward the creation of AGI.

That shared goal aside, OpenAI was intended to be everything DeepMind was not. Where DeepMind was controlled by one of the world’s largest technology companies, OpenAI would be established as a nonprofit with a mission to ensure AGI was developed “in a way that is most likely to benefit humanity as a whole.” Whereas DeepMind was then considered secretive, OpenAI said it would commit to publishing all of its research and open-sourcing its software. That was why Musk had wanted to call the lab OpenAI in the first place. He was convinced that the only way to prevent a single company or government from using powerful AI for authoritarian purposes was to democratize access to it. In Musk’s view, every person should have their own, personalized AGI software. The new lab would emphasize AI safety research, an area that was, at the time, not a major focus of the corporate AI labs. Musk became the nonprofit’s anchor donor, pledging $1 billion.

At first, OpenAI mostly focused on reinforcement learning—the same AI training method DeepMind had used in its Atari work. Reinforcement learning differs from the approach Hinton, Sutskever, and Krizhevsky had used for their ImageNet victory. To beat ImageNet, the AlexNet neural network was taught from existing, labeled data to classify something: Is this a cat or a kangaroo? This is called supervised learning. In reinforcement learning, the network starts without any data and learns entirely from experience, by trial and error, usually in a simulator or game environment. It learns from what is called a reward signal: Did its actions result in winning the game? Did it score points or not? This is how DeepMind’s software mastered the Atari games.

By the time OpenAI was up and running, DeepMind had used this method to achieve another milestone in AI: it had created AI software called AlphaGo that had beaten the world’s best player in the ancient strategy game Go. In its match against Lee Sedol, the South Korean world champion, AlphaGo made one move so unconventional that expert commentators watching the match were sure it was a mistake. But it was effective. The software upended thousands of years of human understanding about how Go should be played.

OpenAI was eager to prove it, too, could make progress toward AGI using reinforcement learning. It developed a major new reinforcement learning algorithm and made it freely available. It later created five neural networks that, trained through reinforcement learning, could work together to beat a top human team at the complex and fast-paced video game Dota 2.

THE TRANSFORMER

To get from Dota 2 to ChatGPT would require one more flash of human genius: in 2017, researchers at Google Brain—inspired in part by the alien language depicted in the movie Arrival—developed a new neural network design called a transformer. It was much better than previous AI systems at figuring out complicated patterns in long sequences. It worked for any kind of sequence: musical notes, frames in a video, or even the next best action to take in a computer game. But it was ideally suited to discovering patterns in language. This is because in language, the correct verb conjugation or gender pronoun to use at the end of a sentence often depends on what words appear at the beginning of the sentence, or even several sentences earlier. Previous AI software struggled to learn these dependencies.

The transformer largely solved this problem. It broke sentences into fragments, each about a word long, called a token. The transformer then analyzed large groups of tokens in parallel, something previous neural network designs couldn’t do. In this analysis, the transformer relied on a mechanism called self-attention: for any sentence, it learned which tokens were most important—which ones it should pay most attention to—to make an accurate prediction about the value of any other token. When this process was applied to language, transformers could construct what’s known as a “large language model,” or LLM. It is an exceedingly complex statistical map of the relationship between all the words in its training data. The remarkable thing about these new transformer-based LLMs was that, although they had been trained only to predict words in a sentence, the resulting LLM wound up being multipurpose, like a Swiss Army knife for natural language processing.

Having learned the underlying statistical patterns in language, a single transformer-based LLM could be used for all kinds of languagerelated tasks: summarization, translation, categorization, sentiment analysis, and question-answering. In the past, engineers would have had to build a separate piece of AI software for each. Now a single LLM could do them all.

The possibilities were limitless. Within months of publishing its initial research on the transformer, Google started training a transformerbased LLM it called BERT. Even compared to previous LLMs, BERT was massive—a neural network that could process connections among 340 million different parameters, or variables. It was trained on the relationship among 3.3 billion words from eleven thousand English-language books as well as Wikipedia. Its training task was to predict a missing word in a sentence, sort of like a giant game of Mad Libs. Once trained, Google tried the algorithm on a series of language ability tests. It came close to human performance on most of them.

Within a year, Google used BERT to significantly improve search results. Suddenly, Google’s search engine grasped the importance of prepositions to the meaning of people’s queries. When someone typed “Brazil traveler to USA visa requirements,” Google now knew to return only pages that dealt with a Brazilian traveler coming to the U.S. and not an American traveling to Brazil.

OpenAI’s Sutskever immediately realized what this represented: progress toward AGI was possible. Writing is a hallmark of human civilization. Vast amounts of human knowledge exist in written form. It had always been the dream of those pursuing AGI that an AI system could rapidly teach itself new skills simply by reading, the same way an autodidact might. Sutskever, Alec Radford, and two other OpenAI researchers created a transformer and fed it seven thousand unpublished books, mostly genre fiction like sci-fi, fantasy, and romance. Then they honed it on thousands of passages from middle and high school exams and question-and-answer pairs taken from the website Quora. The new AI could write several coherent paragraphs. It wasn’t perfect. If asked to carry on writing, it began producing nonsensical sentences, or kept repeating itself. But it was markedly better than before.

Radford and Sutskever called the system they were building a GPT, short for “generative pretrained transformer”—generative because it didn’t just analyze existing data but instead created its own, new data, and pretrained because it learned the statistical patterns in language during its initial phase of learning, called “pre-training,” and then could be fine-tuned for specific tasks later. These days, AI that can create new content is known as “generative AI.”

Transformers could also generate more than just words. By coupling a transformer-based language model to other kinds of AI, OpenAI created DALL-E (its name is a mashup of the painter Salvador Dali and the Pixar robot WALL-E), which can generate still images in almost any style based on a text description. The same method has been improved upon by other companies, including the start-ups Stability AI and Midjourney, as well as the software giant Adobe. Video can also be produced in a similar way. And although the videos are about one minute long at the moment, the ability to produce entire feature films from a text-based description is on the horizon. Other companies, including Google, have used transformers for sound, producing compositions, and even cloning voices. Transformers are not limited to generating content—they can also be used to predict the next most likely action in a sequence. This will lead to a new breed of digital assistants, much more capable than any that came before.


IS THE AI WE HAVE THE AI WE WANT?

Sutskever had a key intuition about neural networks from his previous work. The larger they got, and the more data they were fed, the better they performed. This seemed especially true of large language models. It was an intuition shared by another OpenAI researcher, Dario Amodei, a former physicist-turned–AI scientist who had come to work at the company and would later leave to co-found the OpenAI rival Anthropic. Amodei showed that neural networks seemed to adhere to “scaling laws”—not only did their performance improve as they got larger, it improved in predictable ways. A ten-times increase in the data the model was trained on would increase performance by about a third. But not everything about them was predictable. As the models got bigger, they also exhibited “emergent capabilities”—certain skills that smaller models struggled with, the larger models could suddenly, often surprisingly, master.

Initially, Sutskever suspected it might be possible to get most of the way to AGI simply by building ever bigger neural networks. After all, the human brain had about 86 billion neurons, between which there were estimated to be about 100 trillion connections. When OpenAI built the first GPT, the largest neural networks had only a few hundred million artificial neurons and connections. Maybe the key to intelligence was simply more neurons? Many AI researchers had their doubts. The digital neurons in neural networks were only very loosely modeled on those in the brain. And biological brains were much more efficient at learning—needing just a few examples to grasp a concept, not millions. Our brains are also much better at adapting what we’ve learned to new situations. These skeptics thought a fundamentally different set of algorithms would be needed to unlock human-level intelligence. Sutskever, however, was undeterred. He saw no reason to abandon the most obvious path—simply building ever bigger neural networks using the same basic algorithms, like the transformer—until it was clear that the gains from doing so were exhausted.

So that is what OpenAI did. It’s how the company got to GPT-3, ChatGPT, and GPT-4. It will no doubt be the same basic method that yields its next, even more powerful AI software, GPT-5, and beyond. Each of these models has been more capable than the last. But transformer-based LLMs have important drawbacks. One is “hallucination”—the tendency of these models to invent information and present it in a form that seems credible. (Some cognitive scientists quibble that “confabulation” would be a more accurate term.) This happens because LLMs have no inherent understanding of what they’re saying—and no understanding of the difference between fiction and fact. They just generate a string of statistically likely words. As a result, these transformer-based models make errors when answering questions involving commonsense reasoning or abstract logic. Transformer-based AI models have other drawbacks, too: They are good at interpolation, which involves generating new data points that lie within the range of previously seen ones. But they often fail at the reverse—extrapolation, or generating new data outside that range. In a simple example, if they have been trained on a dataset that includes 2, 5, and 10, they can produce 3, 4, and 7. They cannot give you 1 or 11.

LLMs are also the feral pigs of the software world: they have insatiable appetites for data and they eat a lot of trash. A growing number of people have become concerned about the amount of data LLM’s pretraining requires and where that data comes from. In many cases, it is simply scraped from the internet for free, possibly in violation of copyright law. The other challenge in ingesting so much human-written text is that LLMs learn our collective biases and stereotypes, especially when it comes to gender, race, ethnicity, and religion. GPT-3, for example, had a tendency to associate Muslims with violence. It tended to use negative adjectives when prompted to write about Black people. It often used male pronouns when asked to write about professionals such as doctors. It was also easy to goad GPT-3 into writing inappropriate, unseemly, or pornographic dialogue. This, too, was a vestige of it having been trained on so much text scraped from the internet. The internet is often a cesspool of violence, misogyny, racism, and worse. And GPT-3 reflected this in its output. OpenAI found it could curb some of these tendencies by providing feedback from people on whether answers were appropriate and helpful. This process, called “reinforcement learning from human feedback,” or RLHF, is how OpenAI created ChatGPT. But, as people soon discovered, the guardrails OpenAI put up through RLHF could be easily overcome. Again, this is because the underlying model’s conceptual understanding is nowhere near as deep as a person’s.

AT WHAT COST

Bigger and bigger AI models require more and more computing power—thousands or even tens of thousands of GPUs, the specialized chips used for AI. And that makes the table stakes to play today’s AI game exceptionally high. “The amount of money we needed to be successful in the mission is much more gigantic than I originally thought,” Altman told Wired magazine in 2018. Altman became the chief executive of OpenAI after Elon Musk parted ways with the company. At a time when DeepMind still seemed to be leading the race for AGI, the mercurial billionaire had chided OpenAI for not making progress fast enough. Musk had proposed personally taking control of the lab and merging it into his business empire. The OpenAI staff rebelled at the idea and OpenAI’s nonprofit board rejected Musk’s plan, prompting the billionaire to break with the lab. He withdrew his financial support, including the $1 billion he had initially pledged, most of which had yet to be delivered. Musk’s departure prompted an existential crisis. Altman, who along with Musk had been the driving force behind the creation of OpenAI, stepped in to become OpenAI’s chief executive.

He quickly realized the only way to raise significantly more money, and fast, was to radically transform OpenAI’s structure. He came up with a strange hybrid in which OpenAI’s nonprofit foundation would continue, but it would control a new, for-profit arm that could take on outside venture capital investment. But critically, the maximum profit these financial investors could earn would be capped. Once the cap is hit, the investors cease to have any claim on OpenAI’s profits. Initially, this profit ceiling was set stratospherically high—one hundred times a funder’s initial investment. But the cap is lowered for each additional round of investors. The summer after OpenAI set up its capped-profit arm, Altman decided to ink a strategic partnership with an investor with enough cash to make all OpenAI’s money problems go away: Microsoft. In July 2019, the software company invested its first $1 billion in the start-up. It has since put in at least $12 billion more.

Creating a for-profit arm and partnering with Microsoft altered OpenAI’s culture. The company had been founded on a commitment to transparency: Now, with the establishment of its for-profit arm, it has by necessity become increasingly opaque. It’s much harder to make money on a technology if you give it away. Instead, OpenAI now makes its most powerful models available only to paying customers, who can interact with them through an interface that allows them to provide inputs and receive outputs, but does not allow scrutiny of the underlying code or model weights. Even in technical reports on GPT-4, OpenAI omitted critical details: it has refused to reveal how large GPT-4 is, exactly how it is designed, what it was trained on, or the training process it used. While OpenAI maintains this secrecy is necessary to prevent its AI from being copied and misused, Sutskever has admitted the policy also guards OpenAI’s trade secrets from competitors. The secrecy has another benefit too: it shields OpenAI from scrutiny by regulators and the public—and helps to hide exploitative data-gathering practices, such as using copyrighted material without consent, or hiring contractors in low-wage countries with few labor protections, to carry out RLHF, both of which have been documented.

The need for profits has also, according to some former employees, led OpenAI to deemphasize safety. Company executives, including Altman, have said that while they conduct extensive safety testing of their software before release, the only way to discover all the benefits and risks is to release these models and see what people do with them.

Whether profit and the public good can be balanced in the development of artificial general intelligence is a critical question. The same sky-high costs that drove OpenAI to create a for-profit arm and seek investment from Microsoft mean that most of those working at the cutting edge of AI are employed by big technology companies or start-ups in these tech giants’ orbits. Anthropic, founded by researchers who broke away from OpenAI, has taken investment from both Google and Amazon. Nvidia, the AI chipmaker, has invested in Cohere, another start-up building transformer-based LLMs. Nvidia and Microsoft both invested in Inflection, founded by Suleyman, the former DeepMind co-founder. Microsoft subsequently hired Suleyman and most of Inflection’s staff to form a new consumer AI division at the tech giant, with the remnants of Inflection licensing its technology to Microsoft. Previously, superpowerful technologic leaps—nuclear weapons, jet engines, satellites, supercomputers, and the internet—were most often developed, or at least funded, by governments. The motivation was usually strategic—gaining military or geopolitical advantage—not financial. And governments, although often secretive, were subject to some form of public accountability. In contrast, the race to develop AGI rests with a handful of powerful technology companies.

THE PRECIPICE

The neural network, the transformer, the internet’s vast data, and unprecedented amounts of computing power have brought us to this threshold. The rest of this book will explore what will happen as we step over it into a new age. In exploring AI’s impact on our lives, it’s important to bear in mind the questions that have shaped AI’s development: How should we define intelligence? What is the right yardstick for judging AI’s progress? Has the legacy of the Turing Test pitted us in a competition against machines that we are bound to lose? Is there a better way to frame AI as a complement to our intelligence, instead of its rival? AI may be a digital brain, but it is not yet a digital mind—it has no intentions of its own, only the ones we give it. And so we urgently need to invent better ways to measure how good a tool it is. Turing’s standard—mimicry—says little about utility. We need to assess how this technology functions in real-world settings, working for and with real people.

It is also essential that we consider Weizenbuam’s prescient warnings about AI’s amoral nature. For most of AI’s history, scientists and philosophers debated what machines could do—what were the limits of AI’s capabilities and how did they measure up against our own. The argument must now shift from could to should, from engineering to morality. What should we use AI to do, and what realms should we reserve exclusively for ourselves? Weizenbaum’s answers to these questions take on renewed relevancy.

For example, he thought AI should never serve as a judge. Pamela McCorduck, in her farsighted 1979 oral history of AI’s development, Machines Who Think, argues that given our long history of human biases and unequal justice, might it not be better, especially if you are a woman or a minority, to have an AI judge? McCorduck assumed AI would be more objective than a human. Today, though, the danger is often that AI systems, trained on historical data, embody, and even amplify, our existing human biases, but conceal them behind a mask of objectivity. In this way, AI software allows people to escape accountability. In many realms, we may find that preserving a little irrationality goes a long way—I, for one, would prefer moral accountability, one human soul to another, to the illusion of perfect justice. Both individually and collectively, we must decide where to draw these boundaries—and we must do it now.
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