

 Go to Code Crushing and see our other
 e-books - www.codecrushing.com.

	
		

			About me

	
			[image: sergio-lopes.jpg]
Fig. 0.1

I wrote my first line of code in 1999 when I was 14, and it was in HTML. Then, I moved on to CSS and JavaScript just like that. After that, I ventured into SSI and PHP, including databases. In 2003, I started my studies at USP, and I have been swimming in deeper waters ever since – Java, C, and Python. I grew a lot with backend programming.

Nevertheless, I have always been in love with front-end.

With the revival of the Web via HTML5 in recent years, I returned to my passion. I breathe front-end all day. I read a lot, study a lot, write a lot, and program a lot, as long as it involves mostly HTML, CSS, and JavaScript.

For some time now, I have also decided to focus on mobile. I wrote my first mobile site nearly a decade ago using WML for WAP networks (if you are young, you may need Wikipedia to understand the previous sentence). Imagine my excitement that arose later when we entered this new era of smartphones and what they mean for the Web. I strongly believe the Web’s uniqueness lies in its offering a democratic and universal platform.

I have already worked at some companies, programming in various languages (I even made some money with opensource). Since 2004, I have worked at Caelum as an instructor and developer. That is where my career took off and where I learned the most and continue to learn every day. It is also where I intend to spend many, many years to come.

Teaching and writing have been my passions since high school. I remember the disappointment of my Portuguese teacher when she discovered that I had chosen a career in the exact sciences. Yet teaching, writing articles, blogging, and lecturing are my ways of blending these skills.

This book is the high point of this whole trajectory. I hope it is as fun for you to read as it was for me to write. Thank you for believing in it and buying it.

You can also find me writing out there on the Web, mostly in Portuguese:

	My personal blog, where I write a lot about the Web, mobile, and front-end in general: http://sergiolopes.org ;

	The blog by Caelum, where I always publish articles about front-end: http://blog.caelum.com.br ;

	My Twitter and my Facebook, where I post many links to cool front-end and mobile stories: https://twitter.com/sergio_caelum and https://www.facebook.com/sergio.caelum ; and

	I also participate in various forums, groups, and mailing lists on the Web, where we can meet.

If we meet someday at any event, be sure to call me so that we can have a nice chat.

— Sérgio Lopes, 2014

 
 

	 	
	 	

 Capítulo 1:

 The Mobile Web

 I do not like the title of this book, "The Mobile Web". Although it is an impactful title and I chose it myself, I am not satisfied with it. It tells only part of the story in this book.

The fact is that there is no Mobile Web. There is only the Web, which we access both from the computer as well as from our cell phones or tablets. The same HTML, CSS, and JavaScript is running in all browsers, regardless of the device. They have differences, of course, but most are the same. It's all the Web.

Various topics in this book are not specific to mobile devices. Media queries, for example, a subject that you might already have seen, are always connected to mobile sites; when we reach them in the present book, we'll see how they even affect accessibility in the Desktop. Moreover, when we talk about touch screens, we cannot call them a mobile device, because computers with touch screens are increasingly common nowadays.

After considering these attributes, I thought I would change the title to "Modern Web", or something similar. However, that would be very generic, and, after all, the central theme of that title would still be Mobile.

The book is about how to program the current Web with new technologies concerning today’s and tomorrow’s devices. Many of the recent changes to the Web were caused by the revolutions in and news about mobile devices. Therefore, the title of the book is not misleading but instead incomplete. It should be something more like "Modern Web and how it has been affected by mobile devices". I just summarized it as "The Mobile Web".

The mobile market

I decided I was not going to begin the book by citing statistics, such as how the mobile market has grown greatly in recent years and how it will continue to grow in the future. Moreover, I decided against presenting the evolution of 3G or 4G worldwide or talking about how much market share each mobile platform holds.

Any of these numbers would be outdated soon after the book’s publication. I also think that anyone reading this book would not need to be convinced that the mobile market has massive potential.

If you need more information about the growth of this market, consumer behavior and other data, then I recommend Google’s Our Mobile Planet (http://www.thinkwithgoogle.com/mobileplanet/). It provides worldwide data, including country-specific research.

Another source that provides monthly updated data is the Stat Counter, which you can access on the Web (http://gs.statcounter.com/). In addition, tech news sites are regularly presenting updated articles with new data and market research.

In short, the market for mobile devices is huge and rife with opportunities. Many people are getting along: handset manufacturers, telecom operators, creators of platforms, application developers, and those who believe in access to the Web via mobile. The focus of this book is the lattermost group. This market is for everyone who wants to explore the potential of placing an Internet browser into the pockets of millions of people.

The book

I organized this book into a series of topics with several themes. It is not a book for beginners; you need to possess familiarity with the Web and HTML, CSS, and JavaScript. You also will not be able to develop a practical project from beginning to end just by reading this book.

Instead, this book is like a collection of articles about the Web, mobile, and related topics. Most sections are short and can be read independently of the others. You can even read them out of order or skip a chapter that does not interest you.

Throughout the book, I include practical examples for you to test. In addition to the codes that I present, you can also run the examples directly on your device by accessing the example URLs or the qrcodes that I have provided.

Despite writing a very technical and practical book, I took the liberty of giving my personal opinions at times. I always try to make clear when the information I am providing is an opinion so that you may analyze, judge, and disagree with it at will.

This is not a complete book. During my original brainstorm, I ended up with a list of subjects for some ten different volumes. I had to choose which would make it in here and which would be left out. I liked the final selection of topics, but it is possible that I left out just that one subject you wanted to know. Maybe one day I'll write the other nine volumes, but, until then, you can find me on my blog where I write: http://sergiolopes.org

Happy reading!

 

Parte 1 - Mobile strategy

 	

 Capítulo 2:

 The paths of a mobile strategy

 So, now that you are convinced of the potential of the mobile market, you decide to attack it. Where do you start? The first steps are discussing the possible ways and then drawing a mobile strategy.

Why mobile?

The first step is to define the reason why your company or project wishes to enter the mobile world. Which goals do you want to achieve? What is your target audience, and what does it need?

Any meeting that begins with the sentence "we need an App for the iPhone" is off to a bad start. The App or the mobile website is merely the means to a greater end. Which objectives do our users want to achieve with this App?

This survey for the reason is important to set our steps in the mobile world. Depending on the results, you may conclude that your best choice is a native App for iPhone or a mobile website. Or, the results might suggest that you do not need any of that.

The Apple website, which is the mother of the modern mobile era, has not come in a mobile version until very recently. Moreover, there's no App for iPhone or iPad, either. From their surveys, Apple probably concluded that a well-built Desktop site is enough for everyone. A little ironic, but it is a good example of why building an App or a mobile site just by woo-hoo is not a good idea.

App or Web?

Once companies have decided to invest in the mobile market, their first decision is usually whether to create an App or to invest in the mobile Web. The next section of this book (3) will delve into the practical and technical differences of these two approaches. Later, in the topic 4, I will discuss hybrid Apps built with Web technologies.

I do not consider very relevant the commonly cited differences of performance, access to hardware resources, etc., so I want to focus on a more strategic discussion behind this decision. The highly technical aspects are, after all, often irrelevant. Although there are indeed differences in performance between native and Web, they are not decisive for most applications and users. The Web is good enough for most scenarios, just as it is good enough in the Desktop in spite of losing performance to native software there, as well.

Expectations

In my opinion, what should weigh in the decision for an App versus the Web are the user's expectations with respect to the developer’s company, project, and brand.

If you are creating a new product or a new company, thinking about something innovative, then it may not make much difference whether it is an App or the Web. You still have no users, so they have no expectations for your product. You can create something new and strong in a particular direction and not lose anyone.

A practical example is Instagram, which was born as an App for iPhone and nothing more. It was a new service aiming to explore only the niche of photo sharing in Apple's smartphone. Strategically, the company focused on a certain niche and innovated with a different product. Apple made no Instagram App for the Android, no mobile site, and no version of the App for the iPad. It was the kind of strategic and business focus that only a new product could have. Then, after Instagram grew, they launched the Android version but not much else.

In contrast, if you are already present on the Web, then you could be shooting yourself in the foot by beginning your mobile strategy with a consolidated product, such as a native App. Imagine a national news portal deciding to enter the mobile world by launching an App for iPhone. In addition to excluding most of the market, this decision may seem abnormal even to the iPhone user. The portal is so strong on the Web that users are accustomed to reading the news in a browser and would probably visit the website even if they had an App on the iPhone.

Therefore, you need to focus on what the user’s expectations are.

Web first

I really like the Web. I perhaps believe too much in it as a portable and democratic platform. In fact, I wrote this book about the Web! But despite all that, I agree that Apps have their place in the world. There are many scenarios where an App offers a better experience and better meets users’ expectations, particularly with respect to usability.

However, the market for Apps today is unique, and to bet on any given platform is quite risky. Some years ago, betting on iOS seemed the clear shot to reaching the majority of the market. Nowadays, Android is dominant in most of the world. What about tomorrow?

Many people who bet a few years ago on an iOS App are now running after the Android version. And what platform will they need to chase in the future? For those who bet on the Web, all is well.

One strategy is to always start with the Web version of your product or webapp. Structure your mobile presence via the Web to ensure universal access and adaptability to multiple platforms. Then, as the needs arise and your financial planning allows, you can invest in specific platforms with native resources and experiences. Web first.

Several large Web companies have followed this path. Facebook, Google, and Twitter are obvious examples. Facebook has Apps for iOS and Android that are well integrated into their respective platforms, but they were built only after the mobile website, which until now has provided support to all types of mobile platforms. Here, in Brazil, major news portals have followed the same strategy – UOL, Globo, etc. – as well as most online shops.

What is common to all of them? They were already strong brands on the Web, and the most logical path was to support mobiles also with the Web. That was what their users expected. And then, if necessary, they created specific Apps.

The Mobile Web

Here, in the book, we clearly follow the path of the Web. But right away, we have another important decision to make: let's decide whether to go with a responsive single site or a specific mobile site.

From the point of view of the user, this is not a very important decision. It does not matter much to the user whether he is accessing a site completely rewritten for mobile or whether the site is the same version as the Desktop site, as long as he reaches his objectives. This decision is much more technical, so we will discuss a lot of it in the threads [responsive ref-label] and [mobile-first ref-label].

One important thing to keep in mind is the difference in usability between mobile devices and Desktops. Regarding usability, the Pope of usability himself, Jakob Nielsen, says that the differences are so extreme that we need different designs to reach different sectors of the public. This can be done in several ways: different sites for mobile and Desktop; a server optimizing the webpage (RESS, 18 topic); or a responsive design and adaptation to the design at the client.

He summarizes this conundrum by remarking (http://www.creativebloq.com/mobile/nielsen-responds-mobile-criticism-4126356):

"As long as each user sees the appropriate design, the choice between these implementation options should be an engineering decision and not a usability decision.”

I will discuss repeatedly in this book the usability differences between mobile and Desktop, especially in Part 4. The preferable technical decision is the most responsive design, despite presenting mixed adaptation scenarios with RESS (refer to the 18 topic) and conditional loading (see the 20 topic).

The main argument in favor of a responsive design is to simplify development. One project, one code, one content – but, of course, with due design adaptations.

Responsive design is also Google’s official recommendation for sites that wish to be indexed by them (https://developers.google.com/webmasters/smartphone-sites/details). A unique URL serving all users is the best for both the SEO and the user’s experience.

Conclusion

The Web as a single and portable platform is the most appropriate solution for a democratic and accessible mobile strategy. Whenever possible, begin your investment on mobile through the Web (Web first) using the responsive design. Address the necessary adaptations in design and usability according to the context of use, and focus on the experience and expectations of the user.

 

 Capítulo 3:

 App or Web? Comparison of possibilities

I know this book is about the Web, and consequently the content as well as the actions of my readers exhibit a clear trend toward this path. Nevertheless, that choice is not always so simple, so I think it is worth a brief technical discussion. Even if you have already decided on a path, it is good to analyze the pros and cons of this decision.

The big difference between Apps and the Web that authors usually discuss is that an App provides better access to and integration with hardware and the native platform of the device, while the Web provides platform independence and portability. But both options feature millions of other details in the middle that need to be discussed.

Integration with hardware and platform

An App has direct access to the device’s hardware and to the resources of its operating system. An App can also integrate with advanced functions and other Apps. It can handle the device’s operations and even replace or complement native functions.

On the other hand, the Web runs jailed inside the browser and, for security reasons, it does not have direct access to the native platform. But there are several new HTML5 APIs that offer access to resources that had been previously exclusive to Apps. Classic examples are access to the camera, geolocation, accelerometer and gyro information, and 3D animations with GPU acceleration. But, of course, there are many more specific things that only the Apps can access and that are not available through the Web.

What you must define here is what kind of request you have. If you need very specific features, then an App might be the best solution, even though the capabilities of the Web are sufficient for most scenarios.

Security and privacy

Running inside the browser has its advantages. Security restrictions are strong, and the chance of something bad happening is slim. In other words, the user is under more protection while opening a website than while installing an App on his device.

App stores try to minimize the risks by implementing security restrictions and explicit permissions that the user has to approve. But the truth is that most users do not understand the impact of approving permissions, especially when the list of permissions is long and full of strange terms (such as the terms that they might see when installing an App on an Android).

Stores also monitor themselves by using a mechanism for approval, such as Apple's system that checks all Apps with a fine-tooth comb, or a system of detecting malicious code, such as Android’s. But there are several instances of all of these systems being cheated. Apps that steal personal data have ended up the iOS store, and several viruses have made it into Android’s store.

This is all from the point of view of the user, who prefers to be more protected. From the developer’s point of view, the scenario may be the opposite: if you want an App that accesses user data and has high privileges, then the Web will limit you. But for the user, the Web is safer.

The Web is not without its problems, but the decades of evolution of browsers have provided a safer experience. This experience is also more limited, but for the good reasons of security and privacy.

Performance

Apps will always be faster than the Web. They run directly on the operating system, and, in most cases, they are natively written for the specific platform, which offers plenty of performance. The Web runs inside the browser, which interprets the Web’s HTML, CSS, and JavaScript, which is a relatively slow process.

However, few applications really need ridiculously high performance. Do not get me wrong: I'm not saying it's okay to be slow. Not at all. The point is that, in many cases, the difference in performance between the Web and a native App is not visible to the user. Nowadays, browsers are excellent and increasingly faster, and only lose performance perceptibly in specific cases that require high performance.

The biggest difference in performance for the user is not running the code itself but the initial load. The web page must be downloaded from the server with all its dependencies, which may take time. In contrast, an App must be installed, which may be an even slower process.

Usability and visual

One aspect often cited as an advantage of Apps is their visual integration with the platform itself. The whole platform’s experience of use, its usability, and its visual components are transported to the App. It has the face of the platform and is familiar to the user. Think about the distinctive style of the buttons on the iOS, for example: they would seem like Frankenstein’s monster if used in the middle of an Android App.

[image: IOS buttons and navigation examples.]
Fig. 3.1: IOS buttons and navigation examples.

The differences between systems don’t stop at appearances; there are also differences in usability. One difference that is frequently cited is the back button. The iOS does not have a back button, so each page of every iOS App needs to provide its own way back. The Android and Windows Phone already have a native back button, either physically in the device or virtually on the bottom task bar of the system. While it would be entirely redundant to make a back button in an Android App, no one should make an iOS App without a back button.

There is no right or wrong, only differences in usability of the platforms and differences in the user expectations of each. With Apps, developers have the chance to create a native experience entirely and specifically for each environment.

And what about the Web? Some issues already resolve themselves: for example, the problem of the back button does not exist, because every browser (iOS or Android) already includes one. For other visual differences, you can even create a CSS for each platform, but this is kind of impractical and could create bizarre results (the recreation of native components in CSS is a wonderful chance to fall into a case of Uncanny Valley, which you can read about at http://en.wikipedia.org/wiki/Uncanny_valley).

The most common is to generate a ::unique visual language on the Web that is untied to any particular platform, which is how the Web has always worked on the Desktop. In addition, websites or webapps usually have a style more connected to the visual identity of the brand and the company** than to the access platform.

Take the example of email services. If you open the Outlook App in Windows, then you will see a program with the trappings of the Windows OS due to its being a native program. Similarly, if you open the Apple Mail App on Mac OS X, then it will look Mac-like. In contrast, you can open Gmail in a browser, and it will not feel like a Windows or a Mac program; instead, it will feel like Gmail, with Gmail's face, a unique visual identity.

I see no problem with translating this same concept to the mobile Web. Many people disagree and think that mobile Apps need to incorporate the visuals of every platform for which they are written. I would rather think that users have learned over the last 20 years not to expect any kind of visual uniformity in the Web pages that they access and that they even appreciate such diversity.

What I know is that the topic is controversial. If you are from the team that prefers the native look, do not close the book now, just consider the idea that the expectation of a Web user is more relaxed in this regard.

Installation and distribution

The difference is quite obvious here, but it is worth discussing the implications. An App needs to be installed, and this usually involves a manufacturer’s shop where you will make your App available. There is the slow and bureaucratic process of being a registered developer on the platform (and paying for it) in addition to having to submit the Apps for approval in many cases, iOS being the most notoriously nagging case.

As for the user, he needs to enter the store through his device, search for the App, click install, wait for the installation, and then open your App. The process would be even more complicated when the platform (such as Android) requires the user to pre-approve a cryptic list of permissions.

By comparison, the Web is totally uncomplicated. All the user needs to do to access a Web service is to open a link in the browser. If desired, the user can add a bookmark to the homepage to come back to the site later. Permissions for more advanced functions are requested by the browser as needed, like geolocation.

When an App has an update, it should be installed (either automatically or manually) by the same store that installed the original App. In many cases, updating involves downloading the whole app again, which can be large (Android allows a download of the differences only). On the Web, updates do not require the user to take any action. The user automatically accesses the latest version of all pages when browsing.

Yet regarding the size of installation: an App needs to download all of its components during installation, including all codes and the files for all of the functionalities. A Web page can load only what is needed for the current page. If the user never uses an advanced page, then it is not even loaded in the browser. In contrast, it would be downloaded along with an App, wasting bandwidth. And there is nothing worse than being on the street with a 3G network, needing to install an App. The Web is usually much lighter for fast and casual use.

My main point here is that the Web is totally decentralized. A Web developer is not trapped in the hands of the manufacturer who makes demands for the application to be approved, prohibits certain legitimate uses, charges a high percentage on the sales, and arbitrarily controls the exposure of your App in the store search. On the Web, the developers post their link on any channel without depending on anyone.

Some say that having a presence in stores increases the exposure of your App, because users shop around at the stores. While this assumption is true, users also conduct in-depth searches on Google. Furthermore, studies show that App stores are so full today that the chances a user will reach a new App are very small. However, these chances depend on the App and the type of search. A renowned service that has a strong brand has no problems being found (e.g., looking for Gmail in the store will always retrieve the Gmail App), but there is not much room for the discovery of new Apps. The users are not inclined to type 'news' in the search, because they will get so much junk in the results; even if they do search that category, your cute little App will not appear at the top.

The most successful Apps are successful outside the shops, and are linked in articles and popular blogs. People download them because they know about them and have already heard of them. They rarely download an App because they saw it by chance in the store without having ever heard of it. Therefore, thinking better, if you choose the Web instead of the App, it would be the same.

Another point to think about is casual use. An App requires installation, which involves greater commitment from the user. Many people do not need or are not willing to go that far. Many users just want some information at a given moment, something readily findable on the Web. An App is for regular use, for loyal users. Furthermore, studies show that most installed Apps are accessed by the user very few times.

Monetization

The area where Apps still brutally dominate over the Web is monetization. The shops already have integrated payment platforms, and the user does not have any trouble buying Apps and subscriptions. The Web does not have this type of facility.

The Web features payment services like PayPal, but nothing as easy as paying for Apps. However, the developer must consider the very high percentage charged by the stores, whereas the Web enables them to choose between different payment services or even charging directly.

Many companies with a strong name began to challenge this model shop by withdrawing their Apps from stores and focusing on the Web with direct payment to them, the most notorious case being the American newspaper Financial Times (http://gigaom.com/2011/09/22/financial-times-finds-life-outside-the-app-store-pretty-good-so-far/).

But apart from this question of monetization, the process of distribution and installation is much more complicated with Apps than it is with the Web.

Multiplatform

The great appeal of the Web is its platform independence. We easily find a Web browser in all kinds of devices today, no matter the type, brand, or operating system. Development under Web standards ensures access to all users in the world without discrimination.

Of , this does not mean that there are no difficulties with access. The incompatibilities between browsers have decreased in recent years, but they are still a problem. A developer has to test a lot and eradicate the bugs. Nevertheless, it is far less complicated work than making Apps for specific platforms.

The most common, in fact, is that the development of Apps focuses on successful platforms – in the mobile world, that means iOS and Android. Due to the belief that it is not financially worthwhile to program for less popular platforms, many developers leave out the zillions of other platforms in the mobile world, including Windows Phone, Blackberry, Symbian, Bada, Tizen, and Firefox OS, just to mention the better known ones. No wonder, then, that most of these not so famous systems use Web technologies (HTML, CSS, and JS) as a basis for the development of Apps. They would be lost if a complete rewrite of the App were demanded.

By the way, this scenario of using HTML, CSS, and JavaScript to write Apps is becoming increasingly common, because these codes solve the problem of portability – the same code can run on Android, iOS, Windows Phone, etc., using packaging systems such as PhoneGap. It is better to discuss this scenario in depth later, in the topic 4, but make no mistake: HTML5 Apps share most of the problems of Apps in general and are not the Web, although they use the same language as the Web.

It is possible, therefore, to have a minimum of code portability when writing Apps, but you will still have to publish in different stores and individually. Eventually, you will give up publishing in lesser known stores, and focus on the major ones (have you ever thought about publishing in the Bada store?). Thus, you will ignore a portion of the market and discriminate against these users. That's why we say that the Web is more democratic, open, and accessible.

User experience

From the perspective of the user, there are fundamental differences in experience and usability between Apps and the Web. In my opinion, experience ends up being the most determining factor when choosing which strategy to follow.

The common arguments that people raise, such as performance and access to hardware, are irrelevant to me in most scenarios. Few cases require very high performance or access to every part of the device’s hardware. Most projects are simpler than that, and work well both on the Web and on the App. But the difference in the user experience is something continuously present.

The Web has several usability advantages compared to Apps: the user can easily select the text, zoom at will (more about this in the 12 topic), create bookmarks and shortcuts to specific pages, click on links, and navigate at ease in the browser. Apps tend to be more limited in these points – you cannot bookmark a page, share links with people, or zoom freely.

Despite these finer points, the main issue is that the experience of using an App is different from using a website. In other words, as a user, you know when you are using an App or browsing a website. Both can have the same content and provide the same functionality, but the user experience is still very different.

It is important to know well the scope of the project and the expectations of your user group. Sometimes it does not matter how much more sense the Web makes; an App will make the final experiment most appropriate to that case. Or not: frequently, App restrictions regarding the Web are the main factors.

The important part of developing is to analyze your situation case by case and make good decisions. Do not adopt an App just because of a fad, and do not adopt the Web just because it is the shortest and easiest path.

 

