

Angular Observables and Promises

	A Practical Guide to Asynchronous Programming

	Abdelfattah Ragab

	

Introduction

	Welcome to the book “Angular Observables and Promises: A Practical Guide to Asynchronous Programming”.

	In this book, I explain how to use observables and promises effectively for asynchronous programming.

	I show you practical scenarios and explain when you should use them and which operators you need to use.

	I will give you best practices with important pointers that, when used correctly, can make all the difference and have a big impact on performance.

	There are also things you should be aware of and avoid when working with observables, otherwise performance can be affected.

	By the end of this book, you will be able to use Observables and Promises in your Angular application and handle all kinds of scenarios.

	Let us get started.

	

	

	

	

	

What are Signals?

	Signals are a new feature in Angular that improves the reactivity of the framework and the detection of changes.

	Signals are used for synchronous operations, so you should use them to manage state and update the user interface efficiently.

	

	I mentioned them at the beginning to illustrate the role they play in Angular. I will not go into them in this book, as synchronous operations are not the topic of this book. I will mainly focus on the asynchronous operations.

	What is RxJS?

	RxJS (Reactive Extensions for JavaScript) is a powerful reactive programming library that uses observables to manage asynchronous data streams. It enables developers to work with asynchronous operations in a declarative style, making it easier to handle complex data streams and events.

	

	What are Observables?

	Observables are part of the RxJS library that allow you to handle asynchronous data streams.

	What are Promises?

	A promise in JavaScript is an object that represents the eventual completion or failure of an asynchronous operation.

	A promise handles one single value.

	new Promise

	Most of the time, Promises and Observables are created for you by libraries, http, Apis and so on. But if you want to create one yourself, you can use the constructor. Let’s look at how to create a promise with the constructor. It takes a function with two parameters: resolve and reject. Call resolve if the asynchronous operation succeeds, and reject if it fails.

	myPromise = new Promise((resolve, reject) => {

	 setTimeout(() => {

	 const success = true;

	 if (success) {

	 resolve('Resolved');

	 } else {

	 reject('Rejected');

	 }

	 }, 3000);

	});

	Promise.resolve()

	You can create a successful promise using Promise.resolve().

	const promise= Promise.resolve('Resolved');

	Promise.reject()

	Similarly, you can create a rejected promise using Promise.reject().

	const promise = Promise.reject('Rejected');

	Using Promises

	Use .then() to handle the resolved state and .catch() to handle the rejected state.

OEBPS/cover.jpeg

OEBPS/nav.xhtml

 		Introduction

 		What are Signals?

 		What is RxJS?

 		What are Observables?

 		What are Promises?

 		new Promise

 		Promise.resolve()

 		Promise.reject()

 		Using Promises

 		Async/Await

 		new Observable

 		
 of

 		from

 		HTTP returns observables

 		Subscribe to an Observable

 		unsubscribe

 		Cold Observables

 		Hot Observables

 		BehaviorSubject

 		
 Subject vs BehaviorSubject

 		Initial value

 		Current value

 		Async pipe (| async)

 		Advantages of the async pipe

 		RxJS operators

 		Hands on

 		Distributed data

 		forkJoin

 		combineLatest

 		merge

 		Mapping data

 		map

 		filter

 		take

 		first

 		first() vs take(1)

 		tap

 		debounceTime

 		switchMap

 		exhaustMap

 		concatMap

 		mergeMap

 		catchError

 		
 Important considerations

 		Use first()

 		Unsubscribe in the ngOnDestroy

 		Avoid nested subscriptions

 		Handle errors gracefully

 		async pipe

 		Conclusion

 		Media Attributions

 		Also by Abdelfattah Ragab

 		Stripe Integration in Angular

 		Responsive Design

 		About the Author

 		About the Publisher

