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Prefácio

Filme: “O Santo Graal”, do grupo inglês Monty Python. Cena: uma das últimas. Ação: Rei Arthur e seus cavaleiros alcançam uma ponte diante da qual um ancião se coloca. “Alto lá!”, diz o velho. “Eu sou o guardião dessa ponte acima do vale do inferno. Para cruzá-la, cada um deve responder três perguntas minhas. Se acertar poderá passar, do contrário será sugado até os quintos dos infernos”. Diante disso, cada um do séquito do rei vai passando ou vai sendo condenado conforme responde certo ou errado às perguntas, às vezes absurdas, às vezes infames do velho1. Lancelot passou fácil, mas Galaghar foi sugado porque titubeou em responder qual era sua cor preferida. Outro cavaleiro não sabia a altura exata do monte Everest, e assim por diante.

Na vez do rei Arthur, o velho repete a ladainha e pergunta: “Qual é a velocidade de cruzeiro da andorinha?”, ao que o rei retruca com: “A andorinha africana ou a européia?”. O ancião, surpreendido pela questão, responde: “Ora! Isso eu não sei!” E zum! O próprio guardião da ponte é sugado pelos infernos.

O cavaleiro que acompanha o rei Arthur, enquanto atravessam a ponte, pergunta, curioso: “Como Vossa Alteza sabia que existem dois tipos de andorinha?”. O rei responde, fleumaticamente:

- São coisas que um rei deve saber.

Astrônomo não é rei. Pelo menos, não necessariamente. É dito que o imperador D. Pedro II era um amante da astronomia. E que o Observatório Nacional, antes, Imperial Observatório, teve seus dias de glória sob o seu reinado. Sob a república, o que se tenta é acabar com ele, o Observatório. De início, por conta da imagem que ele tinha ligada ao antigo regime. Hoje, sabe-se lá por que...

Voltando ao assunto, se astrônomo não é rei, ele, mesmo assim, carrega o “sacrifício do cargo”, como o rei. E dele cobram-se as coisas que um astrônomo observacional deve saber. Algumas dessas coisas, eu tento ensinar nesse livro. É claro que o que vou expor aqui não é exaustivo. O que um observacional deve saber é muito mais do que se pode encontrar nestas páginas. O tempo, a limitação (e o próprio corpo de conhecimento do autor) determinam o que se ensina aqui. É o mínimo necessário, o minimum minimorum.

Mesmo assim, quando o leitor, no futuro, em discussão científica com alguém, tiver, na ponta da língua, a magnitude limite de um telescópio ou a resolução em comprimento de onda de um dado espectrógrafo e for questionado sobre esse seu saber, poderá assumir a fleuma e declarar:

-São coisas que um observacional deve saber.

.................................................................................

A astrofísica observacional é dividida em partes definidas pelas regiões do espectro eletromagnético. Cada região determina diferentes técnicas observacionais, motivo pelo qual elas são separadas. No entanto, isso não significa que cada uma delas seja independente da outra. Muitos conceitos definidos em uma são aproveitados em outras, de forma que esse livro, que se atém somente a uma delas, pode ser guia para o estudo das outras. São elas:


	Domínio óptico: do qual se ocupa esse livro, onde se discute conceitos e técnicas observacionais correntes nas faixas do ultravioleta (remoto e próximo), visível e infravermelho próximo;

	Domínio do rádio: usa-se técnicas observacionais próprias do infravermelho distante até as faixas mais remotas do rádio e, finalmente,

	Domínio das altas energias: que se ocupa da detecção de radiação de alta energia, desde o neutrino até o raio X, passando pelos raios cósmicos e raios gama.



Para que o livro não se apresentasse enfadonho e monotônico, procurei acrescentar, quando coube, histórias e anedotas que circulam nos observatórios que conheci e que reproduzo nesse livro. Afinal, contos do folclore astronômico também são coisas que um observacional deve saber.



Softwares de Apoio

O astrônomo moderno não pode prescindir de instrumentos computacionais. Um físico teórico brasileiro, na época lotado no Observatório Nacional, teria comentado que os astrônomos “não saem da frente do computador”. “Quando eles fazem ciência?” teria perguntado, indignado. Dentro de nossa área, já pude detectar sérias preocupações de alguns professores de que estaríamos formando gerações de “bons usuários” de pacotes computacionais, deixando entrever que os novos astrônomos apresentam deficiências de formação. Independente da motivação que levou esses professores a deixarem transparecer suas inquietações, creio que iniciativas pedagógicas, como essa que ora apresento nesse livro, devem ser incentivadas no sentido de tentar preencher as lacunas que tanto incomodam os professores mais experientes. Mas não se deve deixar de “treinar” os estudantes nos bons softwares de apoio. Mais do que fazer, é preciso fazer direito, de forma normalizada, de maneira que os resultados sejam facilmente comparados e testados, e isso só é possível utilizando as ferramentas consagradas pela comunidade. Fazer direito é ter conhecimento de todas as etapas que as caixas pretas dos softwares de apoio executam. Por essa razão, não posso omitir aqui, a apresentação da informática corrente na astronomia. Eu diria que essa nossa ciência é privilegiada pois servindo-nos apenas dos pacotes de domínio público, com os quais podemos cumprir todas as etapas do tratamento de dados. Todos os softwares tratados aqui funcionam sob a plataforma UNIX-X11 ou OpenBSD-Aqua (MacOSX) ou Windows/CygWin, ou seja, são de domínio público.

Podemos dividir os softwares de apoio em dois tipos: aqueles que auxiliam a preparação das observações e aqueles que apoiam a aquisição, o tratamento e a análise dos dados advindos dessas observações. Nesse último tipo, encontramos dois pacotes: o MIDAS (Munich Image Data Analysis System) e o IRAF (Image Reduction and Analysis Facility). O MIDAS foi desenvolvido e é mantido pelo ESO (European Southern Observatory) sediado em Munique, Alemanha, enquanto que o IRAF foi desenvolvido e é mantido pelo NOAO (National Optical Astronomical Observatories), Arizona, EUA. Cada um tem vantagens e desvantagens. O mais utilizado no Brasil, por enquanto, é o IRAF sobretudo depois que o LNA (Laboratório Nacional de Astrofísica) resolveu desenvolver todas os pacotes de aquisição de dados sob esse software. O MIDAS é utilizado por aqueles que obtém seus dados nos telescópios do ESO, no Chile, na fase de pré-redução. Contudo, tão logo os dados são disponibilizados para análise, a imensa maioria dos usuários transfere-os para o IRAF para a obtenção dos dados finais. Essa prática é levada não só por hábito como também porque esse último pacote oferece mais ferramentas. Há um software comercial, o RSI-IDL, em que muitos pacotes são desenvolvidos sob sua plataforma.

A ferramenta mais popular para observação do céu é, sem dúvida, o modo “sky” do Google Earth. Há, além disso, sites da Internet espalhados por todos os cantos do mundo que fornecem horários de nascer-ocaso do sol, lua e planetas, fases da lua, posição de cometas e asteróides etc. O site do Observatório Nacional, http://www.on.br, é uma dessas referências.

Esses softwares serão citados no desenvolvimento dos temas e comentários serão feitos com respeito a algumas facilidades desses pacotes. Não se pretende dar um livro de treinamento dessas ferramentas. Espera-se que cada um dedique-se por conta própria a iniciar e treinar a manipulação das rotinas desses pacotes ou que se treine em seus laboratórios. Não é possível ensinar nada em informática sem treinamento imediato.





Pré-requisitos

Originalmente, esse foi um curso de Astrofísica Observacional que foi preparado para dar ao estudante de astrofísica meios de ingressar na arte da observação astronômica. Por isso, esperava-se um conhecimento prévio de astronomia e astrofísica. Para isso o leitor é aconselhado a procurar um livro texto específico.

Admite-se que o leitor possua conhecimentos compatíveis com um graduado bacharel em astronomia ou física com orientação em ciências astronômicas. Estudantes de outras áreas podem ter dificuldades em conhecer a origem de certas conclusões, mas nada que não seja possível descobrir em livro-textos clássicos versados no assunto. No que tange à matemática, conhecimentos de cálculo, geometria, trigonometria e estatística são desejáveis. Conhecimento de estrutura da matéria e física da matéria condensada pode ajudar mas não é relevante que seja em profundidade.
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Notes

1Essa cena, além de ser inspirada no Enigma da Esfinge, obviamente, refere-se à Imigração do aeroporto de Heathrow, em Londres, onde o infeliz estrangeiro, para obter a autorização de ingresso em solo inglês, é obrigado a responder as perguntas mais estapafúrdias que se pode imaginar.







O Boicote de Comte2


Embora a astronomia seja uma das ciências mais antigas (a única que possui uma musa, a Urânia, na mitologia grega), a astrofísica tem história recente. Na primeira metade do século XIX, especulava-se sobre a constituição dos astros e planetas através de análises de classificação de estrelas segundo o aspecto de seus espectros. Auguste Comte, filósofo francês, introdutor do pensamento positivista e um dos mais influentes pensadores da época, decretou, em 1835, a impossibilidade dessa atividade de pesquisa, o que ficou conhecido como


O Boicote de Comte:3 Sobre o assunto de estrelas, todos os inquéritos que não são, em última análise, redutíveis a simples observações visuais são ... necessariamente negados a nós. Enquanto podemos conceber a possibilidade de determinar as suas formas, seus tamanhos e seus movimentos, nunca seremos capazes, por qualquer meio, de estudar sua composição química ou sua estrutura mineralógica ... O nosso conhecimento sobre os seus envelopes gasosos é necessariamente limitado à sua existência, tamanho, ... refração e brilho. Nunca seremos capazes de determinar sua composição química ou mesmo sua densidade ... Eu considero qualquer noção sobre a temperatura média real das várias estrelas como um dado que será sempre negado a nós.



Comte se referia ao fato de não sermos capazes de promover viagens espaciais para estudar in loco ou coletar amostras para análise em laboratório do material dos astros distantes.

Cerca de 15 anos depois dessa declaração, o físico alemão Gustav Kirchhoff enunciou suas leis da radiação estabelecendo que para se conhecer a composição química de uma substância, além de suas características físicas, como temperatura e movimento interno, bastava observar sua luminância através de um prisma. Assim, sem necessidade de se obter ’amostras’, basta observar o espectro da luz emanada de um objeto para conhecermos sua natureza. Não é preciso "ir ao local". O Boicote de Comte foi relegado ao esquecimento. Comte será lembrado por outras declarações.

Podemos considerar, portanto, que Kirchhoff foi um verdadeiro franqueador da astrofísica como ciência observacional.



Notes

2Devo o conhecimento desse “boicote” a Antonio Augusto Passos Videira, o Guto, brilhante filósofo e historiador da ciência e ex-colega no Observatório Nacional, onde teve uma bolsa de fixação antes de ocupar seu lugar na UERJ. É autor do livro A História do Observatório Nacional, 2008, Ed. O.N..

3Versão corrigida pelo autor do que saiu do ’Tradutor Google’ do texto obtido de http://www.aip.org/history/cosmology/tools/tools-comte.htm.








Parte I

Medidas, Obtenção e Tratamento dos Dados



Capítulo 1

Introdução



1.1  Objetivos

O objetivo desse livro é apresentar os fundamentos necessários para a correta compreensão e interpretação dos dados obtidos pelas mais diferentes técnicas observacionais modernas. A astronomia é uma ciência observacional, isto é, serve-se da radiação eletromagnética advinda dos astros para deduzir suas propriedades físicas e químicas. Esse livro dedica-se a apresentar e discutir a teoria que está por trás das técnicas observacionais e análise dos dados obtidos. Restringe-se especialmente à área da astrofísica, deixando de lado as técnicas da astronomia fundamental. Embora se interseccionem (e alguma coisa transpassar rapidamente nessas páginas), seria preciso uma obra à parte para apresentar essa última com a profundidade que merece.
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Figura 1.1.1: Espectro eletromagnético em todas as faixas e seus respectivos nomes. Indicadas também, a título de curiosidade, as frequências do forno de micro-ondas (2.45GHz) e do pico da radiação cósmica de fundo (160GHz). Visto que a faixa do rádio está sujeita a emissão de origem humana, há regiões reservadas para observação astronômica, como por exemplo o “buraco da água”, em torno de 21cm, assim como o “Canal 37”: 608 - 614MHz. 










1.2  Os Dados

Dada uma radiação à base de fenômenos ondulatórios, dois parâmetros definem a sua característica fundamental. Eles são a frequência (ν) definida pelo período de oscilação e o comprimento de onda (λ). É mostrado em qualquer bom livro de física do segundo grau que:




	[image: νλ = c,]





em que v é a velocidade de propagação da radiação. No caso da radiação eletromagnética no vácuo: v = c e temos








	

[image: νλ = c, ]

	(1.2.1)





sendo c a velocidade da luz no vácuo.

Chama-se espectro a função de uma grandeza ligada à radiação com respeito ao seu comprimento de onda ou frequência, ou uma função de um desses dois.

Toda e qualquer informação de interesse astronômico advém da radiação emitida pelo astro de interesse e dessa radiação, em cada experimento, é selecionada uma faixa de seu espectro.

A coleta da radiação se dá em virtualmente todo o espectro eletromagnético. Cada faixa define uma especialização, cuja denominação decorre, aproximadamente, do nome que se dá a ela. Assim, temos a astrofísica de altas energias, a rádio-astronomia etc.

Portanto, devemos conhecer as diferentes faixas de radiação, em função do comprimento de onda, ilustradas na Figura 1.1.1.


	
Rádio-Astronomia


	Visto que a faixa de rádio é utilizada para gerar sinais artificiais visando a comunicação, há trechos dessa faixa que são reservados para a rádio-astronomia, por acordo internacional patrocinado pela União Astronômica Internacional (IAU) e a União Internacional de Telecomunicações (ITU)4, assim como a “Zona de Silêncio de Rádio”, NRQZ, em West Virginia, EUA, onde as emissões de rádio em todas as frequências são proibidas para possibilitar a observação astronômica e emissões controladas de origem militar.






Transformação do Espectro entre λ ⇔ ν 


Se obtemos o espectro em intensidade específica5 de um objeto f(λ), como equivalê-lo ao espectro g(ν)? Em outras palavras, dado o espectro f(λ), como obter o espectro g(ν) equivalente?

Para tanto, devemos estabelecer que a quantidade de energia no trecho em comprimento de onda definido do espectro deve ser a mesma em frequência:




	





já que se λ2 > λ1, então ν1 > ν2. Mas, sabendo que c = λν, substituímos λ no lado esquerdo da equação:




	





Comparando as duas equações chegamos a








	

[image:  c c g(ν) = f (-)-2. ν ν ]

	(1.2.2)





Igualmente:








	

[image: f(λ) = g(λc) cλ2. ]

	(1.2.3)









Correspondência de Espectros Tabelados

Quando temos um espectro calibrado em unidades específicas6 colocado em forma de tabela, a transformação mantém a mesma relação de equivalência. Geralmente ele é obtido da observação que traz os dados digitalizados. Assim, por exemplo, se temos a tabela em comprimento de onda, cada ponto equivale à integração da radiação dentro de um intervalo:




	





em que fi é o valor do espectro em comprimento de onda no ponto observado e dλ representa o intervalo de comprimento de onda compreendido na observação do ponto. A obtenção da tabela em frequência se dá em uma correspondência entre esta e o comprimento de onda ponto a ponto equivalente através de




	





e o espectro calibrado relativo obtém-se da imposição de que a energia no intervalo é a mesma:




	





em que gi é o ponto do espectro em frequência. Então:








	

[image:  λ2 |¯gi| = |f¯i| , c ]

	(1.2.4)





ou








	

[image: ¯ ν2 |fi| = |¯gi|c . ]

	(1.2.5)





Quando a tabela não está em unidades específicas, essa transformação não é necessária, bastando transformar comprimento de onda e frequência, uma na outra.





[image: PIC]




Figura 1.2.1: Temperatura e densidade da atmosfera em função da altitude [3, 121]. 












1.3  A Atmosfera Terrestre

Desde os primórdios, a observação astronômica é feita em solo. Portanto, para observarmos é preciso levar em consideração a atmosfera - camada de gás, vapor e partículas em suspensão - que nos rodeia, ao mesmo tempo fator indispensável para nossa existência e um obstáculo importante para a investigação da radiação que nos chega. Podemos dividir a atmosfera terrestre em camadas. A Figura 1.2.1 mostra dois parâmetros que constituem propriedades da atmosfera: a temperatura e a densidade, com respeito à altitude e às camadas ali caracterizadas até 100km. Rigorosamente, a atmosfera atinge altitudes superiores, chegando-se a 50 × 103km. Ali, a densidade cai de cerca de 20 ordens de grandeza. Na prática, podemos considerar que 100km é um valor razoável para levar em conta o limite da atmosfera, uma vez que a densidade cai de um fator de 106.

O comportamento da temperatura é irregular no todo, mas comporta-se bem dentro das diferentes camadas. Essa característica reflete a diferença de composição química de cada uma. A troposfera, na qual estamos imersos, vai do solo até 12km e é, no seu limite superior, onde os aviões de carreira trafegam. Em seguida, a estratosfera se caracteriza por conter a camada de ozônio, responsável pela filtragem da maior parte da radiação que nos é nociva. A temperatura sobe a níveis teoricamente suportáveis, mas você não vai querer estar ali pois o ar rarefeito, cerca de 1∕1000atm, não é salutar.

Segue-se a mesosfera, região que vai entre 32 e 50km até um pouco mais de 80km de altitude. Sua natureza ainda está para ser completamente conhecida, é nela que se queimam as “estrelas cadentes”, meteoróides, isto é, pedrinhas que nos chegam do espaço o tempo todo. Também é onde se dá, provavelmente, o fenômeno ’ELVES’ - Emission of Light and Very Low Frequency perturbations due to Electromagnetic Pulse Sources’7, mal traduzido para “DUENDES”, relatados por pilotos de avião de carreira, quando da ocorrência de raios.

Acima desta vem a termosfera. Em estado de baixíssima densidade, coisas ainda não bem compreendidas se passam ali. Em sua camada superior e para além, encontramos a magnetosfera na qual ocorrem as chamadas aurora boreal e austral.

A região da troposfera é a maior responsável pela degradação da qualidade da imagem obtida dos astros, sobretudo por conta da agitação que ela promove nos raios luminosos, como veremos no Capítulo 12. Outro fator de degradação é o vapor d’água presente nessa camada. A quantidade de vapor d’água (umidade relativa) varia com o local e possui uma variação complexa. No entanto, pode-se dizer que, grosso modo, ela reduz-se com a altitude e é pequena em regiões desérticas. A escolha de observatórios é determinada de maneira crucial no que diz respeito à presença de vapor d’água, uma vez que observações, sobretudo no infravermelho, são fortemente afetadas pela sua presença.

Finalmente, observatórios, se bem que em alta altitude, estão instalados no solo terrestre, salvo algumas excessões. A atmosfera exerce influência na radiação que nos atinge, sendo mais ou menos transparente, dependendo da faixa espectral. Vemos na Figura 1.3.1 uma representação pictórica da opacidade da atmosfera em função do comprimento de onda.
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Figura 1.3.1: Espectro de opacidade da atmosfera com respeito às faixas de radiação. 








Espectro de Transparência da Atmosfera

Muito embora vamos definir transparência e opacidade no Capítulo 11, podemos explorar o conceito intuitivo esclarecedor. Não é difícil imaginar que a atmosfera absorve a radiação8, que se manifesta pela sua transparência, ou seu oposto, a opacidade. Na Figura 1.3.1 vemos um diagrama no qual as regiões escuras indicam a opacidade da atmosfera para a radiação de origem sideral. Quanto mais escura é a região do espectro, mais “opaca” é a atmosfera.

Observamos que a atmosfera é completamente opaca para as radiações de altas energias. Observar essas radiações é possível somente fora da atmosfera, com sondas espaciais ou com balões lançados à estratosfera. Felizmente, deve-se dizer, porque enquanto ionizantes, não estaríamos aqui para observá-las, caso a atmosfera não fosse implacável para com essas radiações. Na medida que passa-se do ultravioleta até o visível, entramos numa área mais transparente, mas nem tanto. No infravermelho encontramos altos e baixos, sobretudo por conta de absorção pelo vapor de água e pelo gás carbônico. Chegamos à região de UHF e VHF, onde a atmosfera é praticamente transparente para, em ondas longas, se tornar opaca novamente.











	Observatório
	Local
	Altitude (m)
	Pesquisa
	Desde



	
University of Tokyo Atacama Observatory


	
Deserto de Atacama, Chile


	

5640





	
Óptico, Infravermelho


	

2009








	
Atacama Cosmology Telescope


	
Deserto de Atacama, Chile


	

5190





	
Microondas


	

2007








	
Llano de Chajnantor Observatory (ALMA)


	
Deserto de Atacama, Chile


	

5104





	
Ondas milimétricas e submilimétricas


	

1999








	
Shiquanhe Observatory (NAOC Ali Observatory)


	
Tibet, China


	

5100





	
Óptico


	

2011








	
Large Millimeter Telescope and Water Cherenkov


	
Sierra Negra, México


	

4580





	
Microondas, Raios Gama


	

2006








	
Indian Astronomical Observatory


	
Mount Saraswati, Índia


	

4500





	
Infravermelho, raios gama, Óptico


	

2001








	
Mauna Kea Observatory


	
Havaí, EUA


	

4190





	
Óptico, Infravermelho, submilimétrico


	

1967








	
	
	
	
	








Tabela 1.1: Observatórios mais importantes. 












Variação com a Altitude

A presença de vapor d’água, como já foi dito, varia muito de lugar para lugar e também com a época do ano. No entanto, o que é certo é que ele diminui com a altitude. Algumas medidas [126] indicam que a densidade de vapor d’água cai em 60% a 2000m e 85% a 4000m com respeito à densidade a nível do mar. Do ponto de vista da visibilidade [50], a transparência da coluna atmosférica no espectro visível e infravermelho devida ao vapor d’água pode chegar a 62% ao nível do mar, passar a 75% a 2000m, e chegar a 98% a 4000m de altitude.

Outros fatores, como o efeito de partículas em suspensão, também conhecido como “névoa seca”, são drasticamente reduzidos com a altitude.







1.4  Observatórios

A Tabela 1.1 lista alguns dos mais importantes observatórios espalhados no mundo. Faltou listar outros tantos, tais como o Observatório do Monte Palomar, no Colorado, EUA; do Pic-du-Midi, nos Pirineus, França; Cerro Pachon, Paranal e La Silla todos no Atacama, Chile, fora os que estão sendo construídos pelo mundo inteiro. Podemos contar centenas de observatórios de importância crucial para o desenvolvimento da astronomia.

Notamos que em todos os casos procurou-se situar os instrumentos em locais altos, decisão que decorre daquilo que já vimos na seção anterior: quanto menos atmosfera, melhor a visibilidade.











	
Telescópio 

	
Diâmetro (m)

	Local 
	Origem 
	
Ano de Início




	
Gran Telescopio Canarias


	

10.4





	
Ilhas Canárias, Espanha


	
Espanha, México, EUA


	

2006 - 9








	

Keck*-1 e 2





	

2 ×10





	
Mauna Kea, Havaí


	

EUA





	

1993 e 1996








	

Southern African Large Telescope (SALT)





	

9.2





	
Cabo Norte, RSA


	

República Sul-Africana (RSA)





	

2005








	

Hobby-Eberly Telescope (HET)





	

9.2





	
Texas, EUA


	

Alemanha, EUA





	

1997








	

Large Binocular Telescope (LBT)





	

2×8.4





	
Arizona, EUA


	

EUA, Itália, Alemanha





	

2004








	

Subaru (JNLT)





	

8.2





	
Mauna Kea, Havaí


	

Japão





	

1999








	

Very Large Telescope (VLT)





	

4×8.2





	
Paranal, Chile


	

Consórcio Europeu, Chile





	

1998, 1999, 2000, 2001








	

Projeto Gemini





	

2×8.1





	
Mauna Kea, Havaí e Cerro Pachon, Chile


	

Consórcio Internacional**





	

1999, 2001








	
	
	
	
	








*Disponível apenas aos pesquisadores das instituições sediadas na California, EUA.



**EUA, Reino Unido, Canadá, Austrália, Argentina e Brasil






Tabela 1.2: Maiores telescópios até o momento. 










Maiores Telescópios

Os maiores telescópios não estão forçosamente situados nos sítios mais elevados. Há vários fatores que influem nessa não coincidência, afeitos sobretudo a problemas de logística, mas, finalmente, a razão principal é que não há nada que force essa coincidência.

A construção e manutenção de um grande telescópio são tarefas dispendiosas e exigem orçamentos que apenas órgãos públicos se habilitam a administrar. Mais e mais, pela dimensão dos custos, países se unem para instalar esses instrumentos. Contudo, há exemplos privados, como a dupla de telescópios de 10m em Mauna Kea, Havaí, da família Keck da California, EUA, construído por exigência testamental.

Contrariamente ao uso da astronomia amadora, em que a dimensão do telescópio se dá através do comprimento do tubo, na astrofísica observacional nos referimos aos telescópios pela abertura da objetiva, isto é, o diâmetro de entrada. A razão é que o atributo mais relevante da radiação em nosso meio é a quantidade de fótons recebida, que é determinada pela abertura da objetiva, como veremos mas à frente.

A Tabela 1.2 lista alguns dos maiores telescópios instalados no mundo.







1.5  Observatórios no Brasil

Apesar do céu brasileiro inspirar poetas, como Catulo da Paixão Cearense ao letrar a melodia de João Pernambuco, em “Luar do Sertão”, ele não corresponde às expectativas no que tange a astronomia. Mesmo impressionando o viajante do sertão, apresentando visões extraordinárias, o número anual de noites “boas” para a astrofísica deixa a desejar. Recentemente, em fenômeno associado ao aquecimento global, a umidade relativa do ar no Brasil Central caiu drasticamente, deixando margem para noites melhores à observação. Contudo, houve aumento da névoa seca e poluição, o que compensa o ganho em queda da umidade. Mesmo assim, em correspondência com as expectativas, as noites fotométricas, em condições favoráveis, quando acontecem, são muito boas. Falta-nos sítios de grande altitude, como os países andinos, com sua cordilheira. Nosso observatório mais importante, no Pico dos Dias, MG, alcança 1864m, de acordo com seu site na internet: www.lna.br.

O brasileiro tem interesse natural pela astronomia. As universidades têm correspondido com esse interesse e abrem, cada vez mais, campo para pesquisa nessa área da ciência. Por isso, vemos crescer o número de observatórios acadêmicos no país, ademais da existência de observatórios amadores e clubes de astronomia.

Uma lista de observatórios de ensino e pesquisa no Brasil é mantida na internet [157]9. Além disso, astrônomos brasileiros têm acesso, desde que devidamente chancelados, a telescópios nos quais o país tem participação fiduciária. São eles: o Projeto Gemini, listado na Tabela 1.2 e o telescópio SOAR, projeto conjunto com a Universidade da Carolina do Norte, o NOAO e Universidade de Michigan dos EUA e o CNPq brasileiro. Este possui um diâmetro de 4.2m e aplica-se especialmente à espectrofotometria. Além disso, há projetos sendo desenvolvidos em conjunto com outros países em diversos sítios e há possibilidade de acesso a projetos internacionais abertos como o ALMA, no deserto do Atacama, no Chile. Em suma, não é por falta de possibilidade observacional que o astrônomo brasileiro poderá se queixar. Há outras limitações de ordem material, mas não muito diferentes dos percalços encontrados pelos nossos colegas em outros rincões. Do ponto de vista observacional, as expectativas são promissoras. Basta ir atrás.





Exercícios


	
O espectro de radiação térmico de um corpo negro, em função da frequência, segundo Planck, é




	





Dada uma temperatura T, obter esse espectro em função do comprimento de onda.



	
A estrela padrão G191B2B apresenta o seguinte espectro em fluxo de comprimento de onda [106]:








	

	

	

	

	




	
λ(A)

	Fluxo(10-5erg.s-1)
	
	
λ(A)

	Fluxo(10-5erg.s-1)



	

	

	

	

	




	

	

	

	

	




	3200 
	
4.33 

	
	4255
	
3.02 




	

	

	

	

	




	3300 
	
4.37 

	
	4566
	
2.70




	

	

	

	

	




	3400 
	
4.29 

	
	5000
	
2.21 




	

	

	

	

	




	3500 
	
4.02 

	
	6056
	
1.53




	

	

	

	

	




	3700 
	
3.73 

	
	7100
	
1.16 




	

	

	

	

	




	4036 
	
3.31 

	
	8090
	
0.946




	

	

	

	

	




	
	
	
	
	











Transformar em espectro de frequência. Desenhar o gráfico dos dois espectros. O que você observa comparando os dois?







Notes

4http://www.astrosurf.com/luxorion/radioastro-frequencieslist.htm

5Veremos o significado disso no Capítulo 11.

6Idem.

7https://news.psu.edu/story/140845/1997/09/01/research/sprites-and-elves-atmosphere

8Notando alguns serviços de previsão do tempo em certas mídias, quando se referem à “visibilidade no dia”.

9http://www.uranometrianova.pro.br/observatorios/obsbrasil.htm







Capítulo 2

Teoria da Informação



2.1  Introdução

O ser humano, em sua empreitada para aprimorar conhecimento, tem diante de si duas formas de encarar a Natureza, duas visões de mundo. A primeira, e mais antiga, é inspirada no chamado “Mito da Caverna” de Platão. A Natureza é constituída de um certo conjunto de leis que colocam seus mais diversos aspectos em relação uns com os outros e de tal forma complexa e em tal escala que, não tendo meios de lidar com todos eles, nos dedicamos a tentar desvendar essa totalidade em um conjunto mais simples de leis matemáticas. A outra, mais moderna, entende que a Natureza não necessariamente é regida por leis, mas seu comportamento nos induz a relacionarmos grandezas que criamos para tentar descrever de forma aproximada o universo a que temos acesso. Encontramos entre aqueles que engrossam as fileiras da primeira visão de mundo, os que acreditam se aproximarem mais e mais dos segredos escondidos do universo. Salvo esses, há um consenso de que os limites do conhecimento são determinados pela linguagem e suas brechas.

Dessas duas visões de mundo, podemos derivar o que é processo determinístico e processo estocástico. Processo determinístico é aquele em que há uma conexão entre causa e efeito: ao observar um evento, a ele se atribui a causa de um outro evento, podendo este, também, ser o efeito de uma outra causa. Os que se incluem entre os detentores da primeira visão de mundo acreditam que sua missão é encontrar as causas dos eventos que observamos.

Processo estocástico é aquele que se constitui de um conjunto de variáveis aleatórias que evoluem no tempo. Não se trata mais de procurar causas e observar efeitos, mas de inferir propriedades sobre aquele evento observado em particular. Os defensores da segunda visão de mundo não procuram causas, nem supõem que, a priori, elas existam. Para eles, e numa generalização radical, dir-se-ia que o processo determinístico não passa de uma idealização teórica.

No início do século XVII, o filósofo inglês Francis Bacon, em sua obra Novum Organum, estabeleceu suas bases para a ciência moderna identificando o conhecimento empírico como único caminho para a compreensão da Natureza. Não há meios de obter o conhecimento empírico sem nos debruçarmos sobre a teoria da probabilidade e sobre as funções estatísticas. O cientista investiga. E o quê investiga são processos estocásticos.

A astrofísica observacional é o ramo da astrofísica dedicada à coleta de dados, isto é, de informação. O século XX, é sabido, foi rico em descobertas e teorias que mudaram profundamente os conceitos humanos de universo e de realidade. Entre elas, destaca-se a teoria específica da informação. Tanto o ato do astrônomo que coleta dados do universo, quanto os procedimentos e cuidados de um biólogo para obter seus dados em laboratório, assim como os de um policial que examina a cena de um crime, são todas atividades que possuem uma sistemática comum: as ferramentas matemáticas de análise, suas regras rígidas de vínculos e limites de validade, a qualidade da informação que elas propiciam, são, essencialmente, as mesmas para toda e qualquer atividade investigativa.

Antes de nos debruçarmos sobre os processos e técnicas de medição na astrofísica, será útil aprendermos os fundamentos dessa nova área de conhecimento, a teoria da informação. Com ela, teremos meios de estudar as diferentes técnicas de observação e poderemos, a partir de uma visão geral, particularizar cada uma delas em seu contexto.

Para exemplificar o que vamos estudar, a Figura 2.1.1 mostra um esquema de obtenção da informação em geral, com uma ilustração para o caso astronômico.





[image: PIC]




Figura 2.1.1:  Esquema de aquisição de informação em geral com ilustração do processo na astronomia.






A Teoria da Informação foi inaugurada por C.E. Shannon, em 1948 [144]. Engenheiro, foi contratado pela Bell Labs, da AT&T, para estudar, matematicamente, quantos canais de voz um único cabo poderia transmitir, e acabou por desenvolver um formalismo que mudou definitivamente o conceito que os físicos tinham de entropia10.

Deduz-se da teoria de Shannon que toda informação traz consigo uma carga de ruído. Em outras palavras, toda informação, seja ela de caráter numérico ou qualquer outro, é “embaralhada” com outras, de natureza estranha àquela que se pretende estudar, e que são tratadas genericamente como ruído. O ruído pode ser aleatório11 ou não. Na quase totalidade da informação tratada na astronomia, vamos considerar que o ruído é de natureza aleatória.

Vemos ilustrado na Figura 2.1.2 o esquema de transferência de informação dado por Shannon. Fisicamente, podemos entender que a introdução de ruído está em todos os processos do esquema da Figura 2.1.1. Comecemos pelo processo de análise. Pelo fato de o analista não ter o conhecimento absoluto (ele está buscando conhecer), os dados podem ser interpretados erroneamente. O sistema receptor-armazenador também é uma fonte de ruído pelas condições que ele opera: temperatura, umidade, suscetibilidade ao clima, condições elétrica-eletrônica e, por que não, erro de manipulação. Finalmente, é sabido que a própria fonte de dados também é uma fonte de ruído. O único procedimento de estudo que temos é o cartesiano, isto é, a redução dos dados a um conjunto de parâmetros que chamamos base de informação. A natureza, por seu lado, não é necessariamente cartesiana, ou seja, a informação é sempre contaminada por elementos pertinentes a outras bases de informação que não aquela que estamos estudando. Portanto, a informação pertinente a um parâmetro de estudo nunca é “pura”, destituída de informações estranhas àquela que estudamos. Além disso, como prova a mecânica quântica, há sempre um limite para além do qual não podemos estabelecer uma relação determinística de causa e efeito.
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Figura 2.1.2: Esquema de transferência de informação para Shannon ([144]). 










2.2  Fundamentos da Teoria da Comunicação

Segundo Warren Weaver [145] existem três níveis de problemas relativos à comunicação de maneira geral. São eles:


	
Nível A:


	O problema técnico: Os símbolos estão sendo transmitidos corretamente?


	
Nível B:


	O problema semântico: Os símbolos correspondem ao que se quer comunicar?


	
Nível C:


	O problema da efetividade: A comunicação promove o efeito desejado?




Nas páginas subsequentes, frequentemente vamos topar com pelo menos um desses níveis e, quando cabível, alguma via de tratamento para lidar com as dificuldades decorrentes será apresentada. Arrisco-me a dizer que a astrofísica observacional, assim como toda ciência ou atividade investigativa que lida com a informação, se resume a tratá-la em pelo menos um desses níveis listados.





2.3  Sistemas Ergódicos

São sistemas em que espera-se que uma amostra, qualquer que seja, do sistema, estatisticamente representa o todo. Em outras palavras, em um sistema ergódico, na medida que adicionamos mais elementos na amostra, os estimadores estatísticos tendem suavemente a um valor determinado. Um exemplo claro de sistema ergódico é a população de eleitores em um dado país ou comunidade. Os institutos de pesquisa de opinião, pelo menos, admitem essa hipótese quando fazem suas projeções. Fazendo algumas considerações sobre a distribuição de intenção de votos de acordo com a classe social dos entrevistados, pode-se lançar hipóteses acerca da intenção do conjunto completo. A taxa de sucesso, como vemos, é, estatisticamente, grande.





2.4  Cadeia de Markov

É aquela em que - num processo estocástico - a emissão de signos se dá em uma cadeia em que o signo subsequente depende, em uma certa probabilidade, do anterior. Shannon [144] dá o exemplo de palavras da língua inglesa, e podemos, sem qualquer problema, fazer o mesmo para a língua portuguesa. Nos é fácil ver que, ao construirmos uma palavra em português, a probabilidade da letra ’g’ ser seguida da vogal ’u’ é grande. Já para a letra ’q’, essa probabilidade é quase 100% (não é 100 por causa da ocorrência eventual de um nome próprio).





2.5  Entropia

Imagine uma fonte de informação discreta, isto é, que nela possa se inscrever um conjunto finito de signos, sejam eles sinais elétricos, sonoros ou mecânicos. Shannon associou a essa fonte uma grandeza H que indica a quantidade máxima de informação que essa fonte pode conter. Para Shannon essa grandeza deveria ter as seguintes propriedades:


	A função H deve ser contínua em todas as probabilidades pi de ocorrência dos signos.

	Se todas as probabilidades são as mesmas, isto é, pi = 1∕n, em que n é o número de estados possíveis, então H deve ser uma função crescente e monótona de n. Quando todos os eventos são igualmente prováveis, deve haver maior incerteza na previsão de cada um deles.

	
Se a escolha for dividida em duas sequências de escolhas, o valor original de H deve ser a soma ponderada no número de estados possíveis de cada uma:



	
H = P1H1 + P2H2.










Shannon demonstra que a única função capaz de satisfazer essas condições se apresenta sob a forma:








	

[image:  ∑n H = - K pilog pi, i=1 ]

	(2.5.1)





em que K é uma constante positiva e pi são as probabilidades de ocorrência de todos os estados possíveis no sistema.

Aqui vale um breve comentário a respeito dessa conclusão de Shannon. O conceito de entropia foi introduzido por Rudolf Clausius em 1865, quando este estabeleceu o que hoje conhecemos por segunda lei da termodinâmica, concluindo que, em um sistema térmico fechado, a grandeza S - que ele chamou de entropia -, tal que ΔS = ΔQ∕T, sempre tem derivada positiva. Ludwig Boltzman, em sua Teoria Cinética dos Gases, tese de doutorado em 1866, fez uma interpretação brilhante dessa grandeza, estabelecendo que, desde que multiplicada por uma determinada constante, ela pode ser entendida como a resultante de todos os estados termodinâmicos possíveis do sistema, na exata forma apresentada acima na Eq. 2.5.1. As únicas diferenças nas expressões de Shannon e Boltzman são que Boltzman usou a letra S, como a que Clausius havia adotado e o k, era minúsculo e hoje é conhecido como “Constante de Boltzman”. Já o ’K’ de Shannon passou a ser considerado unitário.

Pois bem. Shannon não era físico e não conhecia a expressão de Boltzman. Segundo relato de Seife ([142]), Shannon perguntou a Oppenheimer, físico que liderou o projeto Manhattan (da bomba atômica), que nome daria à expressão que havia descoberto. Oppenheimer, sabedor da fórmula de Boltzman, respondeu: “Dê o nome de entropia”, ao que Shannon contestou, pois alegou não saber o que era entropia, logo não saberia o que dizer aos físicos por que haveria de ter cunhado esse nome. Oppenheimer, sem se abalar, explicou que os físicos também não sabiam o que é entropia, portanto, Shannon não teria de se preocupar com isso.

Assim, seguindo a sugestão de Oppenheimer, Shannon introduziu o conceito de entropia na teoria da informação e, dizem alguns, sem querer a unificou com a termodinâmica, proporcionando uma compreensão nova do universo. Muitos dizem, portanto, que vivemos no universo da informação.





2.6  Incerteza e Capacidade de Informação

Da fórmula para a entropia (2.5.1) é fácil vermos que ela é nula quando








	

[image: pj = 1,1 ≤ j ≤ n;pi⁄=j = 0,i = 1...n, ]

	(2.6.1)





e é máxima quando








	

[image: p1 = p2 = ⋅⋅⋅ = pn = 1∕n, ]

	(2.6.2)





já que




	





Dentro do contexto de Shannon, isto é, de processos estocásticos, a última condição significa o máximo de incerteza ou o máximo da capacidade de informação (em inglês: Maximum Information Content - MIC), enquanto que a primeira é o inverso, isto é, mínimo de incerteza e mínimo de capacidade de informação. A razão dessa correlação é simples. Em um sistema onde todos os estados são igualmente possíveis, há espaço para se colocar o máximo de informação possível.

Pensemos em uma unidade de memória de computador, digamos um octeto, ou seja, um byte de oito bits. Nele você pode guardar 256 códigos diferentes, contando com o zero. Isso, se você admite que todos os bits são igualmente passíveis de armazenar ou o valor 0 ou o valor 1. Estamos na segunda condição. Se todos os 8 bits são igualmente passíveis de armazenar informação, a probabilidade de se guardar informação com sucesso para cada bit é a mesma para todos os bits. Diante de um octeto sem ser acionado, há o máximo de incerteza, pois não há pré-definição de seu valor. Por conseguinte, pode-se armazenar o máximo de informação possível para esse sistema. E a entropia é máxima. Tomando por base 2 o logaritmo na definição da Eq. (2.5.1)12, o valor da entropia máxima nesse caso será 3.

Já diante do fato de lidarmos com um octeto ’defeituoso’, isto é, só um dos bits é passível de armazenar informação, enquanto que os outros estão ’queimados’, é possível armazenar apenas dois códigos, ou o 0 ou o 1. É o caso da entropia mínima para o sistema (se todos os bits estão queimados, não há sistema). A quantidade de informação é a mínima possível, e a entropia será nula.





2.7  Princípio da Máxima Capacidade de Informação

Bernoulli e Laplace introduziram, independentemente, o Princípio da Razão Insuficiente [125, 58], ou o Princípio da Indiferença, que postula uma distribuição uniforme nos casos em que nada sabemos a priori a respeito de um processo aleatório. Se temos um conjunto de medidas acerca de um dado fenômeno aleatório, e delas tiramos algum estimador, digamos, a média, existe uma infinidade de distribuições que podem levar ao mesmo valor desse estimador. Diante desse fato, Bernoulli / Laplace postulam que a distribuição mais verossímil é a uniforme.

Modernamente, estendeu-se esse princípio para o da Máxima Capacidade de Informação [58]. Desse, veremos, o de Bernoulli / Laplace é um caso particular.

Já sabemos que o estado de máxima capacidade de informação é aquele em que a entropia é máxima. Por conseguinte, escolhemos a distribuição aleatória de máxima incerteza possível para o sistema.

Aqui será mostrada a condição de máxima entropia de uma distribuição sem prova. Os interessados poderão consultar boa bibliografia a respeito, por exemplo [58].


 Teorema. Uma distribuição aleatória na variável fk, (k = 1,…,n) terá máxima entropia se obedecer à condição:








	

[image:  max Hn = lnΦ(β)+ ⟨f⟩β, ]

	(2.7.1)





sendo [image: ⟨f⟩]a média da distribuição definida por








	

[image:  ∑n ⟨f⟩ = fkpk, k=1 ]

	(2.7.2)





e








	

[image: pk =--1--e-βfk, Φ (β) ]

	(2.7.3)





sendo








	

[image:  ∑n Φ (β) = e-βfk. k=1 ]

	(2.7.4)





Aqui, β representa a solução única para a equação








	

[image: d ln Φ(β) --------= - ⟨f⟩. dβ ]

	(2.7.5)







A distribuição dada pela Eq. (2.7.4) é chamada de Gibbs ou canônica. A demonstração não é difícil e a dica principal é a desigualdade:




	





Vejamos a distribuição uniforme, em que pi = 1∕n, com n sendo o número de estados do sistema. Deduzimos facilmente que a entropia dessa distribuição é:




	





Da Eq. (2.7.3) obtemos








	

[image:  -βfk Φ (β) = ne , ]

	(2.7.6)





com a média




	





A função Φ(β) deve ser tal que a Eq. (2.7.5) deve ter solução única em β, logo, para que a Eq. (2.7.6) continue válida para qualquer fk é preciso que β = 0, assim




	





e da Eq. (2.7.1)




	





que é a entropia dessa distribuição: CQD.

Com isso, concluímos que a distribuição aleatória uniforme obedece a condição de máxima entropia, ou seja, máxima capacidade de informação. Portanto, o Princípio da Razão Insuficiente de Bernoulli / Laplace é um caso particular do Princípio da Máxima Capacidade de Informação, como foi dito anteriormente, no início dessa Seção.





2.8  Custo de Computação e Cardinalidade dos Dados

Cardinalidade de um conjunto de dados é o número de dados desse conjunto. Quando temos que analisar esses dados, muitas vezes, estamos diante do problema de achar técnicas computacionais que reduzam ao máximo a quantidade de operações nesses dados de forma a chegar ao resultado desejado. A essa quantidade de operações chamamos custo de computação ou complexidade de computação. O custo de computação também está ligado ao tempo de computação. Muitas vezes, problemas ligados ao custo de computação podem inviabilizar a análise. Problemas que envolvem operações combinatórias são exemplos que podem levar a custos computacionais inviáveis. É claro que os computadores mais modernos resolvem problemas de custo antes insolúveis, mas isso apenas desloca o gargalo da cardinalidade. Uma área das ciências da computação dedica-se especialmente ao estudo dos custos de computação. Um problema pode levar a uma quantidade tal de operações que não existe computador capaz de chegar a uma solução em tempo hábil. A esses problemas damos o nome de intratáveis.

Como exemplo de análise de cardinalidade e custo de computação temos uma matriz N × N, logo a cardinalidade é N2. A inversão dessa matriz pelo método de Gauss-Jordan é N3. A multiplicação de uma matriz N × M (cardinalidade NM) por uma outra M × L (cardinalidade ML) gera um custo de NML para produzir uma matriz de cardinalidade NL. Um sistema de N equações lineares tem uma cardinalidade de N2 + N. A solução desse sistema envolve a inversão e uma multiplicação de matrizes. Assim o custo será de 2N3. Vemos que, nesse caso, o custo é proporcional à potência da base da cardinalidade (no caso N).

Não é assim com problemas envolvendo combinações. Um problema clássico é o do caixeiro viajante:


Um caixeiro viajante sai de sua base para percorrer um certo número de cidades para exercer sua atividade. Digamos que ele saia de São Paulo - Capital, e percorra as capitais da região sul do Brasil. São elas Porto Alegre, Florianópolis, e Curitiba. Terminada a jornada, o caixeiro volta para sua base, São Paulo. Qual é a sequência de capitais que ele deve percorrer de forma a minimizar uma certa métrica, seja a distância total, ou o tempo de viagem ou o preço das passagens. Estabelecida a métrica, ele deve testar todas as possibilidades para verificar qual a mais em conta. Esse número representa a permutação das cidades na sequência a percorrer, digamos N!, com N o número de capitais. Como são quatro (conta a base também), então ele deve testar 4! = 24 alternativas para chegar ao percurso ideal. Deslocando o problema para as capitais das outras regiões brasileiras, chegamos a números razoáveis de testes. Se nosso caixeiro viajante tiver que percorrer as 26 capitais e o Distrito Federal, o número de testes vai a 27! ≈ 1028 operações. Digamos, por como otimistas nos pusermos, que um computador quântico possa fazer um desses testes em um tempo de 10-15s. Um cálculo rápido nos leva à conclusão de que ele levaria cerca de 3 milhões de anos para dar uma resposta ao nosso viajante. É intratável!



Há um conjunto de 11 problemas combinatórias que se juntam ao do caixeiro viajante que constituem o que chamam problemas NP-completos (de Nondeterministic-Polynomial time). O ’completo’ se opõe ao ’duro’, ou ’hard’. Um problema NP-hard é um problema NP que ainda não se determinou que se reduza a um dos NP-completos já estabelecidos. Para uma descrição detalhada do problema NP-completo ver [124].





2.9  Sistemas de Classificação

Classificação é um dos problemas do(a) astrofísico(a) observacional. Um exemplo de classificação é o incontornável esquema de Hubble para a morfologia das galáxias (Fig. 2.9.1) [114]. Muito embora seja um paradigma no sistema de classificação desses objetos, Hubble procurou estabelecer um critério evolutivo, tanto que ele chamou as galáxias do ramo das elípticas (En) de early-type, enquanto que as dos ramos das espirais e espirais barradas de late-type. Ele acreditava que a evolução das galáxias partia da esquerda e, por alguma razão, sofreria uma bifurcação no sentido das espirais simples e das barradas. Hoje sabemos que não é bem assim, que muito do que Hubble classificou é de efeito de projeção e que o critério evolutivo que ele estabeleceu é, num certo sentido, muito pelo contrário.





[image: PIC]




Figura 2.9.1: Classificação de Hubble para as galáxias. 






Para classificar precisamos introduzir, como fez Hubble - mesmo que equivocadamente -, um critério para tal. Como organizar os objetos de forma a obtermos alguma similitude entre eles? A teoria da informação aqui pode ajudar. Vamos, então, definir uma forma de organização, juntando os objetos em conjuntos de acordo com as características que eles compartilham. Sendo 𝔛, o conjunto de todos os objetos, vamos, então definir o conjunto




	





sendo s, o índice que define a mesma característica e xis os conjuntos de objetos que compartilham das mesmas características. Se os conjuntos xis são completamente independentes (do ponto vista probabilístico), temos








	

[image: 𝔛 𝔰 = 𝔛 𝔰1 ∪𝔛 𝔰2 ∪⋅⋅⋅∪ 𝔛𝔰𝔯 . 𝔛si ⁄= ϕ, 𝔛si ∩ 𝔛sj = ϕ ]

	(2.9.1)





A entropia de Shannon é definida da seguinte forma: seja p(a1s,…,al(s)s) a frequência relativa (ou probabilidade) de algum tipo de marcação que os conjuntos 𝔛s apresentam. Logo, definimos




	





como a entropia da referida organização dos objetos. Seja i, i = 1,…,r o índice de cada conjunto de objetos reunidos segundo uma característica, e r o número total de características definidas. Sua entropia será H(𝔛si). Definimos medida de coesão ou interdependência, ou ainda, organização, a grandeza:








	

[image:  r 𝔚 (𝔛 ;𝔛 ,...,𝔛 ) = ∑ H (𝔛 )- H (𝔛 ). s s1 sr i=1 si s ]

	(2.9.2)





É possível demonstrar [58] que




	





e que se estivermos na situação dada pela Eq. (2.9.1),




	





A interpretação disso é que a medida de interdependência de um sistema “desconectado” é a entropia interna relativa ao estado geral de um sistema (H(𝔛s)). Adotamos como estratégia, juntar recursivamente os objetos em arranjos, cada arranjo oferece uma medida de coesão, de forma que podemos definir uma coesão total:




	





É possível mostrar [58] que o valor de 𝔚tot não depende da sequência de arranjos adotada.

A idéia da classificação é, portanto, procurar um arranjo entre os objetos em estudo de tal forma que a coesão entre os arranjos escolhidos seja nula, isto é, quando os arranjos são comparados entre si, não existe conexão entre eles. Estamos na situação da Eq. (2.9.1). Em outras palavras, a soma das entropias relativas dos arranjos escolhidos é igual à entropia relativa total do conjunto.

Como exemplo, vamos escolher quatro galáxias a serem classificadas segundo oito propriedades13. Vamos denominar as galáxias Gi,i = 1,…,4 e as propriedades Pj,j = 1,…,8. Construimos uma matriz (A) formada de quatro linhas, correspondentes às galáxias, e oito colunas, correspondentes às oito propriedades. Observamos as propriedades de cada uma. Se acontecer de uma certa galáxia Gi possuir a propriedade Pj, então a célula da matriz aij será marcada com o valor ’T’ (true). Se não possuir a propriedade, aij será marcado com o valor ’F’ (false). Da observação, temos a matriz resultante mostrada na Tabela 2.1.
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Tabela 2.1: Matriz das propriedades das galáxias. 








Vejamos a entropia desse sistema para cada galáxia. A frequência relativa dos estados ’T’ é




	





O mesmo para os estados ’F’:




	





Ao examinarmos as condições para as outras galáxias, veremos que os valores de pi tanto para o estado ’T’ quanto para ’F’ são os mesmos e iguais a 1∕2. Assim




	





Portanto, a entropia para as galáxias em estudo é:




	





Vejamos agora qual é a entropia do conjunto envolvendo todas as galáxias. Para isso, examinamos a frequência relativa dos oitos estados possíveis observados na matriz da Tab. 2.1: p(xxxx), sendo x o estado ´T´ ou ´F´:




	





qual seja




	





Logo, a coesão do conjunto total do sistema, segundo a definição da Eq. (2.9.2) é




	





Isto é, a diferença entre a soma das entropias das galáxias individuais e todas elas tomadas em conjunto é a unidade. Em sendo não nula, isso indica que alguma coesão existe. Resta saber em qual arranjo ela está.

Procedendo a cálculos semelhantes, chegamos à conclusão:




	





do que deduzimos:




	





Vê-se que de todos os arranjos, o único que apresenta alguma coesão é o do conjunto {G1,G2,G4}. E ele tem a coesão do sistema total, isto é, a unidade. Devemos concluir que, no sistema apresentado, as galáxias G1, G2 e G4 compartilham propriedades que as habilitam para serem consideradas do mesmo tipo, segundo as propriedades apresentadas. A G3 seria de um tipo diferente.

Em sistemas mais complexos há uma variedade maior de coesões. Essas “sub-coesões” representarão sub-sistemas, formando-se uma complexa malha de classificações, que devem ser, por sua vez, “dissecadas” da mesma forma que a descrita acima, até achar-se o conjunto dos elementos “desconectados”, de coesão nula. No entanto, nenhuma das coesões deve ultrapassar a do conjunto e o(s) arranjo(s) que apresentar(em) aquela do conjunto, representará(ão) a(s) melhor(es) classificação(ões). Coloco com essa opção de plural porque é possível haver arranjos com a mesma coesão e que pode coincidir com a total. Há, nesse caso, uma certa degenerescência classificatória. Será preciso examinar melhor o conjunto das propriedades estudadas. Frequentemente, nesse caso, acontece de as grandezas envolvidas terem alguma relação entre elas.





Exercícios


	Imagine que um sistema possui apenas dois estados, com probabilidades p1 = p e p2 = 1-p, p = 0…1. Faça um gráfico da entropia desse sistema, em função de p. O quê você pode concluir a partir dele? A curva é contínua? Tem máximo? Tem mínimo? O quê você pode generalizar para múltiplos estados?

	Como você provaria as condições das Eq. (2.6.1) e (2.6.2)? Dicas: para a primeira, use a teoria dos limites, e para a segunda, a definição de função côncava (cuidado: não confundir com o conceito óptico de concavidade. Este, na verdade, é inspirado na sua definição geométrica, que é o caso desse exercício).

	Na Seção 2.6 calculamos que a entropia máxima para um byte de 8 bits (octeto) é 3. Você sabe por quê? Qual o valor de pi na definição (2.5.1) para esse caso?

	No caso de você precisar classificar um conjunto de 2000 objetos, segundo um certo número de propriedades definidas por grandezas independentes, quantas combinações você terá de fazer para estudar todas as possibilidades de cálculo de coesão dos arranjos possíveis?







Notes

10Para maiores detalhes sobre esse e outros casos - alguns deliciosos - envolvendo a teoria da informação, recomendo a leitura de Decodificando o Universo, de Charles Seife, Ed. Rocco.

11O conceito de ’aleatório’ será discutido mais tarde.

12A adoção de um valor arbitrário para K faz essa escolha ser possível.

13O exemplo aqui dado é inspirado no esquema S. Watanabe (1969a) exposto em [58].







Capítulo 3

Estatística Clássica



3.1  Introdução

O conhecimento de estatística e sua base teórica é essencial, senão indispensável ao astrônomo observacional. Paradoxalmente, essa matéria não era ensinada nos cursos de graduação que davam base à área: física, matemática, ou mesmo a própria astronomia da UFRJ. Hoje, não sei se o é. Talvez seja parte de nossa “cultura” desprezar assuntos que, no fim das contas, para um teórico, não passam da esfera do “mundano”. Para os estudantes de minha geração, no Brasil, tal deficiência custou caro (e muitas horas de sono para saná-la). Não fosse uma introdução bem fundamentada no curso de Dinâmica Estelar, proferida pelo Prof. Sylvio Ferraz de Mello na Pós-Graduação do IAG-USP14, nos anos 1970, nossas limitações na matéria seriam muito mais gritantes.

Preferi passar pelo assunto de forma um pouco mais fenomenológica do que a que foi ensinada pelo Prof. Sylvio. Talvez pela vasta literatura a respeito veiculada hoje em dia, tenho esperança que o leitor tenha acesso ao formalismo matemático mais facilmente do que tivemos naquela época. Minha intenção é que, de posse dos conceitos aqui veiculados, o leitor possa passar diretamente à sua aplicação.





3.2  Estatística Não-Paramétrica

A astronomia é fortemente dependente de sistemas ergódicos, uma vez que, a exemplo das ciências sociais, lida com informação parcial. No entanto, não se pode admitir universalmente que a massa de dados com que estamos lidando seja considerada como parte de um sistema ergódico. Nesse particular, a astronomia lida com a chamada estatística não-paramétrica. A diferença com a dita estatística paramétrica é que nesse caso lidamos com o conjunto completo de dados, de forma que podemos fazer inferências na base de parâmetros previamente determinados, cujos valores numéricos poderão, assim, ser determinados. O conjunto de parâmetros, aqui, é determinado a priori.

No caso da estatística não-paramétrica, não podemos definir um conjunto completo de parâmetros, já que haverá falta de dados para permitir a determinação de todos eles. Introduzimos parâmetros a posteriori, na medida que a qualidade da população melhora, isto é, a massa de dados cresce.





3.3  Distribuição e Frequência

Uma dada variável pode assumir qualquer valor dentro de um dado intervalo chamado domínio. Durante um período de experimentação, essa variável apresenta-se por um certo número de vezes com valores dentro de um certo intervalo dx, denominado intervalo de amostragem, ou amostragem, ou ainda binagem (do inglês bin). Ao número de vezes dessa ocorrência chamamos frequência, ou frequência de distribuição. O gráfico da variação dessa frequência com o valor da variável em estudo é chamado histograma. Definimos função de distribuição, ou simplesmente distribuição a função




	





Durante a experimentação, obtemos um total de N valores para a variável x. Nesse caso, dizemos uma distribuição discreta, sendo




	





a probabilidade de um evento Ak acontecer.





3.4  Esperança Matemática

Seja um espaço de amostragem constituído de N elementos, X = {x1,x2,...,xN} em que a seus elementos estejam associadas probabilidades pi = pX(xi) para i = 1,..,n. Define-se momento de ordem ’k’, ou k-ésimo momento de uma distribuição de probabilidades a soma:








	

[image:  ∑ μ(k)[X] = pixki. i ]

	(3.4.1)





A soma é feita para todos os elementos do conjunto, isto é, para i = 1,...,n. Se a distribuição é contínua,








	

[image:  ∫ μ(k)[X ] = ϕ(x)xkdx. X ]

	(3.4.2)





A integração é feita em todo o espaço de amostragem.

Não vamos confundir, aqui, o expoente k com o indicador de ordem (k). Incluí os parênteses expressamente para diferenciar. Portanto μ(k) não quer dizer que μ é elevado à potência k. Quer dizer μ de ordem k. O momento de ordem k. Outra notação para o k-momento é:




	





Nos interessa saber algumas propriedades do momento, baseadas na definição. Por exemplo, o momento de ordem zero de qualquer variável é unitário:








	

[image:  -- μ(0) = x0 = 1. ]

	(3.4.3)





O momento de uma variável multiplicada por uma constante a é:








	

[image:  ----- --- μ(k)[aX ] = (ax)k = akμ(k)[X ] = akxk. ]

	(3.4.4)





O momento da variável re-escalada por um fator é o momento da variável multiplicado pelo fator elevado à ordem do momento. A adição de uma constante b nos leva a:








	

[image:  k ( ) k ( ) μ(k)[X + b] = (x-+b)k = ∑ k bjμ(k-j) = ∑ k bjxk-j. j=0 j j=0 j ]

	(3.4.5)





Sendo [image: ( k ) j] = [image: --k!-- (k-j)!j!]. Isto é, deslocando-se a variável de uma valor fixo significa perfazer uma soma ponderada de todos os momentos da variável até a ordem definida. Ao contrário da precedência de operações quando programamos (FORTRAN, Python, ou qualquer outra linguagem) e tomando o cuidado no caso de uma combinação de operações, aqui deve-se primeiro levar a adição para depois a multiplicação:








	

[image:  (k) ∑k ( k ) jk-j (k-j) μ [aX + b] = j ba μ [X ]. j=0 ]

	(3.4.6)





Uma vez isso posto, definimos Esperança Matemática E[X] como o primeiro momento:








	

[image:  (1) ∑n E[X] = μ [X ] = pixi. i=1 ]

	(3.4.7)





Se a distribuição é contínua,








	

[image:  ∫ ∞ E[X] = ϕ(x )xdx. - ∞ ]

	(3.4.8)





De forma mais geral:




	





O segundo momento entra na definição da variância da amostra:








	

[image:  (2) (1) 2 var(X) = μ [X ]- (μ [X ]). ]

	(3.4.9)





Ou, em notação mais popular:








	

[image: var(X) = E[(x - E[X])2]. ]

	(3.4.10)









3.5  Média, Variância etc

A média de uma distribuição unidimensional e sem ponderação é bem conhecida:








	

[image:  1 ∑N x-= -- xi. N i=1 ]

	(3.5.1)





A variância associada também é famosa:








	

[image:  2 --1---N∑ --2 --1---2 σx = N - 1 (xi - x) = N - 1χ . i=1 ]

	(3.5.2)





O denominador no início da expressão é subtraído de 1 porque é este o número de graus de liberdade da distribuição. Graus de liberdade é, em primeira análise, o número de dimensões físicas presentes na distribuição (dimensão estatística é definida como N), que no caso, como vimos, é unitário. O somatório dessa definição é conhecido como χ2 (dizemos qui-quadrado). A média, como definida em (3.5.1), é determinada pela imposição de que o χ2 deva ser mínimo. Nesse sentido, diz-se que a média é um estimador de mínimos quadrados.

Em uma distribuição ponderada (por exemplo pelos erros de medida de cada ponto), a substituição nas fórmulas acima é quase direta ([17]):








	

[image: ¯x = ∑N ϵ x , i=1 i i ]

	(3.5.3)





com a variância:








	

[image:  N∑ -- σ2x = ϵi(xi - ¯x)2 = x2 - x2. i=1 ]

	(3.5.4)





Se for válida a condição ∑ iϵi = 1. A grandeza ϵi é chamada peso de cada medida i. O conjunto de fórmulas (3.5.1) e (3.5.2) é facilmente deduzido de (3.5.3) e (3.5.4) fazendo os pesos todos iguais à unidade. Em todos os casos, o desvio padrão, ou erro padrão (σx) é a simples raiz quadrada da variância.

Para garantir a generalidade, os pesos serão mantidos nas fórmulas, sabendo-se que em caso de distribuição uniforme basta substituí-los pela unidade.

Além dessas grandezas, ainda temos o skewness, que bem pode ser traduzido para “assimetria”:








	

[image:  1 ∑N Sx = σ3- ϵi(xi - ¯x)3, x i=1 ]

	(3.5.5)





e kurtosis, que poderíamos versar para “concavidade”:








	

[image:  1 ∑N 4 Kx = σ4- ϵi(xi - ¯x) - 3. x i=1 ]

	(3.5.6)





Skewness (3.5.5) indica o grau de assimetria, em torno da média, da distribuição, independente se ela é normal (Gaussiana) ou não. Na fórmula de kurtosis (3.5.6), o valor 3 da subtração é para fazer Kx nula, quando a distribuição for normal (Gaussiana, ver em 3.6). Dessa forma, Kx será positiva se a distribuição tiver um formato mais acentuadamente côncavo do que a distribuição normal (que é côncava, geometricamente falando). Em outras palavras, com Kx positiva, a distribuição será mais “espremida” do que a normal, mostrando o pico mais pontiagudo. Com Kx negativa, a distribuição será mais achatada.

Um pequeno esforço de cálculo mostra que a variância pode ser expressa como:








	

[image:  -- σ2x = x2 - x2, ]

	(3.5.7)





enquanto que skewness e kurtosis podem ser escritos, respectivamente:








	

[image:  -- x3 --x3 x- Sx = σ3x - 3σx, ]

	(3.5.8)












	

[image:  -- x4 --¯x4 x-- -¯x2 Kx = σ4x - 4Sx σx - 6σ2x - 3. ]

	(3.5.9)





O que, como veremos mais tarde, simplifica sobremaneira o processo de cálculo.


Importante. Em estatística, a média deve ser acompanhada dos estimadores da distribuição: variância (ou desvio padrão), skewness e kurtosis, sem os quais seu valor é destituído de qualquer significado. A mediana, que veremos a seguir, também deve ser acompanhada de estimadores de distribuição. Se sói acontecer de se omitir essas informações adicionais é porque se transmite implicitamente que a amostra segue uma distribuição normal (ver abaixo), quando skewness e kurtosis são nulas. No entanto, a variância é imprescindível.





Mediana

Seja xi uma sequência de valores, mediana é o valor de [image: ˜x] tal que a distribuição para xi <= [image: ˜x] tenha a mesma probabilidade que a distribuição para xi > [image: ˜x]. Em termos de freqüência, se os valores são colocados em ordem, crescente ou decrescente, o valor de [image: ˜x] vem a ser








	

[image:  { ˜x = xN∕2+1, Nimpar (xN∕2 + xN∕2+1), Npar ]

	(3.5.10)





Se pensarmos em termos de estatística não paramétrica, a mediana pode ser um estimador robusto de uma variável. Imaginemos que temos uma distribuição que admitimos ser, a priori, normal, mas que está mal representada. Esse é um problema comum em astronomia, por exemplo. Um excesso de medidas aberrantes (outliers) pode “puxar” a média para fora do valor mais representativo, introduzindo um “viés” (bias) na estatística. O mediana, por sua vez, não vai depender do “espalhamento” da amostra, e vai “ignorar” o efeito dos outliers, ficando perto do valor esperado. Por isso, a mediana é tida como um estimador robusto da média da distribuição.





Quartil

Quartil (em inglês quartile) é um estimador da “largura” da distribuição, devidamente ordenada, da qual se obteve a mediana. Sua importância estatística se traduz na distância do ponto mediano da primeira metade da distribuição (o primeiro quartil, ou q1∕4) até o ponto mediano da segunda metade da distribuição (o terceiro quartil, ou q3∕4). Consideramos sempre que os valores estão ordenados. É possível demonstrar que numa distribuição normal15:








	

[image: σ = 0.7415.Q ]

	(3.5.11)





chamando Q = q3∕4 - q1∕4 de Intervalo Interquartílico16, e σ, de desvio padrão.





Moda

Moda é o valor x em que a distribuição é mais provável, isto é, apresenta maior freqüência. O exame da moda é importante para verificar se há mais de um “pico” na distribuição, isto é, por exemplo, se a distribuição é “bimodal”, no caso de dois picos. Isso indica que o processo que gera o fenômeno estudado apresenta complexidade maior do que o esperado. Média, mediana e seus estimadores associados não acusam características multimodais.







3.6  Distribuições

É comum os textos de estatística e probabilidade se referirem ao termo Função de Distribuição de Probabilidade ou, para fixarmo-nos na terminologia em inglês, PDF - Probability Distribution Function, no que tange a variáveis contínuas. No caso de variáveis discretas, o termo é Função Massa de Probabilidade, ou PMF. Na prática é arbitrar que uma variável aleatória x possui uma expectativa de assumir um certo valor x, expectativa essa representada pela probabilidade p(x|x), um número que estabelece o crédito que se dá para a variável assumir um dado valor. O símbolo ’|’ na expressão da probabilidade determina a condição para uma variável, ou, como dizemos, probabilidade condicional. Quando nos deparamos com essa forma p(x|x), dizemos “probabilidade de x, dado x”, ou seja, dado o valor de x, temos a probabilidade p de x assumir esse valor.

A seguir vemos alguns conceitos ligados ao tema de distribuições.



Variável Aleatória

Como já vimos, é também chamada variável estocástica. É uma variável que assume valores numéricos (∈ ℝ) como resultado de um processo estocástico. Ela pode assumir qualquer valor, dentro de um domínio, de acordo com as circunstâncias. Toda variável que será definida a partir de agora, é, implicitamente, considerada aleatória, cujas propriedades são definidas a seguir.


	
Ruído Branco ou Aleatório:


	
examinando o esquema de aquisição de informação de Shannon ([144]) mostrado na Figura 2.1.2, podemos escrever que uma medida pode ser escrita como:




	





em que Ŷ é a medida, x o valor “limpo” da grandeza medida e ε é a componente aleatória. Sendo aleatória, a variável ε possui as seguintes propriedades:




	





isto é, possui média nula, além de








	

[image: --- { σ2, if x ≡ ε ε.x = ε 0, otherwise ]

	(3.6.1)





em que σε é a variância. A Eq. (3.6.1) está dizendo que a variável aleatória correlaciona-se apenas com ela mesma.









Distribuição Binomial

Da teoria da análise combinatória sabemos, pelos Ensaios de Bernoulli, que dado um número N de eventos em que existam duas possibilidades (p.ex. lançamento de moeda), a probabilidade de observarmos uma das possibilidades ocorrerem k vezes é








	

[image:  ( ) N ! P (k,N ) = N = --------- k k!(N - k)! ]

	(3.6.2)





em que o sinal ! diz respeito ao fatorial do número. A soma de todas as possibilidades é 2N.

Considerando o fato de as possibilidades não serem simétricas, isto é, quando a probabilidade dos eventos não for 50%, diremos que a probabilidade do evento A é pA = p enquanto que a probabilidade do evento B é pB = 1 - p. Sendo assim, a probabilidade para encontrarmos o evento A em k oportunidades será de








	

[image: P (k,N, p) =----N!---pk(1- p)N-k k!(N - k)! ]

	(3.6.3)





Para calcularmos a média de uma distribuição binomial fazemos uso de (3.5.1), ou seja








	

[image:  ∑N ∑N N ! k N -k μ = kP (k,N,p) = k k!(N---k)!p (1 - p) = N p k=0 k=0 ]

	(3.6.4)





(para prova ver em p.ex. [17])





Distribuição de Poisson

A distribuição de Poisson17 é uma aproximação da distribuição binomial quando a probabilidade p obedece à condição p ≪ 1 e k ≪ N. Essa é a situação, por exemplo, de observação de decaimento radioativo, quando o número de átomos que decaem é muito inferior ao número total de átomos da amostra. É também o caso de observações com CCD (hoje em dia presença obrigatória nas observações astronômicas) em que o número de fótons capturados é muito inferior aos fótons que chegam às cavidades do detector.

Vamos reescrever (3.6.3), substituindo p por μ∕N e colocá-la na forma:




	





o segundo termo é um produtório de k elementos, sendo que N ≫ 1. Em outras palavras, esse termo pode ser colocado como




	





o que nos leva a ~ Nk. Logo, combinando o segundo com o terceiro termo e levando em conta (3.6.4), teremos ~ (Np)k = μk. O quarto termo pode ser aproximado para (1 - μ∕N)-k ~ 1 + μk∕N, o que, em última análise, pode ser aproximado para a unidade. Finalmente, o último termo pode ser colocado como








	

[image: ( μ )N 1 - N- = e-μ, ]

	(3.6.5)





sem esquecer que, por definição,








	

[image:  1-x e = lxim→∞ (1 + x) . ]

	(3.6.6)





Portanto, a aproximação de Poisson para a distribuição binomial, se torna:








	

[image:  μx--μ PP(x,μ) ≡ x!e . ]

	(3.6.7)





Uma propriedade interessante da distribuição de Poisson é que, enquanto o valor médio é μ, sua variância18 σP2 também vale μ, de forma que é bem conhecida a expressão da relação sinal-ruído,








	

[image:  X- μ √ -- S ∕N = σX-= √μ-= μ. ]

	(3.6.8)





Sabemos, então, que em medidas em que vale o regime da distribuição de Poisson, ou, simplesmente, medidas com “ruído poissônico”, a relação sinal-ruído (S/N) é igual à raiz quadrada da média.

Essa propriedade é implacável com medidas de objetos pouco brilhantes. Sabemos, por exemplo, que quando obtemos informação de um objeto astronômico muito fraco, teremos que aumentar o tanto quanto possível seu tempo de exposição ou ampliar o diâmetro do telescópio. Outros artifícios como compor várias poses tomadas seguidamente ou de um dia para o outro podem melhorar a situação. Do contrário teremos de aceitar o fato de que nossas medidas só nos permitem tirar conclusões com muita incerteza. Tudo porque quanto mais fraco é o sinal, menor será a confiança na medida.





Distribuição de Gauss

A distribuição dita “normal” foi introduzida por de Moivre em 1738 e estendida por Laplace em 1812. Gauss fez uma demonstração rigorosa em 1809, assumindo a distribuição normal dos erros, e ganhou os méritos da descoberta aplicando-a à análise de dados astronômicos [96]. Fica a situação curiosa que a mais popular função de Gauss não foi descoberta sua. A chamada “Gaussiana” pode ser colocada na forma:








	

[image:  [ 2 ] G (x,¯x,σ ) =-√1---exp - (x---¯x2) . σ 2π 2σ ]

	(3.6.9)





Ela pode ser deduzida a partir da distribuição binomial (3.6.3), tomando N e k tendendo a valores muito grandes19.

Tendo em vista que a distribuição de Gauss é de importância fundamental em ciências como a astronomia, física, química, ciências sociais e outras tantas, vale a pena discuti-la um pouco mais amiúde (Figura 3.6.1).





[image: PIC]




Figura 3.6.1:  Curva de Gauss.






O valor de x é o valor médio para uma distribuição Gaussiana




	





assim como também é seu ponto central




	





assim como determina sua moda (ver 3.5)




	





O coeficiente da função em (3.6.9) é adotado de tal forma que ela seja normalizada, ou seja:




	





O valor de σ é adotado para a medida da meia largura da Gaussiana. Distribuições com alto “sigma” são distribuições ditas “dispersas”. Ao contrário, distribuições de baixo “sigma” são distribuições concentradas. O valor 2σ é também adotado para nominar o Full Width Half Maximum (FWHM), qual seja, a largura a meia altura da Gaussiana, muito embora o valor da Gaussiana para x = x + σ não represente a metade da altura da Gaussiana (exp-1∕2 não é 1∕2).

A área debaixo da curva de Gauss na extensão central de 2σ é de 0,683, o que significa que a probabilidade de um evento sob circunstâncias aleatórias em regime normal tem 68.3% de chance de ocorrer entre x - σ e x + σ. Já na extensão -2σ,2σ a chance será de 95,5% desse evento ocorrer nesse intervalo, desde que com grande número de ocorrências, num grande número de observações.

A função








	

[image:  2 ∫ z1 -x2 Erf(z0,z1) = √-π e dx z0 ]

	(3.6.10)





é chamada Função Erro (error function).

A distribuição de Gauss também é referida pelo símbolo [image: N](x|μ,σ2), isto é, a distribuição normal com média μ e variância σ2.







3.7  Ajuste de um Modelo aos Dados

As ciências da natureza se vêem frequentemente ante a tarefa de ajustar um modelo matemático a dados experimentais ou observacionais. A visão clássica da estatística é de que um dado fenômeno da natureza segue uma lei que acreditamos ser muito semelhante ao modelo proposto, cujos parâmetros podem ser obtidos através de dados experimentais, e que, para obtê-los, nos servimos de instrumentos e, por meio desses, é introduzida uma série de modificações nos dados que acreditamos ser de ordem aleatória. Trata-se, portanto, de chegarmos aos valores desses parâmetros dentro de um certo critério de confiança. Matematicamente, podemos colocar da seguinte forma: seja um conjunto de n = 1,…,N experiências que propiciam medidas de um dado fenômeno. Cada experimento propicia a determinação de valores de diferentes variáveis xm, m = 1,…M. Há uma incerteza na determinação do resultado de cada experimento em consequência de um ruído, estimado segundo um certo critério. Em outras palavras,








	

[image: Y = f (Θ |X, Σ), ]

	(3.7.1)





sendo Y = {y1,y2,…,yN} o conjunto das medidas obtidas nos experimentos; X = {x11,x12,…,x1M,x21,…,xNM}, os dados de entrada, M o número de variáveis independentes do modelo; Θ = {θ1,θ2,…,θK}, o conjunto dos parâmetros a serem determinados e, finalmente, Σ = {σ1,σ2,…,σN}, o conjunto dos estimadores dos erros de medida, por exemplo, os erros padrão. Para que seja possível determinar todos os parâmetros de forma inequívoca, é preciso que N ≥ K, isto é, que o número de experimentos seja no mínimo o mesmo de parâmetros a serem determinados. É preciso que todos os elementos da mesma coluna na matriz X sejam diferentes uns dos outros e, finalmente, que K ≥ M, isto é, que o número de parâmetros seja no mínimo igual ao número de variáveis. Aqui, o número de variáveis não pode ser entendido de maneira estrita. Quero dizer que, para efeito de nossa análise, um certo valor de x é diferente de xr, sendo r um número real. Um exemplo, o polinômio y = a0 + a1x + a2x2 + a3x3 possui uma só variável x, mas os parâmetros ak,k = 0…3 são quatro e independentes uns dos outros porque x e x2 e x3 são consideradas variáveis diferentes.

Como as medidas estão impregnadas de ruído, é de se esperar que a Eq. (3.7.1) para cada medida não seja exata e difira de um certo resíduo:




	





sendo rn o resíduo em cada medida. A variável wn é colocada aí como um peso específico para o resíduo. Isso porque, de acordo com cada experimento, pode-se confiar mais em umas medidas e, em outras, menos. Fazemos a soma quadrática de todos os resíduos:








	

[image:  ∑N N∑ (y - f (Θ |X ))2 χ2 = r2n = -n----n----- n=1 n=1 σn ]

	(3.7.2)





Aqui, foi introduzido o erro padrão da medida (σn) no lugar do peso específico wn. Mostra-se [133, Cap. 14] que a minimização da Eq. (3.7.2) representa a maximização da função de verossimilhança, ou de entropia de uma distribuição normal. A raiz quadrada




	[image: ∘ ---2--- --χ--- N - K]





é denominada R.M.S., do inglês Root Mean Square. Uma tradução aproximada seria Raiz da Média Quadrática, ou Raiz Quadrática Média, ou Raiz Quadrada da Média Quadrática. No denominador do interior da raiz quadrada, a diferença entre N - o número de medidas -, e K - o número de parâmetros -, é, como já vimos, chamada de número de graus de liberdade da amostra, uma vez que, considerando todas as medidas à mão, devemos descontar o número de parâmetros, pois são incógnitas, estão para serem determinadas.

De acordo com a estatística clássica, portanto, temos um conjunto de parâmetros que, segundo o modelo, possuem valores a serem determinados. Valores esses que procuramos encontrar aqui, não sem um conjunto de fatores que “borram” sua determinação na experiência e que determinamos dentro de uma certa acuracidade. O critério é o da máxima verossimilhança, e como tal, o negócio é encontrar os valores que fazem o χ2 da Eq. (3.7.2) chegar a um mínimo:




	





Para que essa expressão seja identicamente nula, para θi arbitrário, é preciso que as derivadas parciais também sejam nulas:




	
[image:  2 ∂χ-- ∂θi] = 0.






O que faz da expressão em Eq. (3.7.2) ficar:








	

[image: ∑nN=1 (yn-- fnσ(nΘ-|X-)) ∂fn(∂Θθ|iX)-= 0. ]

	(3.7.3)





Esse é o método de minimização da soma dos quadrados dos resíduos, ou método do mínimo da soma dos quadrados ou, impropriamente Método dos Mínimos Quadrados. Impróprio porque não são vários mínimos e sim um só; depois, quadrados de quê? Quem não está inteirado com o que se trata, fica ’boiando’. O nome adotado não indica sua natureza. Mais uma vez, a tradução literal do inglês Minimum Squares foi mal feita. No entanto, é assim que o método passou a ser chamado.



Função Linear

Se a função estudada é linear, então K = M + 1, e ela pode ser escrita como








	

[image:  ∑M fn(Θ|X) = θmxmn, m=0 ]

	(3.7.4)





e a derivada parcial em θi tem como resultado, para uma observação n,




	





O que faz da Eq. (3.7.3) chegar à forma




	





Como os dois lados da equação envolvem soma em n, é melhor colocarmos a notação de média




	





Ou seja, temos N equações do tipo acima. É irresistível colocarmos essas relações de maneira condensada, em forma da relação matricial:








	

[image: 𝔚 = A ⋅Θ, ]

	(3.7.5)





com




	












	

[image: [A ]ij = xixj ]

	(3.7.6)





e




	





Estabelecendo θ0 como o parâmetro independente (ponto zero), então temos que fazer x0n = 1, de forma que x0 = 1 e x02 = N-1 ∑ 1∕σn2. Vamos colocar essa última soma como σ-2. Colocando assim, a primeira fila de A vem a ser xn, exceto o primeiro elemento, que, como já vimos, é 1. Como, por construção, a matriz é simétrica, a primeira coluna também será o valor médio de xn. Isso faz com que a matriz inversa seja composta da covariância dos parâmetros θm combinados, Cov(θi,θj), com sua variância ocupando a diagonal da matriz [133, Sec. 14.3].

Um exemplo simples é o ajuste de uma reta, y = a + bx, logo a Eq. (3.7.5) fica sob a forma:




	





o que nos leva à solução:




	





Como a matriz inversa compõe-se de variâncias e covariâncias, uma visão simplificada nos daria uma idéia da confiança no ajuste. Fazendo B = A-1, o erro padrão dos parâmetros obtidos seria




	





correspondente ao parâmetro θn, ou seja:







Função Não Linear

Se a função não é linear, a simplificação propiciada por Eq. (3.7.4) não é mais possível. A solução não é acessível senão for por meio de aproximações. O truque é fazer de χ2 uma função próxima a uma parábola. Dá-se um chute inicial no valor dos parâmetros e parte-se para uma estratégia de aproximação. Caso se esteja perto do mínimo, a aproximação da parábola é boa e chega-se rapidamente ao resultado. Do contrário, pode-se chegar a complicações.

Uma combinação de dois métodos permite chegar a bom termo nesse processo. Eles são reunidos no que ficou conhecido por Método de Levenberg – Marquardt [133, Cap. 14]. O primeiro método, é conhecido em inglês como Steepest Descent, que em português, gosto de traduzir por ’Água Morro Abaixo’. Trata-se de escolher uma variação no vetor de parâmetros proporcional ao oposto do gradiente da função no ponto de partida. Sabemos do curso de Cálculo (1 ou 2?) que o gradiente de uma função aponta para o seu valor crescente, logo, escolhemos o oposto esperando que ela siga para o mínimo (pelo menos, que se afaste do máximo). No entanto, quando próximo do mínimo, esse método pode se tornar lento e ineficiente. A imagem, seguindo o conceito de ’Água Morro Abaixo’, é que, chegando ao “curso do rio” (caminho pelo mínimo local) o método encontra um regime oscilante, descendo e subindo, tomando um tempo enorme para se estabilizar no mínimo, ou mesmo nunca chegar a ele.

O segundo método, é aquele que, aproximando χ2 de uma parábola, se a função é derivável (e sua derivada, também), sua segunda derivada representaria justamente um equivalente da matriz [image: [A]]ij, vista no caso linear:




	





Assim, sua inversa nos daria a solução (aproximada) do ajuste. Na prática, trata-se do método de Newton para encontrar as raízes de uma função não linear. O problema é que, sob certas condições, ficando na analogia, o método de Newton pode se transformar num “fogo morro acima”, fugindo da solução.

Acontece, que Marquardt “sacou” que a diagonal dessa matriz pode cumprir muito bem o papel que o gradiente de χ2 exerce, quando da aproximação via “Morro Abaixo”. Ele não é o gradiente de χ2, mas envolve derivadas da função f(Θ|X). Com uma estratégia “macetosa”, o algoritmo de Levenberg-Marquardt faz aumentar o valor de um número λ que multiplica a diagonal da matriz A. Dessa forma, longe da solução, o algoritmo vai procurando um mínimo via uma espécie de “Morro Abaixo”. Na medida que consegue, o programa “premia” o procedimento, fazendo λ se aproximar da unidade. Assim, o caminho vai se aproximando do método de Newton, que é eficaz, mas só quando a solução está próxima, isto é, quando o regime chega no ’curso do rio’.

O método Levenberg-Marquardt dominou o cálculo numérico no que tange ao ajuste de funções não lineares a um conjunto de dados. São raríssimos os casos em que falha, e mesmo assim, quase sempre por erros de estratégia / programação. Todos os pacotes de cálculo numérico em todas as linguagens populares possuem em suas opções, o método de Levenberg-Marquardt.







3.8  Algumas Definições Adicionais

Os estatísticos, na sequência de algumas considerações, chamam função de verosimilhança da distribuição normal ao produtório de funções de Gauss:




	





com i variando de 1 a tantos quantos forem os parâmetros da distribuição que dá a densidade de probabilidade da variável μ segundo o espaço contínuo das ocorrências expressas em xi, conhecidas suas variâncias σi. É comum trabalhar-se com log L, o que leva a expressão acima a uma somatória, o que facilita bem as coisas. log L é, em circunstâncias específicas, a soma quadrática dos resíduos, isto é, χ2.

Olhando para a definição da Eq. (3.7.6), levando em conta os resultados da Sec. 3.5, dá um comichão em definir uma matriz do tipo:




	





conhecida como a matriz das covariâncias ou Matriz Informação de Fisher para a função de máxima verossimilhança da distribuição normal. Ela tem algumas propriedades importantes, especialmente na estatística bayesiana que veremos a seguir. Ela também tem papel primordial no método conhecido como Análise de Componentes Principais (PCA).





Exercícios


	Fazer o histograma das freqüências possíveis das ocorrências de uma moeda lançada 10 vezes (não considerar as probabilidades, nem a possibilidade de a moeda cair em pé).

	Mostrar, a partir da definição de e, que limN→∞(1 + [image: μ- N])N = eμ.

	Deduzir a distribuição de Gauss20.

	Pesquise como se chega ao coeficiente numérico da Eq. (3.5.11) relacionando o quartil com a variância.

	Como você introduziria a meia largura σ na função erro na Eq. (3.6.10)?

	Mostrar que a distribuição de Poisson é de máxima entropia nas condições em que ela é válida.

	Mostrar que a distribuição de Gauss constitui a distribuição de máxima informação para as condições em que ela é válida.







Notes

14Na verdade, ele precisava passar por essa introdução sob pena de ninguém entender o que seria ensinado na sequência.

15ver mais à frente em 3.6

16Ou IQR (do inglês Interquartile Range)

17Pronuncia-se “po-a-sson”.

18Ver em http://mathworld.wolfram.com/PoissonDistribution.html.

19Ver em http://mathworld.wolfram.com/NormalDistribution.html para demonstração.

20Dica: Expandir (3.6.3) em série de potência (na verdade, expanda ln P(n)). Veja, por exemplo, em: http://mathworld.wolfram.com/BinomialDistribution.html.







Capítulo 4

Estatística Bayesiana

Uma frase é bastante disseminada no senso comum:


As ciências exatas não dão margem a dúvidas como as ciências humanas, visto que são baseadas na matemática que é rigorosa e não deixa brecha para questões ideológicas.



Como físico de formação, acredito não existir maior engodo do que esse! Quem acha que é assim, não teve contato com os embates, às vezes violentos, entre os chamados “reducionistas” e os “emergentistas”.

Na área da estatística, então, nada pode ser mais falso! Duas correntes de pensamento se formaram desde meados do século XX: os da assim chamada estatística clássica, ou “frequentistas”, e os da conhecida como estatística “bayesiana”, ou, simplesmente “bayesianos”. Na mesma ’onda’ da polarização atual, essa turma chega a atravessar a rua para não se encontrarem uns com os outros!

Os astrônomos, a exemplo do que Einstein diria21 sobre os físicos, se comportam como “oportunistas epistemológicos”. Se a coisa funciona bem com uma, adota-se a estatística bayesiana, se vai bem com outra, adota-se a estatística clássica. Para mim, é um sinal de que as coisas ainda não evoluíram o suficiente. Chegará o dia em que os astrônomos do clube dos bayesianos também vão atravessar a rua quando se depararem com os do clube dos frequentistas.

Simplificando o quadro, a Estatística é a mais “humanística” das ciências matemáticas, talvez por ser a ferramenta que as ciências humanas mais utilizam para análise de seus dados. Mais do que isso, é a ferramenta matemática universal para todas as ciências experimentais e observacionais. Não seria diferente na astronomia. Talvez, por ser mais “humana”, as definições e teoremas que a Estatística contém são complexos e sujeitos a debates e discordâncias como nas “humanas” e, como vimos, em outras áreas de conhecimento também.



4.1  Probabilidade

Se, entre um certo número de experimentos, você observa que de 100 repetições 30 delas apresentam o mesmo evento, você diz que a probabilidade desse evento acontecer em experimentos sob as mesmas condições é de 30%, ou 0.3. Essa é uma definição fenomenológica de probabilidade que os matemáticos chamam de “enfoque de frequência” (frequency approach)22. Uma definição rigorosa, no entanto, é difícil, a ponto de somente ter sido estabelecida por Kolmogoroff em 1933 [125]:







	
A probabilidade P([image: A]) de um evento [image: A]é um número positivo associado a esse evento








	

[image: P (A) ≥ 0. ]

	(4.1.1)





A probabilidade da certeza do evento é








	

[image: P (A) = 1, ]

	(4.1.2)





sendo, pois, seu valor máximo. Se os eventos [image: A] e [image: B] são mutuamente excludentes, então








	

[image: P (A + B) = P (A )+ P(B ). ]

	(4.1.3)












A notação [image: A] + [image: B] refere-se à mesma que [image: A]∪[image: B], a união do conjunto dos elementos de [image: A] e de [image: B]. Se os eventos são mutualmente excludentes, então [image: A]∩[image: B] = ∅.

O que, conceitualmente, entende-se por probabilidade? Em geral, estudamos um fenômeno, isto é, coletamos informação a respeito dele por um certo período de tempo, ou por várias manifestações simultâneas dele, na esperança de anteciparmos uma previsão do que acontecerá no futuro, no que tange esse fenômeno. Há, contudo, uma incerteza quanto a essa previsão. Digamos que observamos que a frequência de um certo evento é de 60%. O que poderemos dizer quanto ao que vai acontecer no próximo experimento? Poderemos dizer que acreditamos que o evento vai ocorrer com uma probabilidade de 60%. Nesse caso, p[image: A] = 0.6 dá uma “medida de crença”, uma interpretação, por sinal subjetiva, pois não é possível de se observá-la experimentalmente. Se ocorrer de o evento não acontecer, alguém poderá dizer que nossos experimentos estão completamente furados. No entanto, não podemos descartar essa probabilidade, uma ocorrência não pode desbancar toda uma experiência passada.

Se, por outro lado, observarmos uma frequência de p[image: A] = 0.999, podemos dizer com segurança que a próxima ocorrência do evento acontecerá. Podemos dizer que é uma conclusão objetiva. Se, no próximo experimento essa ocorrência não acontecer, podemos nos juntar àqueles que julgam nossa experiência furada, e descartar esse resultado.

Para tornar nossas conclusões estatísticas objetivas, sejam elas quais forem, 60% ou 99.999%, devemos analisar os experimentos e as ocorrências dos eventos de tal modo que possamos dizer que a probabilidade p[image: A] = 0.6 leva à conclusão de que após um certo número de experimentos, digamos 1000, o evento acontecerá entre 550 e 650 vezes numa probabilidade, por exemplo, de 99.9%. Dizemos que o evento vai acontecer entre 550 e 650 vezes num nível de confiança de 99.9%.

Por ser a Física uma ciência experimental, suas leis não podem ser consideradas certezas lógicas, mas resultados de inferências plausíveis. Por exemplo, Newton concluiu sua lei da gravitação baseado na observação de que, na superfície da terra, os corpos caem. Não se pode dizer, no entanto, que uma vez deixado livre, um corpo cairá por conclusão de uma certeza lógica. Não há nada que prove isso. É razoável, de acordo com a experiência passada, prever que ele caia.





4.2  Probabilidade Condicional

Mencionou-se dois eventos mutuamente excludentes. Em outras palavras, dois eventos independentes. Na Eq. (4.1.3) foi dito que eventos nessas condições somam suas probabilidades. Pensemos em termos de lógica booleana. Façamos um “cara ou coroa” numa moeda. Cada vez que jogamos a moeda, espera-se que dê cara com 50% de chance de acontecer. Resta 50% para coroa. Cada jogada é tida como um evento independente. O sujeito que “joga” a moeda o faz sempre do mesmo jeito, ou de forma que nada interfira no resultado. Fica claro que a chance de cair “cara” ou “coroa” é 50% + 50% = 100%. Em notação de teoria de conjuntos seria:




	
P([image: A]∪[image: B]) = P([image: A]) + P([image: B]) = 1.






Mas, se agora, falarmos de “cara” e “cara”? O sujeito “joga” a moeda duas vezes. Qual seria a chance de a moeda cair “cara” e “cara” novamente? Em notação de teoria de conjuntos, parece não haver dificuldade em ver que:




	
P([image: A]∩[image: B]) = P([image: A][image: B]) = P([image: A]).P([image: B]).






Ou seja 50% × 50% = 25%. Se o sujeito jogar a moeda 10 vezes, a chance de todas as vezes cair “cara” é, portanto: 0.510 = 0.00098 ∽ 0.1%. Devido a essa independência usa-se uma moeda para, por exemplo, decidir a preferência de escolha de condições em competições esportivas.

Vejamos agora como fica a probabilidade de dois ou mais eventos quando não são mutuamente excludentes. O que pensar de um evento acontecer condicionado à ocorrência de um outro? Alguns chamam de probabilidade conjunta.

Vamos imaginar um jogo de dados. Sabemos que um dado tem seis lados e se ele não for viciado, a chance de o dado cair virado para qualquer número de 1 a 6 é de 1∕6. No dado, há três números pares e três ímpares. Qual será a chance de sortearmos o número, por exemplo, 2, considerando apenas os números pares?

A chance de o número 2 ser sorteado é, já sabemos, 1∕6, e a de sortear um número par é 3∕6 = 1∕2. Nem é preciso fazer conta para descobrirmos que é 1∕3:




	[image:  1 -6 1 2]





Em notação genérica:




	[image: P-(A-) P (B)]





Quer dizer, a probabilidade de um evento ([image: A]), considerado o evento [image: B], ou sob a condição de [image: B] ([image: A]|[image: B]), é a relação entre as probabilidades dos dois eventos.

Outro exemplo: digamos que a chance de chover em um lugar seja de p([image: D]). Mas qual é a chance de chover dois dias? Em princípio, considerando que são eventos independentes, a probabilidade seria p[image: D][image: D] = p([image: D])2. Mas, se examinarmos um dia após o outro, pelas condições da meteorologia, por exemplo, na chegada de uma frente fria, a chance será maior, pois a chance de chover no dia seguinte, dado que observamos que chove hoje, é maior: p([image: S]|[image: D]) ≥ p([image: S]). E assim




	
p[image: S] = p([image: D]).p([image: S]|[image: D]) > p([image: D])2.






Em sendo, portanto, os eventos [image: A] e [image: B] não mutuamente exclusivos, isso significa que a intersecção dos dois conjuntos de elementos possíveis desses eventos não é um conjunto vazio. Se no caso afirmativo tínhamos P([image: A]∩[image: B]) = P([image: A])P([image: B]), agora a probabilidade resultante da consideração desses dois eventos é








	

[image: P(A ∩ B) = P (A ).P (B |A ), ]

	(4.2.1)





a notação [image: B]|[image: A] significa: o evento [image: B] condicionado à ocorrência de [image: A], ou, no jargão especializado, “probabilidade de [image: B], dado [image: A]”.

Sabemos, da teoria dos conjuntos, que [image: A]∩[image: B] = [image: B]∩[image: A], o que faz com que no campo da probabilidade:




	
P([image: A]∩[image: B]) = P([image: B]∩[image: A]).






Do quê, da Eq. (4.2.1), deduzimos facilmente:








	

[image: P (A ).P (B |A ) = P(B ).P(A |B) . P (A |B) = P-(A).P-(B|A-) P(B) ]

	(4.2.2)





Essa dedução aparentemente simples tem uma implicação gigantesca. Permite a construção de um enfoque diferenciado na estatística e, no limite, a construção de praticamente uma ideologia. É o que veremos na próxima Seção.

Considere agora um conjunto de eventos 𝔄 = [[image: A]1,…,[image: A]n], cada um com as propriedades:







	



	
[image: A]i ∩[image: A]j = ∅


	
i≠j


	
(mutuamente exclusivos),














além de




	
[image: A]1 ∪[image: A]2 ∪[image: ⋅⋅⋅]∪[image: A]n = [image: C].






Diz-se que [image: A]i é uma partição de [image: C].

Considere agora o evento arbitrário [image: B]⊂[image: C]. Assim




	
P([image: B]) = [image: B]∩[image: C] = [image: B]∩ ([image: A]1 ∪[image: ⋅⋅⋅]∪ An) = [image: B]∩[image: A]1 ∪[image: ⋅⋅⋅]∪[image: B]∩[image: A]n.






Mas os eventos [image: B]∩[image: A]i e [image: B]∩[image: A]j são mutuamente exclusivos, já que [image: B]∩[image: A]i ⊂[image: A]i, o mesmo para [image: A]j, e se [image: A]i e [image: A]j são mutuamente exclusivos, seus subconjuntos tal o serão. Logo




	
P([image: B]) = P([image: B]∩[image: A]1) + [image: ⋅⋅⋅] + P([image: B]∩[image: A]n).






Mas, sabemos que




	
P([image: B]∩[image: A]i) = P([image: B]|[image: A]i)P([image: A]i).






Mas P([image: B]∩[image: A]i) = P([image: A]i|[image: B])P([image: B]), ou seja, como acima na Eq. (4.2.2),




	
P([image: A]i|[image: B]) = P([image: B]|[image: A]i)[image: P(Ai)- P (B )],






ou seja








	

[image: P(A |B) = -P-(B|Ai-)P-(Ai-)-. i ∑n P(B|Aj)P(Aj) j=1 ]

	(4.2.3)









4.3  A Conjectura de Bayes

Thomas Bayes (1701-1761) era um cônego presbiteriano inglês. Nasceu em Londres e viveu e morreu na província de Kent, Inglaterra. Como muitos pensadores e filósofos daquela época, escreveu sobre vários temas e se interessava também pela teoria das probabilidades. No entanto, foi numa comunicação póstuma, providenciada pelo seu amigo Richard Price, à Royal Society23, intitulada “An essay towards solving a problem in the doctrine of chances”, em 1763, que foi lançada uma conjectura que colocou seu nome na história [14]. Na verdade, na época, essa comunicação passou desapercebida. Laplace, 15 anos depois, apresentou um teorema nas mesmas bases, de forma independente, e, aparentemente, sem saber da comunicação de Bayes, passou a usá-la em seus cálculos. Tradicionalmente, passou a se chamar Teorema de Bayes. Hoje considera-se que Bayes propôs a conjectura que foi demonstrada e generalizada por Laplace24.

Desde que foi enunciado, o Teorema de Bayes tem sido alvo de apaixonados debates. Várias vezes na história recente, o dito Teorema foi declarado morto e enterrado com cerimônias, mesmo até por Laplace, quando anunciou seu Teorema do Limite Central. Mas a ele retornou quando seu aluno e amigo, o astrônomo francês Alexis Bouvard, usou seu teorema para calcular a massa de Júpiter e de Saturno [109]. Laplace lançou duas apostas, que era assim que, na época, se estimava a confiança no resultado: pagava na proporção de 11.000 para 1 que os resultados de Bouvard acertavam a massa de Saturno dentro do intervalo de 1%. Para Júpiter, a proporção foi de 1 milhão para 1. As observações de hoje mostram que Laplace venceria ambas as apostas.

No decorrer da história, o Teorema de Bayes encontrou aplicações na área militar com o nome de Regra de Bayes. Oficiais franceses e russos usaram-no em balística desde que Joseph Bertrand postulou que a Regra de Bayes era a única possível para lidar com a quantidade de incertezas na localização e detonação do inimigo. Henri Poincaré usou-a quando depôs a favor de Alfred Dreyfus no famoso caso de suposta espionagem dos alemães no início do século XX na França. Poincaré mostrou, através de argumentação baseada na Regra de Bayes, que a acusação não fazia sentido. Mesmo aceitando o argumento, a Corte francesa não inocentou Dreyfus. Apenas reduziu a pena. Foi a revolta generalizada da população francesa, após a publicação de Émile Zola no jornal L’Aurore de sua famosa carta J’Accuse (que ele escreveu do exílio em Londres pois estava sendo perseguido pelo regime francês da III República), que fez o presidente francês oferecer indulto duas semanas depois. Ingleses se serviram da Regra de Bayes para localizar submarinos alemães na IIa Guerra Mundial, e Alan Turing conseguiu decifrar o Enigma, sistema de codificação criptografado alemão - com sucesso também na decodificação do sistema Lorenz que substituiu o Enigma - através de análise Bayesiana. Americanos usaram a Regra de Bayes para determinar a localização provável de submarinos estratégicos soviéticos e, mesmo o matemático russo Andrey Kolmogorov, que por ela não supria simpatia, sugeriu aos generais russos que usassem as técnicas de Bertrand baseadas em Bayes para enfrentar o intenso bombardeio alemão a Moscou. A Rand Corporation, empresa consultora do Pentágono, fez conjecturas sobre probabilidade de guerras nucleares com base na estatística Bayesiana.

Considerando, portanto, que Winston Churchill determinou a destruição de toda a informação a respeito da decodificação do Enigma depois de terminada a guerra (ele não queria que os soviéticos soubessem dessa proeza), posso (com base em Bayes) conjecturar que boa parte do ostracismo que a estatística de Bayes experimentou na história recente se deve a interesses militares. Sim, parece que a estatística Bayesiana foi segredo de guerra. E assim como no século XV se fazia crer na Europa que o mundo era plano e não passava do Golfo da Guinea, a oeste da África, modernamente, também, quiseram fazer crer que a estatística Bayesiana não passava de “ignorância cunhada na ciência”, como disse John Stuart Mill. Tudo era pura cortina de fumaça. Durante o macarthismo, período de perseguição a tudo que poderia ameaçar a América, como comunistas e pederastas... um matemático teria comentado jocosamente que um dado colega seria anti-americano porque ele era Bayesiano. Não se sabe se essa declaração provocou algum constrangimento a esse “acusado”.

Foi Arthur Bayle, em 1950, matemático americano e ingressante na área de seguros, quem “ressuscitou” para o mundo a técnica de análise baseada em Bayes. Ele havia notado que desde a década de 1920 os calculistas de risco das companhias de seguro americanas preferiam a estatística Bayesiana. Eles haviam sentido na carne que a estatística clássica, a frequentista, os havia levado a erros que custaram caro às companhias (e a seus empregos). No banquete de confraternização do congresso da Casualty Acturial Society em Chicago, ele leu seu artigo de “redenção” da Estatística de Bayes [12]. Antes dele, antigos assistentes de Turing também haviam publicado vários trabalhos a respeito, sem, no entanto, ganhar a visibilidade que Bayle ofereceu.

Desde então, mais e mais a estatística de Bayes ganha espaço, a despeito do desinteresse e mesmo ignorância de muitos profissionais das áreas pertinentes. No entanto, pouco a pouco esse ramo do conhecimento ganha espaço nas mais diversas ciências. Não é diferente na astrofísica.



Apresentando o Teorema de Bayes

Antes de mergulharmos na teoria, permitam-me apresentar o problema. Afinal, do que se trata? Para que serve? Imaginemos um exemplo astronômico. Existem duas regiões nas proximidades do sol onde encontramos cometas: no Anel de Kuiper e no cinturão de Asteróides. O último situa-se entre as órbitas de Marte e Júpiter e o outro para lá da órbita de Urano / Plutão. No anel de Kuiper a maioria dos objetos é cometa, enquanto no outro encontramos a maior parte de asteróides. Mas há asteróides no anel de Kuiper e cometas no cinturão. Temos, por fim, a nuvem de Oort, que se distribui em torno do sol, e que vai desde o início do anel de Kuiper até os confins do sistema solar, lá onde se confunde o campo gravitacional do sol com o da galáxia.

Imaginemos agora que, por conta de perturbações, um cometa novo se aproxime da terra. A questão é: qual a chance desse cometa vir do cinturão de Asteróides? É para estimar essa probabilidade que necessitamos do teorema de Bayes. Note-se que não se trata de saber a probabilidade de encontrarmos um cometa no Cinturão, ou no Anel. Nem da chance de observarmos um asteróide no lugar de um cometa. Se bem que, para avaliarmos a quantidade em questão, de acordo com o Teorema de Bayes, será preciso conhecer essas outras.

Comecemos por examinar a probabilidade de observarmos um objeto (qualquer que seja) de uma das três regiões em consideração. Vamos chamar o Cinturão de Asteróides de [image: A], o Anel de Kuiper de [image: K] e a Nuvem de Oort de [image: O], e, finalmente, o cometa de [image: C]. A priori não há qualquer favorecimento para uma ou mais probabilidades. Logo, a chance de observarmos um objeto de cada região é:




	
p([image: A]) = p([image: K]) = p([image: O]) = [image: 1 - 3].






Muito embora sabemos que um objeto pode vir de outra região do espaço (lixo espacial, por exemplo), vamos admitir que somente as regiões citadas são origem de cometa, o que tem grande chance de ser verdade. Um dos preceitos das equações aqui consideradas é que os eventos devem ser “coletivamente exaustivos”, isto é, que, ao nos depararmos com um cometa, este venha de uma das regiões consideradas, em outras palavras, que cada uma dessas regiões seja partição do conjunto das fontes de cometas.

Em seguida, tomemos a frequência de cometas: a) no Cinturão, p([image: C]|[image: A]); b) no Anel, p([image: C]|[image: K]); e na Nuvem, p([image: C]|[image: O]). Usando a Eq. (4.2.3), podemos obter a chance do cometa observado vir do Cinturão:








	

[image:  ------------p(C|A-)p(A-)------------ p(A |C) = p(C|A )p(A )+ p(C|K )p(K )+ p(C |O )p(O ). ]

	(4.3.1)





Com relações semelhantes para o Anel e Nuvem. Sabendo que a priori as regiões são igualmente prováveis de serem observadas, elas podem ser eliminadas da Eq. (4.3.1) e o resultado é a relação entre a frequência de cometa em uma região (Cinturão) com respeito à soma da frequência em todas. A bem da verdade, o número de cometas no Cinturão é irrisório. Até agora observou-se apenas 3 cometas candidatos a pertencer a essa região do sistema solar [71]. Já as outras regiões são bem mais povoadas por esse tipo de objeto. Somente para efeito de ilustração, vamos dizer que p([image: C]|[image: A]) = 0.02, p([image: C]|[image: K]) = 0.5 e p([image: C]|[image: O]) = 0.9. Logo




	
p([image: A]|[image: C]) = [image:  0.02 ------------- 0.02+ 0.5 + 0.9] = [image: 0.02 ---- 1.42] ≈ 1.4%,






ou seja, dados os presentes números, a chance de, ao descobrirmos um cometa, ele vir do cinturão principal de asteróides é cerca de 30% inferior à chance de encontrarmos um cometa nesse cinturão. É importante entendermos a diferença.

Na prática já estamos debatendo na “seara de Bayes”, se bem que há bem mais coisas a serem faladas a respeito. As definições estão nas Eq. (4.2.2) e (4.2.3). A primeira foi estabelecida por Thomas Bayes e a segunda por Pierre-Simon Laplace. Para passarmos à estatística Bayesiana propriamente dita, vamos às chamadas definições diacrônicas [47].

Digamos que você tenha um certo conjunto de dados acerca de uma certa grandeza. Essa grandeza pode apresentar dois valores, digamos o ’0’ e o ’1’ (cara ou coroa, no caso de uma moeda, ou cometa ou não, como no exemplo). Chamemos a massa de dados de D. Vamos dizer que fazemos uma hipótese acerca da frequência de um dos valores. Chamemos essa hipótese de H. O teorema de Bayes estabelece que








	

[image:  p(H )p(D|H ) p(H |D) = -----------. p(D) ]

	(4.3.2)





A probabilidade p(H) é chamada de a priori, ou distribuição a priori, e p(H|D), a ocorrência de H, dada a ocorrência de D, é chamada a posteriori. A ocorrência dos dados condicionada à hipótese, p(D|H), é chamada FV: função de verossimilhança (likelihood), e a dos dados p(D), é chamada normalização. Muitas vezes p(H) é assumida com base em um conhecimento prévio (a priori), e portanto, é subjetiva, isto é, diferentes pessoas, a despeito da profundidade de conhecimento que possuem, podem discordar desse valor25. Nosso objetivo é procurar o máximo da função de verossimilhança (MFV).

Se partimos de uma hipótese [image: H], atribuímos uma probabilidade p([image: H]) e obtemos da observação a probabilidade dos dados [image: D], dada [image: H], p([image: D]|[image: H]). Assim, pela Eq. (4.3.2) obtemos p([image: H]|[image: D]), isto é, o quanto a hipótese se ajusta ao observado. Uma hipótese mais ’aprimorada’ pode ser, então, inferida e voltaremos à rotina baseada na Eq. (4.3.2). Se p([image: H]|[image: D]) melhorar, continua-se com o procedimento. Se piorar, volta-se à solução anterior e inicia-se um novo procedimento até um atingir um certo objetivo. Essa é a essência do processo da estatística Bayesiana.

Há dois tipos de distribuição a priori: a informativa e a não-informativa. A distribuição a priori informativa é aquela frequentemente associada com a subjetividade: “eu sei que quando atiro uma pedra para cima ela vai cair”; “eu sei que quando pedir aumento para meu chefe ele vai negar”. Por alguma razão, o analista sabe alguma coisa a respeito do fenômeno a ser estudado e lança mão dessa informação. Essa é uma inferência subjetiva, dirá o estatístico frequentista. Então quem não tem qualquer conhecimento a respeito de um dado fenômeno não poderá nunca estudá-lo? A resposta Bayesiana é parecida com a que daríamos baseados apenas em nosso senso comum: “pode estudar, mas vai ’ralar’ mais”. Veremos que a diferença entre o conhecimento prévio de um dado experimento e a ignorância sobre ele vai significar mais trabalho, mas nada saber a respeito não será impedimento.

A distribuição a priori não-informativa é aquela que, como diz o nome, não utiliza informação prévia. Por exemplo, no caso do problema acima, a respeito da origem de um cometa observado, admitimos uma certa distribuição de probabilidades de se encontrar cometa nas três regiões do sistema solar, baseados na informação de que a presença de cometas no Cinturão de Asteróides é irrisória. Trata-se de um a priori informativo. Se quiséssemos partir de um a priori não-informativo, diríamos que a probabilidade de encontrarmos cometas nas três regiões é a mesma que encontrar asteróides. É razoável pensarmos assim quando não temos informação a respeito. Podemos pensar que a probabilidade de encontrarmos um cometa no Cinturão de Asteróides é de 50%. Os outros 50% seriam de encontrarmos um asteróide. Disso, obtemos o resultado: p([image: A],[image: C]) = 35.2%. Esse resultado preliminar terá de ser revisto. Logo, precisaremos de mais observações. No primeiro caso, partindo de um a priori informativo, também serão necessárias mais observações, no entanto, em menor quantidade do que no segundo. É fato observado que em ambos os casos se chegará à mesma conclusão. O que muda é a quantidade de “correções”.

Há muitas formas de estabelecer uma distribuição a priori. Uma delas vem de um critério já nosso conhecido da Máxima Entropia (Sec. 2.5). É possível demonstrar [146] que, conhecidas a média e a variância, a distribuição normal [image: N](μ,σ2) é condição de máxima entropia.







4.4  Ajuste e Regressão Linear

Do ponto de vista de cálculo, o ajuste de dados a uma reta, quando temos conhecidos os erros na função resultado (eixo ’y’), não difere dos procedimentos da estatística frequentista [78]26. Trata-se, simplesmente, de perfazer os cálculos já vistos na Seção 3.7. Quando os erros se estendem a outros eixos, a coisa fica bem diferente. Quando se trata de considerar erros também nas abcissas, os resíduos serão as distâncias entre os pontos e a reta e não mais yo - yc, como anteriormente. Quando, nesse caso, ajustamos a reta x = 1∕a y + c, com c = -b∕a, por invariância ou simetria dos parâmetros, era de se esperar que os resultados não se alterassem. Contudo, frequentemente esse procedimento leva a diferentes resultados sem que possamos decidir qual é, por direito, o mais aceitável.

Temos, por exemplo, um conjunto de dados bi-dimensionais




	
D = {(x1,y1),(x2,y2),…,(xN,yN)},






pelo qual desejamos traçar uma reta y = ax + b obedecendo ao critério da MFV e, uma vez determinados os parâmetros (a,b), obteremos, a partir do conjunto [image: Xˆ] = {xN+1,xN+2,…,xN+M}, por previsão, o conjunto Ŷ = {yN+1,yN+2,…,yN+M}, através da relação yj = axj + b. Lidamos aqui com dois processos: o primeiro chamamos ajuste (fitting) linear e o segundo, regressão (regression) linear.

Uma vez que, na estatística Bayesiana, devemos lidar com o a priori, devemos debater a respeito de p(a,b), isto é, a distribuição de probabilidade (pdf, nos textos em inglês) dos parâmetros da reta que adotamos a priori, visto que devemos examinar a relação obtida da Eq. (4.3.2):








	

[image:  p(D |a,b)p(a,b) p(a,b|D ) =-------------. p(D ) ]

	(4.4.1)





Vai aqui a primeira diferença com a estatística clássica. Os parâmetros (a,b) possuem uma distribuição de probabilidades, pois na bayesiana, eles são tidos como variáveis aleatórias, enquanto que na clássica, são constantes a serem determinadas. O denominador em Eq. (4.4.1), porquanto o conjunto de dados não varia, é constante e não muda o processo.

Primeiro vamos nos fixar em determinar p(D|a,b). Digamos que no conjunto de dados D, cada medida em (x,y) nos dê, além de (xn,yn), os erros (σxn,σyn)27. Logo, a probabilidade de medirmos o ponto (x,y) em (xn,yn) é








	

[image:  ( ) p(x,y|x ,y,σ ,σ ) = ---1----exp - (x---xn)2- (y--yn)2 . n n xn yn 2πσxnσyn 2σ2xn 2σ2yn ]

	(4.4.2)





Digamos, agora, que a reta já determinada passe pela nuvem de pontos experimentais, e, como é de se esperar, não coincide exatamente com esses pontos. Logo, há um espalhamento intrínseco dos pontos com respeito a essa reta. Chamemos esse espalhamento σp. Assim, a probabilidade de um ponto (x,y) com respeito à reta é








	

[image:  1 ( d2 ) p(x,y|a,b,σp) = √-----exp ----2 , 2π σp 2σ p ]

	(4.4.3)





sendo d, a distância do ponto (x,y) à reta que pode ser colocada como








	

[image:  y - ax - b d = ------2--. 1+ a ]

	(4.4.4)





Temos, pois, duas distribuições independentes, e a distribuição de probabilidade resultante é o produto das suas respectivas probabilidades. Em estatística chama-se ’junção’ (joint) das distribuições. A integração em todo o espaço de (x,y) nos permite estimar a probabilidade condicional do ponto (xn,yn) com respeito ao modelo:




	





Substituindo (4.4.2) e (4.4.3) na integral, perfazendo a integração e (pacientemente) arranjando os termos e perfazendo o produto de todas as probabilidades, chegamos a




	





considerando que




	





e dn dado pela fórmula em (4.4.4) para os pontos (xn,yn). O primeiro representa o erro perpendicular à reta e o segundo, como já vimos, a distância do ponto à reta. Notemos que aqui introduziu-se uma nova variável que é o espalhamento σp. Em princípio, ela depende da escolha de a,b, logo, do ponto de vista da representação, é desnecessária.
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Figura 4.4.1:  Histogramas dos a priori θ e bT para distribuição uniforme dos parâmetros a,b para o ajuste linear.






Vamos, agora, examinar p(a,b) propriamente dito. Se usarmos a estratégia da distribuição não-informativa, devemos tomar cuidado com a escolha dessa distribuição.

Digamos que espera-se que o valor da inclinação esteja dentro do domínio {a0,a1}, bem como o do ’ponto zero’ esteja dentro de {b0,b1}. A primeira idéia que vem à cabeça é adotarmos




	





e assim




	





No entanto, se pensarmos melhor, veremos que geometricamente a distribuição baseada no espalhamento de a e b não é uniforme. Ora, sabemos que a = tanθ, sendo θ o ângulo que a reta faz com o eixo horizontal, e que b = bT secθ, com bT sendo a distância da reta à origem. Se adotarmos a distribuição uniforme para a e b, o histograma da distribuição de θ e bT terá a cara dos gráficos mostrados na Fig. 4.4.1. Seremos mais honestos se considerarmos que a distribuição de probabilidade, nesse caso, é uniforme para θ e bT:




	





Sendo assim, obtemos a pdf a posteriori de Eq. (4.4.1)




	





e adotamos seu logaritmo como FV, uma vez que é mais fácil trabalhar com somatório do que com produtório:




	





com A sendo uma constante que não muda o cálculo. Em outras palavras, se queremos maximizar lnL, devemos minimizar




	





Aqui notamos um “viés” na FV decorrente do a priori adotado no sentido de ’uniformizar’ a procura das constantes a,b. Note-se que o b não entra na expressão, somente no cômputo da distância dn do ponto à reta.

Se adotarmos σp = 0 e as incertezas σxn,σyn desconhecidas, eliminamos essas variáveis integrando a expressão acima em σΠn para, a menos do a priori, chegarmos à FV dependente apenas da soma quadrática das distâncias dos pontos à reta. Se as abcissas são livres de erros, fica indiferente considerar sua componente no cálculo e o MFV reduz-se ao mínimo de χ2, como na Eq. (3.7.2).





4.5   Método Monte Carlo em Cadeias de Markov

Um método que se popularizou no meio da estatística bayesiana vem a ser o MCMC. Tanto o método de Monte Carlo quanto as cadeias de Markov existiam independentemente, apesar de, sob o olhar da estatística bayesiana, parecerem ter sido feitos um para o outro.

Uma definição matemática para a cadeia de Markov, já mencionada em Sec. 2.4, é: dada uma sequência de variáveis aleatórias X1,…,XN, podemos escrever:




	





isto é, a probabilidade de um evento futuro depende tão apenas do que se passou no passo anterior. Todo o passado antes disso é esquecido.

Antes de nos debruçarmos sobre o MCMC, vamos dar uma pequena pincelada no primeiro ’MC’.



Método de Monte Carlo

Trata-se de um método de integração numérica. Foi aventado pela primeira vez por [111] para resolver um problema de Mecânica Estatística e depois aproveitado por [63] para desenvolver o MCMC propriamente dito, que também é conhecido como método Metropolis-Hastings (ver abaixo).

O princípio é simples. A integração numérica também é chamada de ’quadratura’. Quadratura é o termo usado pelos antigos para métodos que, mais tarde, vieram a se identificar com a integração numérica. A ’quadratura do círculo’, procura encontrar o quadrado de lado ’l’ cuja área equivale à do círculo de raio ’r’, ou seja l2 = πr2. Muita gente, desde a antiguidade, tentou encontrar o valor exato dessa constante de proporcionalidade28. Foi no século XVIII que Euler adotou a representação sugerida por Willian Jones do atual π, talvez em homenagem a Pitágoras, de cujo teorema pode-se obter um valor razoavelmente aproximado. Se for, Pitágoras deve estar se revirando no túmulo. Nunca ocorreria a ele aceitar a existência de um número “não perfeito”, isto é, irracional.

Partamos do método mais simples de integração numérica, isto é, temos que somar áreas de trapézios construídos em um certo número de fatiamentos da função a ser integrada. Digamos que queiramos fazer a integração:




	





Cada trapézio tem sua área determinada como




	





sendo fi = f(xi) e δi = (b - a)∕N, a extensão de uma fatia em abcissas. Em suma, podemos escrever:




	





com fi sendo a média aritmética do valor fi com sua subsequente fi+1. A integração total seria:




	





no limite




	





f tomada no intervalo [a,b]. Essa aproximação funciona bem para funções lineares e quasilineares. Funciona mal para funções não lineares29.

Como o problema de Metropolis et al. [111] era de simulação, veio a idéia de ’simular’ a integração de tal forma que f fosse obtida do conjunto de valores aleatórios para x dentro do intervalo [a,b]. Em poucas palavras, o Método de Monte Carlo é transformar a integração numérica num processo estocástico.

O nome ’Monte Carlo’ é uma referência à capital do principado de Mônaco na qual se instalam cassinos que contém roletas e caça-níqueis e outros jogos de azar em que se supõe que a aleatoriedade dos eventos domine. O nome é cunhado no próprio paper de apresentação do método. Não se sabe se um dos autores tenha sido ’chegado’ a uma jogatina. A verdade é que na época, década de 1950, o local, na chamada Côte d’Azur, representava glamour e luxo no imaginário das pessoas.

Dado, então, um conjunto de N valores aleatórios de x, calculamos o valor de f(x), obtemos a média e multiplicamos pelo valor do intervalo de integração. Pronto: temos uma ’estimativa’ da integral. Ao repetirmos o procedimento com outro conjunto de valores aleatórios de x, é de se esperar que obtenhamos um valor diferente para a integral. Ao perfazermos um bom número de vezes esse procedimento, é de se esperar que os valores obtidos estejam dentro do intervalo do erro padrão calculado dessas amostras. Então, como nos processos estocásticos, dizemos que o valor da integral é [image: ˆF] ± σF. Como estamos lidando com dados experimentais, essa idéia vem a calhar. Segundo a lei dos grandes números, quando N aumenta, a tendência é diminuir σF. A grande vantagem desse método se dá quando a integração é múltipla, pois os métodos de quadratura sofrem da assim chamada “maldição da dimensionalidade”, isto é, quando se aumenta o número de dimensões do problema, o número de pontos a serem calculados deve crescer exponencialmente para manter a precisão do cálculo. Pode-se provar [146] que, no caso do Método de Monte Carlo, a convergência do método depende de [image: √N--], e é independente do número de dimensões do problema.

Sendo um pouco mais rigoroso, a expressão mais completa para a integração de Monte Carlo é:




	





com p(xi) representando a distribuição dos valores de xi, caso essa distribuição não seja uniforme (p(xi) = p(xj),∀xi,xj), como é o caso da distribuição de Gauss. Fazendo assim, “diminuímos” a importância das regiões em que os valores de xi se concentram mais. Do contrário, se introduziria um viés na integração.

O problema é obter os números aleatórios, isto é, a sequência de números dentro do intervalo dado com distribuição aleatória, visto que estamos falando de simulação, logo, esses números não são obtidos da experimentação. A Mãe Natureza é uma excelente geradora de números aleatórios, mas ela não nos passou o algoritmo. Tudo que sabemos é gerar números em sequência determinística. O quê fazer?





Ruído Branco

Em análise de séries temporais, o conceito de variável aleatória se manifesta no chamado ruído branco. Em outras palavras, trata-se de um sinal que possui todas as frequências com amplitudes equivalentes. Evidentemente trata-se de uma abstração, pois não existe ruído completamente branco.

Donald Knuth, o matemático que inventou o TeX30, dedicou pelo menos 50% do primeiro volume de sua obra The Art of Computer Programming chamado Semi-numerical Algorithms, ao problema de geração de números aleatórios e ruído branco. Do que se depreende da leitura dessa obra é que "fabricar" números aleatórios não é simples, uma vez que inventamos a matemática e desenvolvemos a idéia de algoritmo para procurar ordem e não o inverso. Contudo, as ferramentas modernas de cálculo por computador, como compiladores e interpretadores, são dotadas de eficientes algoritmos de produção de sequência de números aleatórios no seguinte sentido: se fizermos produzir números inteiros entre 1 e 10 escolhidos aleatoriamente num certo número de repetições, vamos verificar que os valores inteiros de 1 a 10 vão aparecer muito aproximadamente em igual número de vezes, sem ordem aparente. Se, por exemplo, usarmos um desses algoritmos para produzir números espalhados dentro de um retângulo, depois de um certo tempo vamos verificar que os pontos se distribuem muito aproximadamente de forma uniforme nesse retângulo, salvo que um número calculado não possui relação aparente com o anterior. O problema é que: 1) o algoritmo necessita de um primeiro ’chute’ inicial, isto é, um número chamado ’semente’ (seed); 2) se o aplicamos diversas vezes, usando o mesmo seed, obteremos sempre a mesma sequência. Isso não bate com a idéia de aleatoriedade. Por isso, chamamo-los todos de ’pseudo-aleatórios’. Parece, mas não é. Não servem, por exemplo, para sorteios da loteria. Os algoritmos empregados nas modernas bibliotecas numéricas encontradas por aí, usam o expediente de selecionar como ’semente’ um número de uma certa casa decimal no instante em que o programa é lançado. É muito difícil, do ponto de vista prático, que se selecione um instante para rodar o programa cuja fração coincida com a fração dos instantes anteriores. Dessa forma temos o que chamamos uma sequência ’quase-aleatória’.





Método do Arrefecimento

No artigo de apresentação do método MCMC, também conhecido como método Metropolis-Hastings [63], os autores aproveitaram a idéia de Metropolis et al. [111] e sugeriram um método inspirado na técnica de arrefecimento do aço no sentido de melhorar sua qualidade, que é feito de forma controlada. Numa siderúrgica, quanto mais lento é o resfriamento, melhor a qualidade do aço. Hastings transferiu essa idéia para os métodos numéricos partindo da equação de Maxwell - Boltzman para a distribuição de energia em um sistema termodinâmico:




	





sendo f(E) a densidade de probabilidade, E a energia, T a temperatura e k a constante de Boltzman. Trata-se de um processo seletivo. Adotando-se uma temperatura alta, temos uma distribuição mais ’aberta’ de energia. Na medida que a temperatura diminui, essa distribuição vai se ’afunilando’, tornando-se mais ’estreita’. Em outras palavras, quando o processo se inicia, o aço está saindo do forno, isto é, quente. A distribuição ’aceita’ um leque grande de estados em diferentes energias. Quando vai esfriando, a distribuição faz a seleção se tornar mais ’estrita’, aceitando apenas energias concentradas em valores mais baixos. Se o esfriamento é muito rápido, o processo tende a ’congelar’ estados indesejáveis, fazendo do aço uma peça não uniforme, cheia de fissuras. Com esfriamento lento garante-se que o aço se uniformize e não apresente fissuras. Por analogia, o cálculo numérico se assemelha: se adotarmos uma queda de ’temperatura’ muito rápida, é possível que a solução encontrada não seja a mais apropriada, configurando-se no que chamamos um mínimo local. Se fizermos a ’temperatura’ cair gradativamente, haverá ’tempo’ para o algoritmo encontrar a solução mais conveniente, por exemplo, o mínimo global, ao invés de um mínimo local.

Imaginemos agora, que temos que encontrar o melhor conjunto de valores para variáveis em que queremos otimizar, isto é, maximizar ou minimizar o valor de uma função dessas variáveis. Lançamos um conjunto de M ’candidatos’ cujos valores são escolhidos aleatoriamente. Partindo do domínio dessa função, uma ’temperatura’ alta, significa que o sistema está degenerado e quaisquer valores dessas variáveis são adotados. A solução está nessa região, porém não é possível obtê-la com precisão. Essa é a condição chamada random walk, ’passeio aleatório’, como a distribuição de formigas a procurar alimento. No próximo passo, a ’temperatura’ é diminuída de um pequeno valor e, em consequência, o intervalo de valores das variáveis diminui onde está a solução. Assim sucessivamente ’cercamos’ a solução até se chegarmos a uma distância aceitável dela.

Matematicamente, seja Xi um vetor composto de valores das variáveis da função em estudo em um certo estágio de cálculo ’i’ segundo o método de arrefecimento:




	





Em outras palavras, se o novo conjunto de valores adotados fizer acontecer de a função ’melhorar’, isto é, aproximar-se do valor ótimo, então mantém-se o novo conjunto, descartando o anterior. Se não, descarta-se o novo, mantendo o anterior. Na medida que avança-se nos passos de cálculo, vai-se fechando o intervalo de valores aceitáveis para a solução.

Essa estratégia tem por fim lidar com o problema de ’fogo morro acima’ de que tínhamos falado anteriormente, na Seção 3.7, quando o método adotado leva os valores para longe da solução desejada. Primeiro, escolhemos um conjunto de soluções espalhadas o máximo possível por todo o domínio da função em estudo. Na medida que encontra-se um ’vale’, um ’ralo’ por onde começa a ’escorrer’, vamos concentrando a procura nessa região, pois supõe-se que a solução encontra-se próxima. Esse procedimento vai até se chegar a um ponto aceitável para a solução.





Cadeias de Markov

Retomando da Seção 2.4, formalmente a cadeia de Markov é definida como o seguinte: dada a sequência de números aleatórios X1,X2,…,XN, a probabilidade




	





isto é, a probabilidade do próximo número ser x, depende apenas do valor anterior. Não importa o que aconteceu antes, nem o que vai acontecer depois.

Com esse propriedade em mente, construimos uma estratégia para fazermos as inferências a respeito das variáveis que queremos estudar. Assim, o procedimento que se popularizou no que chamamos de ’estatística Bayesiana’ pode ser colocado no seguinte algoritmo:


Input: conjunto de dados observados X, 

       valores iniciais das variáveis Y_0 segundo um 

critério a priori, 

       tolerâncias de cálculo e número de iterações 

Output: valores estimados das variáveis Y em estudo 

begin 

   obtém-se p(Y_0,|X)=p(Y_0).p(X|Y_0) 

   loop em i até um valor pré-estabelecido: 

         infere-se o conjunto Y_i 

         obtém-se p(Y_i|X)=p(Y_i).p(X|Y_i) 

         compara-se p(Y_i|X) com p(Y_0|X) por algum 

critério, 

         se p(Y_i,X) é melhor adota-se Y_i 

         do contrário mantém Y_0 

   end loop


A geração do novo conjunto Y i, valores candidatos dos parâmetros em estudo, se faz via geração de números aleatórios. Assim se garante que a sequência obtida segue uma cadeia de Markov. A obtenção de p(Y i) geralmente se faz por uma integração e a cara de sua funcional, via de regra, não é simples, portanto essa integração é feita pelo método de Monte Carlo.

Os critérios de qualidade da amostra podem ser, por exemplo, inicialmente, uma comparação com a distribuição uniforme de valores aleatórios, e, na medida que se avança nas iterações, usa-se o critério de Metropolis-Hasting visto acima.





Conclusão

Os métodos modernos da estatística Bayesiana possuem a vantagem de


	Permitir análise e inferir projeções sobre uma gama de problemas para os quais a estatística clássica se mostra quase proibitiva, uma vez que as possibilidades de estudo de problemas funcionais neles se ampliam sobremaneira. Assim, problemas com descontinuidades e singularidades podem ser estudados, muitos deles seriam inviáveis na estatística clássica;

	Uma vez que as variáveis em estudo são consideradas aleatórias e não constantes, os resultados são acompanhados de distribuições de probabilidades, permitindo um conhecimento maior da natureza dessas variáveis.



Há, no entanto, uma limitação importante nos métodos da estatística Bayesiana: o volume de cálculo cresce sobremaneira. Alguns procedimentos que parecem simples exigem números de retomada de cálculo imensos. Muitas vezes, dependendo do problema, emprega-se semanas de cálculo em computadores razoavelmente poderosos. Podemos dizer que só o avanço na tecnologia dos computadores permitiu o emprego da estatística de Bayes, o que pode ser um dos fatores de ela ter permanecido no ostracismo por bastante tempo, como acima discutido.
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