[image: cover-image, JAVASCRIPT. A COMPREHENSIVE MANUAL FOR DEVELOPERS 2]


Audience 

This tutorial is designed for the aspiring Web Designers and Developers with a need to understand JavaScripting in enough detail along with its simple overview, and practical examples. This tutorial will give you enough ingredients to start with JavaScript from where you can take yourself at higher level of expertise. 

 

 Prerequisites 

Before proceeding with this tutorial you should have a basic working knowledge with Windows or Linux operating system, additionally you must be familiar with: 

	Experience with any text editor like notepad, notepad++, or Edit plus etc. 


	Have Basic and Advanced Knowledge of HTML. 


	How to create directories and files on your computer. 


	How to navigate through different directories. 


	How to type content in a file and save them on a computer. 


	Understanding about images in different formats like JPEG, PNG format.  


	Knowledge of How to use Google Sheets (Excel Sheet). 


 

 

Contents

Audience

Chapter One

Features of JavaScript

1. Web Applications

2. Web Development

3. Mobile Applications

4. Game

5. Presentations

6. Server Applications

7. Web Servers

Application of JavaScript

External References

Chapter Two

JavaScript Basics

JavaScript Can Change HTML Content

JavaScript Can Change HTML Attribute Values

JavaScript Can Change HTML Styles (CSS)

JavaScript Can Hide HTML Elements

JavaScript Can Show HTML Elements

The <script> Tag

JavaScript Functions and Events

JavaScript in <head> or <body>

JavaScript in <head>

JavaScript in <body>

JavaScript Expressions

JavaScript Display Possibilities

Using innerHTML

Using document.write()

Using window.alert()

Using console.log()

JavaScript Print

JavaScript Statements

JavaScript Programs

JavaScript Statements

JavaScript White Space

JavaScript Line Length and Line Breaks

JavaScript Code Blocks

JavaScript Keywords

JavaScript Values

JavaScript Literals

Chapter Three

JavaScript Comment

Types of JavaScript Comments

JavaScript Single line Comment

JavaScript Multi line Comment

Using JavaScript Comments to Prevent Code Execution

Commenting Out Function Calls

Commenting Out Function Bodies — Without Return Values

Commenting Out Function Bodies — With Return Values

Writing Effective JavaScript Comments

Chapter  Four

JavaScript Variable

JavaScript Keywords

JavaScript Variable Naming Convention

JavaScript Var Keyword

JavaScript Let Keyword

JavaScript Const Keyword

When to Use JavaScript const?

JavaScript Local Variable

Function Scope

JavaScript Global Variable

Internals of global variable in JavaScript

Automatically Global

Global Variables in HTML

How to use variables

Where to use which variable

Chapter Five

JavaScript Operators

JavaScript Assignment

Assignment Examples

JavaScript Arithmetic Operators

JavaScript Assignment Operators

JavaScript Comparison Operators

JavaScript String Addition

Adding Strings and Numbers

JavaScript Logical Operators

JavaScript Bitwise Operators

Bitwise logical operators

JavaScript Bitwise AND

Example

JavaScript Bitwise OR

Example:

JavaScript Bitwise XOR

JavaScript Bitwise NOT (~)

JavaScript (Zero Fill) Bitwise Left Shift (<<)

JavaScript (Sign Preserving) Bitwise Right Shift (>>)

JavaScript (Zero Fill) Right Shift (>>>)

Converting Decimal to Binary

Converting Binary to Decimal

Chapter Six

JavaScript Data Types

JavaScript primitive data types

JavaScript non-primitive data types

Examples

The Concept of Data Types

JavaScript Types are Dynamic

JavaScript Strings

JavaScript String Methods

JavaScript String Length

Extracting String Parts

JavaScript String slice()

Examples

JavaScript String substring()

Replacing String Content

JavaScript String ReplaceAll()

Converting to Upper and Lower Case

JavaScript String concat()

JavaScript String trim()

JavaScript Numbers

JavaScript Random

Exponential Notation

JavaScript BigInt

JavaScript Integer Accuracy

How to Create a BigInt

JavaScript Booleans

The Boolean() Function

NaN data type

Comparisons and Conditions

JavaScript Comparison and Logical Operators

Comparison Operators

How Can it be Used

Conditional (Ternary) Operator

Comparing Different Types

JavaScript if, else, and else if

Conditional Statements

The if Statement

Example

The else Statement

Example

The else if Statement

Example

JavaScript Switch Statement

Example

The break Keyword

The default Keyword

JavaScript Arrays

JavaScript Array

JavaScript Array Methods

JavaScript Objects

The type of Operator

Chapter  Seven

JavaScript Functions

Function Syntax

Function declarations

Function Invocation

Invoking a JavaScript Function

The Term  “This” in Javascript

Note

The Global Object

Invoking a Function as a Method

Invoking a Function with a Function Constructor

Function Return

The ( ) Operator

Functions Used as Variable Values

Local Variables

Chapter Eight

JavaScript Objects

Real Life Objects, Properties, and Methods

Object Definition

Object Properties

Accessing Object Properties

Object Methods

The this Keyword

Accessing Object Methods

Do Not Declare Strings, Numbers, and Booleans as Objects!

Chapter  Nine

JavaScript Events

HTML Events

Mouse events:

onclick Event Type

onsubmit Event Type

onmouseover and onmouseout

Keyboard events:

Form events:

Window/Document events

HTML DOM Events

JavaScript Event Handlers

Chapter Ten

JavaScript  Loop

The For Loop

do...while statement

Example:

Differences between do… while and While Loop

While Statement

Example:

Comparison between the while and for loop:

Example: JavaScript For In Loop

for-in Loop Examples

The For Of Loop

Properties of document object

Methods of document object

Accessing field value by document object

JavaScript - document.getElementById() method

JavaScript - document.getElementsByName() method

JavaScript - document.getElementsByTagName() method

Another example of document.getElementsByTagName() method

JavaScript - innerHTML

Example of innerHTML property

Show/Hide Comment Form Example using innerHTML

JavaScript - innerText

JavaScript innerText Example

Understanding the Browser Environment

The user interface

Loader

HTML parsing

CSS parsing

JavaScript parsing

Layout and rendering

Igniting the BOM

The Navigator Object

Window Object

Methods of window object

Example of alert() in javascript

Example of confirm() in javascript

Example of prompt() in javascript

Example of open() in javascript

Example of setTimeout() in javascript

JavaScript History Object

Property of JavaScript history object

Methods of JavaScript history object

Example of history object

JavaScript Navigator Object

Property of JavaScript navigator object

Methods of JavaScript navigator object

Example of navigator object

JavaScript Screen Object

Property of JavaScript Screen Object

Example of JavaScript Screen Object

Approach for Form Validation in JavaScript

JavaScript Form Validation Example

JavaScript Retype Password Validation

JavaScript Number Validation

JavaScript validation with image

JavaScript email validation

JavaScript Classes

Class Declarations

Class Declarations Example

Class Declarations Example: Hoisting

Class Declarations Example: Re-declaring Class

Class expressions

Unnamed Class Expression

Class Expression Example: Re-declaring Class

Named Class Expression Example

JavaScript Objects

Creating Objects in JavaScript

1) JavaScript Object by object literal

2) By creating instance of Object

3) By using an Object constructor

Defining method in JavaScript Object

JavaScript Object Methods

JavaScript Prototype Object

Syntax:

Prototype Chaining

JavaScript Prototype Object

JavaScript Constructor Method

Points to remember

Constructor Method Example

JavaScript static Method

JavaScript static Method Example

Example 4

JavaScript Encapsulation

JavaScript Encapsulation Example

JavaScript Encapsulation Example: Validate

JavaScript Encapsulation Example: Prototype-based approach

JavaScript Inheritance

JavaScript extends Example: inbuilt object

JavaScript extends Example: Custom class

JavaScript extends Example: a Prototype-based approach

JavaScript Polymorphism

JavaScript Abstraction

Chapter Fifteen

JavaScript Cookies

How Cookies Works?

How to create a Cookie in JavaScript?

JavaScript Cookie Example

Cookie Attributes

Cookie expires attribute

Cookie max-age attribute

Cookie path attribute

Cookie path attribute Example

Cookie domain attribute

Cookie with multiple Name-Value pairs

Examples to Store Name-Value pair in a Cookie

Deleting a Cookie in JavaScript

Examples to delete a Cookie

Example 3

Chapter Sixteen

Integrating JavaScript with Google Apps Script

What can Apps Script do?

Custom Menus in Google Workspace

Clickable images and drawings in Google Sheets

Dialogs and Sidebars in Google Workspace Documents.

Alert dialogs

Prompt dialogs

Custom dialogs

Custom sidebars

File-open dialogs

Custom Functions in Google Sheets

Developing a custom function

obtaining a personalized feature via the Google Workspace Marketplace

Using a custom function

Guidelines for custom functions

Naming

Arguments

Return values

Data types

Autocomplete

Using Google Apps Script services

Sharing

Optimization

Google Sheets Macros

Creating macros in Apps Script

Editing macros

Importing functions as macros

Manifest structure for macros

Best practices

Things you can't do

Chapter Seventeen

Developing Web Apps in Apps Script

Requirements for web apps

Request parameters

Deploy a script as a web app

Test a web app deployment

Permissions

Embed your web app in Google Sites or any Site of your Choice.

Web Apps and Browser History

How to create Login and Register Form using Google spreadsheet data

How to Display Google Sheet Data on Webpage

How to Submit HTML Form Data to Google Spreadsheet

How to Submit HTML Form to Gmail

How to Search Google Sheet Contents  from HTML Website.

Conclusion

References

 

 

 

 

 




Chapter One

JavaScript Introduction

￼[image: Laptop with phone and calculator]

Many websites utilize JavaScript (js), a lightweight object-oriented programming language, to script their webpages. When applied to an HTML document, this fully functional programming language that is interpreted allows for dynamic website interaction. 

 

In 1995, JavaScript was released, allowing users of the Netscape Navigator browser to add applications to web pages. Since then, all other major graphical web browsers have implemented the language. It has enabled the development of contemporary online applications, which allow for immediate user interaction without requiring a page reload. Conventional websites also employ JavaScript to provide a variety of innovative features and interactive elements (Netscape, 2007).

 

Brendan Eich wrote JavaScript in ten days in May 1995. Eich was employed by Netscape, where he developed JavaScript for Netscape Navigator, the company's web browser. The plan was to use Java to create the main interactive components of the client-side web. JavaScript was intended to serve as the connecting language between those elements and to provide a little bit of interactivity to HTML. JavaScript needed to look like Java because of its supporting function in Java. That eliminated working options like TCL, Python, Perl, and others (W3C, 2021).

 

JavaScript is a language that improves the Web. The language can assist in transforming a static page of text into an intelligent, dynamic, and engaging experience when used on the client computer. JavaScript applications can be as subtle as greeting a visitor to a website with "Good morning!" when it is morning in the client computer's time zone. Other apps may be considerably more straightforward, like one that downloads a slide show's content in one page and uses JavaScript to manage the presentation's hiding, showing, and "flying slide" transitions. 

 

JavaScript was first known as Mocha. When Netscape Navigator was first released in beta, it was called LiveScript. When Netscape 2 was released in 1995, it was renamed JavaScript. To avoid trademark difficulties, Microsoft swiftly reverse-engineered JavaScript and launched an exact clone of it in Internet Explorer, which they called Jscript.

 

JavaScript was accepted and standardized as EMCAScript in 1997 after Netscape submitted it to Ecma International, a standards body. Nevertheless, JavaScript and Java are unrelated programming languages. During the period when Java was becoming more and more prominent in the market, the name was offered and suggested. Databases like CouchDB and MongoDB use JavaScript as their scripting and query language in addition to web browsers. JavaScript founder Brandon Eich is well-known for his remarks against the standardized language's name, referring to ECMAScript (Ecma International) as a "unwanted trade name that sounds like a skin disease." 

 

Not only is ECMAScript a terrible moniker for a programming language, but it's also the name that Netscape gave the language and that most people use to refer to it. If you are familiar with programming in Java or would like to learn at some time, it is a good idea to remember that although there are some similarities between the two languages, they are very different things. When JavaScript first came out, it was widely used to add dynamic elements to websites. 

 

An early outcome of JavaScript being integrated into web browsers was the creation of so-called Dynamic HTML (DHTML), which allowed for a variety of entertaining effects, such as the falling snowflake effect, pop-up windows, and curling web page corners, as well as more practical features like drop-down menus and form validation.


 


Features of JavaScript


The following are features of JavaScript:

	All popular web browsers support JavaScript as they provide built-in execution environments.


	JavaScript follows the syntax and structure of the C programming language. Thus, it is a structured programming language.


	JavaScript is a weakly typed language, where certain types are implicitly cast (depending on the operation).


	JavaScript is an object-oriented programming language that uses prototypes rather than using classes for inheritance.


	It is a light-weighted and interpreted language.


	It is a case-sensitive language.


	JavaScript is supportable in several operating systems including, Windows, macOS, etc.


	It provides good control to the users over the web browsers.


 

Uses of JavaScript

JavaScript is a programming language that enables the implementation of intricate features on websites. You can be sure that JavaScript is used whenever a website performs any function other than merely displaying static content for you to view. Examples of such functions include interactive maps, scrolling video jukeboxes, animated 2D/3D graphics, and timely content updates. It is the third layer in the stack of common web technologies, the first two of which (CSS and HTML) we have already thoroughly discussed in other Learning Area sections.

 

Many websites utilize JavaScript, a lightweight object-oriented programming language, to script their webpages. It is a complete programming language that is interpreted. When JavaScript is added to an HTML page, websites may have dynamic interactivity.

 

JavaScript enables users to create interactive contemporary web apps without constantly refreshing the page. JavaScript is frequently used with the DOM API to refresh a user interface by dynamically modifying HTML and CSS. 

It is mostly employed in online programs. Let's talk about JavaScript's applications. An example of how JavaScript is used is seen in the image below. 

 

￼[image: Picture 1]


1. Web Applications

Because browsers are getting better every day, JavaScript has become more and more popular as a tool for creating reliable online applications. We may comprehend it by using Google Maps as an example. With Maps, all a user needs to do is click and drag the mouse to view the information. These ideas are supported by the usage of JavaScript.

 


2. Web Development

Creating web pages is a typical usage for JavaScript. It enables us to add special effects and dynamic behavior to the webpage. It is mostly used for validation on websites. JavaScript facilitates the execution of intricate tasks and allows websites to communicate with their users. Another way to load material into a document without refreshing the webpage is by using JavaScript. 


3. Mobile Applications

Nowadays, a lot of people utilize their mobile devices to access the internet. We can also create an application for non-web environments using JavaScript. JavaScript is a fantastic technology for developing mobile applications because of its capabilities and applications. The popular JavaScript framework for making mobile apps is called React Native. We can create mobile applications for several operating systems with React Native. Writing separate code for the iOS and Android operating systems is not necessary. It simply has to be written once, and it can operate on several systems.

 


4. Game

Games may also be made with JavaScript. It offers a number of frameworks and libraries for making games. Either a 2D or 3D game may be played. A few JavaScript game engines like Pixi.js and PhysicsJS assist us in making an online game. Additionally, we may render 2D and 3D pictures on browsers by using the JavaScript API known as the WebGL (web graphics library).

 


5. Presentations

Moreover, JavaScript facilitates the creation of websites and presentations. You may utilize the libraries, such BespokeJs and RevealJs, to make an online slide show. Because they are simpler to utilize, we can quickly and simply create something incredible. 

 

With the use of HTML, Reveal.js is used to build stunning and dynamic slide decks. Tablets and mobile devices are ideal for these presentations. All CSS color formats are also supported. Animated bullet lists, responsive scaling, and an extensive feature set are all included in the BespokeJS. 

 


6. Server Applications

Many web applications feature a server-side component. HTTP requests are handled and content is generated using JavaScript. Node.js allows JavaScript to operate on servers as well. The environment that Node.js offers has all the tools needed for JavaScript to execute on servers.

 


7. Web Servers

Node.js may be used to develop a web server. Because Node.js is event-driven, it doesn't wait for the preceding call's answer. Node.js servers carry large amounts of data quickly and without the need for buffering. The createServer() function in the HTTP module may be used to create the server. Whenever someone attempts to access port 8080, this function gets called. The HTTP server should show HTML in response, and it should also be provided in the HTTP header.

 


Application of JavaScript

Websites that are interactive are made with JavaScript. There are several other applications for JavaScript that aid in enhancing webpage speed. The following is a list of other uses for JavaScript:

	Client-side validation.


	Dynamic drop-down menus, 


	Displaying pop-up windows and dialog boxes (like an alert dialog box, confirm dialog box and prompt dialog box), 


	Displaying clocks 


	Displaying date and time.


	To validate the user input before submission of the form.


	Open and close new windows.


	To display dialog boxes and pop-up windows.


	To change the appearance of HTML documents.


	To create the forms that respond to user input without accessing the server.


Prerequisite to Writing Your First JavaScript program

Before starting to build your first JavaScript application, make sure you have all of your tools assembled and ready. By coincidence, the tools we use in this book are also the ones we recommend you download and install. We lead you through the procedure. Please feel free to utilize any comparable or preferred tools you may have. 

 

To understand why we selected these tools and to help you decide whether or not to use them, we still advise you to read this portion of the book. We provide you with some pointers on how to maximize the functionality of each tool when you install it. 

 

Downloading and installing Chrome

Google Chrome is the preferred web browser for dealing with JavaScript. It's acceptable, of course, if you would rather use a different web browser on a daily basis. Every browser will execute JavaScript accurately and quickly. But since Google Chrome will be covered in some detail in this book, we advise you to at least install it on your computer using the steps outlined in this chapter. Because Google Chrome is now the most popular web browser on the Internet and provides great features for making JavaScript writers' tasks simpler, we decided to utilize it in this book. (Yes, its popularity surpasses that of Internet Explorer.)

 

If you don’t have Chrome installed, follow these steps to install it:

	Go to www.google.com/chrome.


	Hover over the Download tab and choose the appropriate version for your computer.


	Open the downloaded file and follow the instructions to install Chrome


 

Google Chrome parses, compiles, and executes JavaScript code using Google's V8 JavaScript engine. Chrome is either the fastest or among the fastest browsers at running JavaScript, depending on whose benchmarking test you trust. The main browser manufacturers are always trying to surpass one another. The competition has accelerated the pace of every browser's JavaScript engine in recent years, so it doesn't really matter who is the quickest at any one moment. You may visit http://arewefastyet.com to view real-time comparisons of the performance of several browsers in JavaScript tests.

 

The most popular browsers' JavaScript performance is automatically checked and graphed on this site, which is updated many times a day by Mozilla, the company that created the Firefox browser. 

Downloading and installing a code editor

A source code editor, sometimes called a code editor, is essentially a text editor with extra features that make it easier to create and modify computer code. Sublime Text is the one we use. There are several code editors available, so feel free to pick your preferred one if you already know how to use it and find it comfortable. Code editors are very individualized tools, and many programmers will discover that they work better with a particular one solely because it seems more natural to them. If you discover that Sublime Text simply isn't your thing. 








	Name 
	Location
	Compatible with 



	Coda 
	http://panic.com/coda
	Mac only



	Aptana 
	www.aptana.com
	Mac or Windows



	Komodo Edit 
	www.activestate.com/komodo‐edit/downloads
	Mac or Windows



	Dreamweaver 
	http://adobe.com/products/dreamweaver.html
	Mac or Windows



	Eclipse 
	www.eclipse.org
	Mac or Windows



	Notepad++ 
	http://notepad‐plus‐plus.org
	Windows only



	TextMate 
	http://macromates.com
	Mac only



	BBEdit 
	www.barebones.com/products/bbedit
	Mac only



	EMacs 
	www.gnu.org/software/emacs
	Mac or Windows



	TextPad 
	www.textpad.com
	Windows only



	vim 
	www.vim.org
	Mac or Windows



	Netbeans 
	https://netbeans.org
	Mac or Windows



	Bracket
	https://brackets.io/
	Mac or Windows



	Visual Studio Code
	https://code.visualstudio.com/
	Mac or Windows




 

Reading JavaScript Code

Before you get started with writing JavaScript programs, you need to be aware of a few rules of JavaScript:

	JavaScript is case-sensitive. We repeat this several times throughout the book, because it’s an error that those who are new to JavaScript make quite frequently. To JavaScript, the words pants and Pants are completely different.


	JavaScript doesn’t care much about white space. White space includes spaces, tabs, and line breaks — any character that doesn’t have a visual representation. When you’re writing JavaScript code, it doesn’t matter if you use one space, two spaces, a tab, or even a line break (in most cases) within the code. JavaScript will ignore white space. The one exception is when you’re writing out text that you want JavaScript to print to the screen. In this case, the white space you use will show up in the end result. The best practice, with regards to white space in your code, is to use enough space that your code is easy to read and to also be consistent with how you use this space.


	Watch out for reserved words. JavaScript has a list of words that have special meaning to the language. We list these words in Chapter 3. For now, just be aware that some words, such as function, while, break, and with have special meanings.


	JavaScript likes semicolons: JavaScript code is made up of statements. You can think of statements as similar to sentences. They are fundamental building blocks for JavaScript programs in the same way that sentences are the building blocks of paragraphs. In JavaScript, statements end with a semicolon. If you don’t use a semicolon at the end of a statement, JavaScript will put it there for you. This can lead to unexpected results, however, so it’s considered a best practice to always end statements with a semicolon.


 

Running JavaScript in the Browser Window

While JavaScript is used in many other contexts, web browsers are the most popular location to observe it in the wild. JavaScript was created to handle typical browser actions like clicks and scrolling, control inputs and outputs, manipulate online pages, and control the many functionalities of web browsers!

 

To run JavaScript in a web browser, you have three options, all of which will be shown in the following pages:

	Put it directly in an HTML event attribute


	Put it between an opening and closing script tag


	Put it in a separate document and include it in your HTML document


Many times, you’ll use a combination of all three techniques within any one web page. However, knowing when to use each is important and is a skill that you’ll learn with more practice.

 

Using JavaScript in an HTML event attribute

HTML has a number of unique properties that are intended to cause JavaScript to run in response to events that occur in the web browser or user actions. An HTML button with an event property that reacts to mouse click events is seen here:

 



	
 

<button id="bigButton" onclick="alert('Hello World!');">Click Here</button>





In this case, when a user clicks on the button created by this HTML element, a popup will appear with the words “Hello World!”. HTML has over 70 different event attributes. Table 2-3 shows the most commonly used ones.

 






	Commonly Used HTML Event Attributes


	Attribute 
	Description



	onload 
	Runs the script after the pages finishes loading



	onfocus 
	Runs the script when the element gets focus (such as when a text box is active)



	onblur 
	Runs the script when the element loses focus (such as when the user clicks a new text box in a form)



	onchange 
	Runs the script when the value of an element is changed



	onselect 
	Runs the script when text has been submitted



	onsubmit 
	Runs the script when a form has been submitted



	onkeydown 
	Runs the script when a user is pressing a key



	onkeypress 
	Runs the script when a user presses a key



	onkeyup 
	Runs the script when a user releases a key



	onclick 
	Runs the script when a user mouse clicks an element



	ondrag 
	Runs the script when an element is dragged



	ondrop 
	Runs the script when a dragged element is being dropped



	onmouseover 
	Runs the script when a user moves a mouse pointer over an element




 

Using JavaScript in a script element

The HTML script element allows you to embed JavaScript into an HTML document. Often script elements are placed within the head element, and, in fact, this placement was often stated as a requirement. Today, however, script elements are used within the head element as well as in the body of web pages. The format of the script element is very simple:



	
<script>

(insert your JavaScript here)

</script>





 

In this case, however, we place the script element at the bottom of the body element



	Embedding JavaScript within a Script Element

	
<!DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

</head>

<body>

<h1>Let's Count to 20 with JavaScript!</h1>

<p id="theCount"></p>

<script>

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "<br>";

}

</script>

</body>

</html>





 

Script placement and JavaScript execution

Scripts are generally loaded by web browsers and run when they load. The browser reads a web page from top to bottom, exactly like it would read a text page. Occasionally, you should wait for the script to execute until the browser has finished loading the page's contents. We used the body element's onload event property to do this. Placing the code that has to be run at the conclusion of the code is another popular technique to postpone execution. 

 

Limitations of JavaScript in <script> elements

Although embedding JavaScript into a script element is far more popular and widely accepted than inline scripting (placing JavaScript into event attributes), it still has some significant drawbacks. The main drawback is that these kinds of scripts are only usable on the web page on which they are placed. To put it another way, if you include JavaScript in a script element, you must duplicate and paste the script element precisely onto each page that has it. You can understand how this may turn into a maintenance nightmare given that some websites have hundreds or even thousands of web pages.

 

When to use JavaScript in <script> elements

There are applications for this JavaScript embedding technique. It is okay and can even speed up the loading and display of your web pages by reducing the number of requests the web server needs to make to the server for those JavaScript elements that do nothing more than call other JavaScript elements.

 

As the name suggests, single-page applications only have one HTML page, making them excellent candidates for this kind of embedding as there is only one location where the script has to be updated. Generally speaking, though, you want to try to avoid adding too much JavaScript straight into an HTML page. Your code will become more organized and require less maintenance as a consequence.

 

Including external JavaScript files

The src property of the script element is the third and most often used method of including JavaScript in HTML texts. The only difference between a script element with JavaScript between the tags and one with a src attribute is that the JavaScript is loaded into the HTML document from a different file. 

External scripts are practical when the same code is used in many different web pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source) attribute of a <script> tag:

 

Here’s an example of a script element with a src attribute:



	
 

<script src="myScript.js"></script>





 

In this case, you would have a separate file, named myScript.js, that would reside in the same folder as your HTML document. 



	
<!DOCTYPE html>

<html>

<body>

<h2>Demo External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example links to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>



	
NB: 

	You can place an external script reference in <head> or <body> as you like.


	The script will behave as if it was located exactly where the <script> tag is located. 


	
External scripts cannot contain <script> tags.







 

The benefits of using external JavaScript files are that using them

	Keeps your HTML files neater and less cluttered


	Makes your life easier because you need to modify JavaScript in only one place when something changes or when you make a bug fix


	It separates HTML and code


	It makes HTML and JavaScript easier to read and maintain


	Cached JavaScript files can speed up page loads


To add several script files to one page  - use several script tags:



	<script src="myScript1.js"></script>
<script src="myScript2.js"></script>



 

Creating a .js file

Creating an external JavaScript file is similar to creating an HTML file or another other type of file. To create an external JavaScript file, follow these steps:

	
In Sublime Text or any of your text editor, choose File ➪ New File.



	Copy everything between <script> and </script> from MyFirstProgram.html and paste it into your new .js file.


NB: Notice that external JavaScript files don’t contain <script> elements, just the JavaScript.

	Save your new file as countToTwenty.js in the same folder as MyFirstProgram.html.


	In MyFirstProgram.html, modify your script element to add a src attribute, like this:




	
 

<script src="countToTwenty.js"></script



	
 

Your copy of MyFirstProgram.html should now look like this:



	
<!DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

</head>

<body>

<h1>Let's Count to 20 with JavaScript!</h1>

<p id="theCount"></p>

<script>

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "<br>";

}

</script>

</body>

</html>



	
 

Your new file, countToTwenty.js, should look like this:



	
function countToTwenty(){

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "<br>";

}

}






 


External References

An external script can be referenced in 3 different ways:

	With a full URL (a full web address)


	With a file path (like /js/)


	Without any path




	Example 1: This example uses a full URL to link to myScript.js:


	
<!DOCTYPE html>

<html>

<body>

<h2>External JavaScript</h2>

<p id="demo">A Paragraph.</p>

 

<button type="button" onclick="myFunction()">Click Me</button>

<p>This example uses a full web URL to link to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="https://www.w3schools.com/js/myScript.js"></script>

</body>

</html>



	
 

Example 2: This example uses a file path to link to myScript.js:



	
<!DOCTYPE html>

<html>

<body>

<h2>External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example uses a file path to link to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="/js/myScript.js"></script>

</body>

</html>



	
 

Example 3: This example uses no path to link to myScript.js:



	
<!DOCTYPE html>

<html>

<body>

<h2>Demo External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example links to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>





 

Using the JavaScript Developer Console

Sometimes, it’s helpful to be able to run JavaScript commands without creating an HTML page and including separate scripts or creating <script> blocks. For these times, you can use the Chrome browser’s JavaScript Console. To access the JavaScript Console, find the Chrome menu in the upper-right corner of your browser. It looks like three horizontal lines. Click the Chrome menu and then find More Tools in the drop-down menu. Under More Tools, choose JavaScript Console from the drop-down menu. 

And, yes, there is a faster way to open the JavaScript Console. Simply press Alt+Command+J (on Mac) or Control+Shift+J (on Windows).

￼[image: Picture 2]

The JavaScript Console is perhaps the best friend of the JavaScript developer. Besides allowing you to test and run JavaScript code quickly and easily, it also is where errors in your code are reported, and it has features that will help you track down and solve problems with your code. 

Once you’ve opened the JavaScript console, you can start inputting commands into it, which will run as soon as you press Enter. To try it out, open the JavaScript console and then type the following commands, pressing Enter after each one:

 

 

 



Chapter Two




JavaScript Basics


￼[image: Graph and note paper pads with pencil]

This section aims to rapidly expose you to the fundamentals of JavaScript so that you may begin writing programs. This part will teach you the essential building blocks of JavaScript, avoiding a comprehensive coverage of all theories and notions. Topics such as operators, if statements, loops, variables, data types, swith, functions, objects, arrays, and classes will be covered. Also, you'll discover how to combine them together to create a compact yet reliable software.

 

As you may have be aware, JavaScript is widely used in the field of software development nowadays. It serves as the cornerstone of front-end web development and is essential to frameworks such as Angular, Vue, and ReactJS. Additionally, it may be used to build robust backends using Node.js platforms, run desktop programs like Slack, Atom, and Spotify, and function as Progressive Web Apps (PWAs) on mobile devices.

 

In short, it’s everywhere—and for good reason. For starters, compared to other languages like C and Java, JavaScript is generally easier to learn. When we say ‘easier’, we mean in terms of how quickly you can go from being a JavaScript novice to someone who can actually make a living writing professional, high quality JavaScript code. So, in that sense, it’s more accessible than some other languages like C and Java.

 

JavaScript is also a fun and rewarding language, which is especially important when you’re just getting started in software development. The community support is very good, so if you get stuck, there’s a good chance that the problem and its solution already exist on the web.


 


JavaScript Can Change HTML Content

One of many JavaScript HTML methods is getElementById().

The example below "finds" an HTML element (with id="demo"), and changes the element content (innerHTML) to "Hello JavaScript":

Example: 



	
document.getElementById("demo").innerHTML = "Hello JavaScript";

 

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button" onclick='document.getElementById("demo").innerHTML = "Hello JavaScript!"'>Click Me!</button>

</body>

</html>





 

JavaScript accepts both double and single quotes:



	
document.getElementById('demo').innerHTML = 'Hello JavaScript';

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button" onclick="document.getElementById('demo').innerHTML = 'Hello JavaScript!'">Click Me!</button>

</body>

</html>






 


JavaScript Can Change HTML Attribute Values

In this example JavaScript changes the value of the src (source) attribute of an <img> tag:



	
<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can change HTML attribute values.</p>

<p>In this case JavaScript changes the value of the src (source) attribute of an image.</p>

<button onclick="document.getElementById('myImage').src='pic_bulbon.gif'">Turn on the light</button>

<img id="myImage" src="pic_bulboff.gif" style="width:100px">

<button onclick="document.getElementById('myImage').src='pic_bulboff.gif'">Turn off the light</button>

</body>

</html>






 


JavaScript Can Change HTML Styles (CSS)

Changing the style of an HTML element, is a variant of changing an HTML attribute:



	
<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do? </h2>

<p id="demo">JavaScript can change the style of an HTML element.</p>

<button type="button" onclick="document.getElementById('demo').style.fontSize='35px'">Click Me!</button>

</body>

</html>





 


JavaScript Can Hide HTML Elements

Hiding HTML elements can be done by changing the display style:



	
<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can hide HTML elements.</p>

<button type="button" onclick="document.getElementById('demo').style.display='none'">Click Me!</button>

</body>

</html>





 


JavaScript Can Show HTML Elements

Showing hidden HTML elements can also be done by changing the display style:



	
<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can show hidden HTML elements.</p>

<p id="demo" style="display:none">Hello JavaScript!</p>

<button type="button" onclick="document.getElementById('demo').style.display='block'">Click Me!</button>

</body>

</html>





 


The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script> tags. 



	
<script>
document.getElementById("demo").innerHTML = "My First JavaScript";
</script>




 



	
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript in Body</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "My First JavaScript";

</script>

</body>

</html>



	
Nb: Old JavaScript examples may use a type attribute: <script type="text/javascript">.
The type attribute is not required. JavaScript is the default scripting language in HTML.




 


JavaScript Functions and Events

A JavaScript function is a block of JavaScript code, that can be executed when "called" for.

For example, a function can be called when an event occurs, like when the user clicks a button.


JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or in both.


JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an HTML page.

The function is invoked (called) when a button is clicked:



	
<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

  document.getElementById("demo").innerHTML = "Paragraph changed.";

}

</script>

</head>

<body>

<h2>Demo JavaScript in Head</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

</body>

</html>





 


JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an HTML page.

The function is invoked (called) when a button is clicked:



	
<!DOCTYPE html>
<html>
<body>
<h2>Demo JavaScript in Body</h2>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>
<script>
function myFunction() {
  document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>
</body>
</html>


	
NB: Placing scripts at the bottom of the <body> element improves the display speed, because script interpretation slows down the display.





 


JavaScript Expressions

An expression is a combination of values, variables, and operators, which computes to a value. The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:



	
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 * 10;

</script>

</body>

</html>





Expressions can also contain variable values:



	
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

var x;

x = 5;

document.getElementById("demo").innerHTML = x * 10;

</script>

</body>

</html>





The values can be of various types, such as numbers and strings. For example, "John" + " " + "Doe", evaluates to "John Doe":



	
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "John" + " "  + "Doe";

</script>

</body>

</html>






 


JavaScript Display Possibilities

JavaScript can "display" data in different ways:

	
Writing into an HTML element, using innerHTML.



	
Writing into the HTML output using document.write().



	
Writing into an alert box, using window.alert().



	
Writing into the browser console, using console.log().




Using innerHTML

To access an HTML element, JavaScript can use the document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property defines the HTML content:



	
<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My First Paragraph.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>



	
NB: Changing the innerHTML property of an HTML element is a common way to display data in HTML.





 


Using document.write()

For testing purposes, it is convenient to use document.write():



	
<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

 

<p>Never call document.write after the document has finished loading.

It will overwrite the whole document.</p>

<script>

document.write(5 + 6);

</script>

</body>

</html>



	NB: Using document.write() after an HTML document is loaded, will delete all existing HTML:

	
 

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<button type="button" onclick="document.write(5 + 6)">Try it</button>

</body>

</html>






 


 


Using window.alert()

You can use an alert box to display data:



	
<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body>

</html>





You can skip the window keyword. In JavaScript, the window object is the global scope object. This means that variables, properties, and methods by default belong to the window object. This also means that specifying the window keyword is optional:



	
<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<script>

alert(5 + 6);

</script>

</body>

</html>






 


Using console.log()

For debugging purposes, you can call the console.log() method in the browser to display data.



	
<!DOCTYPE html>

<html>

<body>

<h2>Activate Debugging</h2>

<p>F12 on your keyboard will activate debugging.</p>

<p>Then select "Console" in the debugger menu.</p>

<p>Then click Run again.</p>

<script>

console.log(5 + 6);

</script>

</body>

</html>






 


JavaScript Print

JavaScript does not have any print object or print methods. You cannot access output devices from JavaScript. The only exception is that you can call the window.print() method in the browser to print the content of the current window.



	
<!DOCTYPE html>

<html>

<body>

<h2>The window.print() Method</h2>

<p>Click the button to print the current page.</p>

<button onclick="window.print()">Print this page</button>

 

</body>

</html>






 


OEBPS/images/image5.png
R DD Gonerss _Comol Sowces Nevork > @ x
Gl g =

Google e
v @

Googesean  Imeeing Lucky

(oo ocadin Hausa Igbo £6¢ Yehd Nigern Pidgn





OEBPS/images/image6.png





OEBPS/js/book.js
function Body_onLoad() {
}





OEBPS/images/cover-image.png
JAVASCRIPT

AComprehensive Manual for Creating Dynamic,
Responsive Websites and Applications That is Suitable
for Both Novices and Experts

ALL RIGHTS RESERVED

No part of this publication may be reprodiced,stored i artreval
system, o transmitted inany form o by any means,clectronic,
mechanical, photocopying,recording, o otherwis, withou th prior
‘written permission o te copyright holder.

Copyright © TBRAHIM N.A

First Published, 2024

Noogal Digital Publishiag





OEBPS/images/image4.png
Uses of
JavaScript





OEBPS/images/image3.png





