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Chapter 1 The Rules of the Rules


 


Table of Contents



Since birth, you’ve wanted to discover things. You started out by putting every available object in your mouth. Later you began asking the grownups all those “why” questions. None of this makes you unique — humans are naturally curious animals. What’s unusual is that you’ve decided to take a physics course. There are easier ways to satisfy a science requirement, so evidently you’re one of those uncommon people who has retained the habit of curiosity into adulthood, and you’re willing to tackle a subject that requires sustained intellectual effort. Bravo!


A reward of curiosity is that as you learn more, things get simpler. “Mommy, why do you have to go to work?” “Daddy, why do you need keys to make the car go?” “Grandma, why can’t I have that toy?” Eventually you learned that questions like these, which as a child you thought to be unrelated, were actually closely connected: they all had to do with capitalism and property. As a scientific example, William Jones announced in 1786 the discovery that many languages previously thought to be unrelated were actually connected. Jones realized, for example, that there was a relationship between the words “bhratar,” “phrater,” “frater,” and “brother,” which mean the same thing in Sanskrit, Greek, Latin, and English. Many apparently unrelated languages of Europe and India could thus be brought under the same roof and understood in a simple way. For an even more dramatic example, imagine trying to learn chemistry hundreds of years ago, before anyone had discovered the periodic table or even the existence of atoms. Chemistry has gotten a lot simpler since then!


Sometimes the subject gets simpler, but it takes a while for the textbooks to catch up. For hundreds of years after Hindu mathematicians incorporated negative numbers into algebra, European texts still avoided them, which meant that students had to endure a lot of confusing mumbo jumbo when it came to solving an equation like x + 7 = 0. Physics has been getting simpler, but most physics books still haven’t caught up. (Can you detect the sales pitch here?) The newer, simpler way of understanding physics involves symmetry.





1.1 Symmetry


The concept of symmetry goes back to ancient times, but the deep link between physics and symmetry was discovered by Emmy Noether. What do we mean by symmetry? Figure b shows two examples. The galaxy has a symmetry because it looks the same when you turn your book upside-down. The orchid has a different type of symmetry: it looks the same in a mirror. Reflection and 180-degree rotation are examples of transformations, i.e., changes in which every point in space is systematically relocated to some other place. We say that a thing has symmetry when transforming it doesn’t change it. As shown in figure c, some objects have more than one symmetry, although most have none.





[image: image]

a / Emmy Noether (1882-1935). The daughter of a prominent German mathematician, she did not show any early precocity at mathematics — as a teenager she was more interested in music and dancing. She received her doctorate in 1907 and rapidly built a world-wide reputation, but the University of G¨ ottingen refused to let her teach, and her colleague Hilbert had to advertise her courses in the university’s catalog under his own name. A long controversy ensued, with her opponents asking what the country’s soldiers would think when they returned home and were expected to learn at the feet of a woman. Allowing her on the faculty would also mean letting her vote in the academic senate. Said Hilbert, “I do not see that the sex of the candidate is against her admission as a privatdozent [instructor]. After all, the university senate is not a bathhouse.” She was finally admitted to the faculty in 1919. A Jew, Noether fled Germany in 1933 and joined the faculty at Bryn Mawr in the U.S.
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b / Two types of symmetries.
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c / Most object have no symmetries. Some have more than one.








Self-check A 






What symmetry is possessed by most of the designs in a deck of cards? Why are they designed that way? ‣ Answer









Palindromes 


example 1 


A palindrome is a sentence that is the same when you reverse it: I maim nine men in Saginaw; wan, I gas nine men in Miami.


Discussion Questions 


A What symmetries does a human have? Consider internal features, external features, and behavior. If you woke up one morning after having been reflected, would you be able to tell? Would you die? What if the rest of the world had been reflected as well?





1.2 A Preview of Noether’s Theorem


How does symmetry relate to physics? Long before Noether’s work, it had been recognized that some physical systems had symmetry, and their symmetries could be helpful for predicting their behavior. If the skaters in figure d have equal masses, symmetry tells us that they will move away from each other at equal speeds after they push off. The one on the right looks bigger, however, so the symmetry argument doesn’t quite work. If you look at the world around you, you will see many approximate examples of symmetry, but none that are perfect. Most things have no symmetry at all. Until Noether’s work, that was the whole story. Symmetry was on the sidelines of physics.


Noether’s approach was different. The universe is made out of particles, and these particles are like the players on a soccer field or the pieces on a checkerboard. The arrangement of the players on the soccer field normally has no symmetry at all. The symmetry is in the rules: the rules apply equally to both sides. Likewise, the physical arrangement of the checkers on the board in figure e has 180-degree rotation symmetry, but this is spoiled in figure f after a couple of moves. We don’t care about the asymmetry of the pieces. In Noether’s approach, what’s important is the symmetry of the rules. If we think of the checkerboard as a little universe, then these rules are like the laws of physics, and their symmetry allows us to predict certain things about how the universe will behave. For instance, suppose we balanced the board carefully on a knife edge running from left to right below its centerline. The position in figure e balances, and so does the one in figure f. The rules required both red and black to move one piece diagonally forward one step, so we were guaranteed that after each side had made one move, the setup would balance again.1


Noether’s greatest achievement was a principle known as Noether’s theorem. We are not yet ready to state Noether’s theorem exactly, but roughly speaking, here’s what it says: The laws of physics have to be the way they are because of symmetry.




[image: image]

d / What will happen when the two ice skaters push off from each other?
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e / The starting position in checkers.
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f / The board after two moves.





1.3 What Are The Symmetries?


What are the actual symmetries of the laws of physics? It’s tempting to try to determine them by pure reason, or by aesthetic arguments. Why, for example, would God have chosen laws of physics that didn’t treat right and left the same way? That would seem ugly. The trouble with this approach is that it doesn’t work. For example, prehistoric peoples observed the rising and setting of the sun, the moon, the stars, and the four naked-eye planets. They all appeared to be going in circles, and a circle is a very symmetric shape: it remains the same under rotation through any angle at all. It became accepted dogma among the ancient astronomers that these heavenly bodies were attached to spinning crystal spheres. When careful observations showed that the motion of the planets wasn’t quite circular, they patched things up by imagining smaller crystal spheres riding on the big ones. This bias toward spheres and circles was hard to shake because the symmetry of the shapes was so appealing. The astronomer Johannes Kepler (1571-1630) inherited from his predecessor Tycho Brahe (1546-1601) a set of the best observations ever made of the motions of the planets. Kepler labored for years trying to make up a set of spheres riding on spheres that would fit the data, but because the data were so accurate, he finally realized what nobody could have known based on the older, less precise observations: it simply wasn’t possible. Reluctantly, Kepler gave up his mystical reverence for the symmetry of the circle. He eventually realized that the planets’ orbits were ovals of a specific mathematical type called an ellipse. The new observations showed that the laws of physics were less symmetric than everyone had believed.


Sometimes experiments show that physics is more symmetric than expected. One good example of this is translational symmetry. A translation is a type of transformation in which we slide everything without rotating it, as in figure h, where we can slide the chess board so that the black squares are again in the places previously occupied by black squares.2 The ancient Greek philosopher Aristotle believed that the rules were different in some parts of the universe than in others. In modern terminology, we say that he didn’t believe in translational symmetry. When you drop a rock, it falls. Aristotle explained this by saying that the rock was trying to go back to its “natural” place, which is the surface of the earth.




[image: image]

g / Due to the earth’s rotation, the stars appear to go in circles. In this time-exposure photograph, each star makes an arc.
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h / A chess board has a kind of translational symmetry: it looks the same if we slide it one square over and one square up.
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i / The soda straw has translational symmetry. The flea exploring along its length doesn’t see anything different from one location to another.





He applied the same kind of explanation to rising smoke: it rises because it wants to go to its own natural place, which is higher up. In Aristotle’s theory, different parts of the universe had their own special characteristics. Only after an interval of two thousand years was the true translational symmetry of the laws of physics uncovered by Isaac Newton. In Newton’s theory of gravity, a rock falls because every atom in the universe is attracted to every other atom. The rock’s atoms are attracted to the planet earth’s atoms. We don’t prefer Newton’s version just because it sounds better. Aristotle was proved wrong by experiments. The original evidence was indirect, but we have more straightforward proof now. If Aristotle had been right, the huge boulder in figure j would long since have fallen to its “natural” place on the surface of our planet (and so would the astronaut!).
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j / Astronaut Harrison Schmidt on the moon in 1972.





Translational symmetry is also deeply embedded in the way we practice the scientific method. One of the assumptions of the scientific method is that experiments should be reproducible. For example, a group at Berkeley recently claimed to have produced three atoms of a new element, with atomic number 118. Other labs, however, were unable to reproduce the experiment, and eventually suspicious members of the Berkeley team checked and found that one of their own scientists had fabricated the data. Although the episode (and another case of fraud at Bell Laboratories around the same time) caused considerable editorializing about what might be wrong with the scientific profession, I see it as a textbook example of how the scientific method is supposed to work, since the fraud was eventually discovered. A basic assumption here is that scientists in different places should be able to get the same results. If translational symmetry was violated, then the results might be different because the laws of physics were different in different places. The assumption of translational symmetry is so deeply ingrained that normally it doesn’t even occur to us that we were making it. When engineers design a space probe to go to Mars, they don’t even stop to ask themselves whether the laws of physics are the same on Mars as on earth.


Discussion Questions


B Imagine that you establish two-way radio communication with aliens. You laboriously teach each other your languages, e.g., by sending two beeps followed by the word “two.” However, neither of you is able to figure out exactly where the other’s planet is, and you can’t come up with any celestial landmarks that you both recognize. Can you communicate the definition of the terms “right” and “left” to them? The wonderful popular science writer Martin Gardner proposes calling this the “Ozma problem.” (The name comes from the Ozma project, which was the first serious attempt to detect signals from aliens using radio telescopes. The Ozma project was in turn named after a character in one of L. Frank Baum’s Oz stories.) In general, every symmetry of the laws of physics can be stated as an Ozma problem.
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These flowers are referred to in homework problems 1 and 2. 
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Problems


Problems 1 and 2 refer to the photos of flowers on page 15. Since the flowers are living things, they don’t have exact, perfect mathematical symmetry. Just think in terms of approximate symmetries. 



1 (a) Which of the flowers shown in the photos have reflection symmetry but not 180-degree rotation symmetry? (b) Which have 180-degree rotation symmetry but not reflection symmetry? (c) Which have both (d) Which have neither? Note that in flowers 1 and 2, the lobes of the petals overlap in a clockwise or counterclockwise screw pattern. You can tell from the photo that flower 1 has a curved tube. Flower 2 doesn’t have a curved tube.



2 In the text, I’ve only discussed rotational symmetry with an angle of 180 degrees. Some of the flowers in the photos have symmetry with respect to other angles. Discuss these.



3* The following are questions about the symmetries of plants that you can try to answer by collecting data at an arboretum, nursery, botanical garden, or florist. (You could also websurf, but it wouldn’t be as enjoyable.) You probably won’t be able to answer all of them. You can’t do this problem without actually going out and collecting detailed data; you’ll have to turn in the data (drawings, notes on which plants you looked at, etc.) and then base your conclusions on your data.




Symmetry of flowers is an easy way to classify plants. Is it also a good way? To be a good way, it should correspond to evolutionary relationships, and it should therefore correlate with other features of plants. Another feature that’s easy to check is leaf structure: are the fibers in the leaves all parallel (e.g., grass), or do they branch out (e.g., a maple). Does leaf structure seem to correlate at all with flower symmetry?



The photos on page 15 include some flowers whose petals or petal-lobes overlap in a pattern like a clockwise or counterclockwise screw. When this happens, how systematic is the pattern of overlapping? Do you observe right-handed and lefthanded screw-patterns in different flowers on the same plant? In different plants that are genetically identical (e.g., grown from cuttings from the same parent) but have been exposed to different environments? In genetically different plants of the same species?



Can you find any plants in which the arrangement of the leaves follows a definite pattern, but lacks reflection symmetry?





4 Noether’s theorem refers to symmetries of the laws of physics, not symmetries of objects. Which of the following do you think could qualify as a law of physics, and which are mere facts about objects? In other words, which ones are not true in some situations, at some times, on different planets, etc? They are all true where I live! 



	 The sun rises in the east and sets in the west. 


	 High tide occurs when the moon is overhead or underfoot, and low tide when it’s on the horizon.


 	 Inheritance works through genes, so an acquired trait can’t be inherited. 


	 In a chemical reaction, if you weigh all the products, the total is the same as what you started with. 


	 A gas compressed to half its original volume will have twice its original pressure (assuming the temperature is the same).





In each case, explain your reasoning.



5 If an object has 90-degree rotation symmetry, what other symmetries must it have as well?



6 Someone describes an object that has symmetry under 135- degree rotation (3/8 of a circle). What’s a simpler way to describe the same symmetry? (Hint: Draw a design on a piece of paper, then trace it onto another piece of paper. Rotate the top piece of paper, then copy the new design. Keep going. What happens?)



7 (a) Give an example of an object that has 180-degree rotation symmetry, and also has reflection symmetry. (b) Give an example with symmetry under 180-degree rotation, but not under reflection.



8 Suppose someone tells you that the reason the Ozma problem for left and right is difficult is because you can’t get together with the aliens and show them what you’re referring to. Is this correct? How is this different from trying to describe an elephant over the radio to someone who’s never seen an elephant or a picture of one?










Lab 1a: Scaling



Apparatus 


paper and card stock 


ruler 


scissors






Goal


Find out whether the laws of physics have scaling symmetry.






Introduction


From Gulliver to Godzilla, people have always been fascinated with scaling. Gulliver’s large size relative to the Lilliputians obviously had some strong implications for the story. But is it only relative size that matters? In other words, if you woke up tomorrow, and both you and your house had been shrunk to half their previous size, would you be able to tell before stepping out the door? Galileo was the first to realize that this type of question was important, and that the answer could only be found by experiments, not by looking in dusty old books. In his book The Two New Sciences, he illustrated the question using the idea of a long wooden plank, supported at one end, that was just barely strong enough to keep from breaking due to gravity. The testable question he then posed was whether this just-barely-strong-enough plank would still have the just-barely-strong- enough property if you scaled it up or down, i.e., if you multiplied all its dimensions — length, width, and height — by the same number.



You’re going to test the same thing in lab, using the slightly less picturesque apparatus shown in the photo: strips of paper. The paper bends rather than breaking, but by looking at how much it droops, you can see how able it is to support its own weight. The idea is to cut out different strips of paper that have the same proportions, but different sizes. If the laws of physics are symmetric with respect to scaling, then they should all droop the same amount. Note that it’s important to scale all three dimensions consistently, so you have to use thicker paper for your bigger strips and thinner paper for the smaller ones. Paper only comes in certain thicknesses, so you’ll have to determine the widths and lengths of your strips based on the thicknesses of the different types of paper you have to work with. In the U.S., some common thicknesses of paper and card-stock are 78, 90, 145, and 200 grams per square meter.3 We’ll assume that these numbers also correspond to thicknesses. For instance, 200 is about 2.56 times greater than 78, so the strip you cut from the heaviest card stock should have a length and width that are 2.56 times greater than the corresponding dimensions of the strip you make from the lightest paper.
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Galileo’s illustration of his idea.
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To Think About Before Lab


1. If the laws of physics are symmetric with respect to scaling, would each strip droop by the same number of centimeters, or by the same angle? In other words, how should you choose to define and measure the “droop?”



2. If you find that all the strips have the same droop, that’s evidence for scaling symmetry, and if you find that they droop different amounts, that’s evidence against it. Would either observation amount to a proof? What if some experiments showed scaling symmetry and others didn’t?






Answers to Self-Checks for Chapter 1


Self-check A: They have 180-degree rotation symmetry. They’re designed that way so that when you pick up your hand, it doesn’t matter which way each card is turned.








Chapter 2 The Ray Model of Light


 


Table of Contents



2.1 Rays Don’t Rust


If you look at the winter night sky on a clear, moonless night far from any city lights, something strange will soon catch your eye. Near the constellation of Andromeda is a little white smudge. What is it? You can easily convince yourself that it’s not a cloud, because it moves along with the stars as they rise and set. What you’re seeing is the Andromeda galaxy, a fantastically distant group of stars very similar to our own Milky Way.1 We can see individual stars within the Milky Way galaxy because we’re inside it, but the Andromeda galaxy looks like a fuzzy patch because we can’t make out its individual stars. The vast distance to the Andromeda galaxy is hard to fathom, and it won’t help you to imagine it if I tell you the number of kilometers is 2 followed by 19 zeroes. Think of it like this: if the stars in our own galaxy were as close together as the hairs on your skin, the Andromeda galaxy would be thousands of kilometers away.


The light had a long journey to get to your eyeball! A wellmaintained car might survive long enough to accumulate a million kilometers on its odometer, but by that time it would be a rickety old rust-bucket, and the distance it had covered would still only amount to a fraction of a billionth of a billionth of the distance we’re talking about. Light doesn’t rust. A car’s tracks can’t go on forever, but the trail of a light beam can. We call this trail a “ray.”
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a / How to locate the Andromeda galaxy.





2.2 Time-Reversal Symmetry


The neverending motion of a light ray is surprising compared with the behavior of everyday objects, but in a way it makes sense. A car is a complex system with hundreds of moving parts. Those parts can break, or wear down due to friction. Each part is itself made of atoms, which can do chemical reactions such as rusting. Light, however, is fundamental: as far as we know, it isn’t made of anything else. My wife’s car has a dent in it that preserves the record of the time she got rear-ended last year. As time goes on, a car accumulates more and more history. Not so with a light ray. Since a light ray carries no history, there is no way to distinguish its past from its future. Similarly, some brain-injured people are unable to form long-term memories. To you and me, yesterday is different from tomorrow because we can’t remember tomorrow, but to them there is no such distinction.


Experiments — including some of the experiments you’re going to do in this course — show that the laws of physics governing light rays are perfectly symmetric with respect to past and future. If a light ray can go from A to B, then it’s also possible for a ray to go from B to A. I remember as a child thinking that if I covered my eyes, my mommy couldn’t see me. I was almost right: if I couldn’t see her eyes, she couldn’t see mine.
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b / The mirror left on the moon by the Apollo 11 astronauts.








Why light rays don’t stop 


example 1 


Once the experimental evidence convinces us of time-reversal symmetry, it’s easy to prove that light rays never get tired and stop moving. Suppose some light was headed our way from the Andromeda galaxy, but it stopped somewhere along the way and never went any farther. Its trail, which we call the “ray,” would be a straight line ending at that point in empty space. Now suppose we send a film crew along in a space ship to document the voyage, and we ask them to play back the video for us, but backwards. Time is reversed. The narration is backwards. Clocks on the wall go counterclockwise. In the reversed documentary, how does the light ray behave? At the beginning (which is really the end), the light ray doesn’t exist. Then, at some random moment in time, the ray springs into existence, and starts heading back towards the Andromeda galaxy. In this backwards version of the documentary, the light ray is not behaving the way light rays are supposed to. Light doesn’t just appear out of nowhere in the middle of empty space for no reason. (If it did, it would violate rotational symmetry, because there would be no physical reason why this out-of-nowhere light ray would be moving in one direction rather than another.) Since the backwards video is impossible, and all our accumulated data have shown that light’s behavior has time-reversal symmetry, we conclude that the forward video is also impossible. Thus, it is not possible for a light ray to stop in the middle of empty space. 









The Apollo lunar ranging experiment 


example 2 


In 1969, the Apollo 11 astronauts made the first crewed landing on the moon, and while they were there they placed a mirror on the lunar surface. Astronomers on earth then directed a laser beam at the landing site. The beam was reflected by the mirror, and retraced its own path back to the earth, allowing the distance to the moon to be measured extremely accurately (which turns out to provide important information about the earth-moon system). Based on time-reversal symmetry, we know that if the reflection is a 180-degree turn, the reflected ray will behave in the same way as the outgoing one, and retrace the same path. (Figure p on page 31 explains the clever trick used to make sure the reflection would be a 180-degree turn, without having to align the mirror perfectly.) 









Looking the wrong way through your glasses 


example 3


 If you take off your glasses, turn them around, and look through them the other way, they still work. This is essentially a demonstration of time reversal symmetry, although an imperfect one. It’s imperfect because you’re not time-reversing the entire path of the rays. Instead of passing first through the front surface of the lenses, then through the back surface, and then through the surface of your eye, the rays are now going through the three surfaces in a different order. For this reason, you’ll notice that things look a little distorted with your glasses reversed. To make a perfect example of time-reversal, you’d have to have a little lamp inside your eyeball!






If light never gets tired, why is it that I usually can’t see the mountains from my home in Southern California? They’re far away, but if light never stops, why should that matter? It’s not that light just naturally stops after traveling a certain distance, because I can easily see the sun, moon, and stars from my house, and they’re much farther away than the mountains. The difference is that my line of sight to the mountains cuts through many miles of pollution and natural haze. The time-reversal argument in example 1 depended on the assumption that the light ray was traveling through empty space. If a light ray starts toward me from the mountains, but hits a particle of soot in the air, then the time-reversed story is perfectly reasonable: a particle of soot emitted a ray of light, which hit the mountains.


Discussion Questions


C If you watch a time-reversed soccer game, are the players still obeying the rules?





2.3 Applications


The inverse-square law


Yet another objection is that a distant candle appears dim. Why is this, if not because the light is getting tired on the way to us? Likewise, our sun is just a star like any other star, but it appears much brighter because it’s so much closer to us. Why are the other stars so dim if not because their light wears out? It’s not that the light rays are stopping, it’s that they’re getting spread out more thinly. The light comes out of the source in all directions, and if you’re very far away, only a tiny percentage of the light will go into your eye. (If all the light from a star went into your eye, you’d be in trouble.)




[image: image]

c / The light is four times dimmer at twice the distance.





Figure c shows what happens if you double your distance from the source. The light from the flame spreads out in all directions. We pick four representative rays from among those that happen to pass through the nearer square. Of these four, only one passes through the square of equal area at twice the distance. If the two equal-area squares were people’s eyes, then only one fourth of the light would go into the more distant person’s eye.


Another way of thinking about it is that the light that passed through the first square spreads out and makes a bigger square; at double the distance, the square is twice as wide and twice as tall, so its area is 2 × 2 = 4 times greater. The same light has been spread out over four times the area.


In general, the rule works like this:




[image: image]



To get the 4, we multiplied 2 by itself, 9 came from multiplying 3 by itself, and so on. Multiplying a number by itself is called squaring it, and dividing one by a number is called inverting it, so a relationship like this is known as an inverse square law. Inverse square laws are very common in physics: they occur whenever something is spreading out in all directions from a point.









Self-check A 






Alice is one meter from the candle, while Bob is at a distance of five meters. How many times dimmer is the light at Bob’s location? ‣ Answer





An example with sound 


example 4 


‣ Four castaways are adrift in an open boat, and are yelling to try to attract the attention of passing ships. If all four of them yell at once, how much is their range increased compared to the range they would have if they took turns yelling one at a time? 


‣ This is an example involving sound. Although sound isn’t the same as light, it does spread out in all directions from a source, so it obeys the inverse-square law. In the previous examples, we knew the distance and wanted to find the intensity (brightness). Here, we know about the intensity (loudness), and we want to find out about the distance. Rather than taking a number and multiplying it by itself to find the answer, we need to reverse the process, and find the number that, when multiplied by itself, gives four. In other words, we’re computing the square root of four, which is two. They will double their range, not quadruple it.





Astronomical distance scales 


example 5 


The nearest star, Alpha Centauri,2 is about 10,000,000,000,000,000 times dimmer than our sun when viewed from our planet. If we assume that Alpha Centauri’s true brightness is roughly the same as that of our own sun, then we can find the distance to Alpha Centauri by taking the square root of this number. Alpha Centauri’s distance from us is equal to about 100,000,000 times our distance from the sun.





Pupils and camera diaphragms 


example 6 


In bright sunlight, your pupils contract to admit less light. At night they dilate, becoming bigger “light buckets.” Your perception of brightness depends not only on the true brightness of the source and your distance from it, but also on how much area your pupils present to the light. Cameras have a similar mechanism, which is easy to see if you detach the lens and its housing from the body of the camera, as shown in the figure. Here, the diameter of the largest aperture is about ten times greater than that of the smallest aperture. Making a circle ten times greater in radius increases its area by a factor of 100, so the light-gathering power of the camera becomes 100 times greater. (Many people expect that the area would only be ten times greater, but if you start drawing copies of the small circle inside the large circle, you’ll see that ten are not nearly enough to fill in the entire area of the larger circle. Both the width and the height of the bigger circle are ten times greater, so its area is 100 times greater.)








[image: image]

d / The same lens is shown with its diaphragm set to three different apertures.






Parallax 


Example 5 on page 25 showed how we can use brightness to determine distance, but your eye-brain system has a different method. Right now, you can tell how far away this page is from your eyes. This sense of depth perception comes from the fact that your two eyes show you the same scene from two different perspectives. If you wink one eye and then the other, the page will appear to shift back and forth a little.




[image: image]

e / At double the distance, the parallax angle is approximately halved.





If you were looking at a fly on the bridge of your nose, there would be an angle of nearly 180 between the ray that went into your left eye and the one that went into your right. Your brain would know that this large angle implied a very small distance. This is called the parallax angle. Objects at greater distances have smaller parallax angles, and when the angles are small, it’s a good approximation to say that the angle is inversely proportional to the distance. In figure e, the parallax angle is almost exactly cut in half when the person moves twice as far away.


Parallax can be observed in other ways than with a pair of eyeballs. As a child, you noticed that when you walked around on a moonlit evening, the moon seemed to follow you. The moon wasn’t really following you, and this isn’t even a special property of the moon. It’s just that as you walk, you expect to observe a parallax angle between the same scene viewed from different positions of your whole head. Very distant objects, including those on the Earth’s surface, have parallax angles too small to notice by walking back and forth. In general, rays coming from a very distant object are nearly parallel.


If your baseline is long enough, however, the small parallaxes of even very distant objects may be detectable. In the nineteenth century, nobody knew how tall the Himalayas were, or exactly where their peaks were on a map, and the Andes were generally believed to be the tallest mountains in the world. The Himalayas had never been climbed, and could only be viewed from a distance. From down on the plains of India, there was no way to tell whether they were very tall mountains very far away, or relatively low ones that were much closer. British surveyor George Everest finally established their true distance, and astounding height, by observing the same peaks through a telescope from different locations far apart. 


An even more spectacular feat of measurement was carried out by Hipparchus over twenty-one centuries ago. By measuring the parallax of the moon as observed from Alexandria and the Hellespont, he determined its distance to be about 90 times the radius of the earth.3


The earth circles the sun, f, and we can therefore determine the distances to a few hundred of the nearest stars by making observations six months apart, so that the baseline for the parallax measurement is the diameter of the earth’s orbit. For these stars, the distances derived from parallax can be checked against the ones found by the method of example 5 on page 25. They do check out, which verifies the assumption that the stars are objects analogous to our sun.




[image: image]

f / The nearer star has a larger parallax angle. By measuring the parallax angles, we can determine the distances to both stars. (The scale on this drawing is not realistic. If the earth’s orbit was really this size, the nearest stars would be several kilometers away.)
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g / The soccer ball will never slow down.
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h / Galileo Galilei (1564-1642)





2.4 The Speed of Light


How fast does light travel? Does it even take any time to go from one place to another? If so, is the speed different for light with different colors, or for light with different brightnesses? Can a particular ray of light speed up or slow down?


The principle of inertia


We can answer the last question based on fundamental principles. All the experimental evidence supports time-reversal symmetry for light rays. Suppose that a beam of light traveling through a vacuum slowed down. After all, a rolling soccer ball starts to slow down immediately after you kick it. Even a rifle bullet slows down between the muzzle and the target. Why shouldn’t light slow down gradually? It can’t slow down, because of time-reversal symmetry. If the laws of physics said that a ray of light slowed down while traveling through a vacuum, then the time-reversed motion of the ray would violate the laws of physics. In the time-reversed version, the ray is moving the opposite direction and speeding up. Since all the experimental evidence shows that time-reversal symmetry is valid for light rays, we conclude that a ray will never speed up or slow down while traveling through a vacuum.


Why, then, do the ball and the bullet slow down? They wouldn’t slow down at all if they were traveling through interstellar space. It’s only due to friction that they lose speed. The ball slows down because of friction with the grass, and air friction is what decelerates the bullet. The laws of physics are not complicated, and in many ways they’re not even different for light rays than for material objects. The laws of physics are simple and consistent. We can now state the following important principle, first proposed by Florentine physicist Galileo Galilei:








The principle of inertia


A ray of light or a material object continues moving in the same direction and at the same speed if it is not interacting with anything else.





Measuring the speed of light


Observations also show that in a vacuum, all light moves at the same speed, regardless of its color, its brightness, or the manner in which it was emitted. The best evidence comes from supernovae, which are exploding stars. Supernovae are so bright that we can see them even when they occur in distant galaxies whose normal stars are too dim to resolve individually. When we observe a supernova, all the light gets to us at the same time, so it must all have traveled at the same speed.


Galileo made the first serious attempt to measure the speed of light. In his experiment, two people with lanterns stood a mile apart. The first person opened the shutter of his lantern, and the second person opened the shutter on his as soon as he saw the light from the first person’s. A third observer stood at an equal distance from both of them, and tried to measure the time lag between the two. No such time lag was observed, so you could say that the experiment failed, but in science a failure can still be important. This is known as a negative experiment. Galileo’s results showed that the speed of light must be at least ten times the speed of sound. It was important that he published his negative result, both because it convinced people that the problem was scientifically interesting and because it told later workers that the speed of light must be very fast, which would help them to design experiments that might actually work.


The first person to prove that light’s speed was finite, and to determine it numerically, was Ole Roemer, in a series of measurements around the year 1675. Roemer observed Io, one of Jupiter’s moons, over a long period. Since Io presumably took the same amount of time to complete each orbit of Jupiter, it could be thought of as a very distant, very accurate clock. A practical and accurate pendulum clock had recently been invented, so Roemer could check whether the ratio of the two clocks’ cycles, about 42.5 hours to one orbit, stayed exactly constant or changed a little. If the process of seeing the distant moon was instantaneous, there would be no reason for the two to get out of step. Even if the speed of light was finite, you might expect that the result would be only to offset one cycle relative to the other. The earth does not, however, stay at a constant distance from Jupiter and its moons. Since the distance is changing gradually due to the two planets’ orbital motions, a finite speed of light would make the “Io clock” appear to run faster as the planets drew near each other, and more slowly as their separation increased. Roemer did find a variation in the apparent speed of Io’s orbits, which caused Io’s eclipses by Jupiter (the moments when Io passed in front of or behind Jupiter) to occur about 7 minutes early when the earth was closest to Jupiter, and 7 minutes late when it was farthest. Based on these measurements, Roemer estimated the speed of light to be approximately 200,000 kilometers per second, which is in the right ballpark compared to modern measurements of 300,000 km/s.
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i / A modern image of Jupiter and its moon Io (right) from the Voyager 1 probe.
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j / The earth is moving towards Jupiter and Io. Since the distance is shrinking, it’s taking less and less time for light to get to us from Io. Io appears to circle Jupiter more quickly than normal. Six months later, the earth will be on the opposite side of the sun, and receding from Jupiter and Io, so Io will appear to go around more slowly.





Discussion Questions


A When phenomena like X-rays and cosmic rays were first discovered, nobody knew what they were. Suggest one way of testing the hypothesis that they were forms of light.
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k / Two self-portraits of the author, one taken in a mirror and one with a piece of aluminum foil.
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l / The incident and reflected rays are both perpendicular to the surface.
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m / This doesn’t happen.





2.5 Reflection


Seeing by reflection


So far we’ve only talked about how you see things that emit light: stars, candles, and so on. If you’re reading this book on a computer screen, that’s how you’re seeing it right now. But what if you’re reading this book on paper? The paper doesn’t emit light, and it would be invisible if you turned out the lights in the room. The light from the lamp is hitting the paper and being reflected to your eyes.


Most people only think of reflection as something that happens with mirrors or other shiny, smooth surfaces, but it happens with all surfaces. Consider figure k. The aluminum foil isn’t as smooth as the mirror, so my reflection is blurry and jumbled. If I hadn’t told you, you probably wouldn’t have known that it was a reflection of a person at all. If the paper you’re reading from was as smooth as a mirror, you would see a reflection of the room in it, and the brightest object in the reflection would probably be the lamp that’s lighting the room. Paper, however, is not that smooth. It’s made of wood pulp. The reflection of the room is so blurry and jumbled that it all looks like one big, washed-out, white blur. That white blur is what you see when you see the paper. This is called diffuse reflection. In diffuse reflection, the reflected rays come back out at random angles.


Specular reflection


Reflection from a smooth surface is called specular reflection, from the Latin word for mirror. (The root, a verb meaning “to look at,” is the same as the root of “spectacular” and “spectacle.”) When a light ray is reflected, we get a new ray at some new angle, which depends on the angle at which the incident (original) ray came in. What’s the rule that determines the direction of the reflected ray? We can determine the answer by symmetry.


First, if the incident ray comes in perpendicular to the surface, l, then there is perfect left-right reflection symmetry. (It’s just a coincidence that we have reflection symmetry occurring in our analysis of reflection.) If the reflected ray came back at some angle to the left or right, it would violate this symmetry. Therefore the reflected ray must be right on top of the incident ray, straight back up. Because this is the simplest possible specular reflection, we define these angles as zero: all rays have their angles measured with respect to perpendicular, not with respect to the surface itself. Typically the rays themselves will not be perpendicular to the surface, but we still measure their angles with respect to an imaginary line perpendicular to the surface, which we call the normal. (“Normal” is simply another word for perpendicular.)


Now what if the incident angle isn’t zero? Figure m shows what doesn’t happen. It’s not possible for the reflected angle r to be unequal to the incident angle i, because of symmetry. Suppose we lived in a goofy universe, where the laws of physics gave the result shown in the figure: r is always less than i. What would happen if we did a time-reversal on the diagram? Oops — then we’d have r greater than i ! Since experiments support time-reversal symmetry for light rays, we conclude that this is impossible.4 The actual laws of physics give equal angles of incidence and reflection,






r = i .
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n / This does happen.
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o / example 7
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p / A corner reflector
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q / example 8








Reflecting a pool ball 


example 7 


The proof of r = i for light rays works equally well for pool balls, provided that the effects that violate symmetry are small. For instance, we assume that the ball doesn’t have lots of spin put on it, because that would break the left-right reflection symmetry.





Self-check B 






Continue the ray in figure p through its second reflection. In what direction is the returning ray? How does this relate to example 2 on page 22? ‣ Answer





An image 


example 8 


Figure q shows some representative rays spreading out from one point on the flame. These rays strike the mirror and are reflected. To the observer on the left, the reflected rays are indistinguishable from the ones that would have originated from an actual flame on the far side of the mirror. Rays don’t carry any history, so there is no way for the eye to know that the rays underwent reflection along the way. (The rays shown in the diagram form an image of one point on the flame, but every other point on the flame sends out a similar bundle of rays, and has its own image formed.)





Self-check C 






What happens in figure q if you replace the flame with an object that doesn’t emit light, and can only be seen by diffuse reflection? ‣ Answer


Discussion Questions


A Laser beams are made of light. In science fiction movies, laser beams are often shown as bright lines shooting out of a laser gun on a spaceship. Why is this scientifically incorrect?
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Problem 3.
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Problem 4a.
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Problem 4b.





Problems


1 The natives of planet Wumpus play pool using light rays on an eleven-sided table with mirrors for bumpers. Trace this shot accurately with a ruler and protractor to reveal the hidden message.
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Problem 1.





2 Sketch a copy of figure q on page 31. There are some places from which the image is visible, and some from which it isn’t. Show these regions on your sketch by outlining their borders and filling them with two different kinds of shading.






3 (a) Draw a ray diagram showing why a small light source (a candle, say) produces sharper shadows than a large one (e.g. a long fluorescent bulb). Draw a cross-section — don’t try to draw in three dimensions. Your diagram needs to show rays spreading in many directions from each point on the light source, and you need to track the rays until they hit the surface on which the shadow is being cast. 
(b) Astronaut Mary goes to Mercury, while Gary visits Jupiter’s moon Ganymede. Unfortunately it’s hard to tell whose vacation pictures are whose, because everybody looks the same in a space suit. Which picture is which? (Note that the brightness of the light is irrelevant. As you can see, the pictures look equally bright, because they took longer or shorter exposures to compensate for the amount of sunlight.)






4 (a) The first figure shows a surface that is mostly smooth, but has a few irregularities in it. Use a ray diagram to show how reflection from this surface would work. (b) The second figure shows an onion on an old chair. What evidence do you see in this picture that there are surfaces like the one in part a?






5 Many astronomers made attempts to detect the parallax of the stars before anyone finally measured their very small parallax angles. The early results were used as an argument against models of the universe in which the earth orbited the sun. Were all these efforts a waste? Should we criticize the astronomers who made them for producing incorrect results? How does this resemble the story of Galileo’s attempt to measure the speed of light? Galileo’s result could be stated as a lower limit on the speed of light, i.e., a mathematical inequality rather than an equality; could you do something similar with the early parallax measurements? 



6 If a mirror on a wall is only big enough for you to see yourself from your head down to your waist, can you see your entire body by backing up? Test this experimentally and come up with an explanation for your observations using ray diagrams. Note that it’s easy to confuse yourself if the mirror is even a tiny bit off of vertical; check whether you are able to see more of yourself both above and below. (To make this test work, you may need to lower the mirror so that you can’t see the top of your head, or put a piece of tape on the mirror, and pretend that’s the top of it.)



7 The diagram shows the moon orbiting the earth (not to scale) with sunlight coming in from the right. (a) Why are the sun’s rays shown coming in parallel? Explain. (b) Figure out the phase of the moon when the moon is at each point in its orbit. In other words, when is it a new moon, when is it a crescent, when is it a half moon, when is it gibbous, and when is it full?



8 (a) You’re photographing some people around a campfire. If you step back three times farther from the fire to frame the shot differently, how many times longer will the exposure have to be? Explain. (b) You’re worried that with the longer exposure, the dancing flames will look blurry. Rather than compensating for the greater distance with a longer exposure, you decide to open the diaphragm of the camera wider. How many times greater will the diameter of the aperture have to be? Explain.



9 Why did Roemer only need to know the radius of the earth’s orbit, not Jupiter’s?



10 Suggest a simple experiment or observation, without any special equipment, to show that light isn’t a form of sound. (Note that there are invisible forms of light such as ultraviolet and infrared, so the invisibility of sound doesn’t prove anything. Likewise, you can’t conclude anything from the inaudibility of light.) 


In problems 11 and 12, you need to know that radio waves are fundamentally the same phenomenon as light, and travel at the same speed.



11 The Stealth bomber is designed with flat, smooth surfaces. Why would this make it difficult to detect via radar? Explain using a ray diagram.



12 A Global Positioning System (GPS) receiver is a device that lets you figure out where you are by receiving radio signals from satellites. It’s accurate to within a few meters. The details are a little complicated, but for our present purposes, let’s imagine a simplified version of the system in which the satellite sends a signal at a known time, and your handheld unit receives it at a time that is also very accurately measured. The time delay indicates how far you are from the satellite. As a further simplification, let’s assume that everything is one-dimensional: the satellite is low on the eastern horizon, and we’re only interested in determining your east-west position (longitude).5 How accurate does the measurement of the time delay have to be, to determine your position to this accuracy of a few meters?
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Problem 6
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Problem 7.
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