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INTRODUCTION


Maths, Technology and the Imagination


Since the dawn of human history, we have been trying to understand the universe we live in. Science is our attempt to decipher the rules that govern that universe, and to find out what it is ‘made’ of. By contrast, maths is an abstraction from those physical rules: it starts with the basic act of counting, then moves on to use numbers and operations that allow us to make calculations about attributes such as distance, volume, area, weight and so on. And this in turn makes it easier for us to record and evaluate our scientific observations.


So science often depends on maths. But maths is not always tied down to the real, observable world. As a theoretical discipline it can extend into strange realms such as imaginary numbers, levels of infinity, irrational and transcendental numbers and multidimensional objects. There are even many different possible ‘geometries’, depending on what assumptions you make about the world. But for the most part Euclidean geometry, our standard three-dimensional understanding of space, is the one that tends to describe our immediate surroundings most accurately.


Technology is the means by which we use our knowledge of science and maths to achieve something useful in our everyday life. Early examples of technology came when we used a lever to lift a heavy weight, dropped a heated rock into a container of water to warm the liquid, or combined two metals to make a stronger alloy. Over time, humankind developed increasingly complex technology which allowed us to transport goods, build large structures, trigger chemical reactions, cultivate new crops, use steam turbines and much more besides.


We often celebrate the inventors of new devices and technologies as creative geniuses: the names of Thomas Edison, Galileo Galilei, the Wright brothers, George Stephenson, Alessandro Volta, Louis Braille and Marie Curie are immediately associated with the advances they made in science and technology. To make those advances, these inventors and scientists needed a creative vision: they had to imagine a possible application of science, then experiment until they worked out how to turn that vision into reality.


However, it’s easy to forget that maths is also a highly creative discipline, and it is the mathematical imagination that has driven progress in technology for millennia. It has always been one of the lynchpins of new and emerging technologies, from the pulley and the compass through to space travel, computers and future inventions. The Wright brothers needed mathematical equations to calculate the ratio of power, weight and lift that would allow an aeroplane to leave the ground. And, today, the developers of robots, self-driving cars and AI programs are dependent on thousands of different calculations, equations and algorithms that underpin every movement of a robotic hand, and every decision a program or car makes about its next move.


Mathematicians are constantly creating new ideas and fresh theories, and it is not always obvious which ones will end up having technological applications. Network theory was a fairly obscure discipline fifty years ago, but now it forms a key element of how the internet functions. Meanwhile, cryptography today is often based on the factorization of large semiprime numbers, a previously unappreciated part of number theory, while in future it may rest more frequently on the even more obscure maths of elliptic curves. Even those strange realms where maths deals with speculative concepts can end up having technological applications in the end. String theory, a purely theoretical attempt to explain the building blocks of the universe, only works if we assume higher dimensions of reality; in superstring theory, the universe is seen as ten-dimensional, in M-theory it is eleven-dimensional, while bosonic string theory requires twenty-six dimensions. Mathematicians have interacted with physicists to create some extraordinary interpretations of these multidimensional universes.


And, as we shall see, it turns out that the mathematical explanation of black holes used by some string theorists can also be used to describe particular kinds of quantum systems, which are called quantum bits or qubits. It has been speculated that information theory, when it is applied to qubits, could help with the future development of ultrafast computers and completely secure communication. So, whether or not string theory turns out to be a good description of the cosmos, its mathematical building blocks are already potentially useful in creating new technology. And they may have applications in the future that we can’t even guess at today.


Of course, when it comes to the most abstruse and difficult mathematical ideas, it can be difficult to give easy examples for the general reader, which is who this book is aimed at rather than at specialist mathematicians. So I hope it’s understood that at times the maths in this book will be described in general terms. On the other side of the coin, much of the maths can be understood by anyone who studied it at school; it is simply being applied in interesting ways. So where I have been able to find a way to bring particular problems to life with clear examples I have tried to do so.


In terms of organization, I’ve started with some general themes covering mathematical modelling, the development of AI and robots, and pattern recognition. Thereafter the chapters focus on different areas of life in which the interaction of maths and technology has changed, and will change, the way we do things.


We take the technological breakthroughs of the past for granted in our everyday lives whenever we use cars, mobile phones, GPS positioning, computers and many other devices. This book will take a look at how mathematics helped make some of those advances possible and the ways it is driving emerging technologies today, while speculating about the extraordinary devices and processes it may help us to create in the future.









CHAPTER 1


Where Are We Now?


The Maths of Location and Navigation




The mathematical sciences particularly exhibit order symmetry and limitations; and these are the greatest forms of the beautiful. Aristotle





A mathematical model is, essentially, an approximation of the real world, which allows us to use mathematical tools to analyse real-world events. From antiquity, mathematicians have developed methods to try to generate better and better estimates and representations of the real world. Think of how the ancient Greeks found ways to estimate the area of a circle, the volume of a sphere, or the square root of 2, long before modern mathematics provided us with the concept of irrational numbers and calculus allowed us to deal with curved objects more accurately. Mathematical models today underpin everything from our attempts to predict the weather to space travel. The maths used to identify our location in the world is a good place to start exploring the concept of mathematical modelling.


Navigating our Environment


How do we know where we are in the world? Cognitive maps have been studied in a variety of ways over the decades, but in 2005 the neuroscientists May-Britt and Edvard Moser built on earlier work by John O’Keefe to show that there is something similar to a GPS system in the brain. In a study of rats, they identified ‘grid cells’ which would fire according to the specific location the rats found themselves in. This suggests that there is effectively a grid in the brain that matches up to the real world: obviously the cells aren’t actually laid out in a grid, but particular neurons do respond to particular places within an environment.


It has been known for millennia that there is an association between memory and location; one of the earliest mnemonic devices, the method of loci (or memory palace), allowed users to retain large amounts of information by associating them with rooms or spaces in a building well known to the mnemonist. But progress in the way mathematics dealt with location had more or less stopped after the creation of maps and measurement of distances, directions and elevations. It took the genius of René Descartes to find a clearer mathematical definition of our location in space.


The story is that he was idly watching a fly wander around on his ceiling and wondering how best to describe its location at a given time. He realized that he could use one corner of the ceiling as a reference point and use the distance along each of the two adjacent walls to create an exact reference for location.


This led to his creation of Cartesian coordinates, which are the underlying principle of graphs, with the corner of the room becoming the origin and the two adjacent walls the axes (which can also be continued indefinitely in either direction). The rats in the experiment described above were essentially using a rudimentary xy-coordinate system. The addition of a z axis, perpendicular to the other two, allows for an accurate description of location within a three-dimensional space. In addition, once we start mapping out equations on the graph, we can create paths and shapes that occupy that space. For instance, on a two-dimensional graph, x2 + y2 = r2 will draw a circle with its centre on the origin and a radius of r. Below is the graph of x2 + y2 = 52. Every point on the circle gives a pair of values x and y that are a solution to the equation. The only solution in which both x and y are positive whole numbers is the Pythagorean triple, x = 3, y = 4, r = 5. (A Pythagorean triple is a set of three whole numbers that can form the lengths of the sides of a right-angled triangle.)
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The Satnav World


The concept of Cartesian coordinates is fundamental when it comes to defining the location of a person or vehicle using GPS. The history of automobile navigation devices takes us on a weird and wonderful journey through some bizarre devices. The earliest was patented in 1909. It was called the Jones Live-Map and involved a turntable with a pointer on it, which measured both direction and, through a cable connected to the wheels, distance. You could place a paper disc on the turntable with directions for a single route; the idea was that the disc would turn as you travelled so that an arrow lined up with the current step in the directions, but it was pretty ineffective, especially on bumpy roads, which were ubiquitous at the time. A variety of strange mechanical devices followed, all featuring modifications on the basic idea, but none of them worked well.


There was a bit of a leap forward in 1981 when Honda introduced the Electro Gyrocator as an extra feature you could choose in an Accord car. It was computerized, so not easily jogged out of position by uneven roads. However, as with the Jones Live-Map, it was a single route device which responded to distance and direction, and which would quickly start giving erroneous instructions if you altered your route in any way. Toyota followed, with a similar CD-ROM navigation system in 1987.


Meanwhile the ingredients for the modern satnav were starting to be assembled: the US military had been developing the GPS (Global Positioning System) since the 1960s, but it was made available for the public and corporations to use by President Reagan in the 1980s. The essence of GPS is that signals are exchanged with several satellites, which send out information on their position. By continually interpreting this data, and comparing different satellites’ information, it is possible to come to a highly accurate definition of your position on the planet.


A small British firm, Nextbase, set up by early home PC enthusiasts created the AutoRoute journey planner, a digitized road map of Britain, in 1988. This was the tech that was required to map actual routes along the roads, and to measure their distances (as opposed to the distance as the crow flies).


Finally, in 1990, the Mazda Eunos Cosmo became the first car with built-in GPS. And from there the satnavs and navigation systems have multiplied until today, when it isn’t uncommon in the city to walk into a teenager who, having grown up with a mobile phone, is only able to find their way by staring at a screen rather than looking around them and working out where they are.


The maths is of course rooted in Cartesian coordinates. You can define a place in the world using an xyz grid, but there are some complexities that lead to alternative geographic coordinate systems being used. One common choice of coordinates is latitude, longitude and elevation.


Specifying latitude and longitude requires a map projection. This is the means by which a curved surface is accurately rendered on a plane (a flat surface). The distortions this can cause lead most satnav systems to use a system called Universal Transverse Mercator (UTM) rather than relying purely on latitude and longitude (although some do continue to use the latter).


The UTM splits the planet into sixty latitudinal zones, which are generally six degrees across, and projects each of these onto a plane. Imagine an orange neatly sliced into sixty segments: effectively, if you tried to flatten out the peel from each segment, you would get something close to the UTM. The location is thus defined by the zone number plus x and y coordinates within that zone. Specifying a location means specifying the zone and the (x, y ) coordinates in that zone.


Because the lines of latitude converge (get closer together) towards the poles, where they all meet, every UTM zone is wider at the centre than at the top and bottom. The zones are about 666,000 metres across at the point where the central line of latitude crosses the equator. Then they narrow to approximately 115,000 metres across at 80° South and 70,000 metres at 84° North. (Alternative polar navigation systems are used beyond that point, but the GPS systems used in the average car are unlikely to be called upon to navigate their owners on a journey to the poles.)


How To Eat Pizza the Gaussian Way


The problem of projecting a map of a globe-shaped planet onto a flat plane is an old one with many imperfect solutions. However you attempt to do it, you end up with some areas being stretched while others are shrunk. Look at this map of the world.
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You wouldn’t know from looking at this map that Greenland is only one-eighth the size of South America, or that Africa is over twice the size of Antarctica: the land in the polar regions has been increased the most while the land closer to the equator has been shrunk in order to come up with a map that makes sense in two dimensions.


We know there isn’t a perfect solution to this problem because the great mathematician Carl Friedrich Gauss proved it in his Theorem Egregium (Remarkable Theorem). Here’s a rough explanation of how it works. Imagine taking a rectangular piece of paper and rolling it into a cylinder. It looks curved, right? The challenge Gauss set himself was to define the curvature of a surface in such a way that bending the surface doesn’t actually change the curvature.
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The line b is ‘flat’, c is more ‘curved’ than b, and a is the most ‘curved’.








To make sense of that slightly odd statement, imagine that the fly from Descartes’ ceiling lands on the exterior surface of the cylinder. There are various paths that it could take, which would involve varying levels of curvature. It can take a circular route horizontally around the cylinder (I’m assuming one of the circular ends is on the floor), a flat path up and down the cylinder, or a gentler curving spiral in other directions. Gauss chose to define the curvature of the surface by taking this range of options into account. He assigned a positive value to the most concave paths, a zero value to a flat path, and a negative value to a convex path. Then he multiplied the value of the most convex path by that of the least convex to calculate curvature.


In this case, as no concave path is available on the outer surface of the cylinder, the least convex path is the flat one, so we multiply by zero and get a curvature of zero. So bending the paper has still left it being flat in one dimension, and this will always be the case. This makes sense because, however you bend a shape, the distance from one point to another on the surface will always remain the same: so we say that the Gaussian curvature also remains the same.


This is the essential reason why any flat representation of planet Earth will always distort the distances or angles between places. You can bend a piece of paper into a cylinder, but there is no way to bend it into a sphere without a lot of crinkle (think of the foil wrapping on a chocolate orange!). As it happens, it also explains why the ‘New York Fold’, where you bend the crust of a pizza slice to eat it, is such a popular method. When you pick up a flat slice of pizza, it is liable to be floppy: a bend will develop between the crust and the sharp point, so the slice won’t be stable. If, however, you bend the crust upwards toward the edges as you pick up the pizza, you are forcing the pizza to remain flat along the radius of the circle, from the crust to the sharp point, and you thus have a stable slice of pizza which you can eat without incident.


We probably didn’t need the Theorem Egregium to teach us how to eat a slice of pizza this way, but now at least we know why it works so well.
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The Shortest Distance


Have you ever wondered how Google and other programs and apps find the shortest distance to your destination? The basic mathematical principle comes from Dijkstra’s algorithm, named after its creator, the computer scientist Edsger W. Dijkstra who developed it in 1956.


When you look at a map or an aerial shot of a road network, you are not looking at it in the same way that Google does. You are seeing all the curves, buildings, and greenery and so on. Google is only seeing a graph with nodes and edges, so this is a graph theory problem. It starts with something like the following graph, where each circle is a node and each line between them is an edge. The nodes show fixed points and the numbers on each edge give a reasonable approximation of the time it will take to travel between the nodes that the edge connects.
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So if we want to estimate the time it will take to go from A to G, we start out by giving each node an initial value. We know it will take zero time to travel to A, so we assign a value of zero to it, and a value of infinity to each of the other points. (This may seem counterintuitive, but it will make sense shortly.)
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Next we investigate the nodes that are neighbours to A: we calculate (distance to current node) + (distance from current node to neighbour) and assign new values to them if the actual value is lower than the current value (that’s why we started with infinity for nodes of unknown value). So we give B a value of 5 and C a value of 3.


[image: ]


Next we mark nodes B and C as ‘visited’ (in computing terms, we move them from the unvisited set to the visited set). Now, as C has the lowest tentative distance of the visited nodes, we mark that as the next current mode and do the same thing. Apart from A, C has three neighbours: B, D and F. The distance from A to B via C is 9: we ignore this as it is higher than the current tentative value of 5. The distance from A to D is 7, and from A to F is 11, so we fill these in.
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Next we visit the next lowest value member of the set of visited nodes, B, and do the same. We get the same value of 7 for the journey from A to D via B as we did via C so no need to change that, and the same is true of the journey from A to C via B. But we can give E a tentative value of 12.
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Now D is the visited node with the next lowest value. So we investigate all its neighbours. The only value we need to adjust is the distance from A to E, which is now 10 rather than 12 (for the journey via C and D).
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Next we investigate the neighbours of E and this gives us a tentative value for the entire journey of 17.
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However, we also have to test the unvisited node F before we conclude that this is the final distance, and this allows us to revise the distance from A to G to 15.
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Obviously, in practice, there are further complications, such as roads that might be closed, the traffic conditions, what mode of transport you are using and so on. And, for very complex networks, there are shortcuts, like initially guessing at the most efficient route, and then calculating possible improvements from there. But the essential mathematical model demonstrated here is what underpins any navigation system that identifies shortest routes.


Stochastic Optimization


Finding the shortest route on a map is an example of an optimization problem in which we are looking for a minimal solution to a problem (see pp. 97–100 for more detail), albeit one with a straightforward correct answer. Since the inputs are precise, this is a deterministic process – given the same starting condition it will always produce the same answer. By contrast many optimization problems involve inputs which are subject to random fluctuation, either because the inputs are genuinely random, or because they are sufficiently complex that it is impossible or very difficult to model them using an assumption of deterministic outcomes. In that case we need to use stochastic optimization, which is essentially the process of finding maximal or minimal values for a statistical or mathematical function by using random estimates that are iterated until we reach the best solution. This is the way a navigation system might calculate the time, as opposed to distance, that a particular route might take.


Stochastic processes are used in a variety of science, business, engineering and finance scenarios. They can be used to predict the likelihood of costs running over on a large project, the possible future direction of asset prices, the possible logjams in a supply chain, or the points at which a telecommunications network is likely to be at its maximum and minimum capacity.


In such situations, Monte Carlo simulations can be used to model the system, whether you are looking for a forecast of the range in which most future scenarios will fall (for instance, in a forecast of future GDP, which will often be presented by central banks as a range) or the optimal way to set up a network so that it is resilient.


Monte Carlo simulations, which are named after the famous gambling town in Monaco, were developed in the 1940s by Stanisław Ulam, a mathematician who is also known for his work on the Manhattan Project. He was recovering from brain surgery at the time, and repeatedly played the card game solitaire to pass the time. He became fascinated by the idea of plotting the distribution and probability of certain outcomes. He subsequently worked with John von Neumann, the Hungarian–American mathematician and polymath, to develop the initial idea.


Stochastic modelling is a complex field, involving many separate ways of analysing data. Here is an overview of one way it is used: to model future asset prices. The two elements that can be defined over a period of time for a given asset price are drift, which is the overall average direction of movement, and volatility, which can be represented with a random input. These can be analysed using standard statistical methods to find the standard deviation, variance and average price movement during the given period.


This data is then used (along with a randomly generated input) to repeatedly plot possible future paths of the price. The output will be a range of possible outcomes that will take a normal distribution, meaning, in simple terms, that they can be plotted on a graph as a bell curve. At this point, we are able to make a variety of predictions: the likely maximum and minimum prices at the end of the period, the most likely outcome (at the centre of the bell curve) and ranges that may exclude the top 10% or the bottom 10% of outcomes. Obviously, which we use will depend on what we’re trying to do, which might be, for example, planning to avoid a worst-case scenario or trying to come up with a reliable estimate.
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Similar processes are used by engineers trying to predict the level of water in a reservoir at a given time of year (or how high flood defences need to be so that they are effective against a predicted high tide that comes once in a hundred years, as with the Thames Barrier), electronics businesses trying to ensure they always have the raw materials they need without needlessly stockpiling them, supermarkets trying to buy just enough turkeys for the Christmas period to avoid having to discard too many unused ones on Boxing Day and so on.


Of course, in the post-Covid and post-Brexit period in the UK, we have seen the perils of being too reliant on such models; when an industry comes to trust its last-minute supply algorithms too much, this can lead to catastrophic glitches in the supply chain when the underlying factors change significantly. HGV driver shortages, empty shelves in supermarkets and empty fuel pumps are just some of the possible consequences.









CHAPTER 2


Robots and AI


How Maths Underpins the Horizons and Limits of Silicon Valley




I’m completely operational and all my circuits are functioning normally…
Hal (2001: A Space Odyssey)





Let’s face it, we are already living in the future. We may not have our jetpacks and flying cars yet, but we do have extraordinary things like robots, tasers, mobile phones and self-driving cars. The path to such inventions is a fascinating one that often starts with the fantastical imaginations of science fiction writers: think how the stun guns and handheld communicators of Star Trek have effectively become reality over the years since the show first aired. Essentially, the first element of an invention is the pure idea, and writers and artists are as good as anyone at having ideas. But it takes the laborious work of generations of mathematicians and engineers to turn that fantastical vision into reality.


We Are the Robots


One of the most significant historical changes we are going through is the increasing use of AI and robotics (in the broader sense rather than narrowly meaning a humanoid figure that walks and talks) in the workplace; it is unclear at this stage whether we are heading for a future in which the human workforce is replaced by actual robots (in which case we may need a new economic model) or, as encapsulated in the idea of ‘multiplicity’, a future in which robots will be supplementing the human workforce, meaning we are working alongside them, just as AI is already handling everyday tasks such as dealing unhelpfully with customer complaints over the internet.


The word ‘robot’ was first used by the Czech playwright Karel Capek in his play R.U.R. (Rossumovi Univerzální Roboti or Rossum’s Universal Robots) which featured androids made of organic material. It’s intriguing that, from the start, Capek introduced two fears that have accompanied the development of both real and imaginary robots: firstly, his robots turn out to be more efficient than the humans, and secondly, they end up setting off on a killing spree. Long before The Matrix and The Terminator we were already starting to wonder whether these robot things were such a great idea after all.


Bear in mind that a robot need not be built in humanoid form, although there are situations in which there might be reasons to do that. All it needs to be is a machine that can automatically carry out a series of complex interactions with its environment. Think of the difference between a remote-controlled toy car and the Mars rovers, which have to make some decisions and take actions autonomously. The latter can reasonably be called a robot, the former cannot.


The first device that could truly be called a robot is generally said to be Shakey, which was built in California by SRI International in the 1960s. It was an awkward, slow moving tower on wheels, which could navigate its way through a fairly simple environment, and which was equipped with a camera and sensors to help avoid collisions. In the same period, the first robotic arms were being used in factories; the forerunners of the machines that are so common in car factories today.


The first humanoid robots followed in the 1980s, when Honda developed P3, which could walk, wave and shake hands. More recent humanoid robots included Honda’s ASIMO (Advanced Step in Innovative Mobility), well known for having a soccer kickabout with President Obama, and TOPIO (the TOSY Ping Pong Playing Robot). And the robots are getting smarter. Take the Berkeley Robot for the Elimination of Tedious Tasks (Brett, for short), a small robot that can manipulate things in its environment. Brett can learn simple tasks on its own. You can see videos of it working out how to put a square peg through a square hole. This is due to reinforcement learning in which the robot is ‘rewarded’ for getting a task right. In one fascinating experiment, a robot that had been given the instruction to move forward as rapidly as possible made the imaginative leap from walking to running, without having been specifically programmed to do so.


Now we have astonishing specialized robots like SMURF, the soft miniaturized underground robotic finder, which is a very small robot on flexible wheels designed to search disaster sites and find survivors under the rubble.


And, of course, some people worry about the so-called singularity, the point at which machines become so advanced that they surpass the humans who built them.


So, you might ask, what is the maths that underlies all of these advances?


The first thing a robot needs to be able to do is to sense its environment. For this reason it will be equipped with sensors. These can be basic, like Shakey’s bump sensors, or much more advanced. For instance, there are now sensors that can perceive ultraviolet light, air pressure and even smells and convert these into mathematical data. The most fundamental element in most modern robots’ visual armoury is lidar (Light Detection and Ranging), which sends out laser pulses to sense the distance between the sensor and the object it hits. The robot knows the speed of the laser pulse, and when this is pinged back from an obstacle the robot can calculate distance by multiplying speed by time. The data from the pulses is converted into a number stream which gives the robot detailed information about the obstacles around it. This in turn allows the robot to build up a 3D model of its environment, which can be combined with cameras that create an even more detailed image. There is a similar process going on with any other kind of sensor used by the robot: the information is converted into a data stream, which in turn is turned into a model of particular aspects of the environment.


Next the robot will need to be able to interact with its environment. This involves ‘actuators’, which are the combined motor and gearbox that can be found in moving parts of a robot, such as the joint of a humanoid arm. The strength and manoeuvrability of the actuators will define how strong and dextrous the robot is.


This is where some really basic maths comes in handy. If a robot is reaching out to pick up a tool, then it needs to find ways to convert its 3D map of its environment into action. As it reaches out its arm, it has a constant feedback loop which will tell it, among other things, what the angle at the joint of the arm is. And the same information will be flowing from the shoulder joint (if there is one) and the joints of the hand or whatever gripping device it has been equipped with.


Given the lengths of each body part and all of these angles, simple trigonometry can be used to ascertain the location of the hand and fingers. Obviously, this calculation gets more complex as robots get more complicated (and as they have more joints) but at heart it remains a problem that can be solved using the same maths that helped us to understand Pythagoras’s theorem at school.


The last fundamental feature of the latest generation of robots is the ability to learn. This can be achieved through reinforcement learning, demonstrations, or through giving the robot goals to achieve. Humans are natural learners: our brains demonstrate neuroplasticity, in which each new experience creates new connections in our brain, and we can gradually improve our skills. Since computer programs are not as flexible, the challenge is to create an emergent system in which the lower level of inflexible programs can support a higher emergent level which ‘learns’. (In the theory of science, the phenomena of ‘emergence’ occurs when an entity has properties that its parts do not have on their own.)


The essence of machine learning is the way that a robot can recognize and learn about patterns: imagine we show a robot many pictures of an apple, in order to teach it to recognize pictures of an apple that it hasn’t previously seen. After giving the robot the training data, we show it previously unseen pictures and feed back information about when it correctly identifies a previously unseen apple. All the time, the robot is abstracting and refining a model from the images in order to become better at discarding non-apple pictures in future. In order to do this, we need an algorithm which can apply optimization methods to its own performance, tweaking the parameters it uses to make the right choice, so that it improves through experience.


The areas of maths involved in this task are wide and varied. As well as optimization theory and programming languages, some of the key areas are linear algebra, calculus, matrices and probability; essentially, the computer will receive data and store it in ways that are usable and retrievable. The algebra and calculus are all part of the machine’s ability to model the world and to make predictions using probability. Once the algorithm can generate predictions, there then needs to be a way of giving the machine feedback on when it gets things right and wrong, in order for it to adjust its parameters.


Computing Prehistory


All robots rely on the technology of computing. We’re all used to having a computer in our pocket these days (a modern mobile phone would be seen as an incredibly sophisticated miniature computer just a few decades ago). In order to understand how artificial intelligence works, it may be useful to take a brief look back at the development of devices that allow for rapid calculations of various sorts.


One of the earliest was the abacus. It isn’t known where this originated, but it was widely in use in the Mediterranean area in antiquity. One of the first things we know about it comes from the Mesopotamian period (during the third millennium BCE): the abacus involved a series of columns representing figures, with beads on bars representing unit numbers. However, it was probably limited in its mathematical power, as the Mesopotamians used a sexagesimal (base 60) number system, which is unwieldy when it comes to calculations such as multiplication or division.


However, by the end of the first millennium, far more efficient abacuses were in use: we know them from Roman examples, and also from the Chinese ‘Suan Pan’, a Chinese abacus first described in writing in the Supplementary Notes on the Art of Figures by Xu Yue in the second century CE. This was a highly efficient counting device, but it could also be used to do multiplication, division, and even square root and cube root operations, using highly efficient methods.


One fascinating artefact from the second century BCE (or possibly a couple of centuries earlier) is the Antikythera mechanism (named after the Greek island near to which it was recovered from a Roman era shipwreck). It was a small, damaged wooden box which enclosed thirty interlinked gears and levers, making it look a bit like a modern wind-up alarm clock.


It took two decades of work starting in the 1950s by the historian Derek de Solla Price, and further investigations by successive academics who were intrigued by his work, to start to uncover its secrets. They noted that the Ancient Greek symbols on the device referred to zodiac signs and calendrical references. Based on this, they took a leap of faith and linked it to a mention in Cicero's writings of a mechanical planetarium called a ‘sphere of Archimedes’, which demonstrated how planets in the solar system moved relative to the Earth; they guessed that this was that same mysterious device.


We now know it could indeed track the lunar calendar, as well as predicting eclipses and phases (and even the elliptical orbit) of the Moon. It also marks the seasons, and even festivals. It has been described as ‘the world’s first analogue computer’, which, given that mechanical aids such as slide rules or tide predictors can also be described as analogue computers, seems accurate.


Calculators didn’t advance much from the abacus over the centuries. It took two great mathematicians to push things forward. Blaise Pascal built fifty copies of a machine he invented in the 1640s called the Pascaline; you entered numbers by moving dials, and it could automatically add or subtract any two numbers and multiply or divide by repeating these operations. It was the first true mechanical calculator. The great mathematician Gottfried Wilhelm Leibniz got in on the act with his Stepped Reckoner, which was first made in 1694. There were some problems with the mechanism, but the basic calculating element, a ridged wheel which could be turned (known as the Leibniz wheel), was used in subsequent designs for calculating devices. (Charles Xavier Thomas de Colmar used similar technology in his arithmomètre, the first mass-produced mechanical calculator, which was a commercial success in the second half of the nineteenth century.)


An even more significant contribution from Leibniz came in the form of binary code, which he invented in the 1680s, although he saw the idea as being inspired by the great Chinese and Indian mathematicians of the past. In particular, he was inspired by the idea of Yin and Yang, and specifically the I Ching, in which the sixty-four hexagrams are represented using a row of six lines, which can be either broken or unbroken. If we call a broken line zero and an unbroken line 1, then they effectively spell out each number from 0 to 63, meaning there are sixty-four distinct arrangements. (The cryptic texts of the I Ching are numbered from 1 to 64, so we are effectively making the same count, shifted one unit down.) Here is the hexagram with six broken lines:


[image: ]


This can be interpreted as representing the binary code for zero = 0 + 0 + 0 + 0 + 0 + 0 = 000000.


Whereas here is the hexagram with six unbroken lines:


[image: ]


This can be interpreted as representing the number 63 = 32 + 16 + 8 + 4 + 2 + 1 = 111111. (Each binary digit represents a power of 2, so the right-most digit is 20 = 1, the next digit to the left is 21 = 2, and so on.) So, for 41 = 32 + 8 + 1 = 101001, we would have an unbroken line at the top, below that one broken line, one unbroken line, one broken line and an unbroken line at the bottom.




Floating-Point Numbers


Binary code as Leibniz developed it can be used to represent any positive integer. This can be useful in computing, as it is relatively easy to make chips in which each ‘switch’ has only two possible outputs. But as well as needing a simple counting system based on this, computers also need to be able to handle more complex concepts than ‘counting numbers’: they must work with negative integers, and rational and irrational numbers. So some clever shortcuts were required. In scientific notation, very large or very small numbers are represented using a number between 1 and 10 multiplied by a power of 10. For instance, 16,000,000 would be represented as 1.6 × 107. Binary versions of numbers can also be represented this way.


Floating-point numbers are similar, but the radix (or decimal point in base 10) which separates the integers from the fractions of integers is dealt with differently. The stored data is a significand (a stream of digits without a radix) and an exponent: the system will always use the same base number, so it applies this exponent to the base, and multiplies the significand by this. The significand 17364 with an exponent of 4 and a system base of 10 would be equivalent to multiplying 1.7364 by 104. An alternative method is to store a string of digits in which the radix is centrally located: so 127.93845 would be stored as 0012793845. And the same methods can be used to store binary numbers. There are varying ways of actually coding these representations of numbers; since the IEEE 754 Standard for Floating-Point Arithmetic was established in the 1990s, it has been widely adopted.





We’ll return to binary code shortly.


The slide rule, an analogue calculating device rather than a digital one, was invented in the seventeenth century, and was used for some fairly complex calculations. It functions by adding or subtracting the numerical exponents of numbers, which can be used as a shortcut for multiplication or division. As a simplified example, it’s like multiplying 23 by 27 by adding 3 + 7 to get the answer 210. More analogue devices followed later in the nineteenth century, using similar mathematical strategies. William Thomson (now remembered as Lord Kelvin) created his tide predictor in 1873. He had invented the idea of harmonic analysis of tidal patterns the decade before; the tide predictor, based on this analysis, was a Heath Robinson affair: the liquid moved a series of dials, which would produce an accurate prediction of tidal patterns over coming weeks and months. This was much more efficient than calculating the patterns by hand. A.A. Michelson and S.W. Stratton took his methods further when they created their harmonic analyser in 1898; it had over seventy-five moving parts and used a combination of levers and springs to output a Fourier series from a given wave input.


Another extraordinary analogue computer was the Water Integrator; this was a differential analyser created in the 1930s by a team led by Vannevar Bush, an American electrical engineer. It relied on ‘mechanical integrators’ (a collection of gears) and water flow between chambers through pipes and pumps to solve differential equations, and was probably the first practical mechanical device to achieve that feat. During the same decade, in Cambridge, Rawlyn Mallock built the Mallock machine, an analogue computer that could solve simultaneous linear differential equations using electrical transformers.


One of the most entertaining analogue computers was the Phillips Hydraulic Computer (also known as the MONIAC) built by the economist Bill Phillips (who was from New Zealand, but studying at the London’s School of Economics) in 1949. It was two metres high, and was based on transparent plastic tanks and pipes attached to a wooden board. Each of the tanks represented an aspect of the UK economy, and coloured water flowing around the pipes and tanks (emanating from the ‘Treasury’ tank at the top) represented how money moved around the economy.


Going back to the digital front, a hugely important step in the first industrial revolution came in the eighteenth century with the mechanized loom, which allowed machinery to follow a pattern, so that it could output such complex fabrics as brocade and damask, which would previously have involved many hours of laborious handwork. The main element of this technology was punched cards: stiff cards with holes punched in them. As these passed through the mechanism a rod manoeuvred a hook into one position for a hole and another where there was no hole. This alternation between ON and OFF dictated the pattern.
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