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    APRESENTAÇÃO


    Este último volume da coletânea A sociedade do conhecimento e suas tecnologias: estudos em Ciências Exatas e Engenharias visa compor uma coleção de diversos textos acadêmicos com uma abordagem genuinamente multidisciplinar. Teremos estudos que vão desde a teoria da turbulência até a investigação do comportamento de filtros eletrônicos. Ademais, sob a luz dos autores contemporâneos, esta obra também está recheada de conceitos e metodologias atuais com o fito de melhorar a qualidade de vida das pessoas. Em particular, nos enfocamos na aplicação de nanotecnologia a doenças neurodegenerativas, i.e., doença de Parkinson, tão bem quanto na utilização de tecnologias para a geração de energia e de recarga de equipamentos implantados.


    Inicialmente, fazemos uma análise de equações de Navier-Stokes e teoria da turbulência. Para isso, é usado as equações estocásticas na formulação das hipóteses do movimento de partículas de fluido no escoamento. Em seguida, é feita a investigação do comportamento dos filtros eletrônicos passa-baixas e passa-altas quando a frequência da fonte de tensão é modificada.


    Por outro lado, também é estudado a transposição de alguns desafios acerca de doenças neurodegenerativas, em especial, na parte medicamentosa. Pensando nisso, invocamos alguns preceitos de nanotecnologia, e.g., tratamos de nanotubos de carbono, de fulereno e de nanopartículas poliméricas e magnéticas.


    Por fim, foi efetuado uma revisão bibliográfica em publicações de organismos técnicos e instituições de fiscalização da saúde, sintetizando os dados em argumentos necessários para subsidiar a aplicação de um método que seja eficiente para cumprir com o objetivo em tela.


    Adailton Azevêdo Araújo Filho
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    ABSTRACT: The Navier-Stokes Equations are used a mathematical model for the analysis of flows since the 19th century, however, the difficulty of using and understanding the existing physical phenomena increases considerably as the Knudsen Number increases, which limits our understanding of these equations and their physical meanings. The aim of this article is to introduce new physical-mathematical concepts in the formulation of these equations to broaden the understanding of the phenomena described by them, with the intention of demonstrating that the Navier-Stokes Equations are a particular case of a set of more general equations, both for incompressible and compressible flows, so that we are able to devise a better explanation for phenomena little understood today, such as transient flow, for example. For this, I take into account the theory of Stochastic Equations in the formulation of the hypotheses of the movement of fluid particles in the flow, incorporating the concepts of mean and standard deviation in its position, as well as the introduction of a purely random term in the equations. This last term suggests that it is particularly important in flows with higher Knudsen Numbers, which introduces the explanation of the movement of particles in the transient and turbulent flow.
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    INTRODUCTION


    Consider a small lake in any region of space, in which the water that comprises it does not flow in any direction. It is known from experience that when a pollen grain is released on the surface of this lake, it will travel unpredictable trajectories due to the existing shocks with the particles that make up the fluid. This phenomenon was explained yet through the physical-mathematical formulation of the phenomenon known as the Brownian Movement (EINSTEIN 1926). If, for whatever reason, an external force initiates the movement of water from this lake at low speeds (that is, a laminar flow begins), the model currently used to describe the flow is the one that uses these particles to start, from then on, an extremely well-ordered movement, with a succession of infinite well-ordered queues composed of infinite particles, of length and width analogous to the lengths and width of the flow, of infinitesimal height and each composed of infinite particles well aligned and ordered. So if, at this moment, we choose to evaluate the movement of these particles in this flow through an Eulerian description (considering an area small enough to pass only one particle at a time in a random region of the space through which the flow passes, then we can verify the movement of the particles that pass through this area) and think about considering the calculation of the quantity of particles that pass through this area per unit of time (that is, the frequency with which the particles pass through this area), we will notice that there will always be at least a particle passing through this area, regardless of the instant of time that we analyze or what region of the flow we imagine this area to be. To try to make this a little clearer, consider the following example: if we consider this same area close to the size of a particle in a random region of the space through which the flow passes, mark an initial time value and evaluate time intervals of one nanosecond, one microsecond, one millisecond, one second or any other variations of time, both larger and smaller, we will notice that there will be a particle crossing this area in each evaluation. This is because the particles used in the current models have no dimensions and, therefore, we will always have at least one particle passing through the section per unit of time. Physicaly, this approximation occours when the Knudsen Number of the flow is very small, lesser than 10-3(FILHO 2007). The Knuden Number is defined as the Equation (1) below.
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    in wich [image: ] is the free middle path and [image: ] is the physically representative length scale. Thus, in spite of being widely used today, the Navier-Stokes Equations have limitations that begin to become evident as the turbulence begins to have greater influence, that is, as the Knudsen Number increases. As examples of these limitations, we can mention that the Navier-Stokes Equations lose precision when evaluating bubbles in a flow, mists or any other examples that have a higher Knudsen Number. To circumvent this, we will consider that the effects of imprecision in measuring the displacement of a particle arising from the Brownian Movement is something intrinsic to the behavior of the particles, that is, we will consider that each particle in the laminar flow, for example, starts the movement maintaining among its characteristics a certain randomness and, thus, are not arranged in well-ordered sheets as in the current models: in this case, we are considering that the laminar flow is, in reality, a flow formed by particles that have influence of innumerable combinations of external actions to each of them, and that this influence is severely reduced by external forces acting on this flow and directing it, leading us to the understanding that in this flow there are queues composed of rows of particles, but they have small movements in the empty spaces between them. This means that, however much the external forces reduce the effect of randomness in the movement of each of the particles when they direct the flow, this effect of randomness hardly reaches zero, as in the models currently used. In this way, although the laminar flow of the particles has a relatively well-ordered movement, they still suffer random effects, which can be caused by shocks between the particles or any other physically existing factors. In addition, we will consider that, as the flow regime changes from laminar to turbulent, the movement becomes more influenced by randomness and the movement of the particles naturally goes from less to more disordered, so that, for laminar flows randomness tends to a minimum value, which grows as the flow velocity grows so that, thus, we have a model capable of dealing not only with laminar flows, but also with turbulent flows.


    Finally, we will consider that the position of this particle in space (analyzed from the point of view of the Eulerian description) is given by the average of the frequency with which distinct particles pass through a section of the size close to that of a single particle in any position of the section flow, that is, the mean is given in terms of the frequency with which the particles pass through this section (note that, for this case, the particles have dimensions and, therefore, from time to time there will always be a very small time interval in which no particles will be crossing this section). In addition, this average in the displacement of a particle is added to an uncertainty term caused by the randomness effects described above, which arises due to the empty space that each particle can occupy in the region between the particles, and which has a very small numerical value for laminar flows, but their importance increases as the flow tends to suffer greater turbulence effects.


    PHYSICAL-MATHEMATICAL CHARACTERIZATION OF THE PARTICLE DIFFUSION PROCESS


    Consider a particle in one-dimensional Cartesian space, analyzed from a frame at a fixed point in space. The behavior of the particle can be represented through the equation of a damped wave (SILVA 2007), as expressed through Equation (2) below.
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    where [image: ] represents the number of particles per meter, [image: ] representes the time, [image: ] represents the diffusion coefficient and [image: ] represents the speed at which the particle traveled any distance [image: ] in a time [image: ]. To begin the study of the equation, consider that [image: ], where [image: ] represents the frequency of wave vibration. Thus, the solution of Equation (1) is given by Equation (3) below.
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    where the terms A and B are constant, and their values are provided through Equations (4) and (5) below.
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    The speed of wave propagation can be defined as
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    These results are consistent with physical reality for frequencies much higher or much lower than the ratio [image: ] (SILVA 2007). Furthermore, it also shows us that the solution for Equation (1) for the general conditions [image: ] and [image: ] can be rewritten as presented in Equation (7), gives below.
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    where [image: ] e [image: ] are first-class Bessel functions. For the case in which [image: ], we will have that
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    The expression above indicates that the wave propagation speed is, at most, numerically identical to the speed of the particles. Assuming that the product [image: ] is of the order of the free middle path, the argument of Bessel functions presented in Equation (7) grows in an important way for the case in which [image: ] and, thus, we rewrote the Bessel function according to Equation (9), given below.
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    This way, Equation (7) can be rewritten according to Equation (10), given below.
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    where [image: ]. Note that, physically, the first term of Equation (10) quickly becomes negligible, and the second term refers to the solution to the problem of particle diffusion. Also note that for values of [image: ] (that is, for long times), Equation (10) comes down to Equation (11) below, which is the well-known solution of usual diffusion. This analysis refers to the [image: ] axis, however, for the rest of the theory exposed in this work, an analogous equation is considered for the other directions analyzed. Note, further, that by dividing the expressions by [image: ], we will have the expression for a single particle: this is the idea that will be incorporated into the displacement model in the next section, both for long periods or not.
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    PHYSICAL-MATHEMATICAL CHARACTERIZATION OF THE PARTICLE BEHAVIOR MODEL


    Consider a three-dimensional orthogonal Cartesian space and a series of particles lined up in a region of this space along the [image: ] axis in the instant [image: ] (ØKSENDAL 2003), and that the displacement of these particles in the instant [image: ] be defined in terms of the frequency with which these particles pass through a fixed section in a random region on the same axis. Also consider that there is an inaccuracy in the displacement of this particle (since each particle moves preferentially in the direction [image: ], but it can have small movements in the directions of the other axes and in the spaces between the neighboring particles), and that this inaccuracy is given in terms that involve the standard deviation of their displacement. Finally, consider that each of these particles is subject to several different combinations of energy and momentum over time, so we use a term in the formulation of its position to consider these effects of randomness (RUFFINO 2009). From what has been explained so far, starting our analysis by adding several other particles in this space and assuming that there is a laminar flow, with well-defined geometric shapes and flow direction, we have that any queue of this flow has relatively well-ordered particles and in a large number of them but that, in fact, the number of particles is finite, that these particles move in one direction, but that these particles can also move through the small empty space between two different particles, whether particles on the same queue, or particles on different queues. So, in short, we are considering that the displacement of the particle over time is provided by adding the average of the displacement measured by a fixed reference (DOOB 1953) (which, in this example, refers to the displacement measured in the direction of the x axis, which is the direction where the flow occurs) with the standard deviation influenced by the randomness of combinations that can appear in this space (which refers to the small displacements that each particle can have in relation to the other axes and caused by the empty spaces between different particles) (DURRET 2010). At this point, we start from one hypotheses to formulate the particle displacement model: a system is described by a stochastic process when the system’s variables are random (CASTRO 2013). So we assume that the movement of each of the particles in the empty space between different particles (whether of the same queue or not, ie, the movement in the region that corresponds to the standard deviation of the displacement of the particle) is defined so that the displacement of a particle in the empty spaces occurring in a time interval is independent of the variations already occurred in previous time intervals and that, in this way, these displacement increments are determined through a Brownian Movement (EINSTEIN 1926), ie, the movement of a particle in the empty spaces is given by equating a Brownian Movement for each of the three axes. A direct consequence of this hypothesis is that this random term of particle motion follows a normal distribution of probabilities. From the exposed to the moment, the variation of the position of each particle in relation to the three dimensions is expressed as expressed in Equation (12) below.



OEBPS/Images/32.jpg


OEBPS/Images/3.jpg


OEBPS/Images/15.jpg


OEBPS/Fonts/MyriadPro-BoldIt.ttf


OEBPS/Images/16.jpg


OEBPS/Fonts/MinionPro-Regular.ttf


OEBPS/Images/23.jpg


OEBPS/Images/25.jpg


OEBPS/Fonts/MyriadPro-Regular.ttf


OEBPS/Fonts/MinionPro-BoldIt.ttf


OEBPS/Fonts/MyriadPro-Bold.ttf


OEBPS/Images/4.jpg


OEBPS/Images/24.jpg


OEBPS/Images/capa.jpg


OEBPS/Images/1.jpg


OEBPS/Images/18.jpg


OEBPS/Fonts/MyriadPro-It.ttf


OEBPS/Images/34.jpg


OEBPS/Images/21.jpg


OEBPS/Images/2.jpg


OEBPS/Images/17.jpg


OEBPS/Images/35.jpg


OEBPS/Images/22.jpg


OEBPS/Images/8.jpg


OEBPS/Images/29.jpg


OEBPS/Images/expediente.jpg


OEBPS/Images/9.jpg


OEBPS/Images/36.jpg


OEBPS/Images/10.jpg


OEBPS/Images/20.jpg


OEBPS/Images/19.jpg


OEBPS/Images/7.jpg


OEBPS/Images/creditos.jpg


OEBPS/Images/28.jpg


OEBPS/Images/11.jpg


OEBPS/Fonts/MinionPro-Bold.ttf


OEBPS/Fonts/MinionPro-It.ttf


OEBPS/Images/26.jpg


OEBPS/Images/13.jpg


OEBPS/Images/6.jpg


OEBPS/Images/30.jpg


OEBPS/Images/rosto.jpg


OEBPS/Images/27.jpg


OEBPS/Images/12.jpg


OEBPS/Images/14.jpg


OEBPS/Images/31.jpg


OEBPS/Images/5.jpg


