

 Go to Code Crushing and see our other
 e-books - www.codecrushing.com.

	

 Capítulo 1:

 Introduction

 There are several MVC frameworks for developing WEB applications, and perhaps you
may be asking yourself why should you learn a new one. The main motivation is to
try to use a tool that will make you worry with nothing more than your business
rules.

“Play” already comes with many infrastructure decisions taken on by you. For
example:

	A server that will be used to publish the application

	Framework for object-relational mapping

	Native support for setting up environments, such as test, homolog, and production

	Utility classes for making integration and acceptance tests easier to be written

	Compiled views

	Tasks ready to package and distribute the application

	Plugin to monitor the database evolution and keep track of the creation of your charts

	Highly performatic and scalable because of its asynchronous nature.

Note that all of this infrastructure alone is useless; the project development team spends several hours assembling such infrastructure
project after project. With this part entirely ready, the developers may be
mostly concerned with just writing business rules related to the application,
which will probably be much more profitable for the company.

 1.1

 Following or not the specification

 In order to provide much more than competitors, Play had to make a bold
architectural decision. The specifications governing the development of Java web
applications were not designed to provide the features offered by the framework.
In order to avoid workarounds, Play decided not to follow the
specifications of JavaEE. At first it may seem that you lose much, as it is now
strongly coupled to it, but stop and think for a second. How often do you keep
switching the implementation? How many times has a project in which you were
participating had to change the JPA implementation? Or implementation of the
JAX-WS specification? The one that handles the creation and use of Web services.

 Based on that, the Play team decided not to give much importance to the
specification. Going the other way, they managed to create a framework that
offers you several technologies for the different layers of your application and
with everything already integrated. These types of frameworks are known in the
market as Full Stack and have been proving to be more productive than
those of competitors. Examples already well-established are Rails, written in Ruby, and
Django, written in Phyton.

 1.2

 No pause for class reloading

 Another bad characteristic of web application development in Java is the famous
mandatory reload that the application has to suffer when a class is changed.
Think about how many times you have been waiting for Tomcat’s hot deploy
after any change. And think about when you were with a logged-in user and the same was lost
after the change. This is a recurring problem that makes developers lose
precious minutes to inactivity. Therefore, many developers develop in debug
mode all the time to try to minimize this waiting time. However, what about when
a configuration file is changed, for example, some .properties or the
persistence.xml of your application using JPA? There is no way for these
 examples; you have to wait for the redeploy until changes are shown.

 As everything in Play is integrated, this problem has also been solved. Any file
that you change in your application is automatically reloaded by Play, much like
what happens during development using scripting languages like Ruby and Php.
Programmers coming from .NET platform are also used to it due to the high level
of integration between the platform frameworks and the IDE for development.

 1.3

 Designed to be scalable

 One last point I want to discuss in order to convince you to devour this book as
if your project depended on it is the power of scalability of Play. Even today,
the most common solution to scale an application is to add more servers and then
balance the load between them. This is a solution that will eventually have to
be taken, but what you mostly want is to delay an increase in design complexity
due to this decision. If your application is installed on several different
servers, how will it handle data of the session user? This is just one example
of added complexity.

 Seeking to improve this aspect, Play uses a server called Netty, which was built
already prepared for dealing with requests completely asynchronously. And it
goes further, since it is of no use for your server to have this support if its
APIs do not have the same principle. The core of Play is based on the
Scala language, which runs over the JVM and has a strong concern with
concurrence and parallelism. Moreover, the Akka project was implemented, which
is the main project of the Java world nowadays when speaking about these
characteristics. Therefore, everything within the framework happens in a
non-blocking way, which greatly increases the scalability of just one instance
of your application.

 And if you still need to scale the application horizontally, including more
servers, Play turns this into a trivial task. It was designed not to maintain
any state, being stateless. Without a state, there is no reason to worry about
in which server the request will fall. Your load balancing will be used at full
capacity.

 1.4

 The adventure begins

 If the above arguments have sharpened your curiosity, start reading the book
now! In the next chapter you will already have a "Hello World" built in a matter
of minutes. And enjoy,! If you realize you already have all of this, just go back
to LeanPub and ask for a refund; you have a time period of up to 45 days for
doing so.

 Capítulo 2:

 First Application

 To begin, let's create our first application with Play! Stay tuned, because in a
moment you are going to have a Hello World to show your colleagues. The
first thing we need to do, as with any framework, is to download Play by
accessing the project website, whose address is http://www.playframework.org/, and
clicking on the download link. The download of Play, as well as Java JDK, go
far beyond the classes that will help us in writing the project. A set of tools
will be downloaded that will help us create the project, start and stop the
server, package the project, and utilize other features.

 2.1

 Creating the first project

 After the download, choose the most suitable location for extracting the zip
file. In order to facilitate our communication, from now on the chosen path for
the extraction will be called $pathToPlay. Now let's create our first
application; in a typical way, we can call it helloworld. Simply open a
terminal, go to your project folder, and type the following:

 1 sh **$pathToPlay**/activator new helloworld

 Don’t forget to replace the $pathToPlay by your installation directory. When
the line above is run, a Play message will be displayed to you with some options
to be used as a template for your project, something like that:

 [image: lista_de_templates.png]
Fig. 2.1

 Choose the option number 3. This template will make activator to
create a project with the minimum necessary.

 Just choose option 2, and a folder with the project name will be created. In a
simple and practical way, we have created a new project. Inside the project
folder, you can see that Play has created a specific structure for us. Try
holding your curiosity; I know it is difficult, but it is not interesting to go
on dissecting folders without having a real need. The important thing now is to
mount the server and see our first application running.

 2.2

 Running for the first time

 Again, we need to access the installation path of Play. By the way, typing this
path all the time tends to get really annoying; therefore, let´s add it to the
path of our system to make it simpler. On Unix systems, this process is as
simple as running the following command:

 Version 2.3 forward, everything that is needed to run your project, is in the the
folder created by Activator. Now, in order to access the console, from the folder
of the project, just type this command:

 1 ./activator

 If you are doing this for the first time, you will need to wait. All dependencies should be
downloaded before you can start the project. Remember, wait for whole
process until the end. After this phase, the Play's console will be opened in your terminal.

 The Play console will be opened on the terminal, similar to the following:

 [image: console-aplicacao.png]
Fig. 2.2

 Now let’s enter the run command and the Play server will start. Notice that
the server runs, by default, in the 9000 port. Access the URL
http://localhost:9000 and that’s it! Our first application is already working.
Part of the page that will be displayed is like the one below:

 [image: tela-oi-mundo.png]
Fig. 2.3

 Press Ctrl+D and then enter to stop the server and, to leave the
console, type exit.

Exporting the sdk path

 Every time we need to create a new project, we have to type the path to
the activator download folder, $pathToPlay/activator. To avoid that,
we can export this to path of your system. In Unix systems this process
is as simple as execute the command bellow:

 1 export PATH=$PATH:$caminhosdkplay

 We can't forget to let the file $pathToPlay/activator executable:

 1 chmod a+x $caminhosdkplay/activator

 In the earlier versions, this same executable used to be called play instead of
activator.

 2.3

 Conclusion

 In this chapter we built our first application draft, hopefully without many
difficulties. In the next chapters we will start building a real application,
and—really, don’t go to sleep yet—there are many emotions coming in the next
scenes!

 Capítulo 3:

 Setting up the application

 Now that we tried a first example and are more familiar with the flow of project
creation, let us begin to build the application we are going to use during the
book. Our project will be based on Agendatech, an application written using the
Rails framework, which attempts to map events that are to take place in Brazil.
The interesting thing about being based on Agendatech is that we already have a
known domain where you can see all the potential that Play has to offer.

To give you a taste, we bring you the features that we plan to implement as you read the book. Remember, for every problem that comes, we will use a Play
facility to help us solve it. Below is the list:

	Registration of events that are to occur

	Registration of events categories

	Events listing

	Upload of the event logo in different formats

	Event approval

	Email of approval

	Improved performance and scalability of the application

	Events compatible with an external application, i.e., a mobile

	Login through Facebook and Twitter

The index page of our project may be similar to this:

[image: site_agendatech.png]
Fig. 3.3

 3.1

 Creating the project and importing it to eclipse

 The first step is to create a project, and for this we will use the sdk we
downloaded. As we already moved the sdk to the path of our operating system,
just choose the folder you like and run the following command line on the
terminal:

 1 play new agendatech

 Now we have the project structure created. A detail that has not been discussed
so far is the IDE we are going to use for the development. For ease, we will
choose Eclipse. This step may sometimes hinder our flow. Who never spent a lot
of time trying to fix the classpath, or who never got hung up because one of the IDE setup files did
not come together with the project? To help on this part, Play brings with it a
task for importing the project to Eclipse. The first step is to access the
folder where the project has been created. Now, at the command line, run the
following instruction:

 1 play

 This is going to open the command console of Play. If you want to take a look at
everything that is available, just enter the following:

 1 help play

 A list of the available commands will be presented. Below is an example:

 [image: help-play.png]
Fig. 3.1

 Eclipse is precisely one of the commands which allow us to create the entire
structure needed to import the project to Eclipse. Without wasting much time, go
on and import the application. Just enter the command in the console, as shown
below:

 1 eclipse

 Now just import the project into your Eclipse. After importing it, the structure
of your project should be like this one, as follows:

 [image: projeto-eclipse.png]
Fig. 3.2

 To check if everything is right, enter the command run in the terminal to
launch the application. If everything is OK, the standard Play welcome screen
should be displayed. Let’s now stop the server, and for that just press _ctrl +
d_.

 3.2

 A bit about folder structure

 The more curious reader should have noticed that inside the project and
target folders are files in Scalalanguage. Do not worry; the Play2
core is written in Scala, but we will be dealing
only with Java in almost every development.

 Another interesting point is the package structure that Play has generated for
us. As previously discussed, instead of spending time on how to separate this
kind of thing, the framework has already generated a source folder, called
app, with the following packages:

	controllers

	views

 Do not be concerned with them right now. In the next chapter, we will begin to
develop the first application functionalities, and of course, they will be
around!

 3.3

 Conclusion

 In this chapter, the idea of the project that we are going to develop throughout the
book has been presented. We will use Agendatech because it has several features
that are common in different projects. And that's what we should worry about,
business rules! The framework will be in charge of the infrastructure details.

 Capítulo 4:

 Beginning the conference registration

 Now that the Project has been created, it is time to begin the implementation of
the functionalities. The first thing to be done is the registration screen for
new events, so we begin to use the structure provided by Play. The screen is
very simple, just an HTML.

 1 <html>
 2 <body>
 3 <form action="/conferences" method="POST">
 4 <input type="text" id="name" name="nome" value="" >
 5 <input type="text" id="contactEmail"
 6 name="contactEmail"value="">
 7 <textarea id="description" name="description" >
 8 </textarea>
 9 <input type="text" id="site" name="site" value="" >
10 <input type="submit" value="New conference">
11 </form>
12 </body>
13 </html>

For the moment, our view is no big deal, just a simple HTML. A file called
new_conference.scala.html will be created and placed in the
app/views/conferences package. And now we can learn about some details of
Play. The first one is the scala word in the file name. Play uses this language
to enable the writing of dynamic pages. Think of it as another view technology
that you have studied. Let's just remember some:

	JSP. Widely used in conjunction with Java frameworks in the market.

	Velocity. Once it was a powerful alternative to JSPs.

	Freemarker. Also widely used due to its template mechanisms.

	ERB. Used in the Ruby world, especially with the Rails framework.

The use of the Scala language is for the view of Play just like the _Expression
Language_ is for JSPs. It has some very interesting points, which will be
discovered as long as its functionalities are developed. Another point to notice
is that the page should be created inside the views/conferences package. The
views package is what Play uses as a standard to store pages. All pages
created in it get a special treatment of the framework. One that is going to be
used is the fact that the page is transformed into a class that can be accessed
from everywhere. Inside the views, you are free to create the structure you want.
Throughout this book, the Play standards will be respected, and the reason is that
we do not want to waste time on infrastructure!

The highlight of having a view that is compiled is that it is not necessary to
wait for the page to run to discover an error. If you want to check if
everything that is being developed is being compiled, access the terminal in
your computer, go to your project’s folder, and enter the command play.

After the Play console has opened, enter ∼run. The run command, as already
seen, starts the server, and the ~ before it is for Play to keep recompiling
any alterations and to keep applying them to the project. This way, any possible error
is promptly shown at the terminal. In Play, everything is compiled, not just the
Java classes.

 4.1

 Understanding a little more about Controllers

 The first thought might be that to access this page you should write the name of
the file in the browser, and that’s it. Remember, your page may contain logics
such as:

 * conference listing
* messages of success and error presented
* values recovered to be displayed in the form fields

 If the access were direct, all this logic would probably be placed into the
view, which would result in serious maintenance problems. We would be mixing
many responsibilities and writing Java code in an inappropriate place. Because
of that, Play prohibits direct access to any view. The idea is that you always
go through a class that can retrieve some objects that are necessary for the
page, and this class takes the decision on which view will be called. These
classes are called Controllers. Note that the name itself indicates that it
controls the flow of execution of your web application. The controllers created
in the application, following the standards, will be placed in the
controllers package. As the views package, we will keep on the standards so
as not to waste time configuring unnecessary details.

 1 import play.mvc.*;
2 public class ConferencesController extends Controller {
3
4 public static Result form() {
5 return null;
6 }
7 }

 There is an interesting detail in relation to the imports that will be used
throughout the book. As Play supports the development in Scala or Java, they had
to make a division in imports. Be aware that any import with the api package
is from the Scala world. The use of Scala classes in its Java code should always
be done with much analysis. The package used for the Java world is play.mvc.

 Just inherit from Controller and your class will have earned several methods
ready to handle the web requests. We have taken the opportunity to add a method
whose purpose is to direct the user to the new events page.

 The return of the new method is an object type _Result_. This is the class
that represents its Response on a project using Play. Through it, we can
return a different status and the type of content that will be returned to the
user in our application. If we wanted to return only 200, indicating that all
worked out, we would have the following code:

 1 import play.mvc.*;
2 public class ConferencesController extends Controller {
3
4 public static Result form() {
5 return ok();
6 }
7 }

 The _ok()_ method is provided by the super class _Controller_. The detail is
that we do not want to return only this status; it is necessary to return the
page that appears in the browser. For doing so, the ok method has a
variation that receives an object type _Content_. There are various
implementations for the Content interface, and the one we will use
represents an HTML return, the HTML class.

 At this moment, Play greatly facilitates our work. As stated earlier, every
written view is automatically compiled into a scala class. We can access it to
invoke the render method and obtain an object type _Html_.

 1 import play.mvc.*;
2 public class ConferencesController extends Controller {
3
4 public static Result form() {
5 Html view = views.html.eventos.new_conference.render();
6 return ok(view);
7 }
8 }

 You must be wondering where this class came from, with such a name,
new_conference. To satisfy your curiosity, take a look at the source
folder called classes_managed, which was generated by Play at the time of
the project creation.

 [image: classes_geradas_views.png]
Fig. 4.1

 This class has a static method called render that returns the Html object
with the content of our page. This is one of the great ideas of Play; compiling
the page makes silly errors, like using the wrong variable or even syntax error
name, to be found without having to access the page. When our page gets a little
more dynamic, we will be able to see even more benefits that this feature brings
to us.

 4.2

 Accessing the page

 Now the controller method that leads to the page already exists, but the most
important thing is still missing: access to the screen. For example, we want the user
to enter the address http://localhost:9000/conferences/new, so it should be
able to access our screen. Let's see what happens if we do this now:

 [image: action_not_found.png]
Fig. 4.2

 Play displayed a very friendly error page to the developer, advising that the
URL typed has not yet been configured. What is missing is to associate the
address requested with the method of a controller, also called Action by
Play. This setting is performed on the routes file, which is in the conf
folder of the project. This folder, as the name implies, contains all the
necessary configuration files for our application.

 The routes file is a simple text file in which we map the relations between
the system URLs and the actions that address them.

 1 # Routes
2 # This file defines all
3 # application routes (Higher priority routes first)
4
5 GET /conferences/new controllers.ConferencesController.form()
6
7 # Map static resources from
8 #the /public folder to the /assets URL path
9 GET /assets/*file controllers.Assets.at(path="/public", file)

 Note that it has a specific format. The first part indicates the verb that
should be used to access the action. The most common options are POST and
GET, but any other that is supported can be specified. Then, the next part indicates the URL that is
being set up. We will discuss more about this URL later because additional settings
can be made. Finally, we’ll indicate what action will address the request to this URL. Now
that everything is set up, just access the URL and the page is displayed
normally.

 Note that everything has been done without stopping the server. At the beginning
we entered ~ run, and Play took care of updating everything for us.

 Now let's conduct an experiment. It is not unusual to write the wrong class name or
the wrong method name. If it happens, another user-friendly error screen
appears.

 [image: erro_no_routes.png]
Fig. 4.3

 The routes file is also compiled! As already said, almost everything in Play is
compiled. The same error could have already been caught by the console itself.
For every change we make, Play compiles and updates it with the application
still running.

 [image: erro_console_rotas.png]
Fig. 4.4

 The compilation error was just a detail that helped us. We will still need to
use the generated class to refer the URLs. Do not bother stopping for lunch; now
jump into the next chapter to continue with the event registration. A situation
you may have found strange is that the Event class was not yet created. No
worries. As we do not need it now, it was left for a later time.

 4.3

 Conclusion

 In this chapter, we studied a little of Play’s general structure. A view and a
controller were built, and we bound the URL with the controller through the
routes file. We noticed how Play is also heavily based on standards. Everything
already has its definite place; therefore, the framework could help us a lot
by maintaining the focus on the business rules and not on the infrastructure.
Moreover, the fact that almost everything is compiled became a differential
because errors are found earlier and with messages far friendlier than the ones
contained in _StackTraces_, generated by runtime errors. All of this will be
further studied according to the needs of Agendatech.

OEBPS/tela-oi-mundo.png

OEBPS/site_agendatech.png

OEBPS/lista_de_templates.png

OEBPS/console-aplicacao.png

OEBPS/classes_geradas_views.png

OEBPS/help-play.png

OEBPS/projeto-eclipse.png

OEBPS/cover.jpeg

OEBPS/erro_no_routes.png

OEBPS/action_not_found.png

OEBPS/erro_console_rotas.png

