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Introduction






Any radio receiver consists of a number of separate ‘stages’, suitably interconnected, each stage representing the equivalent of an electronic ‘building block’. The three basic ‘blocks’ are a tuned circuit, to extract radio signals from the ether; a detector, to turn these radio signals into audio frequency signals (or af); and an electro-mechanical device to turn these af signals into sound (either headphones or a loudspeaker).


Thus the simplest combination of ‘blocks’ is:
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This combination has the particular limitation of providing only very low strength af signals – so weak, in fact, that they would certainly not work a speaker, and only give very weak signal strength in phones. Without going to more ‘blocks’ the only way to improve ‘listening strength’ is to add an external aerial.
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Much better results are possible by adding further ‘blocks’, especially one which magnifies or amplifies the signal output from the detector. This four-block combination can work quite well, and an external aerial may not be necessary (although an advantage in some cases). Also it can be made to operate a speaker.
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There are limits to what can be done with af amplifiers as these will magnify ‘noise’ and distortion, as well as the required af signals. Thus a further step, is to add another block to improve the signal quality in some way or another before detection and amplification. At this point it should also be possible to dispense with an external aerial.
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A simple solution to the ‘improving’ block is a regenerative circuit, which may also be designed to work as a detector as well. The more or less universal solution in modern radio receiver design, however, is the adoption of a superhet front end. This has the effect of extracting a signal frequency intermediate between the radio frequency (rf) picked up by the tuned circuit, which intermediate frequency (if) can itself be amplified before being passed to the detector stage.
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That, in fact, is as far as it is necessary to go for satisfactory reception of long wave and medium wave frequencies – or amplitude modulated (AM) broadcasts. Very High Frequency (VHF) or Frequency Modulated (FM) broadcasts, however, pose further problems for the nature of the rf signal is different, as well as the signal frequency being much higher. The latter means that the conventional form of tuned circuit for AM (usually comprising a ferrite rod aerial) is no longer suitable. Instead an external dipole aerial is necessary. Superhet working is more or less obligatory, so the building blocks now become:
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Because of the higher signal frequency at which FM is broadcast, it is also desirable to preamplify the incoming rf signal, so one more block can be added with advantage:
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Finally, of course, you may want to build an AM/FM radio, when some of the blocks have to be duplicated, the appropriate ‘blocks’ being selected by a wavechange switch:
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It is the purpose of this book to describe and illustrate the design and working characteristics of the various ‘blocks’ from which radio receivers can be constructed. In some cases there are more or less standard designs which have evolved, e.g. for tuned circuits, AM and FM detectors, superhet mixer-oscillators, if amplifiers and af amplifiers. It would be difficult to improve on them with simple constructions. The main field for experiment is possible combinations of these various ‘blocks’ – and in particular the manner in which they should be connected together or coupled for most efficient working.


By treating all the major subjects separately it is hoped that the various design principles will have been made clear – and also how ‘standard’ types of ‘boxes’ can be connected together to make a working unit. It is also shown how additional simple circuits can be incorporated to improve the performance of any basic design.













Chapter 1

Aerial Circuits







The conventional aerial circuit or tuned circuit comprises a variable capacitor in parallel with an inductance (physically, a coil). The frequency (f) at which such a circuit is resonant is given by:
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A practical version of this formula is :
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It can be noted here that a practical inductance will also have a certain amount of resistance, and so the equivalent circuit is as shown in the second diagram in Fig. 1. The presence of such resistance does not affect the resonant frequency of the circuit but only the sharpness of the resonance of the circuit. This controls the quality factor of the tuned circuit (see later). The practical capacitance also has a certain amount of resistance, but this is normally negligible except at very high frequencies (30 MHz and above).


By fixing one component value (e.g. inductance) and making the other variable (e.g. capacitance) it is possible to adjust or tune the circuit over a range of resonant frequencies. Theoretically, on this basis, it is possible to design a tuned circuit to cover the whole range of broadcast frequencies from the ‘top’ (wavelength) end of the long wave band (30 kHz) to the ‘bottom’ (wavelength) end of the VHF band (300 MHz). This is not a realistic solution, and so tuned circuits are designed separately to cover individual broadcast bands, e.g.


Long wave (or low frequency) – 30-300 kHz


Medium wave (or medium frequency) – 300-3000 kHz


Short wave (or high frequency) – 3-30 MHz


VHF – 30-300 MHz
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Fig. 1   Capacitance (C) and inductance (L) forming a tuned circuit.






In practice, tuned circuits are designed to cover the actual spread of broadcast stations operating in these bands, e.g.


Long wave – 50-150 kHz


Medium wave – 500-1500 kHz


Short wave – 18-28 MHz


VHF – 88-100 MHz


A significant fact is that the actual frequency range covered increases considerably with decreasing wavelength of these broadcast bands, e.g.


Long wave – range covered 100,000 Hz.


Medium wave – range covered 1,000,000 Hz.


Short wave – range covered 26,000,000 Hz.


VHF – range covered 12,000,000 Hz.


This makes the design of aerial circuits increasingly critical from long wave upwards (in frequency). Again, in practice, this means that home-made coils are seldom suitable for other than simple long wave and medium wave receivers. Even then, proprietary coils almost invariably give better results because of the better quality factors (or Q) achieved. Nevertheless it is interesting to cover the design of simple aerial coils.


The simplest type of inductance is an open coil of insulated wire wound on a former of insulating material, or it can even be self-supporting if the wire is thick enough. In the latter case the coil is wound on a mandrel and then slid off, being mounted on the wire ends (Fig. 2).
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Fig. 2   Air-cored tuning coils. Coil on left is wound on a former.






The inductance of such a coil is found as follows:
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The effect of wire diameter is not significant, provided the coil diameter is reasonably large, i.e. 1 in. (25 mm) or more. It is therefore logical to use quite thick wire (18 s.w.g. or 16 s.w.g.) in order to minimize coil resistance.


Suppose such a coil is to be designed as the inductive component in a medium wave tuned circuit. The resonant frequency range required is 500 to 1500 kHz. Considering the requirements, first in terms of the product of L and C, from the resonant frequency formula:
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For a fixed value of inductance, maximum capacity will be required to tune to the lowest frequency, i.e. the highest calculated value of LC required. Typically available variable capacities offer a range of 0-200 pf or 0-500 pf. Choosing the 0–500 pf size, at maximum capacity:


L × 500 = 100,000


or inductance required = 200 microhenrys.


Using the same inductance, the minimum capacitance required to tune to the other end of the band (1500 kHz) would be:


200 × C min = 11,000


or C min = 55 microhenrys


Thus a 200 μH inductance would be a suitable match to a 0-500 pf capacitor to cover the range required.


To simplify the coil design we can ‘guesstimate’ a length of 1 in. and a coil diameter of 1 in. Inserting these values in the appropriate formula:
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Inserting the value of inductance required (200 μH) and solving for number of turns :
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Close winding 100 turns of wire the length of 1 in. would permit the use of a maximum wire size of 0·01 in., say 36 s.w.g. To use a larger wire size it would be necessary to increase the length of the coil and recalculate the number of turns required accordingly.


A long-wave coil would require more turns; and a short-wave coil less turns (perhaps only one or two turns).




Q Factor


The effect of resistance in the tuned circuit is shown in simple diagrammatic form in Fig. 3, representative of a resonant circuit. The current flowing in a resonant circuit peaks at the resonant frequency and falls off sharply on either side. The lower the resistance present, the higher the peak (more current flowing) and the sharper it is (the sharper the tuning). Resistance values shown are nominal only to illustrate this effect.
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Fig. 3   The effect of resistance and Q factor on sharpness of tuning.






This can be put another way. The shape of the resonant curve is dependent on the respective values of the reactance on either the coil or capacitor and the resistance present. The ratio of the two is known as the Q factor, when
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Reactance, in ohms, can be calculated from the following formulas:


In the case of an inductance, XL = 2Π fL


In the case of a capacitor, XC = 1/2Π fL


At resonant frequency the reactance of a coil and capacitor are the same, so it does not matter which is considered. A simple calculation will prove this, taking the previous values calculated and a resonant frequency of 500 kHz, namely:


inductance = 200 μH


capacitance = 500 pF


Thus XL = 2Π × 500 × 103 × 200 × 10-6 = 628 ohms


XC = 1/2Π × 500 × 103 × 500 × 10-12 = 628 ohms


The resistance refers to the dynamic resistance to rf currents in the circuit, not the dc resistance. Dynamic resistance is generally known as impedance. In the case of a simple air-cored coil, dynamic resistance may rise up to 100 ohms or more, yielding a Q of less than 10. Very much more efficient coils can be produced with Q factors ranging up to 100 (or very much higher in certain cases). These are invariably wound on a non-conducting magnetic core, either of ferrite or iron dust bound together with an insulator. The actual value of Q achieved has the same effect as that illustrated in Fig. 3. The higher the Q value the sharper, and higher, the peak of the curve. With decreasing Q value the tuning becomes broader and the peak value is reduced as shown in Fig. 3. Sharpness of tuning is always desirable in radio receivers as it gives good selectivity, or the ability to separate one station from another when the two are closely spaced on the frequency band, but see later under Modulated Signals.
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Fig. 4   Basic forms of aerial coils wound on a ferrite rod or ferrite slab.











Ferrite Rod Aerials


In simple terms introduction of a ferrite or similar magnetic material core to a coil greatly increases its inductance. This means that the coil can be made much more compact thus requiring less wire length and less resistance. A smaller wire size can also be used without introducing excessive resistance. Unfortunately no simple formulas apply for the design of such coils, for the size and number of turns required are related to the size and type of magnetic core material used. They are therefore designed on empirical or semi-empirical lines, the latter using charts related to the specific material properties.


Simple coils of this type are wound on standard sizes of ferrite rod or ferrite slab, either as tapped coils or inductively coupled coils – Fig. 4. Some design data are given in Table 1 (end of chapter).


One other advantage offered by ‘cored’ coils is that their inductance can be varied, if necessary, by altering the position of the coil on the core. This can be a very useful feature for adjusting the resonant frequency range of a tuned circuit independent of the variable capacitor, e.g. for setting up or ‘trimming’ purposes. Once adjusted in this way, the coil is then usually locked to the core (e.g. with adhesive or hard wax) to ensure that it remains at a fixed inductance.


The ‘Q’ of a coil can be further influenced by special forms of windings, which can only be tackled successfully by coil winding machines. This is another reason why proprietary aerial coils are (almost) invariably better than home-made coils.


[image: ]

Fig. 5   The tapping point on the aerial coil affects selectivity and sensitivity.











Selectivity and Sensitivity


Selectivity or the ability to tune sharply has already been explained. Sensitivity is the ability to amplify the very weak rf signals received in the aerial circuit to a practical output level, both as regards signal strength and depth of modulation. It is thus just as important as selectivity for satisfactory receiver performance. Both selectivity and sensitivity increase with increasing Q, but the two are not necessarily compatible.


As a basic example take the simple form of tuned circuit with a tapping point on the coil for connecting directly to the detector stage, as in Fig. 5. The end of the coil connected to the earth of the circuit is referred to as the ‘earthy’ end. The tapping point on a coil normally comes about one third the length (number of turns) from this end of the coil. If this tapping point is moved up towards the other or ‘hot’ end of the coil, this will have the effect of increasing selectivity but reducing signal strength or sensitivity. Conversely, moving the tapping point towards the ‘earthy’ end of the coil will reduce selectivity, but increase sensitivity. This, in fact, is one way of adjusting the selectivity and sensitivity of a simple tuned circuit of this type, the aim being to arrive at an optimum tapping point which gives the best possible compromise between selectivity and sensitivity. In practice this does not necessarily mean physically altering the tapping point. With a simple coil it is more practical to add turns at one end and remove turns from the other to ‘shift’ the tapping point.







Modulated Signals


It is possible to increase the Q attainable from coils to very high levels, using some form of positive feedback to neutralize, or partially neutralize, resistance losses. This would seem an ideal arrangement to get very sharp tuning. However, tuning can be made too sharp for a radio receiver as, it has to accept not a single frequency represented by the rf carrier wave, but a whole band of frequencies representing the modulated signal, otherwise some of the af content may be ‘tuned out’ or cut off. This is particularly true in the case of FM receivers, where the signal represents a bandwidth rather than a specific rf frequency. It is in this respect, both for AM and FM radio working, that the superhet receiver scores since it changes the rf carrier and its sidebands to a single fixed frequency, known as the intermediate frequency, and so selectivity can be sharply peaked.







Hearing Two Stations at once


Even the superhet receiver is not immune from interference, however, and simpler receivers considerably less so, due to what is known as cross-modulation. This is caused by the presence of a strong signal near to, but not at, the frequency to which the receiver is tuned. If very much stronger than the actual ‘tuned’ signal, it can effectively modulate that signal. In other words, although the set is tuned to a particular carrier wave frequency which has its own modulation, this carrier is now subject to modulation from the spurious signal. Thus the carrier frequency to which the set is tuned is actually carrying two af programmes. Hence two stations are heard simultaneously.


This is something which can readily happen on the medium wave band, especially when the set is tuned to a relatively weak station and has a much stronger station signal present close to that particular frequency. The cause may not lie in improving the selectivity of a tuned circuit so much as improving the linearity of a detector, for it is at this stage that the trouble will show up. Sharper tuning (i.e. better selectivity) should help, however, for the sharper the tuning the more a tuned circuit will automatically tend to reject any cross-modulation.


Cross modulation does not occur as a problem in the design of VHF receivers, which is why the FM band gives better reception.







Loft Aerials


The loft is the logical place to put an external aerial to improve reception in areas where radio reception tends to be poor. It can be a single dipole or a folded dipole, preferably arranged vertically so as to be non-directional, or horizontally lined up with a particular transmitting station. Its performance can be improved further with the addition of a reflector and directors. These are short lengths of wire or tube which act as ‘false’ aerials (or parasitic aerials, as they are called), with beneficial effects if they are placed in specific positions – see Fig. 6.
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Fig. 6   The simple folded dipole aerial associated with a reflector and directors, or ‘parasitic’ aerials.






A reflector needs to be about the same length as a dipole or slightly longer, located a quarter of a wavelength away (e.g. about 15 in. in the case of a VHF radio aerial). This will have the effect of strengthening the signals coming from the other side and, more important still, reducing interference from the side on which the reflector is.


A false aerial placed on the opposite side to the reflector will have the effect of improving the tuning characteristics of the aerial, again provided it is the right length and in the right position. It needs to be shorter than a dipole and about one-tenth of a wavelength away from it. Its actual length and position will alter the phase relationship between the voltage and current induced in the dipole aerial. In its optimum position it will improve the tuning characteristics for a signal coming from the director-dipole direction. Further improvement may be obtained by adding still more directors, each one shorter than the previous one. This also reduces the impedance of a dipole aerial, which is an advantage for cable matching when using a folded dipole. Folded dipoles typically have an impedance of 300 ohms, although this is reduced by a reflector and director. They may still need a balancing transformer or balun to match a receiver aerial circuit fed by a 75-ohm coaxial cable.


[image: ]

Fig. 7   Ribbon-type folded dipole wire aerial with an effective feeder impedance of 300 ohms.






A simple folded dipole can be made from a single length of insulated wire arranged in the form of an outline ‘T’, as shown in Fig. 7. Spacing between the wires should be ¼ in. The parallel ‘leg’ of the ‘T’ forms the feeder, with an effective impedance of 300 ohms. A simple – and inexpensive – indoor aerial of this type should be readily available from radio shops as a ribbon aerial (a plastic ribbon with two parallel wires incorporated in each edge of the ‘ribbon’ which forms the bar of the ‘T’, and also in the separate ribbon forming the ‘leg’).


Quite elaborate aerial forms consisting of a dipole and reflector and directors are used for television reception, where even higher broadcast frequencies are involved. What may appear puzzling at first is that all the units seem to be electrically connected, i.e. folded dipole, reflector and directors are all mounted on a common metal rod. In fact no electrical connection is involved as the centre of a folded dipole aerial is at zero potential.




Table 1. Examples of Medium-wave Aerial Coil Windings Matching Tuning Capacitor 0-500 pF*








	Ferrite rod dia. † in. mm


	wire size s.w.g.


	no. of turns


	tap at


	alternative coupling coil











	[image: ]


	6·5


	36 or 38


	80


	60 turns


	16 turns







	[image: ]


	8


	36 or 38


	70


	55 turns


	15 turns







	[image: ]


	10


	28 or 32


	60


	50 turns


	10–15 turns







	Ferrite slab † [image: ] (19 mm) × [image: ] (3 mm)


	28 or 32


	60


	10 turns


	10 turns







	

* Increase turns by approximately 25 per cent to match a 0–350 pF tuning capacitor.


† Length is not important.
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		Fig. 59 The ‘front end’ of an AM superhet receiver in box diagram form. In the case of an FM superhet, the first ‘box’ is an if amplifier connecting to a dipole aerial.



		Fig. 60 This is a basic—and virtually standard—design for a combined oscillatormixer circuit. Typical component values can be found in Fig. 65. L1 and L2 are the aerial coils. L3, L4, L5 are the windings of the oscillator transformer, L5 and its associated variable capacitor forming a tuned circuit tuned in step with the aerial tuned circuit by ganging the respective capacitors (as indicated by the dashed line).



		Fig. 61 A basic if amplifier circuit comprising a single stage. Two or more stages may be employed before the detector, e.g. see Fig. 65.



		Fig. 62 Two stages of an if amplifier circuit, showing the standard method of coupling. The single-tuned if transformers (in dashed boxes) are adjusted by iron dust cores, to resonate at the if (intermediate frequency) chosen.



		Fig. 63 Two stages of a typical if amplifier with double-tuned if transformers. Apart from both primary and secondary of the transformers being tuned, this circuit is virtually identical to Fig. 62.



		Fig. 64 Typical automatic gain control (age) circuit ‘tapping’ a proportion of the output signal from the detector and feeding it back to the first if amplifier stage.



		Fig. 65 This is virtually a standard design for the rf and if stages of an AM superhet receiver up to and including the detector. It also incorporates age. Output is fed to an audio amplifier to complete the working circuit, the 10 k ohm potentiometer acting as a volume control. Resistor values are marked on the diagram. Other component values: C1—10 nF	C2—22 nF C3—r6 nF	C4—100 nF C5—10 nF	D—germanium point-contact diode TR1—BF 194B, or equivalent	TR2—BF 195C, or equivalent TR3—BF 195D, or equivalent. The three if transformers used are single-tuned. Equally, double-tuned transformers could be used, modifying connections as in Fig. 63. The oscillator transformer is a standard type.	Supply: 7·5 volts.



		Fig. 66 Four different types of inter-stage coupling.



		Fig. 67 Charge and discharge times or a capacitor expressed in terms of time constant. Thus approximately 100 per cent charge or 100 per cent discharge is achieved in 4 times the time constant.



		Fig. 68 The ‘tighter’ inductive coupling is, the more closely it approaches direct coupling in equivalent circuit (but providing a blocking path for de)



		Fig. 69 Standard method of decoupling a preceding stage from feedback of unwanted signals.



		Fig. 70 Field effect transistors shown in diagrammatic and symbolic forms.



		Fig. 71 Supply and bias polarities associated with N-channel and P-channel FETs.



		Fig. 72 Characteristic curves of a small FET.



		Fig. 73 N-channel FET amplifier circuit. With a P-channel FET the supply polarity would be reversed, but the circuit otherwise identical. Required component values are discussed in the text.



		Fig. 74 Mullard design for a capacitively-tuned FM tuner using a BFW10 field effect transistor in the rf input stage. All component values are shown on the drawing.



		Fig. 75 Elementary tone control circuit applied across the output transformer.



		Fig. 76 Practical tone control circuit with separate treble and bass controls. This would normally be positioned in front of the audio amplifier.



		Fig. 77 Simple half-wave rectified dc supply from a step-down mains transformer.



		Fig. 78 A more practical form of dc power supply. Diodes are type BY164, or equivalent.



		Fig. 79 Tuning indicator circuit. The diode (D1) can be any type (germanium point-contact preferred).



		Fig. 80 Basic battery-condition indicator circuit.



		Fig. 81 Impedance matching networks.
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