
   [image: Cover: Game Theory: Understanding the Mathematics of Life by Brian Clegg]


   
      
         i

         
            Hot Science is a series exploring the cutting edge of science and technology. With topics from big data to rewilding, dark matter to gene editing, these are books for popular science readers who like to go that little bit deeper …

         

         
            AVAILABLE NOW AND COMING SOON:

            Destination Mars:

The Story of Our Quest to Conquer the Red Planet

            Big Data:

How the Information Revolution is Transforming Our Lives

            Gravitational Waves:

How Einstein’s Spacetime Ripples Reveal the Secrets of the Universe

            The Graphene Revolution:

The Weird Science of the Ultrathin

            CERN and the Higgs Boson:

The Global Quest for the Building Blocks of Reality

            Cosmic Impact:

Understanding the Threat to Earth from Asteroids and Comets

            Artificial Intelligence:

Modern Magic or Dangerous Future?

            Astrobiology:

The Search for Life Elsewhere in the Universeii

            Dark Matter & Dark Energy:

The Hidden 95% of the Universe

            Outbreaks & Epidemics:

Battling Infection From Measles to Coronavirus

            Rewilding:

The Radical New Science of Ecological Recovery

            Hacking the Code of Life:

How Gene Editing Will Rewrite Our Futures

            Origins of the Universe:

The Cosmic Microwave Background and the Search for Quantum Gravity

            Behavioural Economics:

Psychology, Neuroscience, and the Human Side of Economics

            Quantum Computing:

The Transformative Technology of the Qubit Revolution

            The Space Business:

From Hotels in Orbit to Mining the Moon – How Private Enterprise is Transforming Space

            Game Theory:

Understanding the Mathematics of Life

            Hothouse Earth:

An Inhabitant’s Guide

            Hot Science series editor: Brian Clegg

         

      

   


   
      
         v

         
            GAME

THEORY

            UNDERSTANDING THE

MATHEMATICS OF LIFE

            Brian Clegg

         

         
            
               [image: ]

            

         

      

   


   
      
         vii

         
            For Gillian, Chelsea and Rebecca

         

         viii ix x

      

   


   
      
         
xi
            CONTENTS

         

         
            
               
	Title Page

                  	Dedication

                  	Acknowledgements

                  	1: Games and the real world

                  	2: Place your bets

                  	3: Von Neumann’s games

                  	4: Reaching equilibrium

                  	5: If at first you don’t succeed

                  	6: Going once, going twice

                  	Further Reading

                  	Index

                  	About the Author

                  	Copyright

               

xii
            

         

      

   


   
      
         
xiii
            ACKNOWLEDGEMENTS

         

         Thanks to the staff at Icon Books, notably Duncan Heath and Robert Sharman. Many years ago, I took an MA in Operational Research at the University of Lancaster, which introduced me to some of the concepts of game theory. My thanks to the lecturers there, particularly Graham Rand, who is still involved with the university. He edits the operational research magazine Impact, for which I have written many articles, including one that led me to look more into auctions and game theory.xiv

      

   


   
      
         
1
            1

            GAMES AND THE REAL WORLD

         

         When I first bought a textbook on game theory many years ago, never having come across the term before, I felt cheated. I was expecting something fun that would tell me the optimal strategies for winning at card games, backgammon and Monopoly. I wanted an interesting analysis of how the games worked mathematically under the hood. Ideally there would also be guidance on how to create your own interesting board games. Instead, I found descriptions of a series of ‘games’ that no one had ever played, with tables of outcomes that did not so much give guidance as show just how impossible it often was to come up with a useful outcome. This was interspersed with a hefty load of mathematical equations. And yet, the more I read about game theory, the closer it seemed to one of my favourite classics of science fiction.

         For his 1950s Foundation series of books (made into a TV show in 2021), Isaac Asimov came up with the concept of ‘psychohistory’. This is an imaginary mathematical mechanism for predicting the future, based on an understanding of human psychology and the behaviour of masses 2of people. In practice, psychohistory was never going to happen. The repeated failures of pollsters who amass vast amounts of data to predict the outcomes of elections, or decisions such as the UK’s Brexit referendum, make it clear that people form far too complex a system to enable reliable mathematical predictions of outcomes. Yet game theory does achieve some of the promise of psychohistory by resorting to the classic approach used by science, particularly physics: modelling.

         The mathematical models used in physics reduce complex systems to simpler combinations of objects and their interactions. Messy aspects of the system are often ignored (it will be noted that this is happening). So, for example, Newton’s familiar laws of motion at first glance don’t appear to describe the real world very well. The first law states that an object in motion will keep moving unless acted on by a force. In everyday experience, such countering forces – like friction and air resistance – are ubiquitous; yet for convenience, models often ignore such things, as they add complexity and can be difficult to account for. This means that the model does not reflect reality – without friction and air resistance, once you gave it a push, a ball on a flat surface would roll on for ever. But simplification makes calculations more manageable and gives an approximation to reality. Similarly, game theory uses mathematical models that simplify human interactions and decisions as much as is possible to help understand those processes.

         The theory of games started with the development of the mathematical field of probability to deal with gambling games and other pastimes where the outcome was dependent on a random source, such as the throw of dice or the toss of a coin. However, in the first half of the twentieth century, a 3handful of individuals and a quasi-governmental American institution took some of the basic mathematics of games and began to apply it to decision-making problems, ranging from economics to the best strategy to win a nuclear war.

         The field that was developed under the name of game theory became detached from ‘real’ games. It was all about strategy – what was the best approach to win, given a set of choices available to two or more players. Games were transformed from pastimes to something deadly serious. This shift was so strong that often those who deal with game theory totally ignore what the rest of the world calls games. However, I believe that this is a mistake. Real games still form part of the continuum – it is just that many familiar games are not interesting from a game theory perspective, either because they are too dependent on random chance, with no strategy, or because they are too complex for strategies to be developed.

         It’s worth spending a moment on the ‘strategy’ word here, as it is often misused, and game theory has its own specialist meaning for the term. A strategy is a plan to achieve a goal. However, as J.D. Williams pointed out in his light-hearted 1960s book The Compleat Strategyst, in game theory, a strategy ‘designates any complete plan’. In general usage, a strategy is usually a best effort to achieve something. But in game theory, a strategy is any complete plan for playing the game, no matter how good or bad. In chess, for example, your strategy could be to always play the piece closest to the bottom left-hand corner of the board that is available to move. Such a strategy would pretty much guarantee losing, but it would nevertheless be a strategy in game theory terms.

         Much early game theory was developed to deal with situations where two players went head-to-head in an 4aggressive win-or-lose situation. This was the circumstance, for example, facing American military strategists when applying game theory to nuclear warfare and whether it was better to be reactive or pre-emptive when it came to nuclear strikes (arguably more a lose-lose scenario than win-or-lose). However, the most valuable impact of game theory in recent years has been in the design of specialist mechanisms to deal with spectrum auctions.

         Selling a spectrum

         The word ‘spectrum’ suggests that these auctions are something to do with selling off an array of colours, but here a different part of the electromagnetic spectrum is under consideration: not visible light, but the segment of radio frequencies available for, usually, mobile phones and wi-fi.

         Historically, radio bandwidth was primarily used for broadcast radio and TV, with a relatively small number of transmitters sending signals to many receivers. Because of overlaps between different transmitters and applications, and because of the crude technology originally used, wide swathes of the radio bandwidth were allocated to broadcasters.

         The exact definition of radio is a loose one. The electromagnetic spectrum is divided up by frequency or wavelength. Wavelength is the distance between equivalent points in the repeating cycles along the progress of a wave. Frequency is the number of such complete cycles of the wave that take place in a second.

         Frequencies on the entire electromagnetic spectrum – which includes radio, microwaves, infrared, visible light, ultraviolet, X-rays and gamma rays – vary from a handful of 5hertz (cycles per second) through to hundreds of exahertz, where an exahertz is a million trillion hertz. The equivalent wavelengths run from hundreds of thousands of kilometres to picometres (trillionths of a metre).

         
            
[image: ]Figure 1.1. Structure of a wave.

            

         

         Radio comes at the bottom end of the spectrum, with the lowest frequencies and longest wavelengths, at its highest reaching wavelengths of about 1cm and frequencies of hundreds of gigahertz (a gigahertz is a billion hertz), though signals at the top end of the radio range are often referred to as microwaves, first employed for communications and radar, but now also used in the eponymous ovens.

         What has transformed the need to squeeze every bit out of the radio spectrum is the growth of two applications – cellular phones and wireless internet. Worldwide cell phone ownership has risen dramatically. In the mid-1990s, around 5 per cent of the world’s population had access to a cell phone. By 2015, the 100 per cent mark had been passed. It might seem that only sportspeople and competitors in TV game shows claim to be able to give more than 100 per cent, 6but this value reflects the fact that in many countries today there are more cellular subscriptions than there are members of the population, both from owners of multiple phones and devices other than phones that use cellular data.

         More recently, the use of wi-fi to connect devices to the internet has become ubiquitous, while those multitudinous cell phones continue to eat up more and more bandwidth of the radio spectrum. Bandwidth describes the range of frequencies or wavelengths that a radio broadcast uses. The more data a device needs to access, the greater the bandwidth. As smartphone technology has transformed cell phones from being simple communication devices to powerful pocket computers, they are starting to use the high-bandwidth flows of data needed to stream videos and perform other data-intensive tasks. This requirement has seen a rapid transition through 3G (third generation) and 4G connections, with 5G now becoming available, providing data rates that had previously only been possible through fixed fibre-optic connections.

         At the same time, television, one of our biggest historical consumers of radio bandwidth, is undergoing a two-part revolution. The first change was from analogue to digital. Digital channels take up a lot less bandwidth than their analogue equivalents, because the data is compressed before transmitting it, making it possible to free up more frequencies for mobile data access. The other stage of television’s transformation, which is only just starting to have a major effect but will transform TV viewing forever, is the move from broadcasting to streaming. Already, a percentage of the population watch most of their TV over the internet. In time, all TV will be watched this way and the bandwidth occupied by TV will be released.7

         Monetising bandwidth

         An example of the process of transferring parts of the TV spectrum to mobile usage in America gives a dramatic portrayal of the way that game theory has come to play a major role in what can be a very lucrative process for governments.

         In 2017, the US Federal Communications Commission (FCC), which regulates US telecommunications, realised there was an opportunity to reshuffle many TV stations’ frequencies, freeing up bandwidth for mobile data. Specifically, they looked at the top end of the 600 MHz TV band, traditionally known as UHF (ultra-high frequency). This proved a particularly useful segment of bandwidth as it was adjacent in the spectrum to existing mobile phone bands, has good range and is effective at penetrating the walls of buildings, which is something of an essential for mobile signals.

         The technical teams responsible for making this happen had two challenges: ensuring that the requirements for TV signals were still covered, though potentially on different frequencies; and getting the most money from the telecoms providers who wanted licences to use more of the available bandwidth for their customers.

         The optimisation of the TV channel allocation made use of a sophisticated mathematical algorithm, but from the game theory viewpoint, the interesting part of the process was the mechanism for allocating licences to the mobile phone operators. The FCC would use an ancient mechanism for selling items among multiple competing interested parties, the auction – but with a new twist devised using game theory.

         Remember that game theory is about more than playing traditional games – it’s a mechanism for designing strategies 8and for decision-making when taking on opponents. Taking part in an auction is exactly the kind of process that game theory was designed to handle: bidders are competitive ‘players’ in a game where the prizes are (in this case) access to bandwidth. How effective a strategy can be often depends on how much we know about the desires and strategies of our opponents. The degree of information available is crucial to the way the game plays out, and this has become central to the design of sophisticated auctions. Before seeing how this is done, it will be helpful to take a look at an apparently simple game that influenced the development of game theory – poker.

         Information and games

         If, like me, you aren’t a poker player, you may be surprised at the suggestion that poker is simple, because it can be tricky to remember the priority of the different hands. However, given those rules, the play is very straightforward – a hand with a higher value always wins.

         Unlike most card games, poker has many different formats. In some, known as ‘draw poker’, the players’ cards are concealed. The only source of information a player has about the strength of the hands of his or her opponents is the way that the players bet and anything that can be deduced from their speech and body language. However, other formats, such as stud poker (where some of a player’s cards are dealt face up) and Texas hold ’em (where cards displayed on the table are included in every player’s hand), provide players with some information on what is available to their opponents.9

         Imagine, though, that all cards in every hand were always visible. It wouldn’t be much of a game, as everyone would have perfect information on what the other players were holding and therefore would know exactly what they were likely to do (unless they were very silly). The level of information available has a strong influence on the ability of the players to develop appropriate strategies.

         We tend to think of an auction as a marketplace, but its power is as a mechanism for sharing information. It exposes the preferences of players of the auction game (the bidders), showing how far they are inclined to go to gain a particular outcome. Unless they get carried away and become irrational, players of the game will not bid higher than they consider the item on sale to be worth. And this is crucial information, because initially no one knows what an object is worth. We are used to many things having a list price, but this is an arbitrary convention. In reality, something on sale is worth what someone is prepared to pay for it. With a list price, the vendor can only guess what that amount is and see if anyone will buy. But an auction is a vehicle for establishing what that value is among the community of game players.

         In the 2017 US spectrum auction process, the gaming power of the auction would be used doubly, first on the TV companies and then on the mobile phone networks. The first phase was to use auctions to see what value TV companies put on releasing bandwidth. The companies were paid to free up some of their frequencies and move to new ones. This involved a kind of auction known as a reverse auction, where, unlike a conventional auction, there is a single buyer and multiple sellers. Each TV station was offered a tailored starting price. Robert Lees, director of the Smith Institute at Harwell, Oxfordshire, who was involved in the FCC process, 10noted: ‘Initial levels were set taking into account the coverage areas and coverage populations of each TV station. So, stations covering large areas of urban population would see high initial prices in the reverse auction. Another consideration was to set the prices at levels which would be sufficiently attractive to encourage high participation levels from the broadcasters.’

         If a station accepted the offer, they stayed in the auction process. If they rejected it, they dropped out and could keep their existing bandwidth but had to move, without compensation, to a new channel (which would cost them money to undertake as they would need to change broadcasting equipment and retune customers’ TVs). In the next round, the prices were lowered and the process repeated. Eventually there would be no new channels left to move to. At this point, the auction stopped and the remaining stations were paid the offer at this level to give up their bandwidth, provided there was sufficient funding available to cover the offers.

         When the required amount of bandwidth had been freed up, the second style of auction, a more conventional ‘forward’ auction was started between the FCC and the mobile networks. Sections of the freed-up bandwidth were given a starting price, and anyone prepared to pay the requested amount entered the auction. The amount then went up, with players dropping out as the pricing got too rich, until the bandwidth was allocated to the last player standing.

         This wasn’t quite the end of the process, as it was possible that bidding would have dropped off too early to be able to fund the release of the TV channels. If this were the case, the auction would be abandoned and restarted with smaller units of bandwidth until a successful outcome was reached. 11There had been plenty of spectrum auctions before, but what was unique here was the two-way facing auctions. Mobile phone companies were familiar with the auction process, but it was new to the TV companies.

         According to Robert Leese, ‘The FCC spent a great deal of time with [the TV companies] to make sure that they understood the process and that all their concerns were addressed. One key feature of the auction design was that participation for the broadcasters should be as easy as possible. They were never asked to select from more than three options at a time. Another key feature was that broadcasters were free to drop out of the process at any time (or not to participate in the first place), safe in the knowledge that they would not end up in a materially worse situation with regard to interference than their situation before the auction.’

         Game theory was crucial to devising this auction design, as it is surprisingly easy to get auctions wrong. As we will discover in Chapter 6, by not anticipating the strategies of bidders, some spectrum auctions have been disasters. However, in the case of the 2017 FCC process, the auctions raised over $10 billion to be paid to the TV industry for the released bandwidth, as well as over $7 billion surplus for the government.

         We will see how game theory got to this point in history – and how it has moved on thanks to the ability of computers to repeatedly play games – but to get into the basics of game theory, we need to travel back in time to the first mathematical explanations of games of chance.12
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            PLACE YOUR BETS

         

         The original theories of games were based on the mathematics of chance – probability. Some of the games studied were purely probabilistic, others combined chance with strategies and decision-making.

         The simplest probabilistic games are those using the toss of a coin. Coin-tossing has the benefit of requiring a minimal level of game equipment, while providing a rather beautiful mechanism in the spin of a coin in the air. Strictly speaking, a coin toss is not entirely fair as it will typically result in the side facing up at the start of the toss being slightly more likely to be the outcome than the other side – but to a reasonable approximation, a fair coin generates a 50:50 probability of turning up heads or tails on any particularly throw.

         The most trivial game based on a coin toss is simply to predict heads or tails. As this is purely random, there can be no strategy and as such it doesn’t come under the remit of game theory. However, things get a lot more interesting when multiple tosses are involved. To understand what’s 14happening, we need to follow the ideas of the Italian physician and gambler Girolamo Cardano, who wrote a book called Liber de Ludo Aleae (‘Book of Games of Chance’) – which was the first systematic exploration of probability in games.*

         One of the innovations that would arise from Cardano’s work was to represent chance using fractions. If we toss a fair coin, half of the time it will come up heads and half of the time it will come up tails. As a result, we can represent the probability of the outcome as ½ for heads and ½ for tails. The total probability of all options should always add up to 1. This numerical representation is extremely useful because it makes it easy to move from probabilities attached to a single event to dealing with multiple events. It’s easier to briefly move away from coins to see how the arithmetic of chance developed.

         Consider throwing dice. Each standard die has six possible outcomes: with a fair die each is supposed to be equally likely.† Each number from one to six has a ⅙ chance of turning up on a single throw. Cardano showed that to get the chance of any one of multiple outcomes, the probabilities are added. So, for example, the chance of getting either a one or a two with a single die is ⅙ + ⅙ = ⅓. The chance of getting, say, one, two or three is ⅙ + ⅙ + ⅙ = ½. Similarly, Cardano worked out that the chance of getting a six on a first throw, then getting a six again on a second throw (or with the simultaneous throw of two dice) was ⅙ × ⅙, or 1⁄36.

         15Cardano also took on the trickier concept of the chance of getting a six with either of two dice, or with either of two throws of a single die. Here, we can’t just add the probabilities (otherwise, with six dice or six throws you would be guaranteed to get a six). We know that the chance of getting a six with one die is ⅙, so the chance of not getting a six is ⅚. This means that the chance of not getting a six with one die and then not getting a six again on the second throw is ⅚ × ⅚, making it 25⁄36. If that’s the chance of not getting a six at all, then the chance of getting at least one six with two throws is 1 – 25⁄36, which is 11⁄36. It’s just less than a ⅓ chance.

         This arithmetic of chance also allows us to start setting a strategy based on the outcomes produced by throwing two or more dice.‡ Once there is more than one die in play, different outcomes have different probabilities. With two dice, the most likely outcome is seven, which has a 6⁄36 (or ⅙) chance of turning up. By comparison, a two or a twelve only has a 1⁄36 chance of being thrown, while a five or a nine has a 4⁄36 (⅑) chance. Knowledge of these probabilities has a strategic role in games that involve throwing two dice, such as backgammon or Monopoly.

         The hidden strategy

         Returning to coins, the importance of having the right strategy becomes more obvious with a more sophisticated game than a single toss. Let’s imagine that the players’ goal is not to make a particular throw – heads (H) or tails (T) – but to 16get a particular sequence of heads and tails. Imagine, for example, that players are allowed to choose a sequence of three outcomes and a coin is then repeatedly tossed until that sequence crops up. The number of tosses required to get to this sequence gives the player their score – after everyone has had a go, the player with the lowest score wins. 

         Given the fact that heads and tails turn up with equal chances, you might imagine that it is no more possible to devise a useful strategy here than it is with a single coin toss. But let’s consider what happens if a person is trying to decide between the sequence HTT and the sequence HTH. If a coin were just tossed three times, each of these sequences has exactly the same chance of coming up – ⅛. It doesn’t matter which the player chooses. But that’s not the game. The rule here is that we continue tossing until the chosen sequence emerges. And in this case, an appropriate strategy gives a player an edge. Given those options, choosing HTT is better than HTH. This emerges from thinking through what would happen if things went wrong.

         In either case, you don’t have a chance of winning until HT is thrown, whereupon, if your choice comes up next, you have won – but the outcome is different if the third throw doesn’t go your way. Let’s imagine that you choose HTH, but the first three throws are HTT. To get as far as HT again, you would have to throw an H and then a T – there’s a ¼ chance of that happening. But if your strategy were HTT and the first three throws were HTH, then you already have H, the initial throw of the sequence, so now you only need to throw a T – with a ½ chance – to get back to HT. Counterintuitively, you are more likely to win by trying for HTT than you are for HTH. More generally, finishing the sequence with a different face to the one you start with is beneficial.17

         Games involving repeated tosses of a coin often require careful assessment of what the best strategy is, as demonstrated by the mind-bending nature of a game devised by two leading eighteenth-century mathematicians, the cousins Daniel and Nicolaus Bernoulli. The strategy for playing this game, as for many others, depends on a concept invented by Daniel Bernoulli, called expected value.

         What’s it worth?

         Imagine you are offered two options for taking part in a coin-tossing game. You can either win £100 if you toss a head, or £200 if you toss two heads in a row. Which outcome is better? (In this unusually generous game, you get nothing for any other outcomes, but you don’t lose anything either.) The expected value – also known as the expected return – is discovered by multiplying the outcome by the chance of getting that outcome. In the single-coin-toss version of the game, you get £100 with a ½ probability – so the expected value is £100 × ½ = £50. For the game requiring two tosses, you get £200 with a ¼ probability, making the expected value the same as the previous game, as £200 × ¼ = £50.

         All things being equal, Bernoulli’s concept of expected value means that you shouldn’t care which game you choose – each has the same expected value. If you played the game many times over, you would expect to get roughly the same amount of money from either game. There’s a devil in the detail, though. Playing the game once, you are twice as likely to win with the £100 version. Although the expected value of the two variants is the same, the strategy has to be 18influenced by another important concept devised by Daniel Bernoulli – the utility of the outcome.

         The utility reflects how significant the potential gain or loss is to you as an individual. An amount of £100 would be considered very differently if you were a millionaire compared to if you were on the poverty line. If it’s a not big deal to you whether or not you win some money in this game, you may well choose the £200 game, taking the extra risk for a bigger potential reward. But if it’s more important to win something – anything – than it is to win big, you are better off going for the £100 game.

         With these concepts in place, we are now ready to take on the Bernoullis’ mind-boggling game. Here, you repeatedly toss a coin until you get a head, at which point the game finishes. If the first throw is a head, you win £1. If the second throw comes up heads, it’s double the prize money: £2. If there’s no head until the third throw, the money is doubled again: £4. If it takes four throws to get to a head you win £8 … and so on, for however many throws it takes. But unlike the pure generosity of the previous game, this game has an entry cost. The strategy required is to decide what you would be prepared to pay to play this game.

         If the entry cost were 50p, the strategy would be trivial. You are bound to win at least £1, so you should definitely play. Even if the cost were £1, you might as well take part because you will get your stake back, whatever the outcome – you can’t lose. But should you go higher than £1, and if so, by how much? We need Bernoulli’s concepts of expected value and utility to work out your best strategy.

         To calculate the expected value, you need to consider all the possible outcomes of the game, as it doesn’t have a fixed length. There is a ½ chance of getting £1, so the first throw 19contributes 50p to the expected value. There’s a ¼ chance of getting £2, so the second throw contributes an additional 50p to the expected value. There’s a ⅛ chance of getting £4 – so it’s 50p again. The total expected value is 50p for each of the infinite set of possible throws, making the total expected value infinite.§ In terms of expected value alone, whatever the entry cost is for the game, it is worth playing.

         When we bring in utility, though, things look different. The most likely win is £1. There is only a 1⁄128 chance of winning £128 or more. The higher the reward, the less likely it is. Clearly, no one but an impulsive billionaire would pay, say, £1 million to enter a game where the most likely outcome is to win £1. The chances of winning more than a million pounds are 1⁄1,048,576 – worse than a one-in-a-million chance. The strategy selected has to take into account the utility for the specific player. Depending on your personal worth, what you consider a trivial amount may be £1 or £1 million – but it would be a poor strategy to risk paying more than you can easily afford to lose on a game like this.

         Despite the many schemes and systems that have been devised historically, there are no strategies available to those playing fair games of chance where the players can make no decisions, but simply wait for the outcome of a single coin toss or roll of a die. However, many other games exist where there is the potential for applying game theory.

         In increasing complexity, we will take a look at noughts and crosses (tic-tac-toe), backgammon, Monopoly and Go.

         20

         Losing should not be an option

         Noughts and crosses demonstrates that requiring strategy does not imply complexity: this is a game where strategy is the only contributor to the outcome – there is no chance involved. In some two-player games, following the best strategy means that the first or second player can always win, but here the perfect strategy will always result in a draw. And that strategy is so straightforward that with a little experience, almost all players reach perfection. In case you somehow missed out on noughts and crosses when growing up, the game is very simple, played on a three-by-three ‘board’ (usually simply lines drawn on a piece of paper):

         
            
[image: ]Figure 2.1. Noughts and crosses board.

            

         

         Players take turns to place or draw an O or an X in one of the nine available spaces. If a player completes a line of three (horizontal, vertical or diagonal), they win. A good player aims to set up a position whereby they will be able to complete either one of two lines, so that their opponent can only block one of those plays. If both players adopt the best strategy, this is not possible and they will always draw.

         The first move made by the second player can make the difference between a draw and a loss for that player. Wherever the first player goes, as long as the second player 21starts in a corner or the centre, it is always possible to force a draw. But if the second player starts in the middle of an edge, they can be forced to lose.

         
            
[image: ]Figure 2.2. A correct strategy from both players, forcing a draw.

            

         

         In the example above, O starts and chooses the centre. X makes a correct response in a corner, and there follows a sequence of O setting up the first two of a row and X blocking until it is no longer possible to complete a row of three.

         
            
[image: ]Figure 2.3. X adopts a losing strategy.

            

         

         However, if X, playing second, chooses the middle of an edge, then O can take the dominant combination of centre and corner. Now X is forced to stop O’s diagonal and O can add a third mark which now gives O two possible lines of attack – whichever line X blocks, O can win by completing the other.

         What lies behind the failing strategy? If, in that second 22game, X had placed a mark in the corner (as in the first game), that player would have two possible future directions to set up two in a row. However, by going in the middle of the edge, with one direction already cut off by the O in the centre of the board, X has halved his or her options and has made losing inevitable unless O makes a silly second move.

         Playing the tables

         Backgammon is a much more sophisticated game than noughts and crosses, one in which probability and strategy each have a part to play. This is an ancient game, with variants dating back thousands of years, and was historically known as ‘tables’. The aim of the game is to move pieces around and finally off the board, based on the throw of two dice (the scores on which are counted separately, so throwing a six and a five, say, enables moves of six and five, rather than a single move of eleven). Players can knock off an opponent’s piece if it is the only one on a ‘point’ (as the triangular playing positions are called), but can’t land on a point if there are two or more of the other player’s pieces already on it.

         One contribution to strategy is the possible outcomes from throwing two dice. As mentioned above, seven is the most likely aggregate score (because it can be made up of 1+6, 2+5, 3+4, 4+3, 5+2 and 6+1); the probabilities of the other aggregates are listed in the table below:

         
            
[image: ]Table 2.1. Probabilities of aggregate scores using two dice.23

            

         

         
            
[image: ]Figure 2.4. Backgammon starting position, showing direction of movement.

            

         

         Knowing this is useful, as one of the gambits available is to apply the scores of both dice to the same piece – so, for example, you might move a piece six places, and then another five places, achieving the aggregate of eleven. However, important though this probability is to the outcome of the game, its significance is modified by the role played by blocked-off points. Much of the strategy of the game involves the manipulation of these blocks. This is particularly important for two reasons. Firstly, because the value on each die has to be moved individually, a piece can only be moved eleven (sticking with the example above) if either the point five ahead or the point six ahead is not blocked. 24Secondly, when a player has one or more pieces knocked off, they cannot take any other action until they have returned the piece (or pieces) to the board. The pieces come back onto the player’s starting quarter of the board, based on the throw of the dice. So if, for instance, white has a piece knocked off and black has blocked points in that section, it becomes harder for white to come back on and continue play.

         Two of the key aspects of backgammon strategy are the opening and closing segments of the game. It is possible to identify the optimum opening move with any dice combination. For example, for a five and a six, a piece from the point with two pieces on should be moved to the opposite end of the board, while many combinations of values two apart (such as a one and a three, or a two and a four) should be used to move one each of the pair of pieces that are separated by two places on the board, blocking off an extra point.¶

         Similarly, when finishing the game, a player has to get all their pieces into their final quarter of the board before they can begin moving them off. Often there is a choice between moving two pieces a short distance or one piece a long distance. If the two-piece move enables the player to get two pieces onto the final quarter, or two pieces off the board entirely, that is strategically preferable, as it leaves open the possibility of finishing in fewer moves.

         25Simple though it looks, there are about 100 million billion possible positions available on the backgammon board, and the strategic range is increased by the most sophisticated addition to the gameplay: the ability to ‘double’. By default, winning a game gains the player one point (or unit of currency). This value is increased to two points if a player finishes before the other has got any pieces off the board (known as a gammon) or three points if a player finishes while the other still has at least one piece left in their first quarter of the board (called a backgammon).

         However, there is also the opportunity for either player, at the start of their turn, to double the value of the game. If the other player accepts, the points available to the winner double – if the other player doesn’t accept, the player offering the double immediately wins, receiving the current value of the game. Once one player has doubled and has been accepted, only the other player can double – this ability passes back and forth between the players.

         Doubling is conventionally recorded on a ‘doubling die’ which has the numbers 2, 4, 8, 16, 32 and 64 on its sides – however, there is no limit in the rules to the doubling, which combined with the fact it is possible to repeatedly knock pieces off, resetting their position, means that in principle there is an infinite set of possible states of the game. (The calculation for the number of possible positions above assumes that there are only three possible states of doubling, corresponding to no one having doubled, white having control of doubling or black having control of doubling).

         Compared with noughts and crosses, then, although backgammon is not purely strategic, it does offer many opportunities for making use of mathematical concepts to enhance strategy.26

         Advance to go

         Many modern board games start from a structure inspired by the backgammon board, though often each player only has a single piece and the board is treated as a continuous loop that can be repeatedly traversed. But in most such games, some or all of the positions on the board have distinctive properties. This is literally the case with probably the best-known twentieth-century board game, Monopoly. Although a version was first devised in 1903 (to demonstrate the evils of property ownership), the game was commercially produced in its familiar form in 1935, based on the streets of Atlantic City, New Jersey. A London version came out in 1936, followed by many other locations around the world.

         As with backgammon, the use of two dice makes the varying probabilities of different combinations coming up a factor in the strategy of the game, though, as we will see, in Monopoly these probabilities are best employed by working backwards from the locations of specific squares.

         Monopoly players may purchase squares on the board that they land on, subsequently charging other players for landing on those squares – a charge that can be increased when a player owns a matching set of squares, particularly if he or she invests by building properties on them. A good move when choosing where to build is to consider which properties the other players are more likely to land on. As we saw on page 22, the most likely throw with two dice is a seven, while anything from five to nine has a relatively high probability of occurring.

         The table above for the chances of different throws is still approximately correct, but the distribution with Monopoly is skewed because when a double is thrown, the player throws 27again. In principle this can happen twice in a row (if it happens three times, they go to jail), so there are significantly more places a player may be forced to land during their next turn. This also alters the probabilities, meaning that, say, the square eight places ahead is more likely to be landed on than the square six places ahead, whereas with a single throw of two dice there is an equal chance of landing on these squares. This is because there are more ways of getting eight from two throws of two dice than there are of getting six. But the key throws of five to nine still dominate outcomes.

         Unlike backgammon, in Monopoly there are other ways to get a piece to move around the board than using the dice. One is the ‘luck’ cards Chance and Community Chest. Each of these has a range of outcomes, which may involve gaining or losing money – but in terms of strategy, the important factor is that they have the potential to move a player to a specific square. This makes those squares more valuable to own – specifically, squares such as the railway stations, Trafalgar Square/Illinois Avenue and Mayfair/Boardwalk.
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