

 Go to Code Crushing and see our other
 e-books - www.codecrushing.com.

	

 Capítulo 1:

 Java 8

 It has been almost 20 years since the first version of Java was launched in 1996.

With the arrival of Java 5 in 2004, the programming language underwent significant changes -- especially with Generics, Enums, and Annotations.

With its 2014 incarnation, Java 8, the same scenario occurs. We now face new possibilities with the introduction of Lambda and Method References, in addition to other small changes. The Collections API, which includes the same main interfaces since 1998, went through a significant upgrade with the introduction of Streams and default methods.

In this book, you will have the chance to practice Java 8 extensively. It’s time to start programming, but first you will need to download and install the Java platform:

http://www.oracle.com/technetwork/java/javase/downloads/

You can access the Java 8 API documentation here:

http://docs.oracle.com/javase/8/docs/api/

Eclipse supports Java 8 since the Luna (4.4) version. You will need the following update for Kepler (4.3):

https://wiki.eclipse.org/JDT/Eclipse_Java_8_Support_For_Kepler

Eclipse still has some minor bugs when it comes to performing more complicated inferences, but Netbeans and IntelliJ have updated their Java 8 versions.

To practice the syntax, you can choose to complete the tests and examples from the book with a simple text editor.

 1.1

 Hold your horses!

 If you expect something on the scale of Scala, Clojure, or C#, be prepared for disappointment. Java’s legacy and relatively young age, besides its lack of value types and reification of Generics, preclude the use of certain strategies. The Java Development Team takes great care to keep the syntax simple, as to avoid obscure features that would only bring little gain. (In our view, this makes perfect sense.)

 On the other hand, it is amazing what has been achieved with the release of Java 8. You might be pleasantly surprised by some of the codes and approaches used. The focus is not breaking the compatibility of legacy Java code, while being the least intrusive with regards to the older APIs. Its new feature, the Streams, will play a crucial role in this elegant upgrade.

What was left out of Java 8?

 In order to better break down Java 8’s specifications into smaller tasks, the JEPs (JDK Enhancement Proposals) have been created -- the inspiration came from the Python community’s PEPs. You can find those in a list of proposals here:

 http://openjdk.java.net/jeps/0

 As you can see, there are many new features in JDK8. Unfortunately, not all of these features had enough time to ripen. Among the JEPs, the Value Objects were left out:

 http://openjdk.java.net/jeps/169

 That was also the case for the use of literals when working with Collections:

 http://openjdk.java.net/jeps/186

 Among other ideas left out, there were several improvements to the already built-in Garbage Collectors, as well as the possible reification of Generics.

 In any case, the absolute majority of the JEPs made it to the final version and were released. Throughout the book, we will see the major changes made to the language and the new APIs.

 1.2

 Access the code and talk to us!

 The source code for each chapter can be found here:

 https://github.com/codeslashers/java8

 We recommend that you alone write all the codes presented in this book so as to practice the API and syntax. We also advise you to perform different tests from those suggested.

 Here is a forum where you will be able to discuss with us or send us your suggestions or comments:

 https://groups.google.com/forum/#!forum/codeslashers-java8

 Capítulo 2:

 Hello Lambda!

 Instead of starting the course with theory, you should first get a feel of how Java 8 will change your way of programming.

 2.1

 The old way and the new way of doing loops

 It is important that you follow the book and recreate the code presented. This way, the syntax will become more natural and familiar to you.

 Open your favorite text editor. Let’s create an entity and run examples based on it. Doing so, we will have the class User with three basic attributes: reputationScore, name, and boolean becomeModerator, indicating that this user will be a moderator in our system, just like this:

 1 class User {
 2
 3 private int reputationScore;
 4 private String name;
 5 private boolean becomeModerator;
 6
 7 public User (String name, int reputationScore) {
 8 this.reputationScore = reputationScore;
 9 this.name = name;
10 becomeModerator = false;
11 }
12
13 public int getReputationScore() {
14 return reputationScore;
15 }
16
17 public String getName(){
18 return name;
19 }
20
21 public void becomeModerator(){
22 becomeModerator = true;
23 }
24
25 public boolean isModerator(){
26 return becomeModerator;
27 }
28 }

 We decided not to make the class public. This way, if you are in a simple text editor, you can create your tests in a public class within the same file.

 Let’s handle a few users with their different names and scores and print each one of them out. We will do this the usual way, the way we already know, without using any of Java 8’s new features.

 1 public class Chapter2 {
 2
 3 public static void main(String... args) {
 4
 5 User user1 = new User("Paulo Silveira", 150);
 6 User user2 = new User("Rodrigo Turini", 120);
 7 User user3 = new User("Guilherme Silveira", 190);
 8
 9 List<User> users = Arrays.asList(user1, user2, user3);
10
11 for (User user : users) {
12 System.out.println(user.getName());
13 }
14 }
15 }

 We omit two imports from java.util.List and java.util.Arrays. They won’t be mentioned in this book, but we will warn you whenever new Java 8 packages come up.

 Arrays.asList is a simple way of creating a fixed List. But you could have created a new ArrayList and added each user to it.

 The for we are making is pretty simple. Since Java 5, we can navigate through any array or collection (actually, in any kind of object that implements the java.lang.Iterable interface).

A new method for all collections: forEach

 With Java 8, we have access to a new method. forEach. Where does it come from? We will discuss this later. First, let’s use it. We can do this:

 1 users.forEach(...);

 What will it do for each user? Print the name. But what is the argument this method forEach receives?

 It receives an object of the type java.util.function.Consumer, with its only method, the accept. Consumer is a new Java 8 interface, like the entire java.util.function package, which will be discussed later.

 Let’s create this Consumer before using the new forEach:

 1 class Displayer implements Consumer<User> {
2 public void accept(User u) {
3 System.out.println(u.getName());
4 }
5 }

 We created a class that implements this new Java 8 interface. It is quite trivial, having accept as the only method, and it is responsible for taking an object type User and using it. “Using” here refers to performing a task that makes sense to you. In our case, it means to show the user’s name on the standard output. After that, we instantiate this class and pass the reference to the expected forEach method:

 1 Displayer displayer = new Displayer();
2 users.forEach(displayer);

 We know it’s common to use Anonymous classes for these simpler tasks. Instead of creating a class Displayer just for this, we can do everything at once:

 1 Consumer<User> displayer = new Consumer<User>() {
2 public void accept(User u) {
3 System.out.println(u.getName());
4 }
5 };
6
7 users.forEach(displayer);

 This will generate a .class with a strange name, for example, Chapter2$1.class. Since we can’t refer to a name for this class, we call it an Anonymous class, as you may already know.

 The code is still big. It seems that the old for was more succinct. We can reduce this code a little bit more by avoiding the creation of the local variable displayer:

 1 users.forEach(new Consumer<User>() {
2 public void accept(User u) {
3 System.out.println(u.getName());
4 }
5 });

 Done! It is a little shorter, but it’s still sufficiently wordy.

 2.2

 Let Lambda in!

 Simply put, a Lambda in Java 8 is a simpler way to implement an interface that has a single method. In our case, the interface Consumer is a good candidate.

 That is, instead of writing:

 1 Consumer<User> displayer = new Consumer<User>() {
2 public void accept(User u) {
3 System.out.println(u.getName());
4 }
5 };

 We can write this in a more direct way:

 1 Consumer<User> displayer =
2 (User u) -> {System.out.println(u.getName());};

 The excerpt (User u) -> {System.out.println(u.getName());}; is a Lambda of Java 8. The compiler notices that you are attributing it to a Consumer<User> and inserts the code in the single method this interface has defined. Notice that we didn’t even mention the accept method! This is inferred during the compilation process.

 We can go even further. The compiler can also infer the type without the need to use User or brackets:

 1 Consumer<User> displayer =
2 u -> {System.out.println(u.getName());};

 Not satisfied? If the block between { } contains only one statement, we can omit it and also remove the semicolon:

 1 Consumer<User> displayer =
2 u -> System.out.println(u.getName());

 Now it is even possible to write everything on a single line:

 1 Consumer<User> displayer = u -> System.out.println(u.getName());

 So u -> System.out.println(u.getName()) refers to the same Lambda as (User u) -> {System.out.println(u.getName());} if it is assigned to a Consumer<User>. We can pass this code excerpt directly to users.forEach instead of declaring a temporary variable displayer:

 1 users.forEach(u -> System.out.println(u.getName()));

 Difficult? Certainly not. But it may take a few weeks until you get used to the syntax and the different ways of using it. We will see some variations, work more with the API, and learn how it is implemented (which is a little different from Anonymous classes). If you observe the .class generated, you may notice that the compiler didn’t create many files Chapter2$N.class, as is usually the case for the Anonymous classes.

 Let’s see an example that will clarify this. You can, instead of printing the names of all users, make them moderators.

 1 users.forEach(u -> u.becomeModerator());

 Note that the variable u can’t have been declared in the same scope as the invocation of forEach, because the Lambda can capture outer variables, as we shall see.

 In the next chapter, we will work more with Lambda and you will practice your syntax. You will also discover other basic scenarios of its usage along with the concept of Functional Interface.

  

 Capítulo 3:

 Functional Interfaces

 Note that the Consumer<User> interface, for example, has only one abstract method, accept. That’s the reason why, when you do the following forEach, the compiler knows exactly what method should be implemented within the Lambda’s body:

1 users.forEach(u -> System.out.println(u.getName()));

But what if the Consumer<User> interface had two methods? The fact that this interface only has one method isn’t a coincidence; it is necessary for the compiler to translate it to a Lambda expression. So we can say that any Java interface that has only one abstract method can be instantiated as a Lambda code!

This applies even to the pre-Java 8 interfaces like Runnable:

1 public interface Runnable {
2 public abstract void run();
3 }

Just a reminder: by default, all methods of a Java interface are public and abstract. We will see later that there is a new kind of method in interfaces.

Normally, we write the following excerpt to instantiate a Thread and a Runnable that counts from 0 to 1000:

1 Runnable r = new Runnable(){
2 public void run(){
3 for (int i = 0; i <= 1000; i++) {
4 System.out.println(i);
5 }
6 }
7 };
8 new Thread(r).start();

The Runnable interface has only one abstract method. An interface that fits this requirement is now known as a functional interface! It can always be instantiated with a Lambda expression:

1 Runnable r = () -> {
2 for (int i = 0; i <= 1000; i++) {
3 System.out.println(i);
4 }
5 };
6 new Thread(r).start();

We could go further and do everything in a single statement, although it may be a little less easy to read:

1 new Thread(() -> {
2 for (int i = 0; i <= 1000; i++) {
3 System.out.println(i);
4 }
5 }).start();

As you already know, there is a new package in Java 8, java.util.function, with a range of functional interfaces that can and should be used. We will see several of them over the course of our study.

 3.1

 Another Example: listeners

 Another very common use of the Anonymous class is when we need to add an action by clicking on an object of the java.awt.Button type. For this, we need to implement an ActionListener. You might have already seen a code similar to this:

 1 button.addActionListener(new ActionListener() {
2 public void actionPerformed(ActionEvent e) {
3 System.out.println("click event fired");
4 }
5 });

 We use the ActionListener interface as nothing more than a return function, and because of its single method structure, it fits the requirement for a functional interface:

 1 public interface ActionListener extends EventListener {
2 /**
3 * Invoked when an action occurs.
4 */
5 public void actionPerformed(ActionEvent e);
6 }

 Just as with any functional interface, we can also represent it as a Lambda expression:

 1 button.addActionListener((event) -> {
2 System.out.println("click event fired");
3 });

 As previously seen, this expression can be simplified even further by taking out the parentheses in the single argument. We can also remove the {} and ;:

 1 button.addActionListener(
2 event -> System.out.println("click event fired"));

 Done! Now we are attributing the same action to the button, but replacing the 5 lines with an anonymous class by a single line lambda expression.

 As for ActionListener that already exists and is commonly used in the pre-Java 8 versions, there are several other Java interfaces that have the same structure of a single method, such as java.util.Comparator, java.util.concurrent.Callable, and java.io.FileFilter -- besides the java.lang.Runnable interface we’ve already mentioned.

 Even without having anything changed in its internal structure, all of these interfaces can be called Functional Interfaces since this new language version!

 3.2

 Your very own functional interface

 You don’t need to do anything special to make an interface functional. The compiler readily identifies the interface as functional because of its structure.

 Imagine that we have a Validator<T> interface with a method that validates(T t) and returns a boolean:

 1 interface Validator<T> {
2 boolean validates(T t);
3 }

 We usually use it by creating an Anonymous class, like this:

 1 Validator<String> zipCodeValidator = new Validator<String>() {
2 public boolean validates(String value) {
3 return value.matches("[0-9]{5}-?([0-9]{4})?");
4 }
5 };

 How can we use this interface with Lambda and Java 8? What do we need to change in its declaration?

 The answer is simple: absolutely nothing. As said before, because of the interface’s single abstract method, it is already considered a Functional Interface, which means it can be instantiated through a Lambda expression! See below:

 1 Validator<String> zipCodeValidator =
2 value -> {
3 return value.matches("[0-9]{5}-?([0-9]{4})?");
4 };

 To try this, you can run in a simple main method the code
zipCodeValidator.validates("12345-1234");.

 Our Lambda is a little big. As already seen, when there is a single statement, we can summarize it. That is the case even if it’s a return ! We can remove the return itself, as well as the semicolon and curly braces:

 1 Validator<String> zipCodeValidator =
2 value -> value.matches("[0-9]{5}-?([0-9]{4})?");

 3.3

 The @FunctionalInterface annotation

 We can explicitly mark an interface as functional so that the fact it is a Functional Interface isn’t simply because it has a single method. To do this, we use the @FuncionalInterface annotation:

 1 @FunctionalInterface
2 interface Validator<T> {
3 boolean validates(T t);
4 }

 If you do this modification and compile the code for our Validator<T>, you will notice that nothing changed. However, unlike the case where you didn’t make an annotation in our interface with @FunctionalInterface, try to change it in the following manner by adding a new method:

 1 @FunctionalInterface
2 interface Validator<T> {
3 boolean validates(T t);
4 boolean anotherMethod(T t);
5 }

 When compiling this code, we get the following error:

 1 java: Unexpected @FunctionalInterface annotation
2 Validator is not a functional interface
3 multiple non-overriding abstract methods found in interface
4 Validator

 This annotation serves only to ensure that nobody makes this interface non-functional accidentally. It is optional precisely so that the old libraries’ interfaces could also be treated as Lambdas, independently of the annotation. The mere existence of a single abstract method is enough.

