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Sir George Darwin, worthy son of an immortal father, said, referring to what Poincaré was to him and to his work: "He must be regarded as the presiding genius—or, shall I say, my patron saint?"

Henri Poincaré was born April 29, 1854, at Nancy, where his father was a physician highly respected. His schooling was broken into by the war of 1870-71, to get news of which he learned to read the German newspapers. He outclassed the other boys of his age in all subjects and in 1873 passed highest into the École Polytechnique, where, like John Bolyai at Maros Vásárhely, he followed the courses in mathematics without taking a note and without the syllabus. He proceeded in 1875 to the School of Mines, and was Nommé, March 26, 1879. But he won his doctorate in the University of Paris, August 1, 1879, and was appointed to teach in the Faculté des Sciences de Caen, December 1, 1879, whence he was quickly called to the University of Paris, teaching there from October 21, 1881, until his death, July 17, 1912. So it is an error to say he started as an engineer. At the early age of thirty-two he became a member of l'Académie des Sciences, and, March 5, 1908, was chosen Membre de l'Académie Française. July 1, 1909, the number of his writings was 436.

His earliest publication was in 1878, and was not important. Afterward came an essay submitted in competition for the Grand Prix offered in 1880, but it did not win. Suddenly there came a change, a striking fire, a bursting forth, in February, 1881, and Poincaré tells us the very minute it happened. Mounting an omnibus, "at the moment when I put my foot upon the step, the idea came to me, without anything in my previous thoughts seeming to foreshadow it, that the transformations I had used to define the Fuchsian functions were identical with those of non-Euclidean geometry." Thereby was opened a perspective new and immense. Moreover, the magic wand of his whole life-work had been grasped, the Aladdin's lamp had been rubbed, non-Euclidean geometry, whose necromancy was to open up a new theory of our universe, whose brilliant exposition was commenced in his book Science and Hypothesis, which has been translated into six languages and has already had a circulation of over 20,000. The non-Euclidean notion is that of the possibility of alternative laws of nature, which in the Introduction to the Électricité et Optique, 1901, is thus put: "If therefore a phenomenon admits of a complete mechanical explanation, it will admit of an infinity of Others which will account equally well for all the peculiarities disclosed by experiment."

The scheme of laws of nature so largely due to Newton is merely one of an infinite number of conceivable rational schemes for helping us master and make experience; it is commode, convenient; but perhaps another may be vastly more advantageous. The old conception of true has been revised. The first expression of the new idea occurs on the title page of John Bolyai's marvelous Science Absolute of Space, in the phrase "haud unquam a priori decidenda."

With bearing on the history of the earth and moon system and the origin of double stars, in formulating the geometric criterion of stability, Poincaré proved the existence of a previously unknown pear-shaped figure, with the possibility that the progressive deformation of this figure with increasing angular velocity might result in the breaking up of the rotating body into two detached masses. Of his treatise Les Méthodes nouvelles de la Méchanique céleste, Sir George Darwin says: "It is probable that for half a century to come it will be the mine from which humbler investigators will excavate their materials." Brilliant was his appreciation of Poincaré in presenting the gold medal of the Royal Astronomical Society. The three others most akin in genius are linked with him by the Sylvester medal of the Royal Society, the Lobachevski medal of the Physico-Mathematical Society of Kazan, and the Bolyai prize of the Hungarian Academy of Sciences. His work must be reckoned with the greatest mathematical achievements of mankind.

The kernel of Poincaré's power lies in an oracle Sylvester often quoted to me as from Hesiod: The whole is less than its part.

He penetrates at once the divine simplicity of the perfectly general case, and thence descends, as from Olympus, to the special concrete earthly particulars.

A combination of seemingly extremely simple analytic and geometric concepts gave necessary general conclusions of immense scope from which sprang a disconcerting wilderness of possible deductions. And so he leaves a noble, fruitful heritage.

Says Love: "His right is recognized now, and it is not likely that future generations will revise the judgment, to rank among the greatest mathematicians of all time."

George Bruce Halsted.
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I am exceedingly grateful to Dr. Halsted, who has been so good as to present my book to American readers in a translation, clear and faithful.

Every one knows that this savant has already taken the trouble to translate many European treatises and thus has powerfully contributed to make the new continent understand the thought of the old.

Some people love to repeat that Anglo-Saxons have not the same way of thinking as the Latins or as the Germans; that they have quite another way of understanding mathematics or of understanding physics; that this way seems to them superior to all others; that they feel no need of changing it, nor even of knowing the ways of other peoples.

In that they would beyond question be wrong, but I do not believe that is true, or, at least, that is true no longer. For some time the English and Americans have been devoting themselves much more than formerly to the better understanding of what is thought and said on the continent of Europe.

To be sure, each people will preserve its characteristic genius, and it would be a pity if it were otherwise, supposing such a thing possible. If the Anglo-Saxons wished to become Latins, they would never be more than bad Latins; just as the French, in seeking to imitate them, could turn out only pretty poor Anglo-Saxons.

And then the English and Americans have made scientific conquests they alone could have made; they will make still more of which others would be incapable. It would therefore be deplorable if there were no longer Anglo-Saxons.

But continentals have on their part done things an Englishman could not have done, so that there is no need either for wishing all the world Anglo-Saxon.

Each has his characteristic aptitudes, and these aptitudes should be diverse, else would the scientific concert resemble a quartet where every one wanted to play the violin.

And yet it is not bad for the violin to know what the violon-cello is playing, and vice versa.

This it is that the English and Americans are comprehending more and more; and from this point of view the translations undertaken by Dr. Halsted are most opportune and timely.

Consider first what concerns the mathematical sciences. It is frequently said the English cultivate them only in view of their applications and even that they despise those who have other aims; that speculations too abstract repel them as savoring of metaphysic.

The English, even in mathematics, are to proceed always from the particular to the general, so that they would never have an idea of entering mathematics, as do many Germans, by the gate of the theory of aggregates. They are always to hold, so to speak, one foot in the world of the senses, and never burn the bridges keeping them in communication with reality. They thus are to be incapable of comprehending or at least of appreciating certain theories more interesting than utilitarian, such as the non-Euclidean geometries. According to that, the first two parts of this book, on number and space, should seem to them void of all substance and would only baffle them.

But that is not true. And first of all, are they such uncompromising realists as has been said? Are they absolutely refractory, I do not say to metaphysic, but at least to everything metaphysical?

Recall the name of Berkeley, born in Ireland doubtless, but immediately adopted by the English, who marked a natural and necessary stage in the development of English philosophy.

Is this not enough to show they are capable of making ascensions otherwise than in a captive balloon?

And to return to America, is not the Monist published at Chicago, that review which even to us seems bold and yet which finds readers?

And in mathematics? Do you think American geometers are concerned only about applications? Far from it. The part of the science they cultivate most devotedly is the theory of groups of substitutions, and under its most abstract form, the farthest removed from the practical.

Moreover, Dr. Halsted gives regularly each year a review of all productions relative to the non-Euclidean geometry, and he has about him a public deeply interested in his work. He has initiated this public into the ideas of Hilbert, and he has even written an elementary treatise on 'Rational Geometry,' based on the principles of the renowned German savant.

To introduce this principle into teaching is surely this time to burn all bridges of reliance upon sensory intuition, and this is, I confess, a boldness which seems to me almost rashness.

The American public is therefore much better prepared than has been thought for investigating the origin of the notion of space.

Moreover, to analyze this concept is not to sacrifice reality to I know not what phantom. The geometric language is after all only a language. Space is only a word that we have believed a thing. What is the origin of this word and of other words also? What things do they hide? To ask this is permissible; to forbid it would be, on the contrary, to be a dupe of words; it would be to adore a metaphysical idol, like savage peoples who prostrate themselves before a statue of wood without daring to take a look at what is within.

In the study of nature, the contrast between the Anglo-Saxon spirit and the Latin spirit is still greater.

The Latins seek in general to put their thought in mathematical form; the English prefer to express it by a material representation.

Both doubtless rely only on experience for knowing the world; when they happen to go beyond this, they consider their foreknowledge as only provisional, and they hasten to ask its definitive confirmation from nature herself.

But experience is not all, and the savant is not passive; he does not wait for the truth to come and find him, or for a chance meeting to bring him face to face with it. He must go to meet it, and it is for his thinking to reveal to him the way leading thither. For that there is need of an instrument; well, just there begins the difference—the instrument the Latins ordinarily choose is not that preferred by the Anglo-Saxons.

For a Latin, truth can be expressed only by equations; it must obey laws simple, logical, symmetric and fitted to satisfy minds in love with mathematical elegance.

The Anglo-Saxon to depict a phenomenon will first be engrossed in making a model, and he will make it with common materials, such as our crude, unaided senses show us them. He also makes a hypothesis, he assumes implicitly that nature, in her finest elements, is the same as in the complicated aggregates which alone are within the reach of our senses. He concludes from the body to the atom.

Both therefore make hypotheses, and this indeed is necessary, since no scientist has ever been able to get on without them. The essential thing is never to make them unconsciously.

From this point of view again, it would be well for these two sorts of physicists to know something of each other; in studying the work of minds so unlike their own, they will immediately recognize that in this work there has been an accumulation of hypotheses.

Doubtless this will not suffice to make them comprehend that they on their part have made just as many; each sees the mote without seeing the beam; but by their criticisms they will warn their rivals, and it may be supposed these will not fail to render them the same service.

The English procedure often seems to us crude, the analogies they think they discover to us seem at times superficial; they are not sufficiently interlocked, not precise enough; they sometimes permit incoherences, contradictions in terms, which shock a geometric spirit and which the employment of the mathematical method would immediately have put in evidence. But most often it is, on the other hand, very fortunate that they have not perceived these contradictions; else would they have rejected their model and could not have deduced from it the brilliant results they have often made to come out of it.

And then these very contradictions, when they end by perceiving them, have the advantage of showing them the hypothetical character of their conceptions, whereas the mathematical method, by its apparent rigor and inflexible course, often inspires in us a confidence nothing warrants, and prevents our looking about us.

From another point of view, however, the two conceptions are very unlike, and if all must be said, they are very unlike because of a common fault.

The English wish to make the world out of what we see. I mean what we see with the unaided eye, not the microscope, nor that still more subtile microscope, the human head guided by scientific induction.

The Latin wants to make it out of formulas, but these formulas are still the quintessenced expression of what we see. In a word, both would make the unknown out of the known, and their excuse is that there is no way of doing otherwise.

And yet is this legitimate, if the unknown be the simple and the known the complex?

Shall we not get of the simple a false idea, if we think it like the complex, or worse yet if we strive to make it out of elements which are themselves compounds?

Is not each great advance accomplished precisely the day some one has discovered under the complex aggregate shown by our senses something far more simple, not even resembling it—as when Newton replaced Kepler's three laws by the single law of gravitation, which was something simpler, equivalent, yet unlike?

One is justified in asking if we are not on the eve of just such a revolution or one even more important. Matter seems on the point of losing its mass, its solidest attribute, and resolving itself into electrons. Mechanics must then give place to a broader conception which will explain it, but which it will not explain.

So it was in vain the attempt was made in England to construct the ether by material models, or in France to apply to it the laws of dynamic.

The ether it is, the unknown, which explains matter, the known; matter is incapable of explaining the ether.

Poincaré.
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BY PROFESSOR JOSIAH ROYCE



Harvard University


The treatise of a master needs no commendation through the words of a mere learner. But, since my friend and former fellow student, the translator of this volume, has joined with another of my colleagues, Professor Cattell, in asking me to undertake the task of calling the attention of my fellow students to the importance and to the scope of M. Poincaré's volume, I accept the office, not as one competent to pass judgment upon the book, but simply as a learner, desirous to increase the number of those amongst us who are already interested in the type of researches to which M. Poincaré has so notably contributed.

I

The branches of inquiry collectively known as the Philosophy of Science have undergone great changes since the appearance of Herbert Spencer's First Principles, that volume which a large part of the general public in this country used to regard as the representative compend of all modern wisdom relating to the foundations of scientific knowledge. The summary which M. Poincaré gives, at the outset of his own introduction to the present work, where he states the view which the 'superficial observer' takes of scientific truth, suggests, not indeed Spencer's own most characteristic theories, but something of the spirit in which many disciples of Spencer interpreting their master's formulas used to conceive the position which science occupies in dealing with experience. It was well known to them, indeed, that experience is a constant guide, and an inexhaustible source both of novel scientific results and of unsolved problems; but the fundamental Spencerian principles of science, such as 'the persistence of force,' the 'rhythm of motion' and the rest, were treated by Spencer himself as demonstrably objective, although indeed 'relative' truths, capable of being tested once for all by the 'inconceivability of the opposite,' and certain to hold true for the whole 'knowable' universe. Thus, whether one dwelt upon the results of such a mathematical procedure as that to which M. Poincaré refers in his opening paragraphs, or whether, like Spencer himself, one applied the 'first principles' to regions of less exact science, this confidence that a certain orthodoxy regarding the principles of science was established forever was characteristic of the followers of the movement in question. Experience, lighted up by reason, seemed to them to have predetermined for all future time certain great theoretical results regarding the real constitution of the 'knowable' cosmos. Whoever doubted this doubted 'the verdict of science.'

Some of us well remember how, when Stallo's 'Principles and Theories of Modern Physics' first appeared, this sense of scientific orthodoxy was shocked amongst many of our American readers and teachers of science. I myself can recall to mind some highly authoritative reviews of that work in which the author was more or less sharply taken to task for his ignorant presumption in speaking with the freedom that he there used regarding such sacred possessions of humanity as the fundamental concepts of physics. That very book, however, has quite lately been translated into German as a valuable contribution to some of the most recent efforts to reconstitute a modern 'philosophy of nature.' And whatever may be otherwise thought of Stallo's critical methods, or of his results, there can be no doubt that, at the present moment, if his book were to appear for the first time, nobody would attempt to discredit the work merely on account of its disposition to be agnostic regarding the objective reality of the concepts of the kinetic theory of gases, or on account of its call for a logical rearrangement of the fundamental concepts of the theory of energy. We are no longer able so easily to know heretics at first sight.

For we now appear to stand in this position: The control of natural phenomena, which through the sciences men have attained, grows daily vaster and more detailed, and in its details more assured. Phenomena men know and predict better than ever. But regarding the most general theories, and the most fundamental, of science, there is no longer any notable scientific orthodoxy. Thus, as knowledge grows firmer and wider, conceptual construction becomes less rigid. The field of the theoretical philosophy of nature—yes, the field of the logic of science—this whole region is to-day an open one. Whoever will work there must indeed accept the verdict of experience regarding what happens in the natural world. So far he is indeed bound. But he may undertake without hindrance from mere tradition the task of trying afresh to reduce what happens to conceptual unity. The circle-squarers and the inventors of devices for perpetual motion are indeed still as unwelcome in scientific company as they were in the days when scientific orthodoxy was more rigidly defined; but that is not because the foundations of geometry are now viewed as completely settled, beyond controversy, nor yet because the 'persistence of force' has been finally so defined as to make the 'opposite inconceivable' and the doctrine of energy beyond the reach of novel formulations. No, the circle-squarers and the inventors of devices for perpetual motion are to-day discredited, not because of any unorthodoxy of their general philosophy of nature, but because their views regarding special facts and processes stand in conflict with certain equally special results of science which themselves admit of very various general theoretical interpretations. Certain properties of the irrational number π are known, in sufficient multitude to justify the mathematician in declining to listen to the arguments of the circle-squarer; but, despite great advances, and despite the assured results of Dedekind, of Cantor, of Weierstrass and of various others, the general theory of the logic of the numbers, rational and irrational, still presents several important features of great obscurity; and the philosophy of the concepts of geometry yet remains, in several very notable respects, unconquered territory, despite the work of Hilbert and of Pieri, and of our author himself. The ordinary inventors of the perpetual motion machines still stand in conflict with accepted generalizations; but nobody knows as yet what the final form of the theory of energy will be, nor can any one say precisely what place the phenomena of the radioactive bodies will occupy in that theory. The alchemists would not be welcome workers in modern laboratories; yet some sorts of transformation and of evolution of the elements are to-day matters which theory can find it convenient, upon occasion, to treat as more or less exactly definable possibilities; while some newly observed phenomena tend to indicate, not indeed that the ancient hopes of the alchemists were well founded, but that the ultimate constitution of matter is something more fluent, less invariant, than the theoretical orthodoxy of a recent period supposed. Again, regarding the foundations of biology, a theoretical orthodoxy grows less possible, less definable, less conceivable (even as a hope) the more knowledge advances. Once 'mechanism' and 'vitalism' were mutually contradictory theories regarding the ultimate constitution of living bodies. Now they are obviously becoming more and more 'points of view,' diverse but not necessarily conflicting. So far as you find it convenient to limit your study of vital processes to those phenomena which distinguish living matter from all other natural objects, you may assume, in the modern 'pragmatic' sense, the attitude of a 'neo-vitalist.' So far, however, as you are able to lay stress, with good results, upon the many ways in which the life processes can be assimilated to those studied in physics and in chemistry, you work as if you were a partisan of 'mechanics.' In any case, your special science prospers by reason of the empirical discoveries that you make. And your theories, whatever they are, must not run counter to any positive empirical results. But otherwise, scientific orthodoxy no longer predetermines what alone it is respectable for you to think about the nature of living substance.

This gain in the freedom of theory, coming, as it does, side by side with a constant increase of a positive knowledge of nature, lends itself to various interpretations, and raises various obvious questions.

II

One of the most natural of these interpretations, one of the most obvious of these questions, may be readily stated. Is not the lesson of all these recent discussions simply this, that general theories are simply vain, that a philosophy of nature is an idle dream, and that the results of science are coextensive with the range of actual empirical observation and of successful prediction? If this is indeed the lesson, then the decline of theoretical orthodoxy in science is—like the eclipse of dogma in religion—merely a further lesson in pure positivism, another proof that man does best when he limits himself to thinking about what can be found in human experience, and in trying to plan what can be done to make human life more controllable and more reasonable. What we are free to do as we please—is it any longer a serious business? What we are free to think as we please—is it of any further interest to one who is in search of truth? If certain general theories are mere conceptual constructions, which to-day are, and to-morrow are cast into the oven, why dignify them by the name of philosophy? Has science any place for such theories? Why be a 'neo-vitalist,' or an 'evolutionist,' or an 'atomist,' or an 'Energetiker'? Why not say, plainly: "Such and such phenomena, thus and thus described, have been observed; such and such experiences are to be expected, since the hypotheses by the terms of which we are required to expect them have been verified too often to let us regard the agreement with experience as due merely to chance; so much then with reasonable assurance we know; all else is silence—or else is some matter to be tested by another experiment?" Why not limit our philosophy of science strictly to such a counsel of resignation? Why not substitute, for the old scientific orthodoxy, simply a confession of ignorance, and a resolution to devote ourselves to the business of enlarging the bounds of actual empirical knowledge?

Such comments upon the situation just characterized are frequently made. Unfortunately, they seem not to content the very age whose revolt from the orthodoxy of traditional theory, whose uncertainty about all theoretical formulations, and whose vast wealth of empirical discoveries and of rapidly advancing special researches, would seem most to justify these very comments. Never has there been better reason than there is to-day to be content, if rational man could be content, with a pure positivism. The splendid triumphs of special research in the most various fields, the constant increase in our practical control over nature—these, our positive and growing possessions, stand in glaring contrast to the failure of the scientific orthodoxy of a former period to fix the outlines of an ultimate creed about the nature of the knowable universe. Why not 'take the cash and let the credit go'? Why pursue the elusive theoretical 'unification' any further, when what we daily get from our sciences is an increasing wealth of detailed information and of practical guidance?

As a fact, however, the known answer of our own age to these very obvious comments is a constant multiplication of new efforts towards large and unifying theories. If theoretical orthodoxy is no longer clearly definable, theoretical construction was never more rife. The history of the doctrine of evolution, even in its most recent phases, when the theoretical uncertainties regarding the 'factors of evolution' are most insisted upon, is full of illustrations of this remarkable union of scepticism in critical work with courage regarding the use of the scientific imagination. The history of those controversies regarding theoretical physics, some of whose principal phases M. Poincaré, in his book, sketches with the hand of the master, is another illustration of the consciousness of the time. Men have their freedom of thought in these regions; and they feel the need of making constant and constructive use of this freedom. And the men who most feel this need are by no means in the majority of cases professional metaphysicians—or students who, like myself, have to view all these controversies amongst the scientific theoreticians from without as learners. These large theoretical constructions are due, on the contrary, in a great many cases to special workers, who have been driven to the freedom of philosophy by the oppression of experience, and who have learned in the conflict with special problems the lesson that they now teach in the form of general ideas regarding the philosophical aspects of science.

Why, then, does science actually need general theories, despite the fact that these theories inevitably alter and pass away? What is the service of a philosophy of science, when it is certain that the philosophy of science which is best suited to the needs of one generation must be superseded by the advancing insight of the next generation? Why must that which endlessly grows, namely, man's knowledge of the phenomenal order of nature, be constantly united in men's minds with that which is certain to decay, namely, the theoretical formulation of special knowledge in more or less completely unified systems of doctrine?

I understand our author's volume to be in the main an answer to this question. To be sure, the compact and manifold teachings which this text contains relate to a great many different special issues. A student interested in the problems of the philosophy of mathematics, or in the theory of probabilities, or in the nature and office of mathematical physics, or in still other problems belonging to the wide field here discussed, may find what he wants here and there in the text, even in case the general issues which give the volume its unity mean little to him, or even if he differs from the author's views regarding the principal issues of the book. But in the main, this volume must be regarded as what its title indicates—a critique of the nature and place of hypothesis in the work of science and a study of the logical relations of theory and fact. The result of the book is a substantial justification of the scientific utility of theoretical construction—an abandonment of dogma, but a vindication of the rights of the constructive reason.

III

The most notable of the results of our author's investigation of the logic of scientific theories relates, as I understand his work, to a topic which the present state of logical investigation, just summarized, makes especially important, but which has thus far been very inadequately treated in the text-books of inductive logic. The useful hypotheses of science are of two kinds:

1. The hypotheses which are valuable precisely because they are either verifiable or else refutable through a definite appeal to the tests furnished by experience; and

2. The hypotheses which, despite the fact that experience suggests them, are valuable despite, or even because, of the fact that experience can neither confirm nor refute them. The contrast between these two kinds of hypotheses is a prominent topic of our author's discussion.

Hypotheses of the general type which I have here placed first in order are the ones which the text-books of inductive logic and those summaries of scientific method which are customary in the course of the elementary treatises upon physical science are already accustomed to recognize and to characterize. The value of such hypotheses is indeed undoubted. But hypotheses of the type which I have here named in the second place are far less frequently recognized in a perfectly explicit way as useful aids in the work of special science. One usually either fails to admit their presence in scientific work, or else remains silent as to the reasons of their usefulness. Our author's treatment of the work of science is therefore especially marked by the fact that he explicitly makes prominent both the existence and the scientific importance of hypotheses of this second type. They occupy in his discussion a place somewhat analogous to each of the two distinct positions occupied by the 'categories' and the 'forms of sensibility,' on the one hand, and by the 'regulative principles of the reason,' on the other hand, in the Kantian theory of our knowledge of nature. That is, these hypotheses which can neither be confirmed nor refuted by experience appear, in M. Poincaré's account, partly (like the conception of 'continuous quantity') as devices of the understanding whereby we give conceptual unity and an invisible connectedness to certain types of phenomenal facts which come to us in a discrete form and in a confused variety; and partly (like the larger organizing concepts of science) as principles regarding the structure of the world in its wholeness; i. e., as principles in the light of which we try to interpret our experience, so as to give to it a totality and an inclusive unity such as Euclidean space, or such as the world of the theory of energy is conceived to possess. Thus viewed, M. Poincaré's logical theory of this second class of hypotheses undertakes to accomplish, with modern means and in the light of to-day's issues, a part of what Kant endeavored to accomplish in his theory of scientific knowledge with the limited means which were at his disposal. Those aspects of science which are determined by the use of the hypotheses of this second kind appear in our author's account as constituting an essential human way of viewing nature, an interpretation rather than a portrayal or a prediction of the objective facts of nature, an adjustment of our conceptions of things to the internal needs of our intelligence, rather than a grasping of things as they are in themselves.

To be sure, M. Poincaré's view, in this portion of his work, obviously differs, meanwhile, from that of Kant, as well as this agrees, in a measure, with the spirit of the Kantian epistemology. I do not mean therefore to class our author as a Kantian. For Kant, the interpretations imposed by the 'forms of sensibility,' and by the 'categories of the understanding,' upon our doctrine of nature are rigidly predetermined by the unalterable 'form' of our intellectual powers. We 'must' thus view facts, whatever the data of sense must be. This, of course, is not M. Poincaré's view. A similarly rigid predetermination also limits the Kantian 'ideas of the reason' to a certain set of principles whose guidance of the course of our theoretical investigations is indeed only 'regulative,' but is 'a priori,' and so unchangeable. For M. Poincaré, on the contrary, all this adjustment of our interpretations of experience to the needs of our intellect is something far less rigid and unalterable, and is constantly subject to the suggestions of experience. We must indeed interpret in our own way; but our way is itself only relatively determinate; it is essentially more or less plastic; other interpretations of experience are conceivable. Those that we use are merely the ones found to be most convenient. But this convenience is not absolute necessity. Unverifiable and irrefutable hypotheses in science are indeed, in general, indispensable aids to the organization and to the guidance of our interpretation of experience. But it is experience itself which points out to us what lines of interpretation will prove most convenient. Instead of Kant's rigid list of a priori 'forms,' we consequently have in M. Poincaré's account a set of conventions, neither wholly subjective and arbitrary, nor yet imposed upon us unambiguously by the external compulsion of experience. The organization of science, so far as this organization is due to hypotheses of the kind here in question, thus resembles that of a constitutional government—neither absolutely necessary, nor yet determined apart from the will of the subjects, nor yet accidental—a free, yet not a capricious establishment of good order, in conformity with empirical needs.

Characteristic remains, however, for our author, as, in his decidedly contrasting way, for Kant, the thought that without principles which at every stage transcend precise confirmation through such experience as is then accessible the organization of experience is impossible. Whether one views these principles as conventions or as a priori 'forms,' they may therefore be described as hypotheses, but as hypotheses that, while lying at the basis of our actual physical sciences, at once refer to experience and help us in dealing with experience, and are yet neither confirmed nor refuted by the experiences which we possess or which we can hope to attain.

Three special instances or classes of instances, according to our author's account, may be used as illustrations of this general type of hypotheses. They are: (1) The hypothesis of the existence of continuous extensive quanta in nature; (2) The principles of geometry; (3) The principles of mechanics and of the general theory of energy. In case of each of these special types of hypotheses we are at first disposed, apart from reflection, to say that we find the world to be thus or thus, so that, for instance, we can confirm the thesis according to which nature contains continuous magnitudes; or can prove or disprove the physical truth of the postulates of Euclidean geometry; or can confirm by definite experience the objective validity of the principles of mechanics. A closer examination reveals, according to our author, the incorrectness of all such opinions. Hypotheses of these various special types are needed; and their usefulness can be empirically shown. They are in touch with experience; and that they are not merely arbitrary conventions is also verifiable. They are not a priori necessities; and we can easily conceive intelligent beings whose experience could be best interpreted without using these hypotheses. Yet these hypotheses are not subject to direct confirmation or refutation by experience. They stand then in sharp contrast to the scientific hypotheses of the other, and more frequently recognized, type, i. e., to the hypotheses which can be tested by a definite appeal to experience. To these other hypotheses our author attaches, of course, great importance. His treatment of them is full of a living appreciation of the significance of empirical investigation. But the central problem of the logic of science thus becomes the problem of the relation between the two fundamentally distinct types of hypotheses, i. e., between those which can not be verified or refuted through experience, and those which can be empirically tested.

IV

The detailed treatment which M. Poincaré gives to the problem thus defined must be learned from his text. It is no part of my purpose to expound, to defend or to traverse any of his special conclusions regarding this matter. Yet I can not avoid observing that, while M. Poincaré strictly confines his illustrations and his expressions of opinion to those regions of science wherein, as special investigator, he is himself most at home, the issues which he thus raises regarding the logic of science are of even more critical importance and of more impressive interest when one applies M. Poincaré's methods to the study of the concepts and presuppositions of the organic and of the historical and social sciences, than when one confines one's attention, as our author here does, to the physical sciences. It belongs to the province of an introduction like the present to point out, however briefly and inadequately, that the significance of our author's ideas extends far beyond the scope to which he chooses to confine their discussion.

The historical sciences, and in fact all those sciences such as geology, and such as the evolutionary sciences in general, undertake theoretical constructions which relate to past time. Hypotheses relating to the more or less remote past stand, however, in a position which is very interesting from the point of view of the logic of science. Directly speaking, no such hypothesis is capable of confirmation or of refutation, because we can not return into the past to verify by our own experience what then happened. Yet indirectly, such hypotheses may lead to predictions of coming experience. These latter will be subject to control. Thus, Schliemann's confidence that the legend of Troy had a definite historical foundation led to predictions regarding what certain excavations would reveal. In a sense somewhat different from that which filled Schliemann's enthusiastic mind, these predictions proved verifiable. The result has been a considerable change in the attitude of historians toward the legend of Troy. Geological investigation leads to predictions regarding the order of the strata or the course of mineral veins in a district, regarding the fossils which may be discovered in given formations, and so on. These hypotheses are subject to the control of experience. The various theories of evolutionary doctrine include many hypotheses capable of confirmation and of refutation by empirical tests. Yet, despite all such empirical control, it still remains true that whenever a science is mainly concerned with the remote past, whether this science be archeology, or geology, or anthropology, or Old Testament history, the principal theoretical constructions always include features which no appeal to present or to accessible future experience can ever definitely test. Hence the suspicion with which students of experimental science often regard the theoretical constructions of their confrères of the sciences that deal with the past. The origin of the races of men, of man himself, of life, of species, of the planet; the hypotheses of anthropologists, of archeologists, of students of 'higher criticism'—all these are matters which the men of the laboratory often regard with a general incredulity as belonging not at all to the domain of true science. Yet no one can doubt the importance and the inevitableness of endeavoring to apply scientific method to these regions also. Science needs theories regarding the past history of the world. And no one who looks closer into the methods of these sciences of past time can doubt that verifiable and unverifiable hypotheses are in all these regions inevitably interwoven; so that, while experience is always the guide, the attitude of the investigator towards experience is determined by interests which have to be partially due to what I should call that 'internal meaning,' that human interest in rational theoretical construction which inspires the scientific inquiry; and the theoretical constructions which prevail in such sciences are neither unbiased reports of the actual constitution of an external reality, nor yet arbitrary constructions of fancy. These constructions in fact resemble in a measure those which M. Poincaré in this book has analyzed in the case of geometry. They are constructions molded, but not predetermined in their details, by experience. We report facts; we let the facts speak; but we, as we investigate, in the popular phrase, 'talk back' to the facts. We interpret as well as report. Man is not merely made for science, but science is made for man. It expresses his deepest intellectual needs, as well as his careful observations. It is an effort to bring internal meanings into harmony with external verifications. It attempts therefore to control, as well as to submit, to conceive with rational unity, as well as to accept data. Its arts are those directed towards self-possession as well as towards an imitation of the outer reality which we find. It seeks therefore a disciplined freedom of thought. The discipline is as essential as the freedom; but the latter has also its place. The theories of science are human, as well as objective, internally rational, as well as (when that is possible) subject to external tests.

In a field very different from that of the historical sciences, namely, in a science of observation and of experiment, which is at the same time an organic science, I have been led in the course of some study of the history of certain researches to notice the existence of a theoretical conception which has proved extremely fruitful in guiding research, but which apparently resembles in a measure the type of hypotheses of which M. Poincaré speaks when he characterizes the principles of mechanics and of the theory of energy. I venture to call attention here to this conception, which seems to me to illustrate M. Poincaré's view of the functions of hypothesis in scientific work.

The modern science of pathology is usually regarded as dating from the earlier researches of Virchow, whose 'Cellular Pathology' was the outcome of a very careful and elaborate induction. Virchow, himself, felt a strong aversion to mere speculation. He endeavored to keep close to observation, and to relieve medical science from the control of fantastic theories, such as those of the Naturphilosophen had been. Yet Virchow's researches were, as early as 1847, or still earlier, already under the guidance of a theoretical presupposition which he himself states as follows: "We have learned to recognize," he says, "that diseases are not autonomous organisms, that they are no entities that have entered into the body, that they are no parasites which take root in the body, but that they merely show us the course of the vital processes under altered conditions" ('dasz sie nur Ablauf der Lebenserscheinungen unter veränderten Bedingungen darstellen').

The enormous importance of this theoretical presupposition for all the early successes of modern pathological investigation is generally recognized by the experts. I do not doubt this opinion. It appears to be a commonplace of the history of this science. But in Virchow's later years this very presupposition seemed to some of his contemporaries to be called in question by the successes of recent bacteriology. The question arose whether the theoretical foundations of Virchow's pathology had not been set aside. And in fact the theory of the parasitical origin of a vast number of diseased conditions has indeed come upon an empirical basis to be generally recognized. Yet to the end of his own career Virchow stoutly maintained that in all its essential significance his own fundamental principle remained quite untouched by the newer discoveries. And, as a fact, this view could indeed be maintained. For if diseases proved to be the consequences of the presence of parasites, the diseases themselves, so far as they belonged to the diseased organism, were still not the parasites, but were, as before, the reaction of the organism to the veränderte Bedingungen which the presence of the parasites entailed. So Virchow could well insist. And if the famous principle in question is only stated with sufficient generality, it amounts simply to saying that if a disease involves a change in an organism, and if this change is subject to law at all, then the nature of the organism and the reaction of the organism to whatever it is which causes the disease must be understood in case the disease is to be understood.

For this very reason, however, Virchow's theoretical principle in its most general form could be neither confirmed nor refuted by experience. It would remain empirically irrefutable, so far as I can see, even if we should learn that the devil was the true cause of all diseases. For the devil himself would then simply predetermine the veränderte Bedingungen to which the diseased organism would be reacting. Let bullets or bacteria, poisons or compressed air, or the devil be the Bedingungen to which a diseased organism reacts, the postulate that Virchow states in the passage just quoted will remain irrefutable, if only this postulate be interpreted to meet the case. For the principle in question merely says that whatever entity it may be, bullet, or poison, or devil, that affects the organism, the disease is not that entity, but is the resulting alteration in the process of the organism.

I insist, then, that this principle of Virchow's is no trial supposition, no scientific hypothesis in the narrower sense—capable of being submitted to precise empirical tests. It is, on the contrary, a very precious leading idea, a theoretical interpretation of phenomena, in the light of which observations are to be made—'a regulative principle' of research. It is equivalent to a resolution to search for those detailed connections which link the processes of disease to the normal process of the organism. Such a search undertakes to find the true unity, whatever that may prove to be, wherein the pathological and the normal processes are linked. Now without some such leading idea, the cellular pathology itself could never have been reached; because the empirical facts in question would never have been observed. Hence this principle of Virchow's was indispensable to the growth of his science. Yet it was not a verifiable and not a refutable hypothesis. One value of unverifiable and irrefutable hypotheses of this type lies, then, in the sort of empirical inquiries which they initiate, inspire, organize and guide. In these inquiries hypotheses in the narrower sense, that is, trial propositions which are to be submitted to definite empirical control, are indeed everywhere present. And the use of the other sort of principles lies wholly in their application to experience. Yet without what I have just proposed to call the 'leading ideas' of a science, that is, its principles of an unverifiable and irrefutable character, suggested, but not to be finally tested, by experience, the hypotheses in the narrower sense would lack that guidance which, as M. Poincaré has shown, the larger ideas of science give to empirical investigation.

V

I have dwelt, no doubt, at too great length upon one aspect only of our author's varied and well-balanced discussion of the problems and concepts of scientific theory. Of the hypotheses in the narrower sense and of the value of direct empirical control, he has also spoken with the authority and the originality which belong to his position. And in dealing with the foundations of mathematics he has raised one or two questions of great philosophical import into which I have no time, even if I had the right, to enter here. In particular, in speaking of the essence of mathematical reasoning, and of the difficult problem of what makes possible novel results in the field of pure mathematics, M. Poincaré defends a thesis regarding the office of 'demonstration by recurrence'—a thesis which is indeed disputable, which has been disputed and which I myself should be disposed, so far as I at present understand the matter, to modify in some respects, even in accepting the spirit of our author's assertion. Yet there can be no doubt of the importance of this thesis, and of the fact that it defines a characteristic that is indeed fundamental in a wide range of mathematical research. The philosophical problems that lie at the basis of recurrent proofs and processes are, as I have elsewhere argued, of the most fundamental importance.

These, then, are a few hints relating to the significance of our author's discussion, and a few reasons for hoping that our own students will profit by the reading of the book as those of other nations have already done.

Of the person and of the life-work of our author a few words are here, in conclusion, still in place, addressed, not to the students of his own science, to whom his position is well known, but to the general reader who may seek guidance in these pages.

Jules Henri Poincaré was born at Nancy, in 1854, the son of a professor in the Faculty of Medicine at Nancy. He studied at the École Polytechnique and at the École des Mines, and later received his doctorate in mathematics in 1879. In 1883 he began courses of instruction in mathematics at the École Polytechnique; in 1886 received a professorship of mathematical physics in the Faculty of Sciences at Paris; then became member of the Academy of Sciences at Paris, in 1887, and devoted his life to instruction and investigation in the regions of pure mathematics, of mathematical physics and of celestial mechanics. His list of published treatises relating to various branches of his chosen sciences is long; and his original memoirs have included several momentous investigations, which have gone far to transform more than one branch of research. His presence at the International Congress of Arts and Science in St. Louis was one of the most noticeable features of that remarkable gathering of distinguished foreign guests. In Poincaré the reader meets, then, not one who is primarily a speculative student of general problems for their own sake, but an original investigator of the highest rank in several distinct, although interrelated, branches of modern research. The theory of functions—a highly recondite region of pure mathematics—owes to him advances of the first importance, for instance, the definition of a new type of functions. The 'problem of the three bodies,' a famous and fundamental problem of celestial mechanics, has received from his studies a treatment whose significance has been recognized by the highest authorities. His international reputation has been confirmed by the conferring of more than one important prize for his researches. His membership in the most eminent learned societies of various nations is widely extended; his volumes bearing upon various branches of mathematics and of mathematical physics are used by special students in all parts of the learned world; in brief, he is, as geometer, as analyst and as a theoretical physicist, a leader of his age.

Meanwhile, as contributor to the philosophical discussion of the bases and methods of science, M. Poincaré has long been active. When, in 1893, the admirable Revue de Métaphysique et de Morale began to appear, M. Poincaré was soon found amongst the most satisfactory of the contributors to the work of that journal, whose office it has especially been to bring philosophy and the various special sciences (both natural and moral) into a closer mutual understanding. The discussions brought together in the present volume are in large part the outcome of M. Poincaré's contributions to the Revue de Métaphysique et de Morale. The reader of M. Poincaré's book is in presence, then, of a great special investigator who is also a philosopher.
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For a superficial observer, scientific truth is beyond the possibility of doubt; the logic of science is infallible, and if the scientists are sometimes mistaken, this is only from their mistaking its rules.

"The mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a crowd of consequences will follow by a series of mathematical deductions, and thus each experiment will make known to us a corner of the universe."

Behold what is for many people in the world, for scholars getting their first notions of physics, the origin of scientific certitude. This is what they suppose to be the rôle of experimentation and mathematics. This same conception, a hundred years ago, was held by many savants who dreamed of constructing the world with as little as possible taken from experiment.

On a little more reflection it was perceived how great a place hypothesis occupies; that the mathematician can not do without it, still less the experimenter. And then it was doubted if all these constructions were really solid, and believed that a breath would overthrow them. To be skeptical in this fashion is still to be superficial. To doubt everything and to believe everything are two equally convenient solutions; each saves us from thinking.

Instead of pronouncing a summary condemnation, we ought therefore to examine with care the rôle of hypothesis; we shall then recognize, not only that it is necessary, but that usually it is legitimate. We shall also see that there are several sorts of hypotheses; that some are verifiable, and once confirmed by experiment become fruitful truths; that others, powerless to lead us astray, may be useful to us in fixing our ideas; that others, finally, are hypotheses only in appearance and are reducible to disguised definitions or conventions.

These last are met with above all in mathematics and the related sciences. Thence precisely it is that these sciences get their rigor; these conventions are the work of the free activity of our mind, which, in this domain, recognizes no obstacle. Here our mind can affirm, since it decrees; but let us understand that while these decrees are imposed upon our science, which, without them, would be impossible, they are not imposed upon nature. Are they then arbitrary? No, else were they sterile. Experiment leaves us our freedom of choice, but it guides us by aiding us to discern the easiest way. Our decrees are therefore like those of a prince, absolute but wise, who consults his council of state.

Some people have been struck by this character of free convention recognizable in certain fundamental principles of the sciences. They have wished to generalize beyond measure, and, at the same time, they have forgotten that liberty is not license. Thus they have reached what is called nominalism, and have asked themselves if the savant is not the dupe of his own definitions and if the world he thinks he discovers is not simply created by his own caprice.[1] Under these conditions science would be certain, but deprived of significance.

If this were so, science would be powerless. Now every day we see it work under our very eyes. That could not be if it taught us nothing of reality. Still, the things themselves are not what it can reach, as the naïve dogmatists think, but only the relations between things. Outside of these relations there is no knowable reality.

Such is the conclusion to which we shall come, but for that we must review the series of sciences from arithmetic and geometry to mechanics and experimental physics.

What is the nature of mathematical reasoning? Is is really deductive, as is commonly supposed? A deeper analysis shows us that it is not, that it partakes in a certain measure of the nature of inductive reasoning, and just because of this is it so fruitful. None the less does it retain its character of rigor absolute; this is the first thing that had to be shown.

Knowing better now one of the instruments which mathematics puts into the hands of the investigator, we had to analyze another fundamental notion, that of mathematical magnitude. Do we find it in nature, or do we ourselves introduce it there? And, in this latter case, do we not risk marring everything? Comparing the rough data of our senses with that extremely complex and subtile concept which mathematicians call magnitude, we are forced to recognize a difference; this frame into which we wish to force everything is of our own construction; but we have not made it at random. We have made it, so to speak, by measure and therefore we can make the facts fit into it without changing what is essential in them.

Another frame which we impose on the world is space. Whence come the first principles of geometry? Are they imposed on us by logic? Lobachevski has proved not, by creating non-Euclidean geometry. Is space revealed to us by our senses? Still no, for the space our senses could show us differs absolutely from that of the geometer. Is experience the source of geometry? A deeper discussion will show us it is not. We therefore conclude that the first principles of geometry are only conventions; but these conventions are not arbitrary and if transported into another world (that I call the non-Euclidean world and seek to imagine), then we should have been led to adopt others.

In mechanics we should be led to analogous conclusions, and should see that the principles of this science, though more directly based on experiment, still partake of the conventional character of the geometric postulates. Thus far nominalism triumphs; but now we arrive at the physical sciences, properly so called. Here the scene changes; we meet another sort of hypotheses and we see their fertility. Without doubt, at first blush, the theories seem to us fragile, and the history of science proves to us how ephemeral they are; yet they do not entirely perish, and of each of them something remains. It is this something we must seek to disentangle, since there and there alone is the veritable reality.

The method of the physical sciences rests on the induction which makes us expect the repetition of a phenomenon when the circumstances under which it first happened are reproduced. If all these circumstances could be reproduced at once, this principle could be applied without fear; but that will never happen; some of these circumstances will always be lacking. Are we absolutely sure they are unimportant? Evidently not. That may be probable, it can not be rigorously certain. Hence the important rôle the notion of probability plays in the physical sciences. The calculus of probabilities is therefore not merely a recreation or a guide to players of baccarat, and we must seek to go deeper with its foundations. Under this head I have been able to give only very incomplete results, so strongly does this vague instinct which lets us discern probability defy analysis.

After a study of the conditions under which the physicist works, I have thought proper to show him at work. For that I have taken instances from the history of optics and of electricity. We shall see whence have sprung the ideas of Fresnel, of Maxwell, and what unconscious hypotheses were made by Ampère and the other founders of electrodynamics.
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I

The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A?

Without doubt, we can go back to the axioms, which are at the source of all these reasonings. If we decide that these can not be reduced to the principle of contradiction, if still less we see in them experimental facts which could not partake of mathematical necessity, we have yet the resource of classing them among synthetic a priori judgments. This is not to solve the difficulty, but only to baptize it; and even if the nature of synthetic judgments were for us no mystery, the contradiction would not have disappeared, it would only have moved back; syllogistic reasoning remains incapable of adding anything to the data given it: these data reduce themselves to a few axioms, and we should find nothing else in the conclusions.

No theorem could be new if no new axiom intervened in its demonstration; reasoning could give us only the immediately evident verities borrowed from direct intuition; it would be only an intermediary parasite, and therefore should we not have good reason to ask whether the whole syllogistic apparatus did not serve solely to disguise our borrowing?

The contradiction will strike us the more if we open any book on mathematics; on every page the author will announce his intention of generalizing some proposition already known. Does the mathematical method proceed from the particular to the general, and, if so, how then can it be called deductive?

If finally the science of number were purely analytic, or could be analytically derived from a small number of synthetic judgments, it seems that a mind sufficiently powerful could at a glance perceive all its truths; nay more, we might even hope that some day one would invent to express them a language sufficiently simple to have them appear self-evident to an ordinary intelligence.

If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from the syllogism.

The difference must even be profound. We shall not, for example, find the key to the mystery in the frequent use of that rule according to which one and the same uniform operation applied to two equal numbers will give identical results.

All these modes of reasoning, whether or not they be reducible to the syllogism properly so called, retain the analytic character, and just because of that are powerless.

II

The discussion is old; Leibnitz tried to prove 2 and 2 make 4; let us look a moment at his demonstration.

I will suppose the number 1 defined and also the operation x + 1 which consists in adding unity to a given number x.

These definitions, whatever they be, do not enter into the course of the reasoning.

I define then the numbers 2, 3 and 4 by the equalities

(1) 1 + 1 = 2;  (2) 2 + 1 = 3;  (3) 3 + 1 = 4.

In the same way, I define the operation x + 2 by the relation:

(4) x + 2 = (x + 1) + 1.

That presupposed, we have





	2 + 1 + 1 = 3 + 1
	(Definition 2),



	3 + 1 = 4
	(Definition 3),



	2 + 2 = (2 + 1) + 1  
	(Definition 4),





whence

2 + 2 = 4 Q.E.D.

It can not be denied that this reasoning is purely analytic. But ask any mathematician: 'That is not a demonstration properly so called,' he will say to you: 'that is a verification.' We have confined ourselves to comparing two purely conventional definitions and have ascertained their identity; we have learned nothing new. Verification differs from true demonstration precisely because it is purely analytic and because it is sterile. It is sterile because the conclusion is nothing but the premises translated into another language. On the contrary, true demonstration is fruitful because the conclusion here is in a sense more general than the premises.

The equality 2 + 2 = 4 is thus susceptible of a verification only because it is particular. Every particular enunciation in mathematics can always be verified in this same way. But if mathematics could be reduced to a series of such verifications, it would not be a science. So a chess-player, for example, does not create a science in winning a game. There is no science apart from the general.

It may even be said the very object of the exact sciences is to spare us these direct verifications.

III

Let us, therefore, see the geometer at work and seek to catch his process.

The task is not without difficulty; it does not suffice to open a work at random and analyze any demonstration in it.

We must first exclude geometry, where the question is complicated by arduous problems relative to the rôle of the postulates, to the nature and the origin of the notion of space. For analogous reasons we can not turn to the infinitesimal analysis. We must seek mathematical thought where it has remained pure, that is, in arithmetic.

A choice still is necessary; in the higher parts of the theory of numbers, the primitive mathematical notions have already undergone an elaboration so profound that it becomes difficult to analyze them.

It is, therefore, at the beginning of arithmetic that we must expect to find the explanation we seek, but it happens that precisely in the demonstration of the most elementary theorems the authors of the classic treatises have shown the least precision and rigor. We must not impute this to them as a crime; they have yielded to a necessity; beginners are not prepared for real mathematical rigor; they would see in it only useless and irksome subtleties; it would be a waste of time to try prematurely to make them more exacting; they must pass over rapidly, but without skipping stations, the road traversed slowly by the founders of the science.

Why is so long a preparation necessary to become habituated to this perfect rigor, which, it would seem, should naturally impress itself upon all good minds? This is a logical and psychological problem well worthy of study.

But we shall not take it up; it is foreign to our purpose; all I wish to insist on is that, not to fail of our purpose, we must recast the demonstrations of the most elementary theorems and give them, not the crude form in which they are left, so as not to harass beginners, but the form that will satisfy a skilled geometer.

Definition of Addition.—I suppose already defined the operation x + 1, which consists in adding the number 1 to a given number x.

This definition, whatever it be, does not enter into our subsequent reasoning.

We now have to define the operation x + a, which consists in adding the number a to a given number x.

Supposing we have defined the operation

x + (a − 1),

the operation x + a will be defined by the equality

(1) x + a = [x + (a − 1)] + 1.



We shall know then what x + a is when we know what x + (a − 1) is, and as I have supposed that to start with we knew what x + 1 is, we can define successively and 'by recurrence' the operations x + 2, x + 3, etc.

This definition deserves a moment's attention; it is of a particular nature which already distinguishes it from the purely logical definition; the equality (1) contains an infinity of distinct definitions, each having a meaning only when one knows the preceding.

Properties of Addition.—Associativity.—I say that

a + (b + c) = (a + b) + c.


In fact the theorem is true for c = 1; it is then written

a + (b + 1) = (a + b) + 1,


which, apart from the difference of notation, is nothing but the equality (1), by which I have just defined addition.

Supposing the theorem true for c = γ, I say it will be true for c = γ + 1.

In fact, supposing

(a + b) + γ = a + (b + γ),


it follows that

[(a + b) + γ] + 1 = [a + (b + γ)] + 1


or by definition (1)

(a + b) + (γ + 1) = a + (b + γ + 1) = a + [b + (γ + 1)],


which shows, by a series of purely analytic deductions, that the theorem is true for γ + 1.

Being true for c = 1, we thus see successively that so it is for c = 2, for c = 3, etc.

Commutativity.—1º I say that

a + 1 = 1 + a.


The theorem is evidently true for a = 1; we can verify by purely analytic reasoning that if it is true for a = γ it will be true for a = γ + 1; for then

(γ + 1) + 1 = (1 + γ) + 1 = 1 + (γ + 1);


now it is true for a = 1, therefore it will be true for a = 2, for a = 3, etc., which is expressed by saying that the enunciated proposition is demonstrated by recurrence.

2º I say that

a + b = b + a.

The theorem has just been demonstrated for b = 1; it can be verified analytically that if it is true for b = β, it will be true for b = β + 1.

The proposition is therefore established by recurrence.

Definition of Multiplication.—We shall define multiplication by the equalities.

(1) a × 1 = a.

(2) a × b = [a × (b − 1)] + a.

Like equality (1), equality (2) contains an infinity of definitions; having defined a × 1, it enables us to define successively: a × 2, a × 3, etc.

Properties of Multiplication.—Distributivity.—I say that

(a + b) × c = (a × c) + (b × c).

We verify analytically that the equality is true for c = 1; then that if the theorem is true for c = γ, it will be true for c = γ + 1.

The proposition is, therefore, demonstrated by recurrence.

Commutativity.—1º I say that

a × 1 = 1 × a.

The theorem is evident for a = 1.

We verify analytically that if it is true for a = α, it will be true for a = α + 1.

2º I say that

a × b = b × a.

The theorem has just been proven for b = 1. We could verify analytically that if it is true for b = β, it will be true for b = β + 1.

IV

Here I stop this monotonous series of reasonings. But this very monotony has the better brought out the procedure which is uniform and is met again at each step.

This procedure is the demonstration by recurrence. We first establish a theorem for n = 1; then we show that if it is true of n − 1, it is true of n, and thence conclude that it is true for all the whole numbers.

We have just seen how it may be used to demonstrate the rules of addition and multiplication, that is to say, the rules of the algebraic calculus; this calculus is an instrument of transformation, which lends itself to many more differing combinations than does the simple syllogism; but it is still an instrument purely analytic, and incapable of teaching us anything new. If mathematics had no other instrument, it would therefore be forthwith arrested in its development; but it has recourse anew to the same procedure, that is, to reasoning by recurrence, and it is able to continue its forward march.

If we look closely, at every step we meet again this mode of reasoning, either in the simple form we have just given it, or under a form more or less modified.

Here then we have the mathematical reasoning par excellence, and we must examine it more closely.

V

The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms.

That this may the better be seen, I will state one after another these syllogisms which are, if you will allow me the expression, arranged in 'cascade.'

These are of course hypothetical syllogisms.

The theorem is true of the number 1.

Now, if it is true of 1, it is true of 2.

Therefore it is true of 2.

Now, if it is true of 2, it is true of 3.

Therefore it is true of 3, and so on.

We see that the conclusion of each syllogism serves as minor to the following.

Furthermore the majors of all our syllogisms can be reduced to a single formula.

If the theorem is true of n − 1, so it is of n.

We see, then, that in reasoning by recurrence we confine ourselves to stating the minor of the first syllogism, and the general formula which contains as particular cases all the majors.

This never-ending series of syllogisms is thus reduced to a phrase of a few lines.

It is now easy to comprehend why every particular consequence of a theorem can, as I have explained above, be verified by purely analytic procedures.

If instead of showing that our theorem is true of all numbers, we only wish to show it true of the number 6, for example, it will suffice for us to establish the first 5 syllogisms of our cascade; 9 would be necessary if we wished to prove the theorem for the number 10; more would be needed for a larger number; but, however great this number might be, we should always end by reaching it, and the analytic verification would be possible.

And yet, however far we thus might go, we could never rise to the general theorem, applicable to all numbers, which alone can be the object of science. To reach this, an infinity of syllogisms would be necessary; it would be necessary to overleap an abyss that the patience of the analyst, restricted to the resources of formal logic alone, never could fill up.

I asked at the outset why one could not conceive of a mind sufficiently powerful to perceive at a glance the whole body of mathematical truths.

The answer is now easy; a chess-player is able to combine four moves, five moves, in advance, but, however extraordinary he may be, he will never prepare more than a finite number of them; if he applies his faculties to arithmetic, he will not be able to perceive its general truths by a single direct intuition; to arrive at the smallest theorem he can not dispense with the aid of reasoning by recurrence, for this is an instrument which enables us to pass from the finite to the infinite.

This instrument is always useful, for, allowing us to overleap at a bound as many stages as we wish, it spares us verifications, long, irksome and monotonous, which would quickly become impracticable. But it becomes indispensable as soon as we aim at the general theorem, to which analytic verification would bring us continually nearer without ever enabling us to reach it.

In this domain of arithmetic, we may think ourselves very far from the infinitesimal analysis, and yet, as we have just seen, the idea of the mathematical infinite already plays a preponderant rôle, and without it there would be no science, because there would be nothing general.

VI

The judgment on which reasoning by recurrence rests can be put under other forms; we may say, for example, that in an infinite collection of different whole numbers there is always one which is less than all the others.

We can easily pass from one enunciation to the other and thus get the illusion of having demonstrated the legitimacy of reasoning by recurrence. But we shall always be arrested, we shall always arrive at an undemonstrable axiom which will be in reality only the proposition to be proved translated into another language.

We can not therefore escape the conclusion that the rule of reasoning by recurrence is irreducible to the principle of contradiction.

Neither can this rule come to us from experience; experience could teach us that the rule is true for the first ten or hundred numbers; for example, it can not attain to the indefinite series of numbers, but only to a portion of this series, more or less long but always limited.

Now if it were only a question of that, the principle of contradiction would suffice; it would always allow of our developing as many syllogisms as we wished; it is only when it is a question of including an infinity of them in a single formula, it is only before the infinite that this principle fails, and there too, experience becomes powerless. This rule, inaccessible to analytic demonstration and to experience, is the veritable type of the synthetic a priori judgment. On the other hand, we can not think of seeing in it a convention, as in some of the postulates of geometry.

Why then does this judgment force itself upon us with an irresistible evidence? It is because it is only the affirmation of the power of the mind which knows itself capable of conceiving the indefinite repetition of the same act when once this act is possible. The mind has a direct intuition of this power, and experience can only give occasion for using it and thereby becoming conscious of it.

But, one will say, if raw experience can not legitimatize reasoning by recurrence, is it so of experiment aided by induction? We see successively that a theorem is true of the number 1, of the number 2, of the number 3 and so on; the law is evident, we say, and it has the same warranty as every physical law based on observations, whose number is very great but limited.

Here is, it must be admitted, a striking analogy with the usual procedures of induction. But there is an essential difference. Induction applied to the physical sciences is always uncertain, because it rests on the belief in a general order of the universe, an order outside of us. Mathematical induction, that is, demonstration by recurrence, on the contrary, imposes itself necessarily because it is only the affirmation of a property of the mind itself.

VII

Mathematicians, as I have said before, always endeavor to generalize the propositions they have obtained, and, to seek no other example, we have just proved the equality:

a + 1 = 1 + a


and afterwards used it to establish the equality

a + b = b + a


which is manifestly more general.

Mathematics can, therefore, like the other sciences, proceed from the particular to the general.

This is a fact which would have appeared incomprehensible to us at the outset of this study, but which is no longer mysterious to us, since we have ascertained the analogies between demonstration by recurrence and ordinary induction.

Without doubt recurrent reasoning in mathematics and inductive reasoning in physics rest on different foundations, but their march is parallel, they advance in the same sense, that is to say, from the particular to the general.

Let us examine the case a little more closely.

To demonstrate the equality

a + 2 = 2 + a


it suffices to twice apply the rule

(1) a + 1 = 1 + a


and write

(2) a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a.

The equality (2) thus deduced in purely analytic way from the equality (1) is, however, not simply a particular ease of it; it is something quite different.

We can not therefore even say that in the really analytic and deductive part of mathematical reasoning we proceed from the general to the particular in the ordinary sense of the word.

The two members of the equality (2) are simply combinations more complicated than the two members of the equality (1), and analysis only serves to separate the elements which enter into these combinations and to study their relations.

Mathematicians proceed therefore 'by construction,' they 'construct' combinations more and more complicated. Coming back then by the analysis of these combinations, of these aggregates, so to speak, to their primitive elements, they perceive the relations of these elements and from them deduce the relations of the aggregates themselves.

This is a purely analytical proceeding, but it is not, however, a proceeding from the general to the particular, because evidently the aggregates can not be regarded as more particular than their elements.

Great importance, and justly, has been attached to this procedure of 'construction,' and some have tried to see in it the necessary and sufficient condition for the progress of the exact sciences.

Necessary, without doubt; but sufficient, no.

For a construction to be useful and not a vain toil for the mind, that it may serve as stepping-stone to one wishing to mount, it must first of all possess a sort of unity enabling us to see in it something besides the juxtaposition of its elements.

Or, more exactly, there must be some advantage in considering the construction rather than its elements themselves.

What can this advantage be?

Why reason on a polygon, for instance, which is always decomposable into triangles, and not on the elementary triangles?

It is because there are properties appertaining to polygons of any number of sides and that may be immediately applied to any particular polygon.

Usually, on the contrary, it is only at the cost of the most prolonged exertions that they could be found by studying directly the relations of the elementary triangles. The knowledge of the general theorem spares us these efforts.

A construction, therefore, becomes interesting only when it can be ranged beside other analogous constructions, forming species of the same genus.

If the quadrilateral is something besides the juxtaposition of two triangles, this is because it belongs to the genus polygon.

Moreover, one must be able to demonstrate the properties of the genus without being forced to establish them successively for each of the species.

To attain that, we must necessarily mount from the particular to the general, ascending one or more steps.

The analytic procedure 'by construction' does not oblige us to descend, but it leaves us at the same level.

We can ascend only by mathematical induction, which alone can teach us something new. Without the aid of this induction, different in certain respects from physical induction, but quite as fertile, construction would be powerless to create science.

Observe finally that this induction is possible only if the same operation can be repeated indefinitely. That is why the theory of chess can never become a science, for the different moves of the same game do not resemble one another.
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To learn what mathematicians understand by a continuum, one should not inquire of geometry. The geometer always seeks to represent to himself more or less the figures he studies, but his representations are for him only instruments; in making geometry he uses space just as he does chalk; so too much weight should not be attached to non-essentials, often of no more importance than the whiteness of the chalk.

The pure analyst has not this rock to fear. He has disengaged the science of mathematics from all foreign elements, and can answer our question: 'What exactly is this continuum about which mathematicians reason?' Many analysts who reflect on their art have answered already; Monsieur Tannery, for example, in his Introduction à la théorie des fonctions d'une variable.

Let us start from the scale of whole numbers; between two consecutive steps, intercalate one or more intermediary steps, then between these new steps still others, and so on indefinitely. Thus we shall have an unlimited number of terms; these will be the numbers called fractional, rational or commensurable. But this is not yet enough; between these terms, which, however, are already infinite in number, it is still necessary to intercalate others called irrational or incommensurable. A remark before going further. The continuum so conceived is only a collection of individuals ranged in a certain order, infinite in number, it is true, but exterior to one another. This is not the ordinary conception, wherein is supposed between the elements of the continuum a sort of intimate bond which makes of them a whole, where the point does not exist before the line, but the line before the point. Of the celebrated formula, 'the continuum is unity in multiplicity,' only the multiplicity remains, the unity has disappeared. The analysts are none the less right in defining their continuum as they do, for they always reason on just this as soon as they pique themselves on their rigor. But this is enough to apprise us that the veritable mathematical continuum is a very different thing from that of the physicists and that of the metaphysicians.

It may also be said perhaps that the mathematicians who are content with this definition are dupes of words, that it is necessary to say precisely what each of these intermediary steps is, to explain how they are to be intercalated and to demonstrate that it is possible to do it. But that would be wrong; the only property of these steps which is used in their reasonings[2] is that of being before or after such and such steps; therefore also this alone should occur in the definition.

So how the intermediary terms should be intercalated need not concern us; on the other hand, no one will doubt the possibility of this operation, unless from forgetting that possible, in the language of geometers, simply means free from contradiction.

Our definition, however, is not yet complete, and I return to it after this over-long digression.

Definition of Incommensurables.—The mathematicians of the Berlin school, Kronecker in particular, have devoted themselves to constructing this continuous scale of fractional and irrational numbers without using any material other than the whole number. The mathematical continuum would be, in this view, a pure creation of the mind, where experience would have no part.

The notion of the rational number seeming to them to present no difficulty, they have chiefly striven to define the incommensurable number. But before producing here their definition, I must make a remark to forestall the astonishment it is sure to arouse in readers unfamiliar with the customs of geometers.

Mathematicians study not objects, but relations between objects; the replacement of these objects by others is therefore indifferent to them, provided the relations do not change. The matter is for them unimportant, the form alone interests them.

Without recalling this, it would scarcely be comprehensible that Dedekind should designate by the name incommensurable number a mere symbol, that is to say, something very different from the ordinary idea of a quantity, which should be measurable and almost tangible.

Let us see now what Dedekind's definition is:

The commensurable numbers can in an infinity of ways be partitioned into two classes, such that any number of the first class is greater than any number of the second class.

It may happen that among the numbers of the first class there is one smaller than all the others; if, for example, we range in the first class all numbers greater than 2, and 2 itself, and in the second class all numbers less than 2, it is clear that 2 will be the least of all numbers of the first class. The number 2 may be chosen as symbol of this partition.

It may happen, on the contrary, that among the numbers of the second class is one greater than all the others; this is the case, for example, if the first class comprehends all numbers greater than 2, and the second all numbers less than 2, and 2 itself. Here again the number 2 may be chosen as symbol of this partition.

But it may equally well happen that neither is there in the first class a number less than all the others, nor in the second class a number greater than all the others. Suppose, for example, we put in the first class all commensurable numbers whose squares are greater than 2 and in the second all whose squares are less than 2. There is none whose square is precisely 2. Evidently there is not in the first class a number less than all the others, for, however near the square of a number may be to 2, we can always find a commensurable number whose square is still closer to 2.

In Dedekind's view, the incommensurable number

√2 or (2)½


is nothing but the symbol of this particular mode of partition of commensurable numbers; and to each mode of partition corresponds thus a number, commensurable or not, which serves as its symbol.

But to be content with this would be to forget too far the origin of these symbols; it remains to explain how we have been led to attribute to them a sort of concrete existence, and, besides, does not the difficulty begin even for the fractional numbers themselves? Should we have the notion of these numbers if we had not previously known a matter that we conceive as infinitely divisible, that is to say, a continuum?

The Physical Continuum.—We ask ourselves then if the notion of the mathematical continuum is not simply drawn from experience. If it were, the raw data of experience, which are our sensations, would be susceptible of measurement. We might be tempted to believe they really are so, since in these latter days the attempt has been made to measure them and a law has even been formulated, known as Fechner's law, according to which sensation is proportional to the logarithm of the stimulus.

But if we examine more closely the experiments by which it has been sought to establish this law, we shall be led to a diametrically opposite conclusion. It has been observed, for example, that a weight A of 10 grams and a weight B of 11 grams produce identical sensations, that the weight B is just as indistinguishable from a weight C of 12 grams, but that the weight A is easily distinguished from the weight C. Thus the raw results of experience may be expressed by the following relations:

A = B,  B = C,  A < C,


which may be regarded as the formula of the physical continuum.

But here is an intolerable discord with the principle of contradiction, and the need of stopping this has compelled us to invent the mathematical continuum.

We are, therefore, forced to conclude that this notion has been created entirely by the mind, but that experience has given the occasion.

We can not believe that two quantities equal to a third are not equal to one another, and so we are led to suppose that A is different from B and B from C, but that the imperfection of our senses has not permitted of our distinguishing them.

Creation of the Mathematical Continuum.—First Stage. So far it would suffice, in accounting for the facts, to intercalate between A and B a few terms, which would remain discrete. What happens now if we have recourse to some instrument to supplement the feebleness of our senses, if, for example, we make use of a microscope? Terms such as A and B, before indistinguishable, appear now distinct; but between A and B, now become distinct, will be intercalated a new term, D, that we can distinguish neither from A nor from B. Despite the employment of the most highly perfected methods, the raw results of our experience will always present the characteristics of the physical continuum with the contradiction which is inherent in it.

We shall escape it only by incessantly intercalating new terms between the terms already distinguished, and this operation must be continued indefinitely. We might conceive the stopping of this operation if we could imagine some instrument sufficiently powerful to decompose the physical continuum into discrete elements, as the telescope resolves the milky way into stars. But this we can not imagine; in fact, it is with the eye we observe the image magnified by the microscope, and consequently this image must always retain the characteristics of visual sensation and consequently those of the physical continuum.

Nothing distinguishes a length observed directly from the half of this length doubled by the microscope. The whole is homogeneous with the part; this is a new contradiction, or rather it would be if the number of terms were supposed finite; in fact, it is clear that the part containing fewer terms than the whole could not be similar to the whole.

The contradiction ceases when the number of terms is regarded as infinite; nothing hinders, for example, considering the aggregate of whole numbers as similar to the aggregate of even numbers, which, however, is only a part of it; and, in fact, to each whole number corresponds an even number, its double.

But it is not only to escape this contradiction contained in the empirical data that the mind is led to create the concept of a continuum, formed of an indefinite number of terms.

All happens as in the sequence of whole numbers. We have the faculty of conceiving that a unit can be added to a collection of units; thanks to experience, we have occasion to exercise this faculty and we become conscious of it; but from this moment we feel that our power has no limit and that we can count indefinitely, though we have never had to count more than a finite number of objects.

Just so, as soon as we have been led to intercalate means between two consecutive terms of a series, we feel that this operation can be continued beyond all limit, and that there is, so to speak, no intrinsic reason for stopping.

As an abbreviation, let me call a mathematical continuum of the first order every aggregate of terms formed according to the same law as the scale of commensurable numbers. If we afterwards intercalate new steps according to the law of formation of incommensurable numbers, we shall obtain what we will call a continuum of the second order.

Second Stage.—We have made hitherto only the first stride; we have explained the origin of continua of the first order; but it is necessary to see why even they are not sufficient and why the incommensurable numbers had to be invented.

If we try to imagine a line, it must have the characteristics of the physical continuum, that is to say, we shall not be able to represent it except with a certain breadth. Two lines then will appear to us under the form of two narrow bands, and, if we are content with this rough image, it is evident that if the two lines cross they will have a common part.

But the pure geometer makes a further effort; without entirely renouncing the aid of the senses, he tries to reach the concept of the line without breadth, of the point without extension. This he can only attain to by regarding the line as the limit toward which tends an ever narrowing band, and the point as the limit toward which tends an ever lessening area. And then, our two bands, however narrow they may be, will always have a common area, the smaller as they are the narrower, and whose limit will be what the pure geometer calls a point.

This is why it is said two lines which cross have a point in common, and this truth seems intuitive.

But it would imply contradiction if lines were conceived as continua of the first order, that is to say, if on the lines traced by the geometer should be found only points having for coordinates rational numbers. The contradiction would be manifest as soon as one affirmed, for example, the existence of straights and circles.

It is clear, in fact, that if the points whose coordinates are commensurable were alone regarded as real, the circle inscribed in a square and the diagonal of this square would not intersect, since the coordinates of the point of intersection are incommensurable.

That would not yet be sufficient, because we should get in this way only certain incommensurable numbers and not all those numbers.

But conceive of a straight line divided into two rays. Each of these rays will appear to our imagination as a band of a certain breadth; these bands moreover will encroach one on the other, since there must be no interval between them. The common part will appear to us as a point which will always remain when we try to imagine our bands narrower and narrower, so that we admit as an intuitive truth that if a straight is cut into two rays their common frontier is a point; we recognize here the conception of Dedekind, in which an incommensurable number was regarded as the common frontier of two classes of rational numbers.

Such is the origin of the continuum of the second order, which is the mathematical continuum properly so called.

Résumé.—In recapitulation, the mind has the faculty of creating symbols, and it is thus that it has constructed the mathematical continuum, which is only a particular system of symbols. Its power is limited only by the necessity of avoiding all contradiction; but the mind only makes use of this faculty if experience furnishes it a stimulus thereto.

In the case considered, this stimulus was the notion of the physical continuum, drawn from the rough data of the senses. But this notion leads to a series of contradictions from which it is necessary successively to free ourselves. So we are forced to imagine a more and more complicated system of symbols. That at which we stop is not only exempt from internal contradiction (it was so already at all the stages we have traversed), but neither is it in contradiction with various propositions called intuitive, which are derived from empirical notions more or less elaborated.

Measurable Magnitude.—The magnitudes we have studied hitherto are not measurable; we can indeed say whether a given one of these magnitudes is greater than another, but not whether it is twice or thrice as great.

So far, I have only considered the order in which our terms are ranged. But for most applications that does not suffice. We must learn to compare the interval which separates any two terms. Only on this condition does the continuum become a measurable magnitude and the operations of arithmetic applicable.

This can only be done by the aid of a new and special convention. We will agree that in such and such a case the interval comprised between the terms A and B is equal to the interval which separates C and D. For example, at the beginning of our work we have set out from the scale of the whole numbers and we have supposed intercalated between two consecutive steps n intermediary steps; well, these new steps will be by convention regarded as equidistant.

This is a way of defining the addition of two magnitudes, because if the interval AB is by definition equal to the interval CD, the interval AD will be by definition the sum of the intervals AB and AC.

This definition is arbitrary in a very large measure. It is not completely so, however. It is subjected to certain conditions and, for example, to the rules of commutativity and associativity of addition. But provided the definition chosen satisfies these rules, the choice is indifferent, and it is useless to particularize it.

Various Remarks.—We can now discuss several important questions:

1º Is the creative power of the mind exhausted by the creation of the mathematical continuum?

No: the works of Du Bois-Reymond demonstrate it in a striking way.

We know that mathematicians distinguish between infinitesimals of different orders and that those of the second order are infinitesimal, not only in an absolute way, but also in relation to those of the first order. It is not difficult to imagine infinitesimals of fractional or even of irrational order, and thus we find again that scale of the mathematical continuum which has been dealt with in the preceding pages.

Further, there are infinitesimals which are infinitely small in relation to those of the first order, and, on the contrary, infinitely great in relation to those of order 1 + ε, and that however small ε may be. Here, then, are new terms intercalated in our series, and if I may be permitted to revert to the phraseology lately employed which is very convenient though not consecrated by usage, I shall say that thus has been created a sort of continuum of the third order.

It would be easy to go further, but that would be idle; one would only be imagining symbols without possible application, and no one will think of doing that. The continuum of the third order, to which the consideration of the different orders of infinitesimals leads, is itself not useful enough to have won citizenship, and geometers regard it only as a mere curiosity. The mind uses its creative faculty only when experience requires it.

2º Once in possession of the concept of the mathematical continuum, is one safe from contradictions analogous to those which gave birth to it?

No, and I will give an example.

One must be very wise not to regard it as evident that every curve has a tangent; and in fact if we picture this curve and a straight as two narrow bands we can always so dispose them that they have a part in common without crossing. If we imagine then the breadth of these two bands to diminish indefinitely, this common part will always subsist and, at the limit, so to speak, the two lines will have a point in common without crossing, that is to say, they will be tangent.

The geometer who reasons in this way, consciously or not, is only doing what we have done above to prove two lines which cut have a point in common, and his intuition might seem just as legitimate.

It would deceive him however. We can demonstrate that there are curves which have no tangent, if such a curve is defined as an analytic continuum of the second order.

Without doubt some artifice analogous to those we have discussed above would have sufficed to remove the contradiction; but, as this is met with only in very exceptional cases, it has received no further attention.

Instead of seeking to reconcile intuition with analysis, we have been content to sacrifice one of the two, and as analysis must remain impeccable, we have decided against intuition.

The Physical Continuum of Several Dimensions.—We have discussed above the physical continuum as derived from the immediate data of our senses, or, if you wish, from the rough results of Fechner's experiments; I have shown that these results are summed up in the contradictory formulas

A = B,  B = C,  A < C.

Let us now see how this notion has been generalized and how from it has come the concept of many-dimensional continua.

Consider any two aggregates of sensations. Either we can discriminate them one from another, or we can not, just as in Fechner's experiments a weight of 10 grams can be distinguished from a weight of 12 grams, but not from a weight of 11 grams. This is all that is required to construct the continuum of several dimensions.

Let us call one of these aggregates of sensations an element. That will be something analogous to the point of the mathematicians; it will not be altogether the same thing however. We can not say our element is without extension, since we can not distinguish it from neighboring elements and it is thus surrounded by a sort of haze. If the astronomical comparison may be allowed, our 'elements' would be like nebulae, whereas the mathematical points would be like stars.

That being granted, a system of elements will form a continuum if we can pass from any one of them to any other, by a series of consecutive elements such that each is indistinguishable from the preceding. This linear series is to the line of the mathematician what an isolated element was to the point.

Before going farther, I must explain what is meant by a cut. Consider a continuum C and remove from it certain of its elements which for an instant we shall regard as no longer belonging to this continuum. The aggregate of the elements so removed will be called a cut. It may happen that, thanks to this cut, C may be subdivided into several distinct continua, the aggregate of the remaining elements ceasing to form a unique continuum.

There will then be on C two elements, A and B, that must be regarded as belonging to two distinct continua, and this will be recognized because it will be impossible to find a linear series of consecutive elements of C, each of these elements indistinguishable from the preceding, the first being A and the last B, without one of the elements of this series being indistinguishable from one of the elements of the cut.

On the contrary, it may happen that the cut made is insufficient to subdivide the continuum C. To classify the physical continua, we will examine precisely what are the cuts which must be made to subdivide them.

If a physical continuum C can be subdivided by a cut reducing to a finite number of elements all distinguishable from one another (and consequently forming neither a continuum, nor several continua), we shall say C is a one-dimensional continuum.

If, on the contrary, C can be subdivided only by cuts which are themselves continua, we shall say C has several dimensions. If cuts which are continua of one dimension suffice, we shall say C has two dimensions; if cuts of two dimensions suffice, we shall say C has three dimensions, and so on.

Thus is defined the notion of the physical continuum of several dimensions, thanks to this very simple fact that two aggregates of sensations are distinguishable or indistinguishable.

The Mathematical Continuum of Several Dimensions.—Thence the notion of the mathematical continuum of n dimensions has sprung quite naturally by a process very like that we discussed at the beginning of this chapter. A point of such a continuum, you know, appears to us as defined by a system of n distinct magnitudes called its coordinates.

These magnitudes need not always be measurable; there is, for instance, a branch of geometry independent of the measurement of these magnitudes, in which it is only a question of knowing, for example, whether on a curve ABC, the point B is between the points A and C, and not of knowing whether the arc AB is equal to the arc BC or twice as great. This is what is called Analysis Situs.

This is a whole body of doctrine which has attracted the attention of the greatest geometers and where we see flow one from another a series of remarkable theorems. What distinguishes these theorems from those of ordinary geometry is that they are purely qualitative and that they would remain true if the figures were copied by a draughtsman so awkward as to grossly distort the proportions and replace straights by strokes more or less curved.

Through the wish to introduce measure next into the continuum just defined this continuum becomes space, and geometry is born. But the discussion of this is reserved for Part Second.
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Every conclusion supposes premises; these premises themselves either are self-evident and need no demonstration, or can be established only by relying upon other propositions, and since we can not go back thus to infinity, every deductive science, and in particular geometry, must rest on a certain number of undemonstrable axioms. All treatises on geometry begin, therefore, by the enunciation of these axioms. But among these there is a distinction to be made: Some, for example, 'Things which are equal to the same thing are equal to one another,' are not propositions of geometry, but propositions of analysis. I regard them as analytic judgments a priori, and shall not concern myself with them.

But I must lay stress upon other axioms which are peculiar to geometry. Most treatises enunciate three of these explicitly:

1º Through two points can pass only one straight;

2º The straight line is the shortest path from one point to another;

3º Through a given point there is not more than one parallel to a given straight.

Although generally a proof of the second of these axioms is omitted, it would be possible to deduce it from the other two and from those, much more numerous, which are implicitly admitted without enunciating them, as I shall explain further on.

It was long sought in vain to demonstrate likewise the third axiom, known as Euclid's Postulate. What vast effort has been wasted in this chimeric hope is truly unimaginable. Finally, in the first quarter of the nineteenth century, and almost at the same time, a Hungarian and a Russian, Bolyai and Lobachevski, established irrefutably that this demonstration is impossible; they have almost rid us of inventors of geometries 'sans postulatum'; since then the Académie des Sciences receives only about one or two new demonstrations a year.

The question was not exhausted; it soon made a great stride by the publication of Riemann's celebrated memoir entitled: Ueber die Hypothesen welche der Geometrie zu Grunde liegen. This paper has inspired most of the recent works of which I shall speak further on, and among which it is proper to cite those of Beltrami and of Helmholtz.

The Bolyai-Lobachevski Geometry.—If it were possible to deduce Euclid's postulate from the other axioms, it is evident that in denying the postulate and admitting the other axioms, we should be led to contradictory consequences; it would therefore be impossible to base on such premises a coherent geometry.

Now this is precisely what Lobachevski did.

He assumes at the start that: Through a given point can be drawn two parallels to a given straight.

And he retains besides all Euclid's other axioms. From these hypotheses he deduces a series of theorems among which it is impossible to find any contradiction, and he constructs a geometry whose faultless logic is inferior in nothing to that of the Euclidean geometry.

The theorems are, of course, very different from those to which we are accustomed, and they can not fail to be at first a little disconcerting.

Thus the sum of the angles of a triangle is always less than two right angles, and the difference between this sum and two right angles is proportional to the surface of the triangle.

It is impossible to construct a figure similar to a given figure but of different dimensions.

If we divide a circumference into n equal parts, and draw tangents at the points of division, these n tangents will form a polygon if the radius of the circle is small enough; but if this radius is sufficiently great they will not meet.

It is useless to multiply these examples; Lobachevski's propositions have no relation to those of Euclid, but they are not less logically bound one to another.

Riemann's Geometry.—Imagine a world uniquely peopled by beings of no thickness (height); and suppose these 'infinitely flat' animals are all in the same plane and can not get out. Admit besides that this world is sufficiently far from others to be free from their influence. While we are making hypotheses, it costs us no more to endow these beings with reason and believe them capable of creating a geometry. In that case, they will certainly attribute to space only two dimensions.

OEBPS/text/00001.jpg





