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			This book is dedicated to the memory of José Márcio Machado, 
our very good friend and collaborator. 
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			Figure 1


			A 1943 stamp, designed by Peter Wildbur and part of the Europa series exhibiting Hamilton’s quaternion formulas. In mathematics, the quaternions are a number system that extends the complex numbers. In modern mathematical language, quaternions form a 4-dimensional associative normed division algebra over the real numbers. Quaternions are used in pure and applied mathematics, and also have practical uses in computing and in physics, as for instance, in the three-dimensional computer graphics, computer vision, electromagnetic equations, and general relativity. Also, may be used for a better understanding of the “Cycles of Time in Cosmology “(a leading scientific approach trying to explain the origins of our universe). Quaternions were introduced by Hamilton in 1843, when Hamilton was on his way to the Royal Irish Academy where he was going to preside at a council meeting. As he walked along the towpath of the Royal Canal with his wife, the concepts behind quaternions were taking shape in his mind. When the answer dawned on him, Hamilton could not resist the urge to carve the formula for the quaternions into the stone of Brougham Bridge as he paused at it.
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