

Unity From Zero to proficiency (Advanced)

Third Edition

––––––––

Create multiplayer games and procedural levels, and boost game performances

Patrick Felicia

​Unity From Zero to Proficiency

(Advanced)

Copyright © 2019 Patrick Felicia

All rights reserved. No part of this book may be reproduced, stored in retrieval systems, or transmitted in any form or by any means, without the prior written permission of the publisher (Patrick Felicia), except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either expressed or implied. Neither the author and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

First published: July 2016

Second Edition published: February 2018

Third Edition published: October 2019

Published by Patrick Felicia

​Credits

Author: Patrick Felicia

​About the Author

Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology, where he teaches and supervises undergraduate and postgraduate students. He obtained his MSc in Multimedia Technology in 2003 and PhD in Computer Science in 2009 from University College Cork, Ireland. He has published several books and articles on the use of video games for educational purposes, including the Handbook of Research on Improving Learning and Motivation through Educational Games: Multidisciplinary Approaches (published by IGI), and Digital Games in Schools: a Handbook for Teachers, published by European Schoolnet. Patrick is also the Editor-in-chief of the International Journal of Game-Based Learning (IJGBL), and the Conference Director of the Irish Conference on Game-Based Learning, a popular conference on games and learning organized throughout Ireland.

​Support and Resources for this Book + FREE BOOK

As a new reader of my book series, and to thank you for choosing this book, I would like to offer you a free book. So, to receive your book, just email me at learntocreategames@gmail.com with a screenshot of your receipt and I will send you a FREE copy of the book “A Quick Guide to Artificial Intelligence” (worth $3), a book that will extend the content provided in this book and help you to create levels faster for your games. After receiving your free book, you will also receive weekly updates and FREE tutorials on Unity 2017.

>> CLAIM YOUR FREE BOOK <<

To complete the activities presented in this book you need to download the startup pack on the companion website; it consists of free resources that you will need to complete your projects, including bonus material that will help you along the way (e.g., cheat sheets, introductory videos, code samples, and much more).

These resources also include the final completed project so that you can see how your project should look like in the end.

Amongst other things, the resources for this book include:

	All the C# scripts used in this book.

	Cheat sheets with tips on how to use Unity.

	3D characters and animation that you can use in Unity.

	A library of over 40 tutorials (video or text).

To download these resources, please do the following:

	Open the following link: http://learntocreategames.com/books/

	Select this book (“Unity from Zero to Proficiency - Advanced”).

	On the new page, click on the link labelled “Book Files”, or scroll down to the bottom of the page.

	In the section called “Download your Free Resource Pack”, enter your email address and your first name, and click on the button labeled “Yes, I want to receive my bonus pack”.

	After a few seconds, you should receive a link to your free start-up pack.

	When you receive the link, you can download all the resources to your computer.

This book is dedicated to Mathis & Helena

––––––––

[image:]

[]

Table of Contents

1 Reading Files and Creating Scenes Procedurally

Building your environment from an array

Creating an environment from a text file

Using XML files for content creation

Creating a Maze Procedurally

Creating an environment like Minecraft procedurally

Creating a virtual solar system based on an XML file

Level Roundup

2 Accessing and Updating a Database

Introduction to Online Databases

Accessing a database through PHP

Passing data to a PHP script

Accessing PHP from Unity

Setting up your server

Creating new tables

Gathering data from Unity

Level Roundup

3 Creating a Networked Multi-Player Game

Introduction

Creating a networked scene

Getting the tanks to fire missiles

Inflicting damage to the opponent

Fun add-ons

Level Roundup

4 Creating a Memory Game

Introduction

Creating the interface and the core of the game

Detecting when buttons have been pressed

Managing the game

Handling clicks

Creating different states for our game

Playing a sequence of colors

Creating a new sequence of colors

Waiting for the user’s input

Processing the user’s input

Generating sound effects

Level Roundup

5 Optimizing your project, code and game performances

Introduction

Organize assets and objects (project structure)

Coding Tips to program defensively

Monitoring and improving performances (profiling)

Advanced techniques

Level Roundup

6 Frequently Asked Questions

Networking

Accessing databases

Reading Files

Optimization

7 Thank you

​Preface

After teaching Unity for over 5 years, I always thought it could be great to find a book that could get my students started with Unity in a few hours and that showed them how to master the core functionalities offered by this fantastic software.

Many of the books that I found were too short and did not provide enough details on the why behind the actions recommended and taken; other books were highly theoretical, and I found that they lacked practicality and that they would not get my students’ full attention. In addition, I often found that game development may be preferred by those with a programming background but that those with an Arts background, even if they wanted to get to know how to create games, often had to face the issue of learning to code for the first time.

As a result, I started to consider a format that would cover both: be approachable (even to the students with no programming background), keep students highly motivated and involved using an interesting project, cover the core functionalities available in Unity to get started with game programming, provide answers to common questions, and also provide, if need be, a considerable amount of details for some topics.

This book series entitled Unity From Zero to Proficiency does just this. In this book series, you have the opportunity to play around with Unity’s core features, and essentially those that will make it possible to create an interesting 3D game rapidly. After reading this book series, you should find it easier to use Unity and its core functionalities.

This book series assumes no prior knowledge on the part of the reader, and it will get you started on Unity so that you quickly master all the wonderful features that this software provides by going through an easy learning curve. By completing each chapter, and by following step-by-step instructions, you will progressively improve your skills, become more proficient in Unity, and create a survival game using Unity’s core features in terms of programming (C# and JavaScript), game design, and drag and drop features.

In addition to understanding and being able to master Unity’s core features, you will also create a game that includes many of the common techniques found in video games, including: level design, object creation, textures, collision detection, lights, weapon creation, character animations, particles, artificial intelligence, and a user interface.

Throughout this book series, you will create a game that includes both indoor and outdoor environments, where the player needs to finds its way out of the former through tunnels, escalators, traps, and other challenges, avoid or eliminate enemies using weapons (i.e., gun or grenades), drive a car or pilot an aircraft.

You will learn how to create customized menus and simple user interfaces using Unity’s UI system, and animate and give (artificial) intelligence to Non-Player Characters (NPCs) who will be able to follow your character using Mecanim and Navmesh navigation.

[]

​Content Covered by this Book

Chapter 1, Reading Files and Creating Scenes Procedurally, gets you to create your scenes fast using a wide range of advanced techniques so that you can create your scene using text or image files and read them at run time without the need to add objects manually to your scene. It is also illustrated how these techniques can be used for data visualization by combining advanced C# coding and XML files.

Chapter 2, Accessing and Updating a Database, helps you to understand how to transfer data between Unity and a database. It explains how to create your database, and how to access it through the use of a combination of C#, PHP and MySQL.

Chapter 3, Creating a Networked multi-player game, explains and illustrates how you can create a simple network game. You will use UNET, Unity’s built-in networking features and create a simple tank game where two remote users can challenge each other in the same game.

Chapter 4, Creating a Memory Game, shows you how to create a game where the player has to memorize and to play an increasing sequence of colors and sounds, in a similar way as the Simon game that was popular in the 80s. You will learn how to create and generate audio within Unity and change the sounds’ frequency, to detect when a player has pressed a button, to generate colors at random, and also to record the sequence entered by the player and then compare it to the correct sequence

Chapter 5, Optimizing your Project, your Code and your Game Performances, explains how you can optimize your time and your game, using simple, yet efficient, steps. In this chapter you will learn how to avoid common issues that could slow down your game; you will learn how to identify and choose best coding practices to make your code more efficient, along with some tricks that you can use in Unity to boost the performances of your game.

Chapter 6 provides answers to Frequently Asked Questions (FAQs) related to the topics covered in this book (e.g., networking, databases, procedural content generation or optimization).

Chapter 7 summarizes the topics covered in the book and provides you with more information on the next steps.

What you Need to Use this Book

To complete the project presented in this book, you only need Unity 2019, or a more recent version, and to also ensure that your computer and its operating system comply with Unity’s requirements. Unity can be downloaded from the official website (http://www.unity3d.com/download), and before downloading, you can check that your computer is up to scratch on the following page: http://www.unity3d.com/unity/system-requirements. At the time of writing this book, the following operating systems are supported by Unity for development: Windows XP (i.e., SP2+, 7 SP1+), Windows 8, and Mac OS X 10.6+. In terms of graphics card, most cards produced after 2004 should be suitable.

In terms of computer skills, all knowledge introduced in this book will assume no prior programming experience from the reader. So for now, you only need to be able to perform common computer tasks, such as downloading items, opening and saving files, be comfortable with dragging and dropping items and typing, and relatively comfortable with Unity’s interface. This being said, because the focus of this book is on programming with C# and optimizing your games, and while all steps are explained step-by-step, you may need to be relatively comfortable with Unity’s interface, coding in C#, as well as creating and transforming objects.

So, if you would prefer to become more comfortable with Unity and C# programming prior to starting this book, you can download the first book in the series called Unity From Zero to Proficiency (Foundations), the second book in the series called Unity from Zero to Proficiency (Beginner), or the third book in the series called Unity from Zero to Proficiency (Intermediate). These books cover most of the shortcuts and views available in Unity, as well as how to perform common tasks in Unity, such as creating objects, transforming objects, importing assets, using navigation controllers, creating scripts or exporting the game to the web. They also explain how to code using C# along with good coding practices.

Who this Book is for

If you can answer yes to all these questions, then this book is for you:

	Would you like to learn how to optimize your code?

	Would you like to know how to structure your code neatly?

	Can you already code in C#?

	Would you like to discover how to create a multi-player game?

	Although you may have had some prior exposure to Unity and coding, would you like to delve more into Unity and understand its advanced functionalities in more detail?

Who this Book is not for

If you can answer yes to all these questions, then this book is not for you:

	Can you already create a multi-player game?

	Can you understand and apply common design patterns to your code?

	Are you looking for a reference book on Unity programming?

	Are you an experienced (or at least advanced) Unity user?

If you can answer yes to all four questions, you may instead look for the next book series on the official website.

How you will Learn from this Book

Because all students learn differently and have different expectations of a course, this book is designed to ensure that all readers find a learning mode that suits them. Therefore, it includes the following:

	A list of the learning objectives at the start of each chapter so that readers have a snapshot of the skills that will be covered.

	Each section includes an overview of the activities covered.

	Many of the activities are step-by-step, and learners are also given the opportunity to engage in deeper learning and problem-solving skills through the challenges offered at the end of each chapter.

	Each chapter ends-up with a quiz and challenges through which you can put your skills (and knowledge acquired) into practice, and see how much you know. Challenges consist in coding, debugging, or creating new features based on the knowledge that you have acquired in the chapter.

	The book focuses on the core skills that you need; some sections also go into more detail; however, once concepts have been explained, links are provided to additional resources, where necessary.

	The code is introduced progressively and is explained in detail.

	You also gain access to several videos that help you along the way, especially for the most challenging topics.

Format of each Chapter and Writing Conventions

Throughout this book, and to make reading and learning easier, text formatting and icons will be used to highlight parts of the information provided and to make it more readable.

Special Notes

Each chapter includes resource sections, so that you can further your understanding and mastery of Unity; these include:

	A quiz for each chapter: these quizzes usually include 10 questions that test your knowledge of the topics covered throughout the chapter. The solutions are provided on the companion website.

	A checklist: it consists of between 5 and 10 key concepts and skills that you need to be comfortable with before progressing to the next chapter.

	Challenges: each chapter includes a challenge section where you are asked to combine your skills to solve a particular problem.

Author’s notes appear as described below:

Author’s suggestions appear in this box.

Code appears as described below:

public int score;

public string playersName = “Sam”;

Checklists that include the important points covered in the chapter appear as described below:

	[image: http://cdn2.hubspot.net/hub/377822/file-809787244-png/checklist.png?t=1421359715283]

	

	Item1 for check list

	Item2 for check list

	Item3 for check list

​How Can You Learn Best from this Book

	Talk to your friends about what you are doing.

We often think that we understand a topic until we have to explain it to friends and answer their questions. By explaining your different projects, what you just learned will become clearer to you.

	Do the exercises.

All chapters include exercises that will help you to learn by doing. In other words, by completing these exercises, you will be able to better understand the topic and gain practical skills (i.e., rather than just reading).

	Don’t be afraid of making mistakes.

I usually tell my students that making mistakes is part of the learning process; the more mistakes you make and the more opportunities you have for learning. At the start, you may find the errors disconcerting, or that the engine does not work as expected until you understand what went wrong.

	Export your games early.

It is always great to build and export your first game. Even if it is rather simple, it is always good to see it in a browser and to be able to share it with you friends.

	Learn in chunks.

It may be disconcerting to go through five or six chapters straight, as it may lower your motivation. Instead, give yourself enough time to learn, go at your own pace, and learn in small units (e.g., between 15 and 20 minutes per day). This will do at least two things for you: it will give your brain the time to “digest” the information that you have just learned, so that you can start fresh the following day. It will also make sure that you don’t “burn-out” and that you keep your motivation levels high.

​Feedback

While I have done everything possible to produce a book of high quality and value, I always appreciate feedback from readers so that the book can be improved accordingly. If you would like to give feedback, you can email me at learntocreategames@gmail.com.

​Downloading the Solutions for the Book

You can download the solutions for this book after creating a free online account at http://learntocreategames.com/books/. Once you have registered, a link to the files will be sent to you automatically.

Improving the Book

Although great care was taken in checking the content of this book, I am human, and some errors could remain in the book. As a result, it would be great if you could let me know of any issue or error you may have come across in this book, so that it can be solved and the book updated accordingly. To report an error, you can email me (learntocreategames@gmail.com) with the following information:

	Name of the book.

	The page or section where the error was detected.

	Describe the error and also what you think the correction should be.

Once your email is received, the error will be checked, and, in the case of a valid error, it will be corrected and the book page will be updated to reflect the changes accordingly.

Supporting the Author

A lot of work has gone into this book and it is the fruit of long hours of preparation, brainstorming, and finally writing. As a result, I would ask that you do not distribute any illegal copies of this book.

This means that if a friend wants a copy of this book, s/he will have to buy it through the official channels or the book’s official website: www.learntocreategames.com/books).

If some of your friends are interested in the book, you can refer them to the book’s official website (http://www.learntocreategames.com/books) where they can either buy the book, enter a monthly draw to be in for a chance of receiving a free copy of the book, or to be notified of future promotional offers.

[]

	[image:]

	
	[image:]

[image:]

1 ​​
Reading Files and Creating Scenes Procedurally

[image:]

In this section, we will learn how to create your game levels from scripts and external files rather than by adding all objects manually to each scene. This will have the advantage of saving you a lot of time creating your levels; it will also make it easier to modify your levels relatively quickly too. Creating your environment from a script or “procedurally” can be achieved using a wide range of techniques from simple arrays to XML files, or prefabs. So, after completing this chapter, you will be able to:

	Instantiate objects based on an array or a text file.

	Create a level from an array.

	Create multiple levels using simple text files.

	Create more complex scenes by reading and implementing the content of an XML file.

Some of the skills you will also learn along the way include:

	Creating and accessing a Resources folder in your project where you can store and access resources for your game (e.g., images or text files).

	Reading text files from your game.

	Reading and parsing an XML document.

Building your environment from an array

The first and simplest way to create a game environment procedurally is by using a simple array, so to setup our first procedural environment, we will generate an indoor level using a combination of C# scripting and arrays.

We will proceed as follows:

	Create an array that represents the environment.

	Read the array.

	Instantiate objects based on the numbers read in the array.

So let’s get started:

	Please create a new scene (File | New Scene) and rename it gameLevelAuto (or any other name of your choice).

	Create a new cube (Game Object | 3D Object | Cube) and rename it ground.

	Make sure that the scale property for this object is (100, 1, 100) and that its position is (0, 0, 0).

	You can also create a material for (and apply it to) the ground object if you wish. To do so, you can either import a texture and apply it to the object, or create a new color material through the Project window (i.e., Create | Material).

Next, we will create an object that will be used to instantiate the walls.

	Please create a new cube (Game Object | 3D Object | Cube).

	Rename it wall.

	Set its scale property to (10, 2, 10).

	You can also create and apply a blue Material to this object or use any other texture of your choice.

[image: image]

Figure 1: Creating a wall

	Once this is done, you can create a prefab from this object, rename this prefab wall.

	To create the prefab, you can either drag and drop the object wall to the Project window, or create a new prefab from the Project window (Create | Prefab), and then drag and drop the object wall from the Hierarchy to this prefab.

[image: image]

Figure 2: Creating a new wall prefab

	Once this is done, you can deactivate the object wall located in the Hierarchy window, using the Inspector.

[image: image]

Figure 3: Deactivating the wall from the Hierarchy window

Next, we will create a script that will generate our maze.

	Please create a new C# script (i.e., from the project window select: Create | C# Script) and rename it GenerateMaze.

	Open this script and add the following code at the beginning of the class (i.e., just before the Start method).

public GameObject wall;

private int [,] worldMap = new int [,]

{

{1,1,1,1,1,1,1,1,1,1},

{1,0,1,0,0,0,0,0,0,1},

{1,0,1,0,1,0,1,0,0,1},

{1,0,1,0,0,0,0,0,0,1},

{1,0,1,1,1,1,0,0,0,1},

{1,0,0,0,0,0,0,0,0,1},

{1,0,1,0,1,0,1,1,1,1},

{1,0,0,1,0,0,0,0,0,1},

{1,0,1,0,0,0,0,0,0,1},

{1,1,1,1,1,1,1,1,1,1},

};

In the previous code:

	We declare a public GameObject variable that will be used a placeholder in the Inspector window to set the object to instantiate with the corresponding prefab.

	We then declare a multi-dimensional array (i.e., a two-dimensional array) of integers. The structure of this array mirrors the structure of the maze that we would like to create; for example, the top row could be the north wall, and the bottom row could represent the south wall, etc. So each 1 represents a wall, and each 0 represents an empty space.

	Each row of the array is defined using opening and closing brackets with values within separated by commas.

	Please add the following code to the Start method:

int i,j;

for (i = 0; i < 10; i++)

{

for (j = 0; j < 10; j++)

{

GameObject t;

if (worldMap [i,j] == 1) t = (GameObject)(Instantiate (wall, new Vector3 (50-i*10, 1.5f, 50-j*10), Quaternion.identity));

}

}

In the previous code:

	We declare two integers i and j; these will refer to specific rows and columns in our array. For example, if i is 1 and j is 1, we will be looking at row 1 and column 1. Because each array starts at 0, these will effectively be the second row and the second column in our array.

	We then create two loops; these loops will go through each row of the array that we have created.

	We then check the value of each element present in the array.

	If the value is 1, we instantiate a wall prefab accordingly.

Now, we just need to finish our setup:

	Please save your script.

	Check that it is error-free in the Console window.

	Create an empty object and rename it generateMaze.

	Drag and drop the script GenerateMaze to the object generateMaze.

	Once this is done, select the object generateMaze.

	Make sure that the Inspector window is active.

	In the Inspector window, identify the parameter called wall for the script GenerateMaze attached to this object, and drag and drop the prefab wall from the Project window to this variable.

[image: image]

Figure 4: Using the wall prefab for the variable wall

	So that we can see the layout in the Game view, you can change the camera position to (0, 90, 0) and its rotation to (90, 0, 0).

	Once this is done, you can play the scene, and check the layout either from the Scene view or the Game view.

[image: image]

Figure 5: The new scene viewed from the main camera

Creating an environment from a text file

Now, this works well and we could take it a notch further by creating a file that includes all the information about the maze.

You see, using arrays is great; however, it may be more convenient to use a specific file for each level. This will at least do two things for you: (1) it will make it possible to modify the structure of the level without having to modify the code, and (2) it will make it possible to create (and load) individual files for each level.

So you could virtually create a text file for every level and then load it accordingly.

So, for this purpose, we will be using a new method called Resources.Load. This method makes it possible to load resources (e.g., textures or text) from your Unity project. So first, we will create such a text file and then access it through our script.

	Please create a new folder called Resources within the folder called Assets in your project (from the Project window, select: Create | Folder).

[image: image]

Figure 6: Adding a new Resources folder

	Create a new text file using the editor of your choice.

	Add the following text to it.

1111111111

1010000001

1010101001

1010000001

1011110001

1000000001

1010101111

1001000001

1010000001

1111111111

	Save it as, for example, maze.txt within your Resources folder.

[image: image]

Figure 7: Saving the file maze.txt in the Resources folder

If you don’t know where you Resources folder is on your file system, you can locate it by right-clicking on it in Unity and selecting the option Reveal in Finder (for Mac OS) or Show in Explorer for Windows computers. You can also save your file on your computer system and then drag and drop it to the Resources folder.

[image: image]

Figure 8: Locating the Resources folder in your file system

Once this is done, we can modify our C# script so that it reads information from the text file rather than the array.

	Please open the script GenerateMaze.

	Comment (or remove) all the code already present in the Start method.

	Please add the following code to the Start function instead.

void Start ()

{

TextAsset t1 = (TextAsset)Resources.Load("maze", typeof(TextAsset));

string s = t1.text;

int i;

s = s.Replace("\n","");

for (i = 0; i < s.Length; i++)

{

if (s [i] == '1')

{

int column, row;

column = i%10;

row = i / 10;

GameObject t;

t = (GameObject)(Instantiate (wall, new Vector3 (50 - column * 10, 1.5f, 50 - row * 10), Quaternion.identity));

}

}

}

In the previous code we do the following:

	We declare a variable of type TextAsset that will be used to store the content of the file we have created as a resource.

	We then access its content and save it to a string variable.

	When this is done, we replace all the “end of line” characters (i.e., “\n”) by empty strings; these (the end of line characters) were initially present in our text file for convenience and to better tell each row apart; however, we don’t need this information anymore.

	We then loop through the content of the string gathered from the text file, and we instantiate an object whenever the number 1 is read. Columns and rows for our maze are also identified by either dividing the counter (i.e., i) by 10 or by using the modulo operator (i.e., %10).

The modulo operator provides the remainder of a division.

	We then do as previously to locate and rotate the object that has been instantiated.

Once you have added this code, please save your script and run the scene; you should see that the scene has been generated as previously, but with the difference that the content is now read from a text file that is saved within your project.

Following this principle, you could have several files that correspond to each level, each with a different name, and you could then load these depending on the level to be displayed.

Creating an environment from an image file

While the previous techniques are quite interesting and useful, there is another way to create your level, using a more artistic approach; that is: by drawing the outline of your levels as an image, and then by reading this file and instantiating objects, based on the color of each pixel present in the image.

Let’s see how this can be done:

	Please create a simple jpeg image, using an image editor of your choice, for example Adobe Photoshop, Microsoft paint or Gimp.

	As you create your image, you can use the brush tool, and ensure that its size is 1 so that you can draw pixel-by-pixel.

	For this particular application, we will leave empty spaces white, and any other pixel painted using the color of your choice.

[image: image]

Figure 9: Creating the outline of the level.

	The previous figure is my outline; again, it is very simple for the time being; it uses white pixels for empty areas and colored pixels for walls. This image is 500 by 500 pixels, simulating an area that is 500 meters wide and 500 meters long. If you wish, you can find and use this outline from the resource pack (i.e., outline.png).

	You can save this image to any format of your choice; in my case, I have saved it to .png (outline.png).

Once this is done, we will need to import this texture in Unity and make sure that it can be read from our code.

	Please import the texture in Unity (i.e., drag and drop the image to the Project window or use the option Assets | Import New Asset).

	The asset can be saved in the Assets folder and does not need to be saved in the Resources folder.

[image: image]

Figure 10: Importing the outline

	Select the texture that you have imported in the Project window.

	Using the Inspector window, set its Texture Type attribute to Advanced, as described in the next figure.

[image: image]

Figure 11: Setting the Texture Type attribute

	Then select the option Read/Write Enabled to true (i.e., check the corresponding box).

[image: image]

Figure 12: Making the image readable (from the code)

	Press the button Apply that is located at the bottom right corner of the Inspector window.

[image: image]

Figure 13: Applying the changes to the texture

At this stage, we have an image that is ready to be used and read; so all we need to do is to write the code that will create the environment based on this image.

	Please create a new C# script and call it GenerateFromImage (or any other name of your choice)

	Please add the following code at the start of the class.

Color[,] colorOfPixel;

public GameObject wall;

public Texture2D outlineImage;

In the previous code:

	We declare an array of colors; this array will store the color of each pixel present in the image, so that it can be used for the outline of our maze.

OEBPS/d2d_images/image209.jpg
& Project O cConsole Profiler
| create - |

Favorites Assets » ProceduralLevels
©LAll Materials @ blue

©LAllModels | & gameLevelAuto
©_AllPrefabs [G] GenerateMaze

(©) Al scripts

OEreen

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
A STEP-BY-STEP GUIDE TO CREATING YOUR GAMES

UNITY rwaeic

(ADVANCED)

PATRICK FELICTIA

OEBPS/d2d_images/image130.jpg
Default &% | % |

Max Size | 2048
Format | Automatic Compressed

OEBPS/d2d_images/image152.jpg
@ project [IlIConsole O Profiler™

| create -|

¥/ Favorites Assets »
©L All Materials &5 DB

All Models (&l ProceduralLevels
(L All Prefabs
All Serinte

OEBPS/d2d_images/image050.jpg

OEBPS/d2d_images/image051.jpg
Texture Type [T R
Non Power of 2 [ToNearest 4]

Mapping (None]
Convolution Type | None 3

Fixup Edge Seams []
Read/Write Enabled [

OEBPS/d2d_images/image078.jpg

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

OEBPS/d2d_images/image158.jpg
@ Project O Console & Profiler

Create ~

Favorites Assets » Resources
© All Materials| [maze
(© All Models

(©\ All Prefabs

OEBPS/d2d_images/image218.jpg
Animator | € Game

OEBPS/d2d_images/image019.jpg
Resources

OEBPS/d2d_images/image185.png

OEBPS/d2d_images/image122.jpg
© Inspector Occlusion =

[[generateMaze [static v
Tag [Uniagged + Layer [Default +)
V.~ Transform (v
Position x0 ¥[o z/0
Rotation x0 Y0 20
Scale x[1 v[1 z[1
¥ [:] ¥ Generate Maze (Script) @ =
Script GenerateMaze °

Wwall wall o

{ Add Component J

X

OEBPS/d2d_images/image047.jpg
Assets » Procedurallevels
© blue
€ gameLevelAuto
|G| GenerateMaze
© green
ot waall

OEBPS/d2d_images/image103.jpg
Texture Type Advanced :

Non Power of 2 ToNearest

Mapping None r

OEBPS/d2d_images/image169.jpg
© Inspector

e —

- Tag [(Untagged +] Layer Default 3]
Prefab [select | Reven | _Apply |

OEBPS/d2d_images/scene_break.png

