

Break It, Make It:

Sync Development with Tests

First edition

Abhishek Bhattacharya

Preface

Welcome to Break It, Make It. In the fast‐paced world of professional software development, testing is not an afterthought but the backbone of every successful project. This guide equips you to design, write, and maintain automated tests that mirror real‐world scenarios—unit tests that validate business rules, integration and component tests that verify external dependencies, and end-to-end suites that simulate user workflows. You will learn how to elevate testing from a checkbox to a driving force behind architecture, code quality, and team confidence.

Professional Project Tests and Real-World Scenarios

In modern projects, quality is only as strong as your test suite. This book shows you how to:

· Craft precise unit tests that isolate logic and guard against regressions

· Build integration tests for databases, APIs, and external services

· Write component tests to validate critical “vectors” - external components like time, configuration, and Input Output

· Automate end-to-end scenarios that catch system-wide failures before they reach production

· Evolve your test suite as your codebase grows, keeping tests fast, reliable, and maintainable

Prerequisites and Required Knowledge

To make the most of this guide, you should have:

· A solid grasp of object-oriented design and programming fundamentals

· Experience with a mainstream language(examples use C Sharp;.NET, but concepts apply universally)

· Familiarity with dependency injection, interface‐based design, and basic SOLID principles

· Basic understanding of version control workflows and continuous integration pipelines

· Openness to adopting new tools and frameworks for faster feedback loops

Intent and Test-Driven Development Exposure

Test-Driven Development(TDD) is more than a methodology—it is a mindset. You will be guided through its core rhythm:

	
Red: Write the smallest failing test that describes desired behavior

	
Green: Implement the minimal code to satisfy the test

	
Refactor: Improve structure, readability, and design without changing behavior

Through bite-sized exercises and progressive examples, you will internalize TDD as a design partner rather than a post-hoc safety net. By letting tests drive your architecture, you will build systems that are not only robust but also flexible and easy to evolve.

Keep this ebook within arm’s reach as you tackle daily challenges:

· Jump to individual chapters when you need a refresher on mocking, stubbing, or DI patterns

· Follow along with the hands-on exercises in your own IDE

· Refer to the chapter notes to understand why each practice matters in professional projects

· Leverage the concise diagrams and flowcharts to visualize test structures and control flows

Whether you’re joining a legacy codebase or architecting greenfield applications, let Break It, Make It become your go-to reference. By the end of this journey, tests will not just verify code—they will shape it. Welcome aboard.

About the Author

Abhishek Chaitanya Bhattacharya is a software engineer by profession with over twelve years of experience in full-stack development and enterprise software design. A Computer Engineering graduate from the University of Mumbai, he has architected and delivered mission-critical systems for clients in government contracts, ecommerce, and finance domains—working with technologies such as ASP.NET Core, C#, SQL Server, React, and WebAPI.

Beyond engineering, Abhishek nurtures a deep personal interest in software architecture and research-driven development. What began as handwritten notes—scribbled during late-night debugging sessions and design sprints—gradually evolved into a curated book, crafted to simplify learning and share insights with fellow developers. The book reflects his passion for Test-Driven Development (TDD), not just as a methodology, but as a lens for achieving simplicity, clarity, and resilience in design.

His approach treats automated tests as the foundation of clean architecture, using tools like NUnit, Moq, and CI/CD pipelines to validate ideas and accelerate feedback. Each chapter is designed to be a short, focused technical read—distilling complex patterns into digestible insights.

Whether sketching UML diagrams, documentation, or publishing practical guides, Abhishek aims to foster a thoughtful, test-friendly development culture. Welcome to a space where engineering meets curiosity—and where every test tells a story.

Copyright Notice

© 2025 Abhishek Chaitanya Bhattacharya. All rights reserved.

This publication is protected under international copyright laws. No part of this book may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of the author, except for brief quotations in reviews, articles, or academic citations.

Prohibited actions include:

· Photocopying, recording, or other electronic or mechanical methods

· Distribution or transmission in any form

· Unauthorized commercial use, redistribution, or modification

The content, diagrams, and code samples within are the intellectual property of the author and intended for individual professional use. Unauthorized modifications are strictly prohibited.

This book is intended for educational and reference purposes only. While every effort has been made to ensure accuracy and best practices, the author assumes no liability for any direct or indirect outcomes resulting from the application of the content herein.

For permissions and licensing inquiries, contact: abhishekcbhattacharya@gmail.com

Acknowledgments

I owe a debt of gratitude to the open-source community whose libraries and patterns underpin so much of modern software development. Thank you to the contributors of NUnit, Moq, and Chutzpah for building the tools that make TDD practical. As a software developer, I have tried to answer the fundamental questions that arise in early project experiences. I deeply acknowledge the importance of open-source information available on the internet.

To my early reviewers—fellow developers and mentors who tirelessly critiqued draft after draft—your insights sharpened every example and exposed gaps I never would have caught alone. A special thanks to the open source projects Graphviz for diagram automation and to the countless developers in online forums who answered late-night questions about mocking, stubbing, and test isolation.

Finally, to my family and dedicated friends: your patience, encouragement, and endless coffee refills made this book possible.

Errata & Reader Feedback

We believe that learning is a collaborative journey. If you spot any grammatical errors, inconsistencies, unclear explanations, or have suggestions for improvement, we welcome your input.

You can contribute by sharing:

· Typographical or grammatical corrections

· Questions about specific examples or concepts

· Suggestions for clearer phrasing or alternative approaches

· Workable fixes or enhancements to code samples

How to submit feedback:

· Email: abhishekcbhattacharya@gmail.com

· Include: Chapter number, section title, and a brief description of your feedback

· Optional: Share your proposed fix or clarification

All constructive feedback will be reviewed and considered for future editions. Contributors may be acknowledged in subsequent releases.

Thank you for helping make Break It, Make It a better resource for the developer community!

––––––––

[image:]

How to Use This Book

Chapters are organized into four categories:

	Part I: Foundations of Testability

	Part II: Designing for Testability

	Part III: Practical Test Implementation

	Part IV: Advanced Use Cases

Each category represents a purpose oriented grouping. Start completing each level. If you lack understanding, refer to the previous level.

Part I: Foundations of Testability

These chapters introduce TDD, design principles, and the basic testing toolbox.

1. Chapter 1: Test-Driven Development Essentials

· Introduce Red-Green-Refactor cycle

· Benefits of “smallest failing test” mindset

2. Chapter 2: Frameworks vs. Libraries

· Hollywood Principle, control flow, typical use cases

· Learn distinction of “Framework vs. Library”

3. Chapter 3: SOLID Principles for Clean Code

· Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation, Dependency Inversion

· Law of Demeter

4. Chapter 4: Testing Types & Strategies

· Unit, Component, and End-to-End testing explained

· Golden rules: isolated, repeatable, order-independent

5. Chapter 5: Tools of the Trade

· NUnit3, Chutzpah, Moq, FluentValidation, test runners, CI integration

· Arrange-Act-Assert patterns and common attributes/assertions

Part II: Designing for Testability

Focus on clean class/method structure, dependency management, and isolating external factors.

6. Chapter 6: Crafting Testable Classes & Methods

· Understand testable “Class” and “Methods” chapters

· Workflows for flowchart, cyclomatic complexity, method-expression creation

7. Chapter 7: Dependency Injection & IoC Containers

· Constructor injection, Setup in Global.asax, .NET Core DI

· Renamed from “Setup IOC”

8. Chapter 8: Isolating External Dependencies

· Scalar vs. vector analogy

· Refactoring “Separation of vector – external component” to emphasize real-world inputs(Database, File System, Time)

9. Chapter 9: Reverse-Engineering Tests from Existing Code

· Implement “Creating Test Cases from Existing Code”

· Whitelist/blacklist expressions, BDD naming, expanding the test tree

Part III: Practical Test Implementation

Dive into mocking strategies, handling legacy components, and special cases.

10. Chapter 10: Mocking, Stubbing & Spying Techniques

· Consolidates “Decoding Stub, Mock and Spy, ” “Mocking Object, ” and “Spy Object”

· When to use each, pitfalls, Moq examples

11. Chapter 11: Testing Legacy & Static Code

· Setup code for “Tests for Existing Code” and “Static Class Handling”

· Nested tests pattern Ex: Controller → Service → Database, refactoring static classes

12. Chapter 12: Component Testing & Boundary Conditions

· Understand “Component Testing — Implementation”

· Practical exercises for off-nominal flows

Part IV: Advanced Use Cases

Cover integration tests, database scenarios, JavaScript testing, and complex test scenarios.

13. Chapter 13: Database Testing Strategies

· SQL/unit tests for stored procedures, data integrity, compliance checks

14. Chapter 14: API & Integration Tests

· Postman/CURL workflows, POCO models, base-class test abstractions

15. Chapter 15: Advanced Test Scenarios & Extensions

· Model validation helpers, test inheritance, .NET Core 8+ setup

16. Chapter 16: JavaScript Unit Testing

· Chutzpah, Jasmine setup, folder structure, running tests in CI

––––––––

[image:]

Chapter-wise topics

Chapter 1: Test-Driven Development Essentials

1.1 Red — Green — Refactor

1.2 The Smallest Failing Test Mindset

1.3 MCQ Questions

Chapter 2: Frameworks vs. Libraries

2.1 Control Flow: Inversion vs. Invocation

2.2 Architectural Scope and Opinionation

2.3 Dependency Relationship

2.4 Typical Use Cases

2.5 Key Takeaways

2.6 Hands-on Exercises

2.7 MCQ Questions

Chapter 3: SOLID Principles for Clean Code

3.1 Single Responsibility Principle

3.2 Open closed principle

3.3 Liskov Substitution Principle

3.4 Interface Segregation Principle

3.5 Dependency Inversion Principle

3.6 Law of Demeter

3.7 Key takeaways

3.8 MCQ Questions

Chapter 4: Testing Types and Strategies

4.1 Unit testing

4.1.1 Unit testing scope mechanism explained

4.2 Class dependency tree

4.3 Component Testing

4.3.1 Pro-Tips

4.4 End to End Testing

4.5 Unit testing rules

4.6 Key takeaways

4.7 MCQ Questions

Chapter 5: Tools of the Trade

5.1 Boolean Algebra

5.1.1 Boolean Operators

5.1.2 Basic Laws & Identities

5.1.3 DeMorgan’s Theorems

5.1.4 Logic Laws

5.1.5 Programming Applications

5.2 NUnit 3

5.2.1 Arrange — Act — Assert

5.2.2 Commonly used attributes

5.2.3 Commonly used assertions

5.3 Jasmine

5.3.1 Basic Structure

5.3.2 Matchers

5.3.3 Error Matchers

5.4 Test runners

5.5 Moq

5.6 FluentValidation

5.7 Key takeaways

5.8 MCQ Questions

Chapter 6: Crafting Testable Classes & Methods

6.1 Testable Class

6.1.1 Core Members

6.1.2 Need for indirect instance creation

6.1.3 Dependency tree

6.1.4 Construct mappings

6.1.5 Dependency Inversion tree diagram

6.1.6 Guidelines for designing classes

6.1.7 Class Diagram

6.1.8 Key takeaways

6.1.9 Hands on Exercises

6.2 Testable Methods

6.2.1 Cyclomatic complexity

6.2.2 Combinations

6.2.3 Create method expression

6.2.4 Predicting test method count

6.2.5 Key takeaways

6.2.6 Hands on Exercises

6.3 MCQ Questions

Chapter 7: Dependency Injection & IoC Containers

7.1 Setup Global.asax

7.2 Registration

7.3 Newer version IOC Registration

7.4 Constructor injection

7.5 Application framework vector – external component implementation

7.6 Vector – external component implementation in Test framework

7.7 Key Takeaways

7.8 MCQ Questions

Chapter 8: Isolating External Dependencies

8.1 Introduction

8.2 Scalar vs. vector analogy

8.3 Separation of vectors – external components from class code

8.4 vector – external component implementation requirements

8.5 Refactoring example

8.5.1 Refactor method implementation

8.5.2 Create vector – external component class implementation

8.5.3 Replace private methods by vector – external component instance methods

8.5.4 Create interface from independent vector – external component class

OEBPS/d2d_images/cover.jpg
Break It, Make It:
Sync Development with Tests

First Edition

OEBPS/d2d_images/scene_break.png

