

 ESP32 Arduino Programming Handbook

 Microcontroller Programming Series

 Sarful Hassan

 Published by Sarful Hassan, 2026.

 While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 ESP32 ARDUINO PROGRAMMING HANDBOOK

 First edition. January 15, 2026.

 Copyright © 2026 Sarful Hassan.

 Written by Sarful Hassan.

 10 9 8 7 6 5 4 3 2 1

 	
	
	 Also by Sarful Hassan

	

	

	 Master of Programming

	 Python Programming Masterclass

	 JavaScript programming for Beginners

	 Java Programming for Beginners

	 C Programming for Beginners

	 C# Programming Masterclass

	

	 Microcontroller Programming Series

	 MicroPython with Raspberry Pi Pico A Complete Beginner’s Guide to Programming

	 Raspberry Pi Pico C Programming C Programming, Hardware Interfaces, RP2040

	 C Programming for Embedded Systems

	 MSP430 Microcontroller Programming Handbook A Complete Beginner’s Guide to Embedded C, Peripherals, and Hardware Control for MSP430 Systems

	 RISC-V Microcontroller Programming Handbook A Practical Guide to Embedded C, Peripherals, Timers, PWM, and Real-World Projects

	 Arduino Programming Handbook

	 ESP32 Arduino Programming Handbook

	
	
	 Watch for more at Sarful Hassan’s site.

	
	

	

 	
 	
			

			
		
 This book is dedicated to every learner who chooses to begin, even when the path feels uncertain. To the students who stay curious, the self-learners who study late at night, and the beginners who believe they can improve step by step—this book is for you.

It is also dedicated to teachers and mentors who inspire learning through patience and encouragement, and to everyone who believes that knowledge grows best when shared freely and kindly.

May this handbook support your journey, strengthen your confidence, and remind you that every great project starts with a single small step.

 	

 "Every complex system begins with a simple idea. Learn the basics patiently, and the possibilities will open themselves to you."

ESP32 Arduino Programming Handbook

BY Sarful Hassan

Preface

This handbook is created to help you begin your ESP32 programming journey with confidence and curiosity. If you are new to ESP32 or feel unsure about where to start, you are not alone. This book is designed to guide you gently, one step at a time, using clear explanations and practical examples. You will learn by doing, and each small success will build your confidence. Take your time, be patient with yourself, and enjoy the process of learning something new.

Who This Book Is For

This book is written for learners who want a friendly and supportive introduction to ESP32 programming. It is suitable for:

	Beginners with little or no experience in ESP32

	Arduino users who want to move forward with ESP32

	Students of electronics, mechatronics, and automation

	Self-learners who prefer clear, step-by-step guidance

	Hobbyists and developers who want to build real-world projects

How This Book Is Organized

The book follows a logical and beginner-friendly structure so you never feel overwhelmed.

	The first part introduces ESP32 and explains how to set up the development environment.

	The next section covers programming basics such as data types, variables, operators, and control flow.

	You then move on to working with digital and analog pins, timers, and communication methods.

	The final part focuses on Wi-Fi, networking, and web-based features to connect your projects to the internet.

Each chapter builds on the previous one, helping you progress naturally and confidently.

What Was Left Out

To keep learning simple and focused, some advanced and highly technical topics are not included.

	Complex hardware-level theory

	Advanced ESP32 internal architecture

	Specialized or rarely used features

These topics are best explored after you have a strong foundation, which this book aims to provide.

Release Notes

This first release focuses on clarity, simplicity, and practical learning.

	Explanations are written in easy-to-understand language

	Examples are chosen for real-world relevance

	Content is structured to support gradual learning

Future updates may include more projects, expanded explanations, and new ESP32 features.

Notes on the First Edition

This first edition is shaped by the needs of beginners.

	It prioritizes understanding over speed

	It encourages learning through practice

	It accepts that learning is a gradual process

Your progress matters more than perfection.

How to Contact Us

If you have questions, suggestions, or feedback, you are welcome to get in touch.

	Email: mechatronicslab.net@gmail.com

Free Learning Website

You can find additional tutorials, examples, and free learning resources at:

	mechatronicslab.net

Acknowledgments for the First Edition

This book would not exist without the motivation and curiosity of learners.

	Thanks to students who asked thoughtful questions

	Thanks to educators who encouraged simple explanations

	Thanks to self-learners who believe in continuous improvement

Your desire to learn is the true inspiration behind this handbook.

Copyright (mechatronicslab.net)

All rights reserved. The content of this book is the intellectual property of mechatronicslab.net and is protected by copyright laws.

Disclaimer

This book is intended for educational purposes only.

	The author has made every effort to ensure accuracy

	The author and publisher are not responsible for misuse or damages

	Readers are encouraged to test and learn responsibly

Important Notice

Do not copy, distribute, publish, or use any part of this book on other platforms or websites without prior written permission from mechatronicslab.net. Free learning resources related to this book are available exclusively at mechatronicslab.net.

	[image:]

	
	[image:]

[image:]

Part I: Getting Started

[image:]

	[image:]

	
	[image:]

[image:]

Chapter 1: Introduction to ESP32 & Its Features

[image:]

Introduction to ESP32 & Its Features

What is the ESP32?

Alright, let's start by talking about the ESP32, which is a super powerful and affordable microcontroller from Espressif Systems. If you're new to the world of microcontrollers and IoT, think of it like a small computer that can communicate with other devices, especially over Wi-Fi and Bluetooth. This makes it perfect for building connected projects like smart lights, home automation, and even wearable gadgets.

[image: ESP DevKits | Espressif Systems]The great thing about the ESP32 is that it's not just a single-chip device with Wi-Fi. It's got a dual-core processor, which makes it a lot more capable of handling complex tasks than many other microcontrollers, especially in projects that need to process data and communicate wirelessly at the same time.

Key Features of the ESP32

Let’s dive into some of the awesome features that make the ESP32 stand out.

	
Dual-Core Processor: The ESP32 has two cores, which means it can perform multiple tasks at once. Imagine it like having two hands to do things instead of one! You can run tasks on one core and leave other tasks for the second core, making it really efficient for projects that need fast processing, like a robot or a smart home system. It can run at speeds of up to 240 MHz, which is pretty fast for a microcontroller!

	
Wi-Fi Connectivity: One of the best features of the ESP32 is its ability to connect to Wi-Fi networks. This means your project can talk to the internet or communicate with other devices on a network. Whether you're creating a smart thermostat or building a system to monitor the weather, the ESP32 can make it happen. It supports the standard Wi-Fi protocols (802.11 b/g/n) and can operate in Station Mode (connecting to an existing network) or Access Point Mode (creating its own network).

	
Bluetooth Connectivity: Not only does the ESP32 handle Wi-Fi, but it also supports Bluetooth (both Classic Bluetooth and Bluetooth Low Energy, or BLE). This makes it easy to connect your project to things like smartphones, fitness trackers, or Bluetooth speakers. So, if you want your project to communicate wirelessly with a phone, the ESP32 is a great choice!

	
GPIO Pins: These are the pins on the ESP32 that let it talk to other components, like sensors, buttons, or lights. The ESP32 comes with up to 34 GPIO pins, which is a lot! You can use these pins to connect to different parts of your project, and many of them support special features like PWM (for controlling motors), ADC (for reading analog signals), and DAC (for outputting analog signals).

	
Low Power Consumption: Even though the ESP32 is pretty powerful, it’s also designed to be energy-efficient. If you’re building a project that runs on a battery, like a remote sensor or a wearable, you’ll be happy to know that the ESP32 has several low-power modes. These modes help it save energy when it’s not actively doing something, which can make your project last longer on a single charge.

	
Onboard Flash Memory: The ESP32 comes with built-in memory, which stores your program code. You can also store data like sensor readings or configurations in this memory. Depending on the model, it can have anywhere from 4 MB to 16 MB of flash memory, which is plenty of space for most projects.

	
Analog-to-Digital Converter (ADC): The ESP32 can read analog signals (like the output from a temperature sensor) using its built-in ADC. This is important because many real-world sensors give analog data, which needs to be converted to digital so the microcontroller can understand it. The ESP32 can read signals with a 12-bit resolution, which gives it a pretty high level of detail when reading those sensors.

	
Support for External Memory: If you need even more storage, the ESP32 can also work with external memory, such as SD cards or extra SPI flash memory. This comes in handy if your project involves storing a lot of data, like images or logs from a sensor.

	
I2S Audio Interface: One cool feature of the ESP32 is that it can be used in audio projects. If you want to make a device that records or plays sound, the ESP32 has an I2S interface, which allows it to easily connect to microphones, speakers, and other audio devices.

	
Security Features: Security is essential, especially in connected devices. The ESP32 comes with built-in secure boot and flash encryption, which helps keep your data safe from tampering. This is great if you’re building a project that will be connected to the internet or needs to store sensitive information.

Why Use the ESP32?

The ESP32 is fantastic because it combines power, flexibility, and affordability. If you want to create a smart device that talks to other devices over the internet or Bluetooth, the ESP32 is perfect. It’s not only powerful, but also energy-efficient, which is a must for IoT projects that run on batteries.

Whether you're building something simple like a temperature sensor that connects to your phone or something complex like a robot that talks to the cloud, the ESP32 can handle it. It's great for both beginners and experienced developers, and there’s a huge community that can help you along the way.

Applications of the ESP32

[image: Generated image]Home Automation: You can use the ESP32 to control smart lights, locks, fans, and other devices. Imagine being able to turn your lights on or off from anywhere in the world through your phone!

	
Wearables: Want to build a fitness tracker or a heart-rate monitor? The ESP32 can handle it with Bluetooth connectivity to sync with your phone.

	
Industrial IoT: If you’re monitoring equipment, tracking inventory, or gathering environmental data, the ESP32 can help you collect and send that information over Wi-Fi.

	
Robotics: The ESP32 can control motors, read sensors, and process information in real-time. You can use it to build everything from simple bots to more complex autonomous systems.

	
Environmental Monitoring: With sensors, you can use the ESP32 to monitor the weather, air quality, or other environmental factors and send that data to a cloud service.

Programming the ESP32

There are several ways to program the ESP32, and I want you to know that you don’t need to be intimidated! Here are a few options:

	
Arduino IDE: This is the simplest way to get started. You can write code, upload it to the ESP32, and start building your projects. The Arduino IDE has tons of libraries and examples to make your work easier.

	
Espressif IDF: If you're looking for more control and advanced features, the Espressif IoT Development Framework (IDF) is perfect for you. It’s a bit more complex but gives you complete control over the ESP32.

	
MicroPython: If you’re comfortable with Python or want to learn, you can program the ESP32 with MicroPython. It’s a great option for beginners and educators.

	
PlatformIO: If you’re using VS Code and want an all-in-one development environment, PlatformIO is a great option.

Summary

The ESP32 is an incredibly powerful, versatile, and affordable microcontroller that can handle Wi-Fi, Bluetooth, and a range of other tasks. It’s perfect for IoT projects, from smart homes to robotics. Don’t worry if you’re new to microcontrollers—the ESP32 is beginner-friendly, and with all the resources available, you’ll be building exciting projects in no time! Keep learning, keep experimenting, and most importantly—have fun with it! You’ve got this!

	[image:]

	
	[image:]

[image:]

Chapter 2: ESP32 Development Boards & Pinouts

[image:]

Let’s Talk About ESP32 Development Boards

Alright, so now that you’ve heard about the ESP32, it’s time to dive into the development boards you'll be working with. These are basically the ESP32 microcontroller with extra features that make it easier to use in your projects. Think of the development board as the bridge between the ESP32 chip and all the other components you want to connect to it, like sensors, LEDs, motors, or even the internet.

The great thing about these boards is that they come ready to go—no need to worry about adding additional components or doing complicated setups. They already have USB ports, voltage regulators, and extra pins for you to connect your projects.

Popular ESP32 Development Boards

There are a few different ESP32 boards to choose from, but the most common ones are:

	
ESP32 DevKit v1: 	This is one of the most widely used boards for beginners and hobbyists. It's super easy to work with, and it’s perfect for projects you want to prototype quickly. It usually comes with 30-38 GPIO pins (depending on the version) and is great for learning and simple experiments.

	
ESP32-WROVER: 	The WROVER series has extra features, like PSRAM (Pseudo Static RAM), which is great if you want to handle more complex data or work with large files. This board is a good choice for projects that need more memory, like image processing or data logging.

	
ESP32-WROOM: 	The WROOM is similar to the WROVER but without the extra memory (no PSRAM). If you’re just getting started and don’t need a lot of memory, the WROOM is a fantastic budget-friendly option.

	
ESP32-PICO: 	This board is smaller and more compact, which makes it a great option when size matters. It’s perfect for wearable projects or anything that needs to fit into a small space.

So, depending on the project you want to work on, you can pick a board that suits your needs. But honestly, for most beginners, the DevKit v1 is usually the best starting point. You can’t go wrong with that!

Understanding the Pinouts on the ESP32

[image:]

Now, let's break down the pins on the ESP32 board. Think of these pins like roads that connect your microcontroller to the outside world—whether that’s sensors, motors, or other devices. The ESP32 has lots of pins, and it’s important to know which ones do what. But don’t worry, we’ll go step by step.

	
Power Pins
	
3V3 (3.3V): This pin supplies 3.3 volts to power low-voltage components like sensors and other modules.

	
GND (Ground): This pin is the ground connection, completing the circuit between your ESP32 and other components.

	
Vin: Some boards have this pin, which can be used to supply 5V from an external power source, like a USB connection or battery.

	
GPIO Pins
	
General-Purpose Input/Output Pins (GPIO) are the most important pins you’ll use in your projects. These pins can be used for a variety of things, such as reading data from sensors, controlling LEDs, or communicating with other devices.

	
The ESP32 has 34 GPIO pins, but not all of them are exposed on the board. The exact number and availability of pins depend on the model you’re using.

	
Some GPIO pins can also be used for special functions like PWM (for motor control), ADC (for reading analog values), DAC (for outputting analog signals), and more.

	
Analog Pins
	
ADC Pins: The ESP32 has 12-bit ADCs that allow you to read analog signals. For example, if you have a temperature sensor that outputs an analog voltage, you can connect it to these pins to read the data.

	
On most ESP32 boards, pins GPIO34, 35, 36, and 39 are commonly used for analog inputs. These pins let you measure things like temperature, light, or even the voltage in your project.

	
PWM Pins 	
PWM (Pulse Width Modulation) is useful when you want to control things like motor speed or LED brightness. The ESP32 has PWM support on many of its GPIO pins. You can use PWM to create a smooth, variable output by adjusting the duty cycle (how much time the signal stays high in one cycle).

	
Communication Pins
	The ESP32 is great for communicating with other devices. It supports a range of communication protocols that let you connect to sensors, displays, or other microcontrollers.

	
I2C: For devices like temperature sensors or displays, the I2C protocol is super useful. The default pins are:
	
SDA (GPIO21) for data.

	
SCL (GPIO22) for the clock.

	
SPI: If you’re working with high-speed devices like SD cards or displays, you’ll use SPI (Serial Peripheral Interface). The pins for SPI are:
	
MOSI (GPIO23): Data to the device.

	
MISO (GPIO19): Data from the device.

	
SCK (GPIO18): Clock signal.

	
CS (GPIO5): Chip select.

	
UART: For serial communication with other devices like sensors or computers, you can use UART. The most common pins are:
	
TX (GPIO1): Transmit data.

	
RX (GPIO3): Receive data.

	
Special Pins
	
EN (Enable): This pin turns the board on and off. If you pull it low, it will reset the ESP32.

	
IO0 (GPIO0): This pin is really important because it’s used to put the ESP32 into programming mode. If you connect it to ground, you can upload code to the board.

	
IO15 (GPIO15): This pin is also used for booting purposes, especially during startup, and can be used to select the boot mode.

How to Use the Pins in Your Projects

As you start working with your ESP32, you'll need to keep in mind that not all pins can do everything. Some pins are dedicated to special functions, like booting the device, so be careful where you connect things. But don't worry, as long as you refer to the pinout diagram, you’ll be able to identify the best pins for your needs.

There are plenty of online resources with pinout diagrams for your specific board. Websites like pinout.xyz offer interactive diagrams where you can see all the pin functions.

Choosing the Right Pins for Your Project

Here’s a quick tip for choosing the right pins:

	
If you’re using I2C, try to avoid using GPIO21 and GPIO22 for anything else because these are the default I2C pins.

	
For PWM, make sure you pick pins that support PWM, and check that they’re not already dedicated to another function.

Summary

The ESP32 is an incredibly flexible microcontroller, and understanding the pins and how they work is key to making your projects come to life. With its wide range of GPIO pins, analog inputs, and communication capabilities, the ESP32 is ready to tackle all sorts of tasks.

Remember, the more you play around with the pins and start connecting things, the more comfortable you’ll get. Don’t stress if it feels overwhelming at first—just take it one step at a time. You’re doing awesome, and I’m sure you’re going to build some amazing projects with your ESP32! Keep experimenting, and have fun with it!

	[image:]

	
	[image:]

[image:]

Chapter 3: Development Environment Setup

[image:]

Getting Ready to Start Coding with ESP32

Before we jump into building amazing projects with the ESP32, we need to set up the environment where we’ll write and upload code to the board. Don’t worry, I’m here to guide you every step of the way, so you won’t miss a thing! Once we’ve got the setup, you’ll be able to easily program your ESP32 and bring your ideas to life.

What You'll Need

Here’s a list of what we’ll be working with in this chapter:

	
A Computer (Windows, macOS, or Linux)

	
ESP32 Development Board (DevKit v1 or any other ESP32 board)

	
Micro-USB Cable (to connect the ESP32 to your computer)

	
Arduino IDE or PlatformIO (a development environment for writing code)

	
ESP32 Board Drivers (so your computer can communicate with the ESP32)

Don’t worry if you’re new to setting this all up. I’ll break it down for you, and by the end of this chapter, you’ll have everything ready to start writing your first program for the ESP32!

Step 1: Installing Arduino IDE

The Arduino IDE is one of the most popular and beginner-friendly development environments for working with microcontrollers. It’s free, easy to use, and supports many boards, including the ESP32.

Let’s get you set up with it!

	
Download Arduino IDE: 	Head over to the official Arduino website (arduino.cc) and download the version that matches your computer’s operating system (Windows, macOS, or Linux).

	
Install Arduino IDE: 	Once downloaded, follow the installation instructions to install the Arduino IDE on your computer. If you’re on Windows, it’s as simple as clicking “Next” a few times. On macOS, you’ll drag the app into your Applications folder.

	
Launch Arduino IDE: 	Open the Arduino IDE, and you’ll see the familiar coding environment with a simple text editor where you’ll write your code.

Step 2: Installing ESP32 Board Support in Arduino IDE

Now that the IDE is installed, we need to add support for the ESP32 board. This allows you to select the ESP32 as a target when uploading your code.

	
Open Arduino IDE and go to the Preferences menu.
	
On Windows, you’ll find this under File > Preferences.

	
On macOS, it’s under Arduino > Preferences.

	
Add ESP32 Board URL:
	
In the Additional Boards Manager URLs section, paste this URL:

	https://dl.espressif.com/dl/package_esp32_index.json

	If there are already other URLs there, separate them with a comma.

	
Install the ESP32 Board:
	
Now, go to Tools > Board > Boards Manager.

	
In the Boards Manager, type “ESP32” in the search bar.

	
Find the ESP32 by Espressif Systems package and click Install.

	Wait for the installation to complete. This will take a few minutes.

Step 3: Select Your ESP32 Board

Once the ESP32 is installed, we need to tell the Arduino IDE which specific ESP32 board you’re using.

	
Select the Board: 	Go to Tools > Board and select your ESP32 board from the list. For most beginners, you can start with the “ESP32 Dev Module”.

	
Select the Port:
	Make sure your ESP32 is connected to your computer via USB.

	
Go to Tools > Port, and select the port that your ESP32 is connected to. If you’re on Windows, it will usually be something like COM3 or COM4. On macOS, it will look like /dev/cu.SLAB_USBtoUART.

Step 4: Install the Necessary Drivers (if needed)

In some cases, especially if you’re using Windows, your computer might need drivers to communicate with the ESP32.

	
Download the USB-to-Serial Drivers:
	
If the Arduino IDE doesn’t recognize your board, you may need to install USB-to-Serial drivers for your ESP32.

	
You can get these drivers directly from Espressif or from sites like Silicon Labs (for the CP210x USB-to-UART bridge).

	
Install the Drivers: 	After downloading, follow the installation instructions. On Windows, you might need to restart the IDE or your computer for the changes to take effect.

Step 5: Upload a Simple Test Sketch

Let’s make sure everything is working before we move on to your first project!

	
Open an Example Sketch:
	
In Arduino IDE, go to File > Examples > 01.Basics > Blink.

	This is a simple program that will blink the onboard LED on the ESP32.

	
Upload the Sketch:
	
Click on the Upload button (the right-arrow icon).

	The IDE will compile the code and upload it to your ESP32. You’ll see some activity in the bottom bar, and once it’s done, the onboard LED on the ESP32 should start blinking!

Congratulations! You’ve just uploaded your first program to the ESP32!

Step 6: Troubleshooting (if needed)

If things don’t work right away, don’t worry—it happens to everyone. Here are a couple of quick things to check:

	
Check Your Board and Port Selection: Double-check that you’ve selected the correct board and port in Tools > Board and Tools > Port.

	
Press the "BOOT" Button: On some ESP32 boards, you may need to press the "BOOT" button while uploading the code.

	
Try a Different USB Cable: Sometimes, a faulty USB cable can cause problems. If you’re using a third-party cable, try switching it out for a good quality one.

Step 7: Optional: Installing PlatformIO (Alternative IDE)

If you’re looking for a more advanced development environment, you can try PlatformIO, which works with Visual Studio Code. It offers additional features like debugging, intellisense, and multi-platform support.

	
Install Visual Studio Code: Download and install Visual Studio Code from here.

	
Install PlatformIO: Open Visual Studio Code, go to the Extensions tab, search for PlatformIO, and install it.

	
Create a New Project: PlatformIO will help you create a new ESP32 project, and you can write your code and upload it directly from the editor.

Summary

Great job! You’ve successfully set up your development environment, and now you’re ready to start coding with your ESP32. Whether you’re using Arduino IDE or PlatformIO, the setup process is simple, and you’ll be building projects in no time. Keep experimenting, keep learning, and remember, each step you take is progress toward mastering the ESP32.

Now, you're all set to dive into your first real project! Let's get coding and start making some cool things with your ESP32! 😊

	[image:]

	
	[image:]

[image:]

Part II: Programming Foundations

[image:]

	[image:]

	
	[image:]

[image:]

Chapter 4: Data Types

[image:]

Integer (Signed) Data Type for ESP32 Arduino

Let’s Begin

Welcome! In this lesson, we’ll explore the integer data type. Integers are whole numbers such as 3, -7, or 125. They may look simple, but they are used in almost every ESP32 Arduino program. Once you understand them, many projects will become much easier.

What Is Integer and Why Use It?

An integer is a number without decimals. Think of counting pencils in a box. You can have 10 pencils or -2 if you borrowed some, but not 10.5. Integers are perfect when you need to work with whole numbers only.

Use Cases in Real Projects

Integers are used to count button presses, track the number of times a loop runs, or measure the steps taken by a stepper motor.

Basic Rules

	Integers store whole numbers only.

	Signed integers can be positive or negative.

	Integers use a fixed amount of memory inside the ESP32.

Syntax

int counter = 0;

Syntax Explanation

The word int tells Arduino that the variable will hold whole numbers. The name counter is the label for this variable, like writing a name on a jar. The = sign means “place this value inside,” and 0 is the starting number saved there.

Common Mistakes to Avoid

A common mistake is trying to save decimals in an integer. If you write int x = 4.8;, the ESP32 keeps only 4 and drops .8. Another mistake is forgetting that integers have limits. If the value becomes too large, it wraps around and turns negative.

Best Practices

Always use clear and meaningful variable names. Writing buttonCount is much better than x. It makes your code easier to read and prevents confusion later.

Safety Notes

Integers are software values, but when used with sensors or buttons remember that ESP32 GPIO pins work only with 3.3V signals.

Try It Yourself Project – Button Press Counter

Project Overview

We’ll write a program that counts button presses and displays the number on the Serial Monitor.

Things You’ll Need (Hardware)

	ESP32 board

	Push button

	Breadboard and jumper wires

	10kΩ resistor

Tools & Software

	Arduino IDE installed

Power Source Clarification

The ESP32 can be powered directly from your computer using a USB cable.

Circuit Connection With Explanation

Connect one side of the button to ESP32 GPIO 5 and the other side to GND. Place a 10kΩ resistor between GPIO 5 and 3.3V to act as a pull-up resistor.

Coding Time

int buttonCount = 0; // number of button presses

int buttonPin = 5; // GPIO pin for the button

int buttonState = 0; // current button state

void setup()

{

pinMode(buttonPin, INPUT_PULLUP); // set pin as input with pull-up

Serial.begin(115200); // start Serial Monitor

}

void loop()

{

buttonState = digitalRead(buttonPin); // read button state

if (buttonState == LOW) // button pressed

{

buttonCount = buttonCount + 1; // increase counter

Serial.println(buttonCount); // print the count

delay(300); // debounce delay

}

}

Build & Upload the Program

Click the upload button in Arduino IDE. When the message “Done Uploading” appears, open the Serial Monitor.

What You’ll See (Output)

Every time you press the button, the number increases:

1

2

3

4

Troubleshooting Tips

	If nothing prints, check that the Serial Monitor baud is set to 115200.

	If numbers increase randomly, recheck your wiring and resistor.

	If no response, confirm the button is connected to GPIO 5.

Try Something New

	Start the counter at 100 instead of 0.

	Use another GPIO pin for the button.

	Add a second button to reset the counter back to zero.

Unsigned Integer Data Type for ESP32 Arduino

Let’s Begin

Welcome! In this lesson, we’ll explore the unsigned integer data type. Unlike signed integers, unsigned integers cannot store negative numbers. They are great for counting things that can never go below zero. By the end, you’ll know exactly when and how to use them.

What Is Unsigned Integer and Why Use It?

An unsigned integer is a whole number that can only be zero or positive. Imagine counting coins in a jar. You can have 0 coins or 50 coins, but never -10 coins. That’s why unsigned integers are helpful when negative numbers don’t make sense.

Use Cases in Real Projects

Unsigned integers are perfect for counting sensor readings, tracking button presses, or storing values like distance and time that can’t be negative.

Basic Rules

	Unsigned integers store only whole numbers.

	They cannot hold negative values.

	They allow larger positive numbers than signed integers of the same size.

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
ARDUINO PROGRAMMING_ .

HANDBOOK ,

= = .
S

-
2 KCH
TN
N\

110
901010

1010 By Sarful Hassan

OEBPS/d2d_images/image001.png

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/image002.png
1
| mﬁg

OEBPS/d2d_images/image000.png
Applications of the ESP32

f.alg ke

OEBPS/d2d_images/chapter_title_below.png

