
		
			[image: cover.jpg]
		

	
		
			

			About the Author

			
				
					[image:]
				

			

			

			Chris Howell is dedicated to improving the effectiveness, formality, technicality and professionalism of testing within games, as well as improving the perception of game testers and testing in general.

			With over 10 years’ experience, Chris has worked as a tester, test engineer and test manager. He studied Computer Science at university and then progressed quickly through the ranks of two of the industry’s most celebrated companies, Microsoft and Zynga.

			He started his career at Microsoft’s UK publisher test team, testing Xbox 360 video streaming apps and other first party apps that supported the launch of the Kinect camera and Xbox One. Chris then spent two years working on some of Microsoft’s biggest AAA titles as a test engineer, specialising in the test planning for the online services and multiplayer features of Fable Legends and Forza Horizon 3, the latter of which was a launch title for Windows 10.

			In 2016, Chris moved to Zynga’s UK game studios to work within the development teams on Dawn of Titans and the hugely successful MergeDragons! He’s currently lead test manager on MergeDragons!, leading the team of test managers and analysts on the project. He continues to hone his skills by regularly testing, logging bugs and writing test plans.

			Chris is an evangelist of adapting software testing techniques into the game domain. He holds one ISTQB certificate at foundation level and two at advanced level. He’s given countless workshops, presentations and training to the teams at Zynga, and at the Game Quality Forum Global, one of the first dedicated conferences for game testing. He has been a speaker for the conference every year since 2019 and expects to talk again in 2022.

		

	
		
			
				
					[image:]
				

			

		

	
		
			Modern Game Testing: A Pragmatic Guide to Test Planning and Strategy by Chris Howell

			

			Published by Modern Game Testing Company Ltd

			60 Culver Lane, Reading, RG6 1DY

			

			moderngametesting.com

			

			Copyright © 2022 Modern Game Testing Company Ltd

			

			All rights reserved, including the right to reproduce this book or portions thereof in any form whatsoever.

			

			Cover by Troubador Publishing Ltd

			

			Typesetting by Troubador Publishing Ltd

			

			Editing and proofreading by Word Service Marketing Communications Ltd

			

			ISBN: 978-1-7397115-1-1

			

			This book and its contents represents the views of Chris Howell and do not represent those of Zynga Inc. or their respective parent company or affiliate companies with which Chris Howell is affiliated with.

		

	
		
			

			

			

			To my partner Zoe and my son Tom, for tolerating all my talk about testing and for filling my days with love and laughter.

		

	
		
			Acknowledgements

			Everything I’ve learned about testing video games has come from working alongside some of the smartest and most passionate people I’ve ever met. Not just other testers, but all the talented designers, developers, artists and producers I’ve worked with. Writing this book wouldn’t be possible without the benefit of their time and knowledge.

			I’d like to first thank all the test managers at Microsoft who saw my potential and promoted me into the test engineer role to write my first test plans for Sesame Street Kinect TV – Fraser Murrell and Rich Levy in particular. Fraser was also the one who trusted me to write the test plans for several small projects, like the football World Cup app, Brazil Now. Those small projects were fantastic practice learning about testing holistically for an entire project, and paved the way to planning for larger projects years later. Thanks for the trust and support, Fraser.

			Many of the senior staff at Microsoft also contributed considerably to the current test planning and writing style that you’ll see in this book. The emphasis on test analysis, the test design framework and many of the small practicalities that make my current testing so effective can be attributed to various members of that team. I’d like to call out Lewis Reid, Tom Brisbane, Luke Harris, Martyn Sibley and Bob Ferry. I learned a lot from you all.

			I’d also like to thank the whole of Zynga for the training and support over the last five years, without which I wouldn’t have learned so much or reached so many testers. They’ve funded all my ISTQB training, flown me to India and Poland to meet and train our outsource vendor test teams, as well as various cities in Europe to speak at the Game Quality Forum. Thank you Zynga for being such a fantastic place to work and for the support you’ve given me.

			Lastly, I couldn’t not mention Miles Monty, my current manager at Zynga who, I can safely say, has been the biggest advocate of my work and of the creation of this book. Miles excels at removing all obstacles and distractions so that I have more time to improve our test strategies and share my knowledge with the rest of our team. Without such a great manager looking after my interests at work, I wouldn’t have the energy or willpower to sit down and write this book in my downtime. Thank you for all the support, Miles.

		

	
		
			Contents

			0 Introduction

			0.1	Why am I writing this book?

			0.2	Who should read this book?

			0.3	The scope of this book

			0.4	How to use this book

			0.5	Building a career in games testing

			

			1 Core principles of games testing

			1.1	What is games testing?

			1.2	Quality assurance vs. testing

			1.3	The goals of quality assurance

			1.4	The goals of testing

			1.5	An intro to how we test

			1.6	The fundamental test process

			1.6.1	Test planning

			1.6.2	Test analysis

			1.6.3	Test design and implementation

			1.6.4	Test execution, monitoring and control

			1.6.5	Test reporting

			1.6.6	Test closure activities

			1.7	Test formality

			1.8	The test design framework

			1.9	The psychology of testing

			1.10	A business case for testing

			1.11	Core principles: games vs. software

			

			2 Project lifecycles

			2.1	Introduction

			2.2	The software development lifecycle

			2.3	Waterfall development

			2.4	Agile development

			2.5	Similarities between QA and production roles

			2.6	Source control and branching

			2.7	Test levels

			2.8	Project lifecycles: games vs. software

			

			3 Test types and terminology

			3.1	An introduction to test terminology

			3.2	Test levels

			3.3	Test areas

			3.4	Test activities

			3.5	Test types

			3.6	Test terminology conclusion

			3.7	Test types and terminology: games vs. software

			

			4 Test analysis techniques

			4.1	An intro into test analysis

			4.2	Test conditions

			4.3	Key considerations during test analysis

			4.4	Test input reduction

			4.4.1	Equivalence partitioning

			4.4.2	Boundary value analysis

			4.4.3	Code explanation and caveats

			4.5	Combinatorial test techniques

			4.5.1	Decision tables

			4.5.2	Non-Boolean combination techniques

			4.5.3	Tool support for combination test cases

			4.6	Applied test analysis

			4.7	Test analysis: games vs. software

			

			5 Test design techniques

			5.1	An introduction to test design

			5.2	The goals of test tasks

			5.3	Test granularity

			5.4	Test writing styles

			5.4.1	Test task style guide

			5.4.2	Scripted test style guide

			5.4.3	Unscripted test style guide

			5.4.4	‘The detective’ writing style

			5.4.5	‘The science experiment’ writing style

			5.5	Art and content-heavy test writing

			5.6	Test case abstraction

			5.7	Pitfalls of test writing

			5.8	Non-functional test orientation

			5.9	Writing for your audience

			5.10	Test organisation

			5.11	Influencing factors

			5.12	Test design: games vs. software

			

			6 Major areas of game testing

			6.1	An introduction to game test domain areas

			6.2	Platform integration

			6.3	Third-party SDK integration

			6.4	Platform certification requirements

			6.5	Regulations and age rating compliance

			6.6	UI, menus and navigation

			6.7	Game environment

			6.8	Content (Characters, weapons, items, etc.)

			6.9	User generated content (UGC)

			6.10	Game modes (campaign, co-op, skirmish, etc.)

			6.11	Game progress and retention

			6.12	Online services

			6.13	Multiplayer

			6.14	Live events, sales and AB tests

			6.15	Audio, music and sound effects

			6.16	Player profiles and file I/O

			6.17	Identities and cloud save

			6.18	Hardware and peripherals compatibility

			6.19	Tutorials

			6.20	Telemetry and analytics

			6.21	Anti-cheat and security

			6.22	Settings and configurations

			6.23	Performance

			6.24	Tooling and debug

			

			7 Test management

			7.1	An introduction to test management

			7.2	Test estimation

			7.3	Managing test execution

			7.4	Test reporting

			7.4.1	Reporting metrics

			7.5	Test team structure

			7.5.1	Testing sub-teams

			7.5.2	Common team structures

			

			8 Afterword

		

	
		
			
0

			
Introduction

			0.1	Why am I writing this book?

			This book aims to document a foundation of knowledge which already exists across the games testing industry but has yet to be organised into a concise, easily-read format.

			Games testing as a profession is under-represented academically. General software testing books, whitepapers, courses and certificates are out there, of course, but many people starting out their career in games testing find it difficult to ‘translate’ these learnings into the gaming space.

			I’ve spoken to many QA managers, QA analysts and testers who have completed software testing courses. They often tell me they either can’t see how the techniques apply to their work, or they think that the processes described are too heavyweight and have no place in the ‘Wild West’ that is the gaming industry. In short, they see them as an unnecessary administrative burden.

			There are many areas in games which simply don’t exist in software and, for this, we must create our own unique test processes. Each chapter of this book will feature sections highlighting the differences between games and other software to illustrate this point.

			For example, have you ever seen a software test technique focused on 3D models or particle effects? Or one that tracks virtual environment test coverage across an open world map? Art and content testing is a huge uncharted territory for game testers.

			Some test processes are also completely unique to games: the lack of customer requirements specifications being a good example. Many software teams are building applications where the client is supplying requirements criteria which forms the basis of User Acceptance testing. In the games industry, we are essentially building a product secretly in the hope that the eventual customer will like it when it is launched. This creates unique test challenges which we’ll cover in this guide.

			With little academic grounding, games test professionals are industry-taught and, of course, every company has their own terminology and process. So when they move to another company, they have to change the language they use and adopt new terminology. It also means that when they get together, there is no universal communication protocol or, worse, they use the same words to mean different things. (I say retest, you say regression test.)

			In this book I’ll collect and define the most widely and correctly used definitions of games test terminology, so that teams can share them and build a common vocabulary.

			Finally, the games testing profession has grown a lot in the last twenty years. No longer can companies pull people off the street to play their games and find bugs, certainly if they’re building anything more complex than Mario (or Flappy Bird if you want a modern reference!). Bigger and more complex games are being built each year, and with each new development, dedicated testing professionals are even more essential to the success of those projects.

			My hope is that this book will provide a foundation benchmark for the knowledge teams need and can refer to as their work and careers evolve.

			0.2	Who should read this book?

			The core topics in this book will be of most direct value to those who hold the title QA analyst1 or QA tester. Likewise, anyone who is wanting to take their first steps in a game testing career will find all the content here valuable.

			Test leads and managers may already be familiar with some of the content, but should still find it helpful to fill any gaps in their experience and to formalise some of the experience they already have. The last part of the book also touches on test management and higher level team strategy, which test leads in particular will find insightful.

			In general, anyone holding a role within the manual testing side of the discipline should find the topics discussed and defined here useful. I wrote this content with myself in mind, and focused on the information that I would have found the most helpful in the first years of my career; I didn’t even know about the academic side of software testing until at least year three, for example.

			On the topic of outsource vendor test teams and publisher test teams (explained in more detail in chapter seven, Test management): these teams are further away from the core of project development and so are often excluded from valuable learnings, difficulties and other intricacies of a project. For this reason, the holistic view provided here should be particularly insightful for these teams, providing the missing pieces of the test process and the wider business. The wider context and reasoning should be very useful on the journey to becoming a better test team.

			Automation test engineers may also find this content helpful if they have strong technical knowledge but are looking to learn more about test techniques and the test process. Other disciplines within a game studio that work directly with a test team will find it helps create a more cohesive relationship with the test team as they will understand their work more deeply.

			Through the pages we will introduce topics such as risk analysis and quality best practices – techniques that everyone on a game team can adopt into their work. I also want the reader to understand more general issues, like setting the perspective of who is responsible for quality of the product, which is also a valuable lesson for everyone on the team.

			0.3	The scope of this book

			The content here is intended to provide a foundation of knowledge for the core of modern manual games test planning techniques and strategy. So, some areas which could have a much deeper discussion and explanation have been summarised for the sake of brevity. Some of these areas are less academic and are a matter of debate amongst the professional community. For these, I’ve given a viewpoint that should allow the reader to understand the topic and follow up on the discussion elsewhere.

			Since the topics have been chosen to focus on manual testing, automated testing will not be discussed in detail, nor will quality practices concerning the writing and structure of the code itself. Important as these topics are, they will be introduced but not discussed in detail.

			Similarly, I do not cover any ‘white box’ test techniques which involve looking at the code directly to assess the quality of it or test coverage through it. These are complex and would require a whole other book to describe in adequate detail. On the topic of looking at the code to plan testing through the ‘routes’ of logic, I’ve never seen anyone take this style of approach in games projects, so I haven’t included it. These technical topics are, in practice, the work of software engineers and automation engineers and not something that QA analysts would realistically get involved in. Instead, they are an evolution of this book’s content for those who want to take the next step and learn more specific and technical areas of testing (which, by the way, I definitely encourage!).

			While a technical understanding of code is an advantage for manual test staff, it’s not necessary to be successful and I don’t assume you have any experience of software code.

			The core content focuses on test techniques to add to your toolbox when writing and running tests. This is supplemented by contextual knowledge about projects and the principles of games testing to provide the ‘when’ and the ‘why’ of testing. It’s important to stress that all of the test techniques and processes described here have been directly applied to real game projects and are explained through the use of game project examples. There are no theoretical, academic examples which haven’t already been tried and tested in the real world, on real projects.

			0.4	How to use this book

			I recommend you read the first three chapters to gain a basis of knowledge, and then either carry on reading the chapters in the order they are written, or jump straight to the content you are interested in.

			The techniques outlined here are intentionally flexible and can be adapted to shape the will of the user and the project requirements. Wherever possible, real game project examples are used to provide context and help you apply the lessons learned to your own day-to-day work. Every project is different, so while some off-the-shelf techniques may fit well, others will need work to apply them effectively.

			The tester’s toolbox

			The sum of a tester’s skills and experience forms a ‘toolbox’ which they can draw upon when a new problem arises.

			Each skill, technique or piece of experience is a tool in this box, and the more tools in there, the more likely it is that they’ll have a relevant solution to effectively tackle different problems. This doesn’t mean that you have to go apply these tools to every test problem you have, or that you should change the way that you work all at once. If you can’t think of a use for some of the techniques here, don’t force it, but don’t reject it as irrelevant to your work, either. I would encourage you to understand it and store it for later retrieval. Like physical tools, test processes and techniques require practice to use them effectively. I’ve found identifying the right technique for a particular job is often tricky as there are so many choices to make throughout the fundamental testing process.

			While I try and cover as many practical, real-world examples as possible here, the processes and techniques can only make you a better test professional through experiencing and practising them in the workplace. Driving instructors will tell you that you only really start learning how to drive after you pass your driving test and venture out onto the roads. It’s the same thing here. Applying techniques to your own and your team’s style of work can be hard. If you think you see something that is useful to you, discuss it with your team, present to them your idea of how you want to bring it into the project, or run a small trial and see how you found it.

			If we removed some of the more formal test planning and analysis processes that I work with today, there would be an outcry from the QA analyst team of chaos and disorganisation. But when we first trialled them, they were time consuming and some parts turned out to not be helpful to us. Over time, these planning processes were trimmed down and adapted to the stage they are at now, where the team has practised them so frequently, they hardly take any time at all.

			0.5	Building a career in games testing

			It’s entirely possible to build your life career around testing games. There, I said it. It’s not just about surviving in the workplace, I’m talking about thriving in the workplace and making a massive success of it, in every sense of the word.

			Let’s talk about money first. In 2019 the BBC reported that the games market in the UK was worth more than video and music industries combined, a total of £3.86bn ($4.85bn)2. By choosing a career in games testing, you are choosing to be part of that massive industry. If you choose a stable and reputable company, then there is no reason that you can’t enjoy the stability and wages of such a large and profitable industry. With esports and video streaming of games on the rise, plus the growing popularity of mobile gaming, there’s no sign of the market shrinking either. More so than ever before, games testing can be a legitimate and lifelong profession. With this book to guide you, you can solidify that choice and make the most of it.

			I’ve talked already about the inconsistencies of games-testing roles across different companies within the industry. It’s an unfortunate reality that some companies and people don’t value manual test strategy as a worthwhile endeavour, or hold any respect for those that choose to pursue it. Some testers may also find this perspective reflected in the salary offered for testing roles.

			Related to this issue, and part of the reason behind it, is that many view games testers as a group whose job it is to try and break the game, or to simply play it and look for bugs. Many junior testers also think that this is their role and begin to openly critique and criticise the game that has been created by others on the team. As you can imagine, this leads to resentment and negativity, causing test teams to be perceived as problem-orientated and not part of the ‘solution’ of creating and making the game better. Unfortunately, I’ve met quite a few junior testers like this, exhibiting a negative attitude and damaging the reputation of the profession for the rest of us.

			This book aims to not just instruct on hard skills of game test strategy and technique but, more critically, show that our day-to-day work is conducted with a goal of improving the perception of games testing as a professional discipline. If you act professionally and treat others with respect, others will act professionally towards you and treat you with respect.

			It’s my ambition, with this book, to separate the image of playtesting and undirected breaking of games, from the conscious and structured pursuit of greater game quality.

			

			Notes

			
				
					1	Throughout the book I’ll be referring to those who create test strategies and write manual tests as QA analysts and those who execute manual tests as testers. In my career we’ve actually referred to the analyst role as a test engineer or a QA engineer. The use of that job title is inconsistently adopted, so we’ll just use the more common title. Wherever you see QA analyst referenced, just understand that this can be referred to as different job titles depending on the company.

				

				
					2	3rd Jan, 2019. https://www.bbc.co.uk/news/technology-46746593

				

			

		

	
		
			
1

			
Core principles of games testing

			This chapter is going to introduce why testing is necessary and what the goals of testing should be. I’ll talk specifically about the type of work game testers are expected to do and outline what games testing definitely isn’t about. There is a difference in scope between quality assurance and testing that is also important to define.

			Other topics in this chapter will introduce some of the higher-level testing processes which will provide context to some of the more granular topics later on.

			1.1	What is games testing?

			When I speak about my work with friends outside of the games industry, some of them think that my job is to check the quality of other companies’ games. That I’m some kind of reviewer who works on a team which tells you if your game is good to release or not, and perhaps also to give you my opinion on how fun I think it is.

			Have you ever seen the movie 101 Dalmatians? The guy in the film is a game maker. At the end of the film they’re all sitting in this boardroom. The boss’s kid is sat at the end of the table playing the finished game, with the guy, the girl, the boss and all of the dogs watching in high anticipation. The kid finishes it, tells the guy he liked it and then promptly leaves. Everyone cheers, massive success.

			I think that some people assume this is what games testing is about – that it’s like testing a toy. It’s the little kid in the film giving his final verdict on the product that you’ve made. So, to burst that bubble, the role of game testers is not to provide a critique on the game or to rate its ‘fun-factor’. For lots of die-hard game fans who are super passionate about video games and have opinions they want to share, this reality can be difficult.

			While there is a time and a place in every game project to talk about game design and balancing, in the projects I’ve worked on this has always been firmly driven by the design or art team. They will define the process for how and when they want wider project team input.

			If you really want to review and critique games, I would suggest a career as a games journalist or a designer.

			As a final note on this topic, Consumer Insights tests let you put early versions of your game in the hands of people selected because they already like the genre of game that you’re making. Video cameras are set up to capture the controller or mobile device and the screen. The player is given instructions and they are recorded while they play the game.

			The aim is to get early insights into how players interact with the game and what parts they get stuck on. They are usually asked to fill out a questionnaire afterwards. This process is also not games testing. The people taking part in these sessions are either volunteers or receive a small cash reward or vouchers.

			Next, let’s talk about whether being a good gamer also makes you a good tester. In 95% of scenarios, being really good at a specific game or a type of game isn’t going to land you a job, and actually it’s very unlikely that you’ll live within working distance of the company that makes that game that you play. Some people investigate games testing because they want to turn their hobby into a career and want to be paid for playing the game they spend all their time on.

			This choice is actually feasible now: it’s called eSports.

			With most of the projects I have worked on, I haven’t played them in my spare time. Some of them weren’t even built for me as a target audience in mind (children’s games for example). You don’t need to spend every waking hour playing games to be a good tester. On the contrary, some of the best test professionals that I’ve met hardly play games at all in their spare time.

			You wouldn’t expect software testers to be ‘fans’, for example. The team who tested Microsoft Word or Adobe Photoshop probably didn’t spend their spare time getting really good at word processing or technical drawing. We can refer to this genre and project-specific information as ‘Domain Knowledge’ and I’ve found that it can be fairly easily picked up after moving to a new project team. The only exception to this rule is that some game teams will sometimes try to hire subject matter experts if the game is competitive and they don’t have anyone on the team that already fits this profile.

			A good example of this is fighting games using arcade sticks. The team will need to be able both to execute the characters’ complex moves and balance the difficulty levels of the AI opponents.

			Another example is competitive racing simulation games, both using a controller and with a steering wheel. Some of these games have loyal fans who would react badly if new content was released in an unbalanced way or if the game was too easy. This is probably the only instance where being good at a specific game is going to help you as a tester and, even then, I want to stress that this would purely be a supplement to the core of the testing role.

			The aim of quality processes – and testing as one of those processes – is to guide a single project throughout its development. The progress from concept through to public release will take months and years for the team, with most test staff remaining on the project for a large part of that project lifecycle.

			Unless you are part of a big company with multiple projects on the go, you most likely won’t have a choice of projects; so really, you will just be working on the project which needs you and it will be a permanent fixture. This can be slightly different for outsource companies who are facilitating test services for multiple game studio clients. In this environment you would be more likely to move freely between projects.

			1.2	Quality assurance vs. testing

			It’s important to understand the distinction between quality assurance and testing. It’s so widely misused and misunderstood that having a well defined understanding of both terms will help guide you through day-to-day conversations in the workplace.

			There’s a difference in scope between the two terms. Quality assurance talks about all processes across the entire project that are designed to maintain a level of quality in the delivered work, while testing is a subset of that group, being just one of those processes. Testing is a specific activity to gather information about the current state of the product (how healthy it is). Quality processes outside of testing includes things like the review process, checklists and workflow procedures which prompt the team to perform certain actions, eliminating human error and communication error.

			A good way to separate the two terms is to ask yourself, who is responsible for quality and who is responsible for testing?

			A test team can’t be responsible for the quality of work produced by every person on the project team. Even if you had a QA analyst for every member of the team creating content for the game, he or she would have to understand the work as intimately as the author of that work and be able to accurately assess the quality of it and spot any mistakes. Many quality assurance practices are also technical practices and owned by the code teams on the project; processes like coding standards and code reviews. These are the responsibility of the code team and nearly always beyond the influence of the test team.

			Listed here are some activities and processes which have been categorised into QA processes and testing processes.

			

			
				
					
					
				
				
					
							
							Quality Assurance

						
							
							Testing

						
					

					
							
							Static analysis code tools

						
							
							Test organisation + strategy

						
					

					
							
							Unit tests

						
							
							Test designs

						
					

					
							
							Coding standards

						
							
							Test review and quality control

						
					

					
							
							Code reviews

						
							
							Test progress + monitoring

						
					

					
							
							Design spec reviews

						
							
							Test reporting

						
					

					
							
							Tech spec reviews

						
							
							Test tools and automation

						
					

					
							
							Risk analysis

						
							
					

					
							
							Release process

						
							
					

					
							
							Incident management

						
							
					

					
							
							Operational monitoring + tools

						
							
					

				
			

			

			Figure 1.1

			

			This is confusing because many people use the acronym QA (Quality Assurance) to talk about test teams.3 Many testing roles also have titles like ‘QA Analyst’ or ‘QA Tester’ and commonly refer to the whole discipline as ‘QA’. Because it is so ill-defined, there’s quite a lot of controversy whether testers exist primarily to assure the quality of a product. ‘Assure’ means to make something certain to happen which, as we’ve highlighted already, would be an impossible task for testers. To dispel this view, some game studios have taken to rebranding their test teams as ‘Quality Essentials’ and ‘Quality Assistance’, showing that their role is more akin to quality consultants.

			The content covered here will mostly focus on testing specifically, with some quality processes introduced in later chapters. This is because more junior members of the games testing profession will start out their career only thinking about testing and not about the bigger quality process picture. Other quality processes outside of testing are also out of reach of vendor teams and remote publishing teams since most of these processes are applied close to the creation of the game itself, onsite in the studio.

			It should be the case that as testers mature throughout the course of their career, they start to consider the greater scope of game quality and extend their thinking beyond just the immediate tasks of testing. However, only those who work within a game studio and are in more senior positions will have a reasonable influence on these quality processes, because they require buy in from other project stakeholders and influence how the entire team conducts their work. We’ll cover this more in the next section.

			1.3	The goals of quality assurance

			We’ve already established the larger scope of quality assurance and also that it’s mainly focused at the source of project development, within the game studio. Generally speaking, the goals of all QA processes are primarily preventative measures to decrease the chances of mistakes being made which might later lead to errors. The processes that don’t prevent mistakes are designed to catch them as quickly as possible after they’ve been made. You might recognise these types of processes as just ‘best practice’ protocols, which teams usually adopt over time anyway.

			The aim of quality processes is to maintain the velocity of completed work while producing fewer mistakes along the way. They can be as much about increasing the efficiency and effectiveness of a team as they are about increasing the quality of the work being output.

			Since quality processes are discipline-specific, they need to be tailored to each discipline, too. Coding standards and the team’s code review process will be different to the art review process and the content pipeline which is followed when working on new art content for the game. These hint at why quality assurance has such a large scope when compared with testing.

			It’s also why you will find test managers working so closely with the production discipline and others within the business who manage the lifecycle of work (sometimes also known as Product Manager or Scrum Master role). The process is a collaborative effort between the person in the test manager role with the process knowledge, and the discipline lead with the domain knowledge of the area. Good test managers can influence best practices and processes across an entire game project team. When this is done well, the discipline leads start to appreciate the stability of the work and, before long, wouldn’t want to proceed without it.

			Quality at source

			We couldn’t talk about quality assurance without mentioning the term ‘quality at source’ which you may have heard a few times.

			This term refers to those quality processes that are as close to the source of creation as possible. You will find talks and discussions on how different teams are striving to achieve better quality at source. ‘Upstream quality’ has the same meaning and takes its terminology from the waterfall software development model which we’ll cover in the next chapter. ‘Shift left’ also means the same thing and makes more sense if you view the software development model as a flow chart in chronological order.

			All it means is that teams are endeavouring to improve quality at the source of creation because they know that it leads to less mistakes, therefore fewer bugs. Put another way, unlike most testing initiatives, these activities focus on bug prevention instead of detection. They are proactive measures. Senior test staff within a game studio will be involved in decisions about how the project team plans and conducts their work to achieve better quality at source. Armed with information about quality at source and a few ideas, the tester can influence the rest of the team to improve this initiative.

			The error cost escalation model

			The error cost escalation model gives greater business weight to the ‘quality at source’ strategy and shows that the later in a project lifecycle we fix an error, the more expensive it is to fix that error. There are several examples online of businesses which have collected real data to support this conclusion. A somewhat extreme example is a NASA whitepaper4 talking about the cost of software failure. It’s not hard to imagine how expensive it is to fix a software bug when the shuttle is already in space.

			It’s similar with the design of a new game feature. If we can review the design specification sufficiently well enough to identify a flaw in the proposed design flow, then the flaw can be fixed in the design before a single line of code is written to implement the new game feature. Changing the design could take a few minutes, but fixing the same error after the code was written would probably take a couple of hours. If it was left even longer and other game components were built upon that feature then they’d have to be edited to fix the issue as well, which would take even longer. If the error was only found once the game was live, then it would have to be included in a patch or fixed on the server, or perhaps the game would have to be taken into maintenance, and maybe online players given compensation. Fixing a bug when the game is live is the most expensive and least desirable route to a fix.

			1.4	The goals of testing

			Why do we test? The most common and obvious answer to this question is ‘to find bugs’. I get it. As a process, test effort goes in and bugs come out, simples. But this is only part of the answer. There are more questions about why we log bugs. Since, as testers, we spend a great deal of time performing test activities in our work, it’s definitely worth taking the time to understand all the reasons we do it and what the true goals are.

			Let’s define some of the generic testing goals which you could apply to all software, then I’ll muddy those waters with some game testing specific goals.

			Does testing directly improve the quality of the game?

			This is the first clarification to make and it’s something of a common misconception about the reasons for testers to exist: that testing as an activity alone directly increases the quality of the product. We see it all the time in online forums and in articles on video games – reports of released games being buggy and shots being fired at the test teams for missing those bugs. “The test team must be rubbish” they say. “They should hire me instead and I’ll find those bugs”.

			There’s an assumption there that if a bug is found, then it gets fixed and the quality of the game is increased. But this isn’t the case. Stakeholders on the project team collectively balance bug fixing with other project priorities, deciding how to best spend the valuable work time. There are many factors which can influence this decision making on the ‘if’, ‘when’ and ‘how’ to fix bugs.

			For example, it’s common to have multiple sub-teams within a project, working on different parts of that project, each one managing its own time independently, and each containing key stakeholders who have an input to the decision-making process. Those sub teams may have different priorities and a varying velocity of new work they can get through, and so may make different decisions on how many bugs they can fix. Game teams will also have varying quantities of specialists who can fix different bugs on the project, influencing the rate of bug fixes being made in each area. Engine and systems code, gameplay code, UI code, server code, design data, 3D models, animation, sound, environment, visual effects are just some of the different specialist skills that require those specific people on the team to fix bugs in those areas. The lesson here is that not all bugs are created equal. This lesson is also more true within games than other software because of the much greater range of specialists.

			So, does testing directly improve the quality of the game? No it doesn’t. Instead, it’s more accurate to say that testing collects data about the quality of the game and presents it to the project stakeholders so that they can use it to make decisions.

			This also brings us back to the question of the testing goals. Bugs are just one form of data that we collect about the quality of the game. Other forms of data include things like test pass/fail results, red/amber/green health ratings, performance and reliability data, to name a few. The point is, we’re collecting bugs and other test data as a record of the quality of the game and doing it in sufficient detail that action can be taken to improve the quality.

			As a brief aside, I’m using the word stakeholder to refer to a person who has a business interest in the feature or project that is the target of decision making. Stakeholder is also a role, not a job title, and in some teams it might be assigned but otherwise it would be decided on the fly. It’s common for embedded test leads to be stakeholders themselves in project decision making and so, in this sense, they must wear two hats: their testing hat, where the priority is to collect quality data objectively; and their stakeholder hat, which is to provide a subjective opinion on project decision making.

			It’s all about risk

			We collect data about the health of the game because we’re uncertain. We’re uncertain whether it’s stable, whether it’s balanced well, if the latest feature that was integrated into the game didn’t break some other previously healthy part of the game. It’s exactly the same as any other uncertainty, like wondering if you remembered to lock the door after you left the house. There’s a chance that you did lock it, and there’s also a chance that you didn’t. If the risk is high enough, then you might return home to check it, eliminating that uncertainty.

			A risk is an unknown that has a chance of a negative outcome. On the other hand, an opportunity is an unknown that has a chance of a positive outcome.

			Test activities are all based around risk analysis and mitigating actions for those risks. We test because we are uncertain (about mistakes) and that uncertainty could have a negative outcome (errors manifesting as bugs). By testing and collecting data we are making what is unknown, known again, eliminating the uncertainty. For example, “We thought there might be bugs in the code and now we’ve found some of them through testing, we are more certain that this was true.”

			A large part of effective test planning is driven by good risk management, and knowledge of this is particularly required by QA analysts and QA managers. You will also be able to read up on risk management strategies from outside games and apply them to your work, too, since this is one of the more generic areas.

			To develop this idea further, we can say that collecting bug data confirms our uncertainty that there are quality issues with the game, and collecting positive test results confirms that specific areas function correctly without errors. Put another way, positive test results give us confidence and help us get clarity, even if we don’t find bugs. This brings us back to the myth that the goal of testing is to find bugs. Not finding bugs is great; it means the game is healthier and we have the positive test results to back up the data and give confidence to the stakeholders. (This assumes that sufficient testing has been carried out to collect the data, of course.)

			Lastly, it’s important to note that we can never fully eliminate uncertainty. Just because one bug is found in an area, it doesn’t mean that we’ve uncovered all of the unknowns. There could be more bugs remaining hidden. Similarly, a positive test result doesn’t mean that a feature is bug free, since each test still only covers a specific scenario. This becomes useful when we communicate our confidence and certainty based on test results. Understanding and analysing test data into a format that can be communicated is mainly the job of QA analysts and when done well, it takes a surprising amount of time and energy.

			

			
				
					
				
				
					
							
							Industry tales: The gatekeepers of quality

						
					

					
							
							Through widespread uncertainty about the goals of testing – among testers and other disciplines alike – an unhealthy relationship often develops between the test team and the rest of the project team. This commonly manifests through an incorrect culture where the test team is held responsible for the quality of the product. Other disciplines think that the test team owns all quality processes and that they exist to take ‘the burden of the responsibility of quality’ off of their plate.

						
					

					
							
							Similarly, some testers enjoy wielding this power by blocking releases (“The quality of this isn’t good enough to release!”) and fighting the quality corner during project meetings (“We need more time to test, we need to allocate more time to bug fixing, we need to fix this bug because I think it’s really bad”) This approach creates opposing goals between the test team and the rest of the organisation which leads to a discussion in the absolute best scenario, but in most cases allows continuous conflict, distrust and adversarial relationships to fester between testers and the rest of the team. These are the game teams you might hear about in the news or through colleagues, where the test team is openly reprimanded when bugs are found in a released product.

						
					

					
							
							‘Finger pointing’ and blaming become the tools for dealing with these failures, deepening the rift between testers and non-testers even further. This culture also contributes to the perception of testers being negative, counterproductive and just out to find problems in the work created by others.

						
					

					
							
							I’ve worked with people who have been in these teams previously and have skewed expectations and perceptions of the current test team. This was during projects where I was working in the embedded QA analyst role. These individuals haven’t ignored me outright, but have been indifferent, uncooperative or disrespectful when we started working together. After a couple of months working in the same feature development pod, through consistent testing competence and a good attitude, I’ve gained their respect and trust, and (I hope) changed their view on what good game testers look like. To build these relationships, I would be overly communicative about the intentions of my work and how I could add value to the work they were doing. By doing this I would attempt to reset their expectations of me and the test team.

						
					

					
							
							I actually found that when I raised the topic of who was responsible for quality, a majority of my colleagues from other disciplines were in agreement that it was their responsibility too, and had the right attitude towards it; it just required someone to start the discussion. While I’ve painted a negative picture here, the same majority of non-test colleagues have been great to work with from day one. I hope that as the game testing discipline improves, these negative attitudes will continue to reduce.

						
					

					
							
							I once spoke to past colleagues who were working on another project within the same company; some of them were QA analysts and QA managers, while others were producers, designers and developers. They all gave me their perspective at different times about the same problem that had been continuing for many months and years. There was a breakdown of trust between members of the test team and the development pods that they worked in. The QA analysts had given up trying to cooperate with some of the other team members and had started to withhold information because they felt they were not being listened to. One of them told me that he knew there were severe bugs with the current release but wasn’t going to escalate it and that it would “teach them a lesson” when they discovered it. The producers and other team members saw the QA analysts as roadblocks to getting the work done and were working around them by making requests directly to the external team of testers who were executing the tests – so worsening the relationship.

						
					

					
							
							The ongoing reactions from both ‘sides’ had made the situation gradually worse over time, but what had initially sparked the animosity?

						
					

					
							
							The clue that alerted me was the way the QA analysts would speak to me about conflicts over the quality of the releases and how the project leadership wasn’t listening to their concerns. The test team had adopted the role of the guardians of quality and were in frequent conflict over the agreed quality benchmark for each release. This stance had labelled them as blockers to the release of game updates and a problem to be appeased or circumvented wherever possible. The project had some high profile bugs that escaped testing and went out into the live game on several occasions, triggering hotfix releases and retrospective follow-up meetings to diagnose what had gone wrong. Sure enough, I heard that the test team bore the brunt of these failures and had a particularly difficult few weeks each time it happened.

						
					

					
							
							It’s part of working life that we may have to work with people that we don’t get along with. This can’t be helped and might have been true for some members of this team more than most. Regardless of this speculation, the test team had set themselves up for failure by taking the ‘guardians of quality’ stance and had worsened it through poor attitudes and use of soft skills. This scenario might sound familiar: this isn’t the only team I’ve heard of with this problem. I can’t overstate the importance of remembering and evangelising the true goals of our work as testers: capturing data to help inform project decision making. Not capturing data and making decisions privately, only to then present those decisions to the other project leaders.

						
					

					
							
							I read once that the test team wins when the business wins, and I couldn’t agree more. This example shows us how important it is to align the goals of testing with the goals of the project team and of the company.

							

						
					

				
			

			

			
				
					
				
				
					
							
							Industry tales: “Everything has to be tested”

						
					

					
							
							In other scenarios, the attitudes of non-testers could be neutral, but they would still have a misunderstanding of my role on the team. Do they need to test their work or was I there to test it for them? Would they be stepping on my toes by carrying out some of the testing themselves? If my schedule was full, could they include a feature if they promised to test it all themselves?

						
					

					
							
							Many non-testers I’ve spoken to believed that testing was a verification that the game component worked correctly. They saw it as a straightforward and obvious activity. The last question in the examples above is one I’ve actually been asked quite often. My work time is usually at capacity, with no opportunity to take on planning for more features. So when someone wants to increase the scope of a sprint by including an additional feature, they come to ask if they can include it on the condition that they test it themselves. Their perception of what constitutes ‘testing’ is usually an over-simplification of the work that I would carry out, so I’ve needed to approach these requests with diplomacy and select follow-up questions to ask in return.

						
					

					
							
							I’d ask how risky the change was, why they wanted it and how the change stacked up against the priorities of the other features that I was planning for. I would gather information about the request (test planning, essentially) through these questions and then identify what the scope of testing might be (test analysis) before making suggestions as to how we could include that feature and achieve what that person wanted.

						
					

					
							
							Here, again, it was good that the person had raised the request in the first place. They could have just included the feature without telling anyone about it – which does happen by the way. It was important to thank the person for raising the request and take a solutions-orientated approach to it. Testing time will always be in demand: do not be tempted to wield this power over people who make requests of you by saying that you are ‘doing them a favour’, or by taking a large intake of breath and hissing like a car mechanic who’s about to quote you an enormous sum of money to fix your car. “I can fix it, but it’s going to cost you!”. Such reactions to requests are not going to win you any trust or influence, both of which you will need to carry out your testing work effectively.

						
					

					
							
							This type of request stems from the belief that everything must be tested. Test teams commonly communicate that all new work must go through testing, regardless of what it is. So, these feature addition requests came to me because the owners weren’t sure how to approach the problem but knew ‘the test team will want to test this’.

						
					

					
							
							The assumption that everything needs to be tested is wrong and these scenarios were a great opportunity to explain why. Remember that testing is all about gathering information, and we usually gather information because we are unsure about something. Instead of jumping directly to how long it might take to test the change, I would ask questions to gather information about the unknowns related to the change. How much risk did the change carry? Would our planned testing mitigate the risks anyway? Would we even need to run dedicated tests for it? Would manual testing be an effective way to mitigate the risks? Were there other ways we could mitigate the risks without changing the test schedule?

						
					

					
							
							Never just test for the sake of testing. Remember what testing is trying to achieve and use this to navigate these types of requests. I can guarantee it will save you time, win you respect and inform those non-testers around you.

						
					

					
							
							Testing captures data to clarify doubts (unknowns or potential risks, essentially) that these changes might contain bugs. The point is that we can assess this level of doubt before we even consider testing, remembering that testing is the solution to these quality risks.

						
					

					
							
							When properly analysed, many of the small changes I’ve been presented with carried very low risk. It would have been easy to insist on testing that didn’t present a good return on the time investment. i.e. performing more testing than was warranted, given the risk level of the change. Many of these small changes would be tweaks to the balancing of the game that we had already adjusted several times, or additional telemetry events that used the existing analytics system. If the change was to adjust the game balancing, this told me it didn’t require any code edits and was a data adjustment to a value using a system that we had already tested. Because we had high confidence in the code which read that value, we would have also have high confidence that the value could be changed without causing bugs. If we had already adjusted the value at least once before, this gave us even further confidence in the proposed change.

						
					

					
							
							Sometimes, requests like these were to make the change to the live game remotely, as soon as possible, given that we wouldn’t need to release a game update for it – meaning that the change would go live as soon as testing was done.

						
					

					
							
							These data changes could be deployed remotely and immediately. If confidence was high and the stakeholders were in agreement, I had no problem saying that I was happy to go ahead without testing at all. On the live ops projects I’ve worked on, small changes were being deployed into the live game very frequently, at least once a week. So, recommending testing for each and every change where it wasn’t required would have both placed a huge burden on the test team and slowed down the team’s ability to deploy changes to the game. In some of these scenarios, the live ops test team would run their testing on the live game and would be able to perform a quick check to make sure the change had applied correctly, nothing else. This was done as a quick and easy sanity check.

						
					

					
							
							I’ve found that recommending testing for a change needs to be based on logical, sound decision making. If anyone thinks that you are just testing for the sake of testing, or testing because that’s the way things are done for all changes, they may lose confidence in your decision making and reiterate their alternative viewpoint again. When discussing if and how much testing needs to be carried out, the person I’m speaking to is usually the subject matter expert for that change too, so their opinion carries more weight on the final decision. This also means that they are in a prime position to know if the need for testing the change was incorrectly assessed.

							

						
					

				
			

			1.5	An intro to how we test

			Now that we know why we test, we should begin to understand how we test and talk about some of the different types of testing.

			The information on testing as a data gathering activity was aimed to summarise all test activities under a single banner. Practically, there are more granular reasons for capturing data on the health of the game. Each area we’re exploring has its own data format and method of capturing it effectively. So, different test activities are required to achieve this.

			We capture performance data on metrics like framerate and memory usage to check that our game runs well on the hardware its planned for; we capture game artifacts like logs, videos and errors to help us diagnose bugs; we capture pass/fail test results to give us granular confidence on the game health. On top of these, we also collect metadata on testing itself, tracking the velocity and completion of testing progress so that we can communicate our work progress and provide accurate estimates to the wider team.

			We shouldn’t embark on these test activities for every project just because it’s what we normally do. Instead, part of the test team’s job is to identify information that is productive to capture to help guide the project, and then apply the right activities to effectively collect the data in a timely enough manner to be useful

			Checking vs. testing

			These are two test activities which are often misunderstood. They are both designed for different reasons, to capture different kinds of data. You’ll find ongoing discussions on social media and in various online articles and forums on the topic of ‘checking vs. testing’; it’s a subject that extends beyond games and is something you can read up on further if you wish. It’s a great example of how understanding the end goal of the activity allows you to structure and execute that activity much more effectively.

			Checking refers to the straightforward, specific confirmation of something that was uncertain, to make it now certain. It verifies something as true (or untrue).

			In a game example, checking is frequently used when implementing new features. Each feature usually has some type of specification, design or acceptance criteria that says “when these things are built, we can consider this feature done”. To make certain that everything has been included, we can check what was actually built in the game against what the documentation said we wanted to build.

			This activity is specific, limited in scope, highly scripted and positive in its method of verification. Note that if the documentation was detailed enough about the requirements of the feature, it could be used to guide to checking without the need for a separate written format (a manual test). Also note that if the documentation was detailed enough, anyone could theoretically follow it to perform the check, including automation tooling or an AI.

			Checking is usually specific enough that the result is binary, true or false, pass or fail; and so the data we get back from it is a list of pass/fail results. The only supplementary data we provide is if one of the checks fails, in which case it would include the reason for the check failing, which can help us understand how the actual result differed from our expectations.

			Attributes of checking:

			Specific – Checking asks closed questions to get a binary answer. Checks ask closed questions like “Does it do this?” (a yes/no answer), but not open questions like “How does it do this?”, “Why does it do this?”, “When does it do this?” (requires an explanation). Lots of game development teams use a set format for their criteria for this reason, it goes like this: GIVEN …something…, WHEN …something else happens…, THEN …the expected outcome shows.5

			

			Limited in scope – Checking is intentionally limited to confirm a specific uncertainty, like a feature, and do it quickly. We are focused in our approach and don’t get distracted looking for nearby bugs that are not relevant to the check. This is intentional to get the uncertainty confirmed quickly and efficiently.

			

			Highly scripted – Checking defines the exact scenario that we should be verifying and provides all of the prerequisite steps to get us there. It doesn’t make assumptions and, because it asks a specific question, it doesn’t require any enhancement from the checker. Put another way, the same check, given to a group of people to run individually and separately, should produce the same result from each person.

			

			Positive – Checking is nearly always about verifying that something does occur correctly, and rarely about verifying that something doesn’t occur. The scope of things failing to occur is huge because there are so many ways that failures can manifest. This ties in with checks being limited in scope. If I go back home to check that I locked the door, I only check that it is locked. I don’t start checking if the lock could jam, if the door hinges could be compromised or if someone could unlock the door through the letterbox. Failure checks are negative and have a hugely increased scope. They also require creative thinking and a great deal more time to create and execute.

			

			Driven by documentation – Checking is frequently driven by documentation, whether design specifications, requirements specifications or stories/tasks in the project database. Checklists are either taken directly from this material or derived from it, but the source of the checks come from the author of the document, not a tester. The tester may still have the challenge of figuring out how to perform the checks, but the list of ‘what’ to check has been created already.

			

			It’s important to notice that all these checking attributes give quick and efficient confirmation of the issues that we’re checking for. If we expand our previous example of a specific feature to a larger scope of a game update, we want to get confidence that the update hasn’t broken existing functionality. In this scenario we’re not really interested in finding old bugs or exploring edge case scenarios. Our aim is to feel confident that the update didn’t introduce new bugs in the existing game. In this scenario we might use checks to do a positive verification of large sections of the existing game with the goal of building confidence that they have not broken. In this scenario, these checks are the quickest way to get through such large sections of the game without it taking an unacceptably long time.

			Testing includes everything that you can possibly do beyond checking.

			In comparison, testing is almost unlimited in its scope and can vary in its specificity, be positive or negative and as scripted as required. It can be formatted to ask open questions, to find out specific information or to perform a specific task. For this reason, tests can be structured to find and record different formats of data, breaking the binary structure that checks follow. A test can be created to investigate the balance of a game area and provide a subjective conclusion, or to make performance comparisons between two versions of the game where the output is in the format of side-by-side data.

			Critically, the greater scope of testing includes not just positive tests, but negative ones too. Negative tests investigate the ways that things could potentially fail so that we can take preventative action. To design good failure tests, testers need to do a kind of ‘pre-mortem’ on the component under testing to generate ideas on the biggest points of failure, and then figure out a way that they can feasibly test those scenarios.

			Later on in this chapter we’ll go into more detail about positive (verification) and negative (failure) testing, as well as the split between scripted and unscripted tests.

			The last attribute of checking we defined was ‘driven by documentation’. The comparison with testing is an important one to make because it feeds into reasons for testing as a dedicated discipline.

			Unlike checking, testing is almost entirely designed by the QA analyst creating the strategy, or the tester executing the tests. It’s the added value that test professionals bring to the business. Over time, testers build a knowledge bank of experience and tools that they take with them and helps them identify what areas to focus testing on. Some of the best testers I’ve met are simply good at asking the right questions that trigger others in the team to take action, without even running a single test!

			It’s this perspective, this thought process, that drives these types of incisive questions and genuinely effective test direction. These tests require someone to first think of the test as an area that should be looked at, and then have the skills to write a test that will fulfil the idea. I’ll go into detail about test analysis – which defines decision-making techniques testers can use to help them decide what to test. I’ll also cover test design and define some techniques to help testers figure out how to test those areas.

			Attributes of testing:

			Flexible – Unlike checking, testing can be adapted to ask all kinds of questions and achieve different goals. Testing can build confidence in an area by collecting test results; it can be targeted to find as many bugs as quickly as possible; it can be formed as an investigation to collect data and make conclusions, amongst many other goals.

			

			Bigger in scope – The scope of testing is its main defining factor. If they have the time, test teams can test as deeply as they like, exploring whatever scenarios they think productive – whether they’re main flow, edge cases, negative or positive tests. Tests are only limited by the minds of the team generating test scenarios and the time the team has to execute them.

			

			Variable granularity – Tests can take on whatever level of detail is required. A test script would define every exact step, while a test session might provide a rough test charter. Varying levels of granularity have different advantages depending on the application. Test granularity is defined and explored more deeply in chapter five, Test design techniques.

			

			Variable in intent – Tests can be both positive (verifying that things work correctly) and negative (testing that things don’t fail). Written tests for any single component should try and find a healthy balance between the two.

			

			Driven by the test team – Testing, as the activity defined here, is mostly driven by QA analysts and test leads, though it’s also common for other disciplines to review test plans and feed into the test scenario ideas. Unlike checking, test design and implementation originate in the mind of the person creating the test plan and don’t have an existing piece of documentation to use as guidance.

			

			I said earlier that these two terms are quite misunderstood. This is because many people outside the testing discipline think that testers just exist to perform the checking activity. These same people will also often claim that the test discipline will eventually be replaced entirely by automation.

			They are right about one thing: in the most advanced teams, checking is automated and manual test teams get more time to do what they are good at – testing. Many junior QA testers and QA analysts, who don’t understand this distinction yet themselves, tend to focus almost entirely on the positive verification surrounding the checking activity. They seem to be unaware that the scope of their work should extend beyond this. Sometimes a project operates at such a fast pace that the test team aren’t given the time to perform testing. These scenarios illustrate that it’s important for anyone in the test discipline to understand the distinction between checking and testing, so even if their current work doesn’t allow them to perform the depth of testing that they would like, they’re still able to make a convincing proposal to project leadership to change the project process, instead of accepting the current checking as the correct and only way.

			Chapter three (Test types and terminology) will go into more detail about specific test activities, and chapter five (Test design techniques) will discuss tools that you can add into your toolbox when creating the test plans described here.

			1.6	The fundamental test process

			The fundamental test process is a template which categorises the key test activities that occur within the lifecycle of testing. The process itself is not specific to game software, but we’ll walk through some game project examples when working through the process, to give it more context.

			The process is exactly what the name suggests: a series of fundamental steps that define the stages of the core testing process in chronological order. Within each category, we can fit all of the different test activities and techniques that we’ll talk about in this book. Since it’s chronological, the fundamental test process can remind us of the order in which we should be doing things.

			We should think of this as the basic framework we can use to map out the different test skills that we have. These are compartments in the tester’s toolbox described in the introduction. As we gain new skills and experience, we can place them in their relevant compartment and, over time, understand how much knowledge we have within each section. This should allow us not just to make more sense of each technique, but, by grouping the techniques into functional areas, we can recall them more easily when we need to make use of them.

			The fundamental test process:

			•Test planning

			•Test analysis

			•Test design and implementation

			•Test execution, monitoring and control

			•Test reporting

			•Test closure activities

			

			Being primarily responsible for executing testing directly, QA tester-style roles will use most of the skills that fall into the category of test execution, monitoring and control. These skills are covered in the chapters three (Test types and terminology) and six (Major areas of game testing).

			QA analyst-style roles which plan and write tests will find all chapters useful, but chapters four (Test analysis techniques) and five (Test design techniques) the most valuable for the core of their work. These chapters cover test planning and analysis, as well as test design and implementation.

			Anyone holding a test lead or higher role will find all of the content here useful as a foundation for further reading, but specifically chapter seven, Test management. Test management governs the organisation of all categories of the fundamental test process, so it sits at a slightly higher level.

			Before we go into the details of each step, it’s worth noting that the scope of this process can be adapted to fit the scenario at hand. The process can be applied to an entire project and involve a team of testers all working on each step together. This approach is commonly followed in the ‘waterfall’ software development methodology, where everything is designed in one stage, then built in code and tested at the end. The style of the wider project allows the test team to follow this fundamental test process for the whole project over several months and years. In this scenario, the team will normally have time to approach each test step formally, writing test plan documents and setting up processes from scratch to last the lifetime of the project. We’ll talk more about the waterfall methodology in chapter two, Project lifecycles.

			The process can also be followed on a smaller scale for a specific release or update. This scenario may still involve several of the test team working together, but the timespan will be shorter and the level of formality will be lower. Some of the steps in the process may be followed but not documented, while others may not be necessary at all. An average-size game update might take several weeks to plan and release, but usually no longer than that. The test team know that the lifespan of their work will only be relevant for this time period, and invest in the process accordingly.

			The test process also holds true for a single QA analyst working as part of a project pod on a new feature for the game. The analyst will go through the phases of the fundamental test process for that feature, finishing when the feature is integrated or released. Depending on the size of the feature, this might take several days or weeks.

			It’s normal for small test plans for features to feed into bigger test plans for the release in which they will be included. This in turn, feeds into the test strategy for the project. Each of these fundamental test process layers will be owned by different people on the test team and will also change depending on the organisational makeup on the QA discipline on the project.

			While individual QA analysts working within a game studio might be responsible for the test plans for a specific feature, the larger-scale strategy might be owned by a principal QA analyst or a QA lead. Where remote test teams exist, it’s also quite common for QA testers to be assigned as the remote owner for a feature and to oversee the execution of testing locally.

			So the fundamental test process is useful for the entire discipline and provides a core foundation for the test team to organise themselves around. It also provides consistent terminology that allows test teams to communicate together and outwards to others in the business more effectively.

			Top tips – being articulate

			Being able to communicate with other non-test disciplines within the studio is incredibly important, because it’s very unlikely that they understand the details of your work (when I say non-test disciplines I mean art, code, design, production, etc.). Worse, it is, unfortunately, quite common for non-test disciplines to think they understand game testing, because it’s sometimes perceived to be a relatively non-technical and straightforward activity.

			The fundamental test process, and other terminology defined within this book, gives us a vocabulary we can use to articulate our intentions more clearly and precisely.

			There are discussions that happen daily between different disciplines in a game studio – things like the state of recent feature work, the progress towards the next milestone and how much test time is needed. The team will get together to make decisions on when to start fixing bugs, what features to work on next and when isolated features should be merged into the main body of work. Input is required from all disciplines to make good decisions, with the test discipline being no exception.

			During these meetings, the test representative will need to give details of their in-progress work as well as their intentions for the remaining work. It’s very common for the decision-making group to challenge each other and ask further incisive questions in order to come to a conclusion. These discussions may also include project management; executive producers, for example, are usually at the core of large tactical decisions within the project.

			For this reason, the test representative needs to make sure they are as concise and precise as possible when talking about their test plans and the underlying reasons for their plans. In my experience, people respond positively to sound reasoning and precise answers. They will also come to expect this type of response over time, and are more likely to proactively seek your input in future decisions. Ultimately, communicating in this way helps build trust and confidence in you as a test discipline knowledge holder, and reflects positively on the discipline as a whole.

			A good example of this is when other disciplines forget that test analysis and design needs to take place, and expect testing to begin sooner than it can. A client code engineer may deliver a feature late into testing and then become frustrated that testing hasn’t begun immediately.

			An experienced QA Analyst would be able to explain why it’s important to spend time adequately planning testing. An even better response would be to use the topic to suggest that the code engineer involves the QA analyst sooner, and the feature is delivered into testing incrementally.

			When you first have these conversations, you might feel unsure because you haven’t yet proven the reasoning within your team. You could be thinking, “I’m doing this because the book content suggested it and it sounds like a good point”. After you’ve had some success yourself, you will be able to enter these discussions with more conviction. I strongly encourage you to practise your communication style using the terminology here and develop it further.

			I’d also suggest you take time to prepare for meetings where you know your input will be required and decisions will be made. Don’t make the mistake of appearing disorganised, because it will undo the trust you’ve earned. Make sure you know what you’re going to say and can explain the reasoning behind it, use the correct terminology and have the data to back it all up (if it exists).

			1.6.1	Test planning

			This is the first stage of the test process and has the biggest scope, because it asks questions to help establish and understand the problem at hand. Once the problem has been identified, the remaining stages of the process involve designing and running a test solution that solves the problem.

			The test planning phase builds on the reasons for the testing and defines the ‘why’ of the test plan (What are the test goals?).

			For this book, we’ll focus on test planning for a specific game area or feature, since this flow is the most applicable to QA analysts and QA testers.

			Before writing any tests, the QA analyst will gather all the information about the work completed, to help them understand it as much as possible. The success of the later stages will entirely depend on the way the analyst has interpreted the work, so this foundation is very important.

			There will be information on both what was intended to be built and what was actually built, and the analyst will need both of these pieces of information to make their test plans. In the best possible scenario, there will be a design specification and a technical specification, but rarely have I seen this actually happen! It’s currently popular amongst game design teams to use short-form design documents, sometimes called ‘one-pagers’, because they’re intended to summarise the design of a feature in a single page. The feature will also have an entry on the project database which tracks the bugs and the work. This is usually called a ‘story’ or ‘task’, and will contain some form of acceptance criteria saying, “We will consider this feature to be done when it meets this criteria.”

			In the most well-organised teams, the acceptance criteria is a moderately detailed bullet-point list of things that the feature will do. This acceptance criteria list also starts to define specific details of how the feature will technically function. For this reason, it’s sometimes expanded upon during development. Other times, the story or design may be very sparse, out of date, empty or non-existent.

			The process will change slightly depending on the feature or change that the test-planning is for. Features built in code will have different documents and formats than game content built by environment artists and level designers. Consider the design for an open world map within a game, for example. It’s less likely to have a long written description of the design or wireframes. Instead it may have a map split into sections, complete with a key and annotated points of interest. It’s also more likely to have a set of rules to which the whole environment needs to conform, rather than defining criteria for specific areas.

			Some features are driven by the code teams as a project necessity, rather than by design choice, so don’t have a corresponding design document. A good example of this is integrating Software Development Kit (SDK) updates into the game’s code. SDK version updates are common with the graphics engine used by the game (e.g. Unreal engine, Unity engine), and for the platforms on which the game runs, too (e.g. iOS SDK, Android SDK, Xbox (XDK), PlayStation SDK).

			Code framework components that need to be built to support future features are also common, along with non-functional features to improve performance and reliability. In the best scenario, these changes have technical specifications which detail the changes and the code team’s own risk assessments. Frequently they have no documentation at all, with the exception of a story or task in the project database. Even then, you will find that these features have sparse information in the acceptance criteria, because they are often forced upon the project team as compulsory updates from the SDK owner and don’t change the way that the game functions. I frequently see acceptance criteria like this:

			

			•“The game should be updated to Unity version 2018.4.11”

			•“The game should not break after taking the update”

			

			Understanding any changes to the game and the risk that they carry can be very challenging for the QA analyst to plan testing around. Regardless of the variables discussed above, the QA analyst will invariably need to go and speak with the people carrying out the work. If documentation exists, the analyst can use it as a starting point for asking questions about the feature. If it doesn’t, the analyst will need to speak with the authors and have them describe the feature while taking down notes.

			The goal of the QA analyst with both of these approaches is to understand the change and assess the risk, so that the correct mitigating actions can be taken later in the fundamental test process.

			This is also a great opportunity to get the author’s opinion and thoughts on the feature. Do they think it’s a big change? Are they concerned about specific things? Do they have scenarios that they think require testing? How confident are they in the stability of the work?

			Gathering test-planning data like this via asking the right questions is a skill in itself, and something that analysts will need to practise to get right. This planning activity also falls into an area of soft skills in communicating effectively with other people; a skill which requires conscious practice over time. Mutual respect and understanding between team members are the multipliers making this activity truly successful.

			Through the course of collecting information about a feature, the QA analyst should be looking for the source of truth on which to base their testing. It’s likely that if documentation does exist, the testers will be using it as a reference during testing, creating bugs where the document varies from the running feature. So it’s important that the analyst agrees with the author what feature reference material can be used for this purpose – what is ‘the source of truth’?

			Later on, when a discrepancy is found between the source of truth and the game, one of the two will need to be updated to fix the inconsistency. The formal term for the source of truth is the Test Oracle – the source we will use to determine the expected results of tests and use as a comparison against actual results. I don’t think I’ve ever heard anyone actually use this term in a game studio, however, where referring to the ‘source of truth’ is more common workplace language6.

			When no documentation exists, the intended design may be only in the mind of a designer and the technical design will be in the mind of the engineer. It’s common enough on games projects, particularly in small teams, for the details of features to be worked out through a conversation in front of a whiteboard or in an instant-messaging channel. This example is simplified, and instead usually involves several specialists who will each contribute their own skillset to the creation of the feature. In these scenarios, when the test team are unclear about the expected result of a test, they will contact the relevant specialist on the feature team to seek clarification. Documenting who the feature stakeholders are and who the point of contact is for various questions is part of the initial test planning process, and will help testers later on know who to speak to for specific areas of testing.

			This list of people also forms the audience for test reports in the later stages of the fundamental test process. Links to documentation, the database stories for the feature and the point of contact list are documented in the test plan itself. This test plan can come in any format the team prefers and will be the root work item to which the further stages of the feature test process link.

			1.6.2	Test analysis

			Let’s talk about test analysis. This activity defines what you plan to test but not yet how.

			The test analysis begins almost immediately and in parallel to test planning, when the QA analyst begins to investigate the feature and speak to others on the team about it. Through conversation and investigation into the feature, ideas of what should be covered in testing will surface and need to be documented.

			The test analysis phase exists to provide a map of ‘things that need to be done’ so that tests can be written later, using that map as a guide. For this reason, this step becomes increasingly more important the larger the scope of testing is. Practically, it starts as a list and quickly becomes unwieldy, so evolves into a tree structure with areas and subareas of things that need to be tested.

			The process is like preparing to write an essay: making sure you’ve mapped out the beginning, middle and end; ensuring all the sections are consistent, don’t overlap and don’t leave gaps between the content of each. If we go straight into test writing without first analysing what needs to be done, we’re much more likely to make mistakes in the writing and end up with a less effective set of tests. The worst case scenario means areas will be missed entirely from the test analysis, letting potential critical bugs remain undetected.

			I personally find that without a mind-mapping exercise to take the time and think about test analysis before writing the tests, I end up having ideas while I’m writing the tests that force me to go back and edit the approach I’ve taken to some of the tests, making changes to areas I’ve already written.

			Retrospectively updating tests to include new steps or additional direction is always going to be messier and more error-prone than getting it right the first time. When this happens I also find I have a large set of tests all in progress and none of them complete, instead of just working on them sequentially, one at a time.

			Test Conditions

			Test conditions are the output of the test analysis phase where each condition refers to a specific scenario that needs to be tested.

			Later on when tests are written, they are created to satisfy these test conditions with the aim of capturing all of the conditions by the end of test writing. Practically, I’ve found when writing tests that it’s common for a single test to satisfy multiple conditions, with just a minority of tests targeting a single condition each.

			A basic example might be creating a test condition to test a mobile game feature on mobile devices with a notch in the screen. Since this can be done in parallel with other tests, it can be satisfied ‘passively’ during testing. The technique requires a little practice and requires going through the process of creating tests from a set of test conditions at least once. This is because it can be difficult to figure out the granularity of your test conditions: how specific do you want to be with each condition? Are you expecting each condition to be satisfied by an individual test?

			Identifying what needs to be tested is one of the core parts of the QA analyst role and also something which QA testers are likely to contribute to. For this reason, chapter four on Test analysis techniques will cover the creation of test conditions extensively, giving practical guidance on what you need to consider when planning your testing.

			1.6.3	Test design and implementation

			The design phase covers all of the tactical details of how you’re actually going to test the areas identified during the analysis phase.

			Good test design is about choosing the test activities that will be most effective for each part of the test plan and then creating each test with the appropriate structure and writing style that is most effective for that activity. Should you use scripted testing throughout the plan, or would a focused exploratory session be more effective for parts of it? Will you need tools or automated tests to execute some areas of the plan? If the plan has a large section for regression testing, do you need to write new tests or can you reuse existing tests? These questions and many more are answered during the test design phase. Once again, the QA analyst must search this compartment of their testing toolbox for test activities they can use within their plan. The more test activities they know, the more likely they are to have an effective approach for each part of the plan.

			Practically, designing tests and implementing them fall under the same activity, where the output of that activity is tests that are ready to run. It’s unusual to have a separate written document which specifies test design because of the increased work involved, and because it duplicates a lot of the content within the tests themselves. The method of implementing the tests will change depending on the test writing tools that the team use but, regardless of the tool specifics, the organisational work that was done in the analysis phase will be brought forward and used to structure the tests themselves.

			Test teams will usually create ‘work items’ for their test tasks in the same database that stores bugs and the development work. Tools that lend themselves to scripted, step-by-step manual tests are also used in a standalone capacity or in parallel and linked to test tasks within the database. Most database tools support linking between items so that test tasks can be linked to their corresponding development task as well as any bugs found while testing, enabling traceability between them. Parent tasks and sub-tasks are also a common feature in database tools, allowing the QA analyst to create sub-test tasks that correspond to the sub-areas detailed within the test analysis. There are many ways to slice test task organisation and it’s down to the QA analyst to find the most straightforward and efficient organisation.

			Test design and implementation is a blank slate for the QA analyst and there’s plenty to consider when writing tests. Chapter five on Test design techniques later on will aim to provide practical and detailed guidance when embarking on this task.

			Included in the test design are investigations and decisions into the feasibility of the test conditions. How difficult and time consuming will they be to run? Knowing this, are all of the tests worth running? Some areas in game testing are within easy reach and only require a set of steps guiding the tester to a specific area of the game. But other tests target hard-to-reach features or are difficult to set up.

			Hard-to-reach areas include features like AI logic, where what is displayed on the screen is only the surface layer of multiple code components interacting together, usually in a somewhat unpredictable way. To surface the correct information, these areas can require debug, logging or tooling requests to the code team before the tests can be run effectively.

			Tests that are difficult to set up usually involve populating the game with data and getting it into a specific state. A player profile is a good example of this because it stores so much different information on the state of the player. Tests could require that a player has finished all side challenges and has a score above a certain amount; that the player is in a full multiplayer squad with 24 other players; or even that the tester checks an event that only occurs once within the game and would need a way to reset the state easily to retest the same scenario. Some of these scenarios can be set up through the ‘brute force’ approach of just playing the game to make the required progress. This can be easy for the QA analyst to write, but such approaches are wasteful and unrepeatable for the QA tester. Good QA analysts will strive for more effective ways to run their tests.

			Other considerations are more directed towards the effectiveness and sustainability of the tests themselves. QA analysts have many test approaches at their disposal, with a majority falling into the main categories of scripted tests, unscripted sessions, with a verification or failure focus. There are further decisions of granularity, which is the question of how much detail to go into when writing tests. The QA analyst will adapt their tests according to who is going to run them and where those people are located. Remote testers might require more supporting documentation and context, whereas writing tests that the analyst is going to run themselves (or run locally by other experienced QA analysts) would benefit from being more concise and direct.

			The material covered in this book will provide a guide to navigating all of these decisions when test writing, but similarly to the test analysis phase, each new feature brings its own unique test writing challenges. Encountering these during your day-to-day work will provide more context and ideas to the examples given here. While aspiring QA analysts will still find the content helpful, improving your test writing is an incremental process, and I would encourage readers to return to the theory content at intervals between writing tests for different features. This will help promote connections and ideas between the ‘toolbox’ of techniques here and the actual reality of their workplace.

			Career Advice – Test Ownership

			On the topic of incrementally improving your test writing skills, I’ve found that the downside of specialising in a specific area of games means that you’re much less likely to be faced with work that challenges you.

			The reality of games is that some areas are very repetitive and can become boring after the initial problem-solving phase. I’ve seen this occur for analysts owning the test plans for content areas like environment, characters or live ops events. A template set of tests is written for a single character model and perhaps improved over the time of testing many different characters in the game, but ultimately it becomes a copy-and-paste job. I’ve noticed something similar when implementing and running in-game events for live operation projects which are increasingly more popular.

			There is value in being able to execute a test plan and do it repeatedly and consistently over time – it’s good work experience to have. But the advice I would give here is to recognise how broad your work portfolio is, and speak to your manager about moving your test ownership to unfamiliar areas in the future or taking on smaller areas of ownership in unfamiliar areas, while still maintaining your main specialism. It’s extremely valuable to get exposure to different game areas because it gives you a wider appreciation of the project work, expands your tester’s toolbox and makes you more flexible as a test professional.

			The main attribute we care about is increasing the tester’s toolbox. Test planning for different game areas will force you to think about testing differently and with a fresh approach. It’s great for challenging the way you currently work and forcing you to adapt.

			To use a stereotypical analogy, testing planning the same game area repeatedly is like repeatedly putting a square peg in a square hole in one of those wooden games for children. You already know the square peg fits in the square hole; move on to one of the other shapes already! The other shape slots are different game areas and won’t accommodate your ‘square peg’ test approach.

			Recognise when you are no longer learning new things and move on.

			1.6.4	Test execution, monitoring and control

			This part of the fundamental test process has a much bigger focus on the QA tester or whichever other role is going to be executing the tests.

			After assigning the tests to be run, the QA analyst’s job isn’t done; tests aren’t forgotten about to await the bugs to come back. There’s frequently ongoing conversation between those writing tests and those executing tests, clarifying questions on the details of testing, complications that arise during testing itself and the escalation of major bugs and test blocking issues. Teething issues when running tests should be expected, particularly if these specific tests are being run for the first time or the game area is new to the testers. I would say, in fact, that tests being run without questions and clarifications is the exception to the rule. This only happens when the testers are familiar with the test that they’re running and the testing itself goes well.

			As well as the internal loop of dialogue during individual tests, this phase includes monitoring the progress and results on the broader scope of testing; where that’s a scripted test pass or a set of test sessions. The aim is to identify if the current test velocity and results are favourable. This is why the section includes monitoring and control as well as execution – the key point being that it’s an iterative process where early test results feed back into the decision making for future test execution. Test results from a day’s testing answer questions like: do we need to run this test again? Do we need to test more deeply into some of the areas covered in testing today? Do we need to retire the test because the results show that it’s no longer effective?

			‘Control actions’ is a term that refers to things that you do as a direct consequence of unfavourable data. For example, we monitor the test results to check the health of the game and the velocity of test execution over time, and if these results aren’t favourable we can take control actions to move them towards a more favourable result.

			Examples of control actions to speed up the rate of test execution could be deprioritising other tests running at the same time, or increasing the number of people running tests. There are many different reasons why you might take control actions depending on the reason for running the test in the first place and the results that came out of it. The point here is that tests are not ‘fire and forget’ for the QA analyst, they require an evaluation and a conclusion. Some test approaches lend themselves more heavily to a quick and iterative feedback loop like this. Test sessions are a good example of this, where the most formal process sees testers complete a session of no more than a few hours before meeting up with their QA lead or QA analyst to debrief on the session and decide next steps. The intent is to approach the testing in small chunks and use the test results as a primary driving force for further test writing. The opposite of this is long passes of scripted tests on large areas of the game that take a team of testers several days or weeks to complete.

			Because of the popularity of remote test teams, the discussion and monitoring of test execution has added challenges. Where the tester and the test author are in the same room, it’s a simple thing to gather around the screen showing the game and talk through problems with a live example to aid communication. With remote teams, greater effort is required to organise group instant-messaging channels for different purposes and be more disciplined with the way you communicate. Screen sharing, video capture and screenshot tools can be extremely helpful here, but require everyone in the team to be set up with chat headsets and the correct software that they can join a quick private call with anyone at any time (and also be able to share the video feed from the device that is running the game through their computer).

			In the teams of testers that I’ve worked with, this rarely happens. Instead, we’ve had to laboriously type out complex problems and suggested solutions to each other. Furthermore, remote test teams mostly exist for cost reasons and are often not even in the same country or speak the same native language as the game studio team.
This can further confuse communication, particularly when talking about technical and complex problems.

			Because of these limitations, test monitoring needs thorough planning and dedicated time allotted to be set up in an effective way, not as an afterthought. Much frustration can be mitigated by well-written tests and supporting test documentation from the QA analyst, as well as clearly-expressed expectations before tests are run.

			This foundation aims to highlight this problem during test execution so that you can take note of it and help mitigate it during your own work. However, solving these problems permanently is a test management task and beyond the scope of this book.

			Finally, there’s a lot of work that goes into the scheduling of test execution, defining when tests will be executed and in what order. These schedules also contribute to test team size decisions and (avoidance of) overtime planning. On big projects, QA analysts will find themselves competing for test execution time if they don’t organise their work together correctly, making combined test planning a requirement of efficient test execution.

			Further organisation is required to deliver tests into the team of testers so that they know what they should be working on at any one time. Tests can be assigned to individuals to work through in order or assigned to sub-teams (squads) to work through as a group. They can be added to a prioritised list for testers to pick from, or they can be assigned as daily tasks to the team as a whole. It all depends on what’s most effective for the project.

			In small projects with just one or two people writing tests, this isn’t really an issue and the team can afford to be more casual about their planning and organisation. The same can be said for projects which have a slower velocity of work and don’t have tight deadlines.

			We’ll delve into test execution more deeply in chapter seven, Test management. While it is labelled as management, this topic is actually very helpful for QA testers, analysts, leads and managers alike, because they’re all involved in the process in some capacity. All of these roles need to be on the ‘same page’ in their understanding for it to work effectively. I’ve also struggled to find documented techniques or case studies on test execution. There’s certainly much less available than test analysis and design. I think it’s an area which is assumed to be straightforward after the hard work of test planning is done, so we’ll aim to right that wrong within the content here.

			1.6.5	Test reporting

			Earlier we identified that the goal of testing is to collect data to inform project decisions. These decisions, by proxy, lead to bugs being fixed, milestone dates being changed and other decisions which lead to a higher quality game.

			Test reporting takes all the collected test data and presents it in a meaningful way. Don’t be put off by the word reporting. It doesn’t have to mean long form emails full of colourful charts. The test team can decide how formal each of their reports needs to be and whether they should be sent out or kept somewhere people can access it.

			A formal format might involve an email to the project leadership on the final state of testing a feature, showing bug data and test coverage data, each filtered in different ways to provide unique perspectives. Such reports are usually designed to give the reader a quick summary and then provide all of the supporting data should they want to read into it, with the aim of not requiring any follow up clarifying questions.

			The outcome of testing can also be reported verbally or through an instant messaging channel presented on a wall-mounted screen in the office or updated on a dashboard somewhere. The point is to conclude the testing and provide some closure to the activity. It shouldn’t be a case of ‘no news is good news’. Sometimes, stakeholders don’t care about the data itself but are more interested in the analysis and conclusions that the test team have drawn from the data. They don’t want to have to analyse it and draw their own conclusions. With this greater scope of reporting in mind (i.e. not just emails) we, as testers, need to remember to take the time to evaluate the test data and then report back to the wider project team on the results.

			The output of testing is also used to feed back into further test planning and trigger other follow-up actions. This is particularly true of agile projects where test writing is more likely to be done iteratively. Even if the QA analyst doesn’t intend to report the results to others on the team, the evaluation of that data is still essential to the analyst’s future test planning work. For this reason, test reporting is as much for our own benefit as it is for the benefit of others on the team.

			On the topic of data types included in reports, recorded bugs are ‘error reports’ themselves and the most basic form of reporting that all projects will capture. Other types of test data are added depending on the feasibility and requirements within the project. In the chapter seven (Test management), we’ll go into detail on common test metrics and test reporting within game projects. When we say ‘metrics’, we’re talking about known systems or standards for measuring things within the project. Metrics as a terminology isn’t specific to games or even software, for that matter, so you can do your own further reading online if you’re so inclined.

			We’ll also talk later about the different levels of reporting within a game test team, giving a few different examples of team breakdowns that can create the need for different reports.

			As a quick example, consider a remote team of testers who have squad leads for each group and a test lead who manages the whole team. These squad leads might collect the output of their squad’s work and informally report this into the test lead, who then collates all of the output into a single daily or weekly formal report.
The remote test lead would then send these reports to the embedded test team within the game studio or to the studio project team directly. These reports will sometimes provide information for the internal test team to action directly, and other times will feed into further reports that the internal QA analysts or leads might be creating themselves for features or the project as a whole.

			At each of these levels, there are different reasons for each report to exist and different audiences they are addressing. Since this is a foundation, we’ll outline the types of reports that testers, team leads and analysts might create. Whether you’re creating new reports or altering existing ones, making your reporting successful is a lot about understanding what will be most helpful to your readers and anticipating questions they might have. This is true for all levels.

			I assume if you’re reading this and already working in one of these roles, you’re serious about being good at your job and want to advance to a more senior role. Understanding other roles you are reporting to, what their work is and what is helpful to them, will make your reports better, but also put you in a better position to move into those roles in the future.

			By showing that you understand their needs through your communication and reporting, you also show that you understand the role.

			1.6.6	Test closure activities

			This is the last section of the fundamental test process and captures a selection of small activities that should be carried out before starting the process again for the next release or feature.

			This section mainly exists to ensure good hygiene for all of the test processes. It is as much about personal organisation as it is about team organisation.

			Tests that are complete need to be closed in the database, and any scripted test passes need to be closed in their own tools. Most scripted testing tools have a button to lock the test run so that it can no longer be edited. Doing this triggers the QA analyst to check the state of bugs found in each test and look for any that haven’t been actioned in some way. When testing for a feature or a release is completed, any active bugs lingering around would mean they haven’t been considered during the test reporting and so are unknown to the project team.

			Bugs will need to be resolved (as fixed or otherwise), intentionally postponed to a future release or placed into the bug backlog. For the live ops projects I’ve worked on, features were created and then immediately released into the game (within a few weeks). For these projects, it was normal for the QA analyst to create a final report for a feature at the same time as the test closure activities. Using the process to close down the tests and review the bugs is a great way of reminding yourself about the full details of testing. The report also marks the end of testing for a feature and lets everyone know that once issued, all the sub tasks relating to that feature should be closed.

			All of the work items in the project database (bugs, stories, tests) will be associated to a sprint, release, milestone or other measurement of work. Teams will also have boards that track all of these work items within the current ‘period’ of work. By making sure our test work items are always up to date, we’re keeping the boards accurate and helpful for the rest of the team, showing them the true state of testing at any single time.

			Some tools also require that you close all individual items of work assigned to a milestone before you can mark that milestone as complete and close the entire thing. So if you’re near the end of a cycle of work and the whole team is preparing to wrap up and move onto the next milestone, these test closure activities will be a direct prerequisite to the work of someone else to close down the milestone.

			Retrospectives and other feedback items are a common feature of test closure too. Test closure is a good opportunity for the QA analysts to provide feedback to the testers who executed the tests, using specific examples from the test notes themselves. This is particularly true when the team of testers is remote and feedback needs to be more clear and concise, and doubly so if the remote team is also a separate vendor company the game studio is paying for their services.

			Project teams will also hold retrospective or ‘post-mortem’ meetings to review how they performed during a release or large piece of work (this also happens after something has gone wrong). Test closure is a great time for all members of the test team to record their own retrospective notes on what went well and what could be improved in the future. This is another area where recording notes while they are fresh in your mind is hugely more effective than trying to recall the details during the meeting several weeks later. Even if these processes aren’t set up on your team, any tester who proactively records their own retrospective notes and provides valuable, actionable hindsight to the rest of the team will be showing their ability to improve the team as a unit.

			1.7	Test formality

			If you’ve ever done any kind of training course at work, or studied for a minor qualification, you might have sometimes thought, “This seems like a lot of work” or, “This is far more comprehensive than anything we do at work, we’d never find the time for it”.

			Often, training courses and academic papers present the most formal and heavyweight version of the topic they’re defining. The good ones explain how to pick and choose parts of the material and still have it function properly; they don’t enforce adoption of every granular detail all at once. This allows the content to be used without massive up-front investment, and means teams can trial lighter versions of the same content, building up the process over time. In a similar way, the content is modular and allows the reader to pick only the parts of the material that is helpful to them.

			Games testing, and all of the content described within this book is exactly like this. Nearly every new test team I’ve joined has had parts of their work which were extremely casual, undefined and not organised. Sometimes there are good reasons for this, too. Only you know the limitations of the team and the project you are working with, so as you start to think how you would apply the learnings here, you should consider how much return you will get from investing in each new technique or process. This consideration should apply to each item of work that you have, whether it’s a feature, a release, a milestone, or the entire project.

			Consider some of the following influencing factors to help you decide the level of formality to apply to each piece of work. This will give you the best ‘bang for buck’ on your time investment.

			

			Risk analysis – Many contributing factors feed into risk analysis, such as features that are large or complex presenting a higher chance of things going wrong. Any risk analysis that identifies a high likelihood or impact risk is worth having a comparatively formal test plan. We’ll talk more about risk assessment later on, but for now just know that the outcome of this activity plays a large part in how casual or formal your approach should be.

			

			Available time – The time you have to execute the work is probably the biggest factor influencing your ability to apply more formal testing techniques. The velocity of the project team affects this, as well as how much other work you personally have. Projects that invest in bigger test teams obviously have more time per-person to invest. Having done it myself, I can guarantee that finding the time to research and trial new test techniques is the biggest hurdle you will face. Once you read something in this book that you would like to try, you need to book time out of your week to begin working on it.

			

			Desired level of quality – It’s important to understand the goals of the wider project team and what, as a group, you’re all trying to achieve with the testing activity. Understanding this goal more deeply will allow you to invest your time appropriately. It’s no secret that many smaller game projects and indie teams don’t have the capacity to release a product to the same level of quality as a AAA title. Testers need to understand the level of quality the wider project team are trying to achieve, and adopt a correspondingly formal approach. You could create the most comprehensive test plan in the world and use it to explore every pixel of a feature, but if the project team only have the capacity to fix the top 5% of severe bugs, then you could have used your time more effectively.

			

			The goals of the test activity – Each test plan and section of a test plan may have its own specific goals depending on what you’re trying to achieve with the activity. For example, sweeping through a feature to capture easy and obvious bugs might not require a formal approach to be effective, but a test to capture comparison performance data would require good planning to make sure the data captured was representative, accurate and comparable. I’ve also seen the same effect when creating plans to reproduce rare crashes for which we didn’t know the cause. My original plan was too informal and ended up causing a mess of inconsistent and false-positive test results. Complex test investigations require a sufficiently formal test plan.

			

			The last idea we should cover on the topic of test formality is the fact that teams don’t adopt effective test techniques and processes overnight. Introducing new techniques from this book to your work and that of your team won’t happen quickly. It’s important that you understand this and don’t lose heart that change isn’t happening as fast as you would like. Formal techniques and processes take more work, and when I’ve proposed these to my teams in the past, there has sometimes been resistance due to the increased effort required (also sometimes seen as unnecessary admin). However, in many cases, we’ve gone from trialling a new technique to liking it and then, eventually, to depending on it. If I suggested we remove some of the formalities to these teams at the time, there would have been an outcry. It takes time and persistence for positive change to happen, and when this is done correctly, test teams will naturally mature over time.

			As an exercise, consider how formal your current work is and where you could make the biggest improvements. A good place to look are the tests that are being written and run, asking yourself these questions:

			

			•How many of your test activities each day are written down or recorded?

			•For the tests that are created, how much detail is included in each test?

			•How much time is there between a test being created and being run?

			•How much free exploratory testing do you do compared to more structured testing?

			•How much written preparation do you do before writing tests?

			•How much do you lean on the documentation to guide your testing?

			

			As you read through the content here, compare it to your work and perform a self-evaluation to find out where you can make the biggest improvements. Doing such an exercise regularly will help you identify areas where you can make the biggest impact with the smallest effort.

			1.8	The test design framework

			We developed this framework while I was working in the publisher test team at Microsoft, and the general concept has served me very well since. It’s a basic division of test design across four quadrants: scripted and unscripted, verification and failure. It also serves as a good introduction to more specific test design and gets you thinking about the balance of your test approaches without even going into the topic of test design in great detail.

			I’ve included the framework in this section of core principles because it’s such an immediately understandable topic and requires no additional work to implement. Nearly every test professional understands scripted and exploratory tests as terminology from the earliest stages of their career, with verification and failure terms following in short order. This principle is continuously helpful for different test roles and within different projects; particularly if you have a tendency to fall into the rut of only working in a certain way. I’ve fallen victim to this myself on many long projects, approaching each feature in exactly the same way without properly considering my approach.

			

			[image:]

			Figure 1.2

			

			The primary purpose of the framework is to act as a reminder of the balance of each test type within a test plan that you’re creating. You ask yourself if you’ve considered each quadrant during test writing and then correct any over-indexing of a specific type. There usually isn’t an equal balance. Verification tests tend to take up the majority and the remaining distribution is tweaked depending on the feature in testing.

			

			Scripted tests – These test types are highly granular and take the form of test scripts, test cases or directed test sessions. We know that scripted tests have specific attributes that make them good at certain tasks:

			

			•Quick to run – They direct the tester straight to the target of testing.

			•Confidence building – Pass/fail results provide granular and methodical confidence in the areas tested as well as the progress of testing so far. You know what has been done, what the results were and also what is left to do.

			•Deterministic – Five people following the same test should all produce the same result. The test can only be interpreted in a single way and is repeatable. Similarly, running the same test again will produce exactly the same result.

			•Easy to follow – The more granular a test is, the more likely anyone will be able to follow it. These tests rely less on the experience of the tester executing the tests and are less open to interpretation. Good for less experienced teams.

			•Low bug yield – Scripted tests find fewer bugs than more open tests because they don’t allow the tester to explore as many tangents during testing. Scripted tests don’t allow for the testing itself to define which test to run next.

			•Game area use – Verifying the logic and behaviour of code features that are created within a game, because the behaviour itself is deterministic and limited. It’s good for use as checklists for content-based testing (art, sound, etc.) but needs to be supplemented with unscripted tests. It’s not good for testing environment, characters and other vast areas of content.

			

			Unscripted tests – These types of tests range from free exploratory (sometimes called ad-hoc testing) to test sessions which define a test charter.

			The common attribute of these tests is that they allow and encourage the tester to self direct at least some of the testing. Free exploratory allows the most freedom, while test sessions will define a mission statement or test charter to direct the testers exploring to a specific area. Regarding the scale of how ‘free’ the testing is, it’s worth calling out that the negative attributes will be more severe the more open-ended and free exploratory testing is.

			

			•Long to run – Exploring takes time – at least twice as long as scripted tests, but often closer to three or four times as long. You don’t know where each session will lead when you start it, making it unpredictable. It’s also difficult to determine when testing will be complete.

			•Poor reporting and coverage – Unscripted tests produce test notes and bugs only. Sometimes this might include a red-amber-green health rating, but it’s not common practice. Because of this, knowing what has been tested already and what remains to be covered is extremely difficult, as is using this data to communicate testing to others. Completed exploratory test time doesn’t give the same confidence in test coverage as scripted tests.

			•Indeterministic – Five people running the same test will produce different outputs because the test is open to interpretation and leans on the experience of the tester. Similarly, unlike scripted tests, there is value in re-running the same test because you won’t necessarily get the same result.

			•Difficult to run (effectively) – Unscripted tests provide much less detail to the tester, instead relying on their expertise and skills. Experienced testers really like this freedom, but more junior team members will find these tests difficult to run and may not be able to complete them as effectively.

			•High bug yield – Unscripted tests statistically find more bugs than scripted tests. This can be because the freedom allows the tester to quickly target buggy areas and capture easy bugs (‘low hanging fruit’). It also occurs because the tester has time to investigate strange scenarios for which you would never proactively write specific tests, but are instead discovered ‘on the fly’.

			•Game area use – Good for verifying vast areas of content (like a game environment) due to scripted tests being unfeasibly detailed when trying to verify each individual item in a scene. Good for testing other areas of content like models, textures, lighting, sound, visual FX, animation and so on, due to the huge combinations of the setup and the variance in each piece of content. Good for testing AI behaviours and AI systems working together, since they’re difficult to test deterministically during scripted testing. Poor at testing non-functional areas like performance and complex features due to the often very deliberate test steps that need to be taken to test effectively.

			

			Where scripted and unscripted tests categorise the test approach, verification and failure categorise the test intent and form a separate list. The two lists form the combination quadrant shown above, with four categories in total.

			

			Verification testing – This test type includes all positive testing, which is testing what a feature does, rather than what it doesn’t do. Verification testing overlaps heavily with checking, which we described earlier when comparing ‘checking vs testing’. We defined checking as limited in scope, driven by documentation, highly scripted and nearly always positive. You should view checking as a subset of the overall verification testing activity, where checking is essentially the scripted-verification category. As the quadrant above shows, verification doesn’t have to be scripted or always driven by documentation. There are game areas which call for unscripted verification tests. In these cases, we’re still performing positive testing but the feature under test doesn’t lend itself well to granular scripts. Let’s look at the attributes of verification testing.

			

			•Highest priority – Verification testing is the highest priority for the test team and usually the first test type to be run. It makes sense to check positive scenarios before moving on to more adventurous and complex negative ones. In essence, these core positive tests should pass before moving on. A failed verification test nearly always results in a release blocking bug.

			•Driven by documentation – The success of verification tests are driven by the details given in the supporting feature documentation as well as the gap analysis skills of the test author to ask incisive questions against the design. Usually, this is all the information that is needed to create good verification tests. In the best cases, the acceptance criteria and design docs are detailed enough to provide all the information, but when this isn’t the case, a conversation with the design or code team will easily supplement this.

			•Easiest to create – Verification tests are generally easier to create than failure tests. The tests themselves are more straightforward and there’s generally more information about the way that features should work rather than the potential ways that they could fail.

			•Easiest to run – Positive tests are also the easiest for the testers to execute too. Unlike negative tests, these tests will define exactly what the expected outcome of each step is, and the tester will have documentation and other resources to refer to. This is particularly true for scripted tests of this type, because they provide the most direction.

			•Over used – It’s common for test authors to only focus on verification tests and to just ‘translate’ design documents into a set of test steps. Frequently done due to time pressure or because these tests are the easiest to write, verification tests are generally counted on too much.

			

			Failure testing – This test type includes all negative tests that aim to identify ways that a feature could fail. This includes things like edge cases as well as both known and unknown error scenarios. This is also where a majority of the bugs hide. It’s normal for the ‘main flow’ of a feature to work fine and only start failing when some additional component is introduced, or limitation applied. In the context of ‘checking vs. testing’, failure testing very much embodies the spirit of the testing activity. It’s worth calling out here that failure testing is not simply destructive testing, which is usually characterised as a button-mashing, cable-pulling type activity. Destructive tests are instead a (brute force) subset of the greater scope of failure testing. So, when you see the word ‘failure’, don’t immediately think of ‘destructive’. Let’s look at its attributes:

			

			•Driven by the test team – No documentation or guidance exists to define potential failure scenarios. They’re primarily created from the experience in the minds of the QA analysts writing the tests, or generated through discussion and process kicked off by the same QA analyst. In this way, the ideas generated within these tests are the value that the test team brings into the company. Scripted failure tests are more often driven by the experience of the test author whereas exploratory failure tests lean more heavily on the experience of the testers executing the session.

			•Difficult to create – Identifying good, valid ideas for failure testing is difficult and requires experience and continuous practice. The tests themselves are less straightforward because you don’t know what you will find before the test is actually run, so instead these tests follow more of an investigative style of testing. They’re also difficult because they require a much more intimate knowledge of the area under testing, understanding how it works ‘under the hood’ before potential areas of failure can be identified.

			•Difficult to run – Failure testing generally requires more skill and experience from the tester to navigate it effectively. Like any unscripted testing, failure tests usually provide areas of potential failure to investigate, leaving some of the finer details up to the tester. Failure tests also have more difficult set-ups because they attempt to increase the complexity of the test scenario to surface bugs; furthermore, they more commonly involve the use of tooling and debug to introduce limitations on the test scenario. Use of network restriction tools is a good example of this. Like the QA analyst, the tester needs a similar level of ‘under the hood’ understanding of the feature, requiring familiarisation before the test is run. Junior testers can struggle with these tests, particularly if they are unscripted and provide little guidance.

			•Often neglected – These tests are often not included in planned testing at all, instead leaving testers to find the same bugs by chance during free exploratory testing (a much less effective approach). Non-test professionals will not notice that these types of tests are missing either, so it’s really up to the QA analyst to make sure they’re considered during planning.

			•Highly valuable bugs – Bugs found during failure testing are often highly valued by the team because they’ve identified a ‘real player’ scenario which failed because it wasn’t considered earlier in development. These are the kinds of bugs that are met with responses like, “Great catch!” and, “Great idea, we didn’t consider that”.

			

			When planning tests, it doesn’t require much effort to consider which test types are right for your test plan and which you think need more attention: it’s just a thought process. I frequently see a strong focus on scripted verification tests, with unscripted verification added as an afterthought to the end of each test (e.g. an extra step onto the end of every test case that says something like, “Spend an additional 30 minutes performing exploratory testing in this area”, which is an easy to write but not very effective strategy).

			Failure testing is usually neglected because we find it easy to write tests for known and obvious failure scenarios, but don’t try hard enough to write tests aimed at finding unknown and deeper failures. This is primarily because obvious failures are usually documented and have their own error messages within the game. Going offline during an online-only feature is a good example of this. It’s easy to consider during testing because we know that there should be a ‘network disconnection’-type error dialogue. In some ways, you could argue that you can verify the UI and messaging within these error dialogues and this would then be categorised as a verification test. It’s really up to the QA analyst planning the testing how they want to organise it. I’d recommend categorising any known (planned/designed for) failure scenarios within the verification section and leave the failure testing to identify new, unknown failures.

			Lots of further attributes play into the decision-making when writing tests. Some of the descriptions here might have given you some ideas already. If the test team is quite junior, then exploratory and failure testing will be less effective and test writing will need to provide much more guidance. If test execution time is short, then you may need to have a heavier bias towards scripted tests for both verification and failure, because these test types will be the quickest to run. Similarly, if the ‘bottleneck’ is a limited time to prepare tests, but there is a surplus of (experienced) test execution work power, then the most effective strategy might be to focus on unscripted tests which require less time to create.

			I mentioned game area usage within some of the attributes: sometimes a feature area doesn’t lend itself well to a particular type of test and there’s little we can do about this. For example, capturing performance or stability data nearly always requires a scripted approach for it to be effective because there are so many variables that can affect the recorded performance data. Careful consideration needs to be taken to decide the inputs of the testing: hardware, graphical settings, player profile and the actions of the tester can all influence the test results. Without such a detailed approach, the resulting test data would be meaningless and not comparable to the agreed benchmarks.

			Content areas that are unique to games testing also present similar limitations to the approach we take to test writing. Consider the 3D model of a character and writing a granular scripted test to look for visual issues on the character. If you were to write it in a scripted way, such a test would have to be laboriously detailed, take a long time to write and would be difficult to maintain. A snippet of the scripted test might look something like this:

			

			•Verify the buttons on the jacket have undistorted texturing

			•Verify the buttons on the jacket have the correct material for lighting

			•Verify the buttons on the jacket are not geometrically distorted during animation A

			•Verify the buttons on the jacket are not geometrically distorted during animation B

			•etc..

			

			You might think I’ve chosen an exaggerated small detail of a single part of the overall character model, but I’ve seen many bugs logged against small details of character models like this. This might be the only character that wears a jacket so it’s not even the case that you can write a single test for all characters. The test still needs to cover the entire model and any item that they’re compatible with (e.g. weapons, clothing).

			These types of tests are much more effective if a less granular approach is taken – somewhere between a directed exploratory test and a scripted test case. Consider the following comparison test snippet:

			

			For each of the following tests on this character, use the debug free camera to explore the character from all angles. Be on the lookout for any visual issues you see during this test, using the linked concept images as a reference. Spend at least 30 minutes exploring each component before moving on.

			

			•Check each section of the core model is textured correctly and that there are no irregularities with the geometry

			•Inspect all visual FX and sources of light on the model

			•Inspect all idle animations, looking for stretching geometry and other temporary visual issues which occur during the animation

			•…

			

			A more generic approach not only allows the test author to re-use the test for a wider range of characters, but it makes the entire exercise more concise and easy to follow. The instructions to the tester are a lot simpler.

			Promotion of test scenarios

			Before we move on to another topic, we should briefly touch on how this design framework can be developed over the lifetime of a feature area.

			At Microsoft, we had an ideal methodology: bugs and other outputs of the unscripted testing would form a basis to update the scripted tests with new test scenarios that uncovered known bugs and risky areas. In essence, once unscripted testing had uncovered a buggy scenario, we’d add that scenario to the scripted tests and so they would mature over the course of the project. Similarly, as we identified new failures within the game through failure testing and those were handled through fixes, any new error handling would be migrated from the failure tests into a new verification test for the error dialogues and so on. The promotion of test scenarios followed this order.

			

			[image:]

			Figure 1.3

			

			This promotion flow is another good reminder of the intent of each type of testing and the strengths they have. The promotion is particularly useful if the project runs a lot of regression testing against existing areas or if test re-use is high on the project in general.

			If you have a franchise game that shares its code base with the next game release in the franchise, it’s well worth doing this test scenario promotion so you’ll be well-equipped to tackle the next project. This makes sure that discovered ‘unknowns’ are recorded in your scripted tests forever, and running unscripted tests on the next project doesn’t re-discover the same bugs you found before. If this is done correctly, further unscripted tests can be directed towards new, uncharted waters and to find further bugs.

			For further detail on scripted and unscripted testing, we’ll be talking about all test types in chapter three, Test types and terminology. We’ll also be covering the difference between test scripts and test cases within the ‘scripted testing’ category.

			1.9	The psychology of testing

			The discussion has always been ongoing about why a dedicated test discipline needs to exist and why software engineers and artists can’t simply test their own work. This discussion is even more pronounced within games testing because game quality can be so subjective. The answer to this discussion is an important principle to take with you into your work, and the aim of this section is to outline the specifics so that you can make better decisions and have more effective conversations on this topic.

			The topic centres around test independence, which is a measure of how intimately the tester (or anyone) knows the work and the creator of that work.

			The closer you are to a piece of work, the less independent you are from it, and vice versa. Low test independence means that you are more highly influenced by your closeness to the author and the work, and you’re less able to review it in a fair, objective and unbiased way. Conversely, those who have high test independence will be able to view a piece of work with ‘fresh eyes’, having never seen it before and not having had background information from the author. These people are much more likely to be able to provide a fair and complete evaluation of the work. You may have actually heard of the term ‘fresh eyes testing’ being used when new testers are put on a project or a feature that they haven’t seen before.

			To aid in our explanation of why this is the case, we can look at a trivial non-software example of writing an essay.

			Most of us have been asked to write a long-form essay during our time at college or university and remember spending so many hours writing it that the words blur together into some kind of crossword puzzle. We usually ask a friend to read it through and check whether it makes sense. Why do we do this and not just read it through ourselves? The answer is because as the creator of the work, we have a unique perspective on it and we’re less likely to notice mistakes that we’ve made.

OEBPS/image/cover.jpg
MODERN
GAME
TESTING

A PRAGMATIC GUIDE TO TEST PLANNING AND STRATEGY

OEBPS/image/1_2.jpg
Scripted Scripted
Verification Failure

Unscripted Unscripted
Verification Failure

OEBPS/image/author.jpg

OEBPS/image/Title.jpg
Modern
Game
Testing

OEBPS/image/59.jpg
Scripted Scripted

Verification™] Failure

tH

Unscripted Unscripted
Verification Failure

