

 Mastering ESP32 Wi-Fi features

 Microcontroller Programming Series

 Sarful Hassan

 Published by Sarful Hassan, 2026.

 While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 MASTERING ESP32 WI-FI FEATURES

 First edition. January 15, 2026.

 Copyright © 2026 Sarful Hassan.

 Written by Sarful Hassan.

 10 9 8 7 6 5 4 3 2 1

 	
	
	 Also by Sarful Hassan

	

	

	 Master of Programming

	 Python Programming Masterclass

	 JavaScript programming for Beginners

	 Java Programming for Beginners

	 C Programming for Beginners

	 C# Programming Masterclass

	

	 Microcontroller Programming Series

	 MicroPython with Raspberry Pi Pico A Complete Beginner’s Guide to Programming

	 Raspberry Pi Pico C Programming C Programming, Hardware Interfaces, RP2040

	 C Programming for Embedded Systems

	 MSP430 Microcontroller Programming Handbook A Complete Beginner’s Guide to Embedded C, Peripherals, and Hardware Control for MSP430 Systems

	 RISC-V Microcontroller Programming Handbook A Practical Guide to Embedded C, Peripherals, Timers, PWM, and Real-World Projects

	 Arduino Programming Handbook

	 ESP32 Arduino Programming Handbook

	 Mastering ESP32 Wi-Fi features

	
	
	 Watch for more at Sarful Hassan’s site.

	
	

	

 	
 	
			

			
		

This book is dedicated to all learners who are curious, persistent, and willing to explore beyond the basics. To the students who take their first steps into embedded systems, the hobbyists who learn by building and breaking, and the engineers who strive to create better connected solutions—your passion for learning and innovation is the true inspiration behind this work.

 	

 "Technology becomes powerful when understanding replaces memorization, and learning turns into creation."

Mastering ESP32 Wi-Fi features

By

Sarful Hassan

Preface

Wi-Fi is the backbone of modern IoT systems, and the ESP32 has made wireless connectivity accessible to everyone—from students taking their first steps to professionals building reliable products. This book was written to help you truly understand how Wi-Fi works inside the ESP32, not just how to connect to a network, but how to manage modes, power, performance, security, and real-world reliability. Each topic is explained step by step, with a practical mindset, so you can confidently move from simple experiments to robust IoT solutions.

Who This Book Is For

This book is designed for beginners who want a clear and friendly introduction to ESP32 Wi-Fi, students learning IoT, embedded systems, or networking fundamentals, hobbyists building smart home or automation projects, and engineers or developers who want deeper control over ESP32 Wi-Fi features. No advanced networking background is required. Concepts are introduced gradually and explained in simple, practical language.

How This Book Is Organized

The book follows a smooth learning path from basic to advanced topics. Early sections focus on Wi-Fi fundamentals and ESP32 Wi-Fi modes. Middle chapters cover connectivity, communication, power management, and signal quality. Later chapters explore frequency management, scanning, networking functions, and security. Each chapter builds on the previous one so you can apply what you learn immediately.

What Was Left Out

To keep the book focused and practical, general networking theory unrelated to ESP32 was avoided, cloud platforms were not tied to any single vendor, and hardware design beyond Wi-Fi operation was kept minimal. This ensures the content stays relevant, clear, and directly usable for ESP32 Wi-Fi development.

Release Notes

This edition reflects stable ESP32 Wi-Fi features commonly used in real-world projects. The explanations and examples are based on widely supported ESP32 frameworks and practices to ensure long-term usability.

Notes on the First Edition

The first edition focuses on clarity, practicality, and real learning. Feedback from readers will guide future updates, expansions, and refinements.

How to Contact Us

Email: mechatronicslab.net@gmail.com

Free Learning Website

mechatronicslab.net

Acknowledgments for the First Edition

Special thanks to learners, educators, and the open-source community whose continuous support and shared knowledge made this book possible.

Copyright (mechatronicslab.net)

© mechatronicslab.net. All rights reserved.

Disclaimer

This book is provided for educational purposes only. While every effort has been made to ensure accuracy, the author and publisher are not responsible for any damage, loss, or issues arising from the use of the information provided.

Important Notice

Do not copy, distribute, publish, or use any part of this book or its content on other platforms or websites without prior written permission from mechatronicslab.net. You can access free learning resources exclusively at mechatronicslab.net.

	[image:]

	
	[image:]

[image:]

Chapter 1: Introduction to Wi-Fi in ESP32

[image:]

Overview of Wi-Fi Technology for ESP32

Wi-Fi is one of the strongest features of the ESP32, and it’s the reason this microcontroller is so popular in IoT projects. With built-in Wi-Fi, the ESP32 can connect directly to the internet or to other devices without any extra hardware. This makes it possible to control, monitor, and exchange data wirelessly in a simple and efficient way.[image: Image]

The ESP32 is developed by Espressif Systems, and Wi-Fi support is integrated directly into the chip. That means you don’t need external Wi-Fi modules—the radio, protocol stack, and networking support are already inside.

[image: Image]What Wi-Fi means in ESP32

Wi-Fi allows the ESP32 to communicate using standard wireless networks, just like a smartphone or laptop. It can send and receive data over a local network or the internet using TCP/IP protocols.

Note:

Images are used strictly for educational and illustrative purposes. All trademarks and visual materials remain the property of their respective owners.

Key Wi-Fi capabilities of ESP32

	
Built-in Wi-Fi hardware
The ESP32 includes a 2.4 GHz Wi-Fi radio that supports IEEE 802.11 b/g/n standards.

	
Station (STA) mode
ESP32 can connect to an existing Wi-Fi router, allowing it to access the internet, cloud servers, or local network devices.

	
Access Point (AP) mode
ESP32 can create its own Wi-Fi network so that phones, laptops, or other devices can connect directly to it.

	
AP + STA mode
ESP32 can act as both a client and an access point at the same time, which is useful for gateways and configuration pages.

	
TCP/IP stack included
Networking protocols are handled internally, so you can focus on application logic instead of low-level networking details.

What you can do using Wi-Fi on ESP32

	Control devices remotely using a web browser

	Send sensor data to cloud platforms

	Receive commands from mobile apps

	Create local web servers and dashboards

	Build smart home and automation systems

Why ESP32 Wi-Fi is beginner-friendly

The ESP32 Wi-Fi libraries are well-documented and easy to use. With just a few lines of code, you can connect to a Wi-Fi network and start communicating. This gives quick results, which is very motivating for beginners.

In simple terms, Wi-Fi turns the ESP32 into a connected device. Instead of working alone, it becomes part of a network—able to talk, listen, and respond from anywhere.

How Wi-Fi Works in ESP32

Wi-Fi in the ESP32 works by combining built-in wireless hardware with software that handles networking rules and communication. Because everything is already inside the chip, the ESP32 can connect to networks and exchange data without any external Wi-Fi module.

At the hardware level, the ESP32 contains a 2.4 GHz Wi-Fi radio and antenna support. This radio sends and receives wireless signals using standard Wi-Fi frequencies, just like a mobile phone or laptop. These signals carry digital data through the air.

Inside the ESP32, a Wi-Fi controller manages low-level wireless tasks such as scanning for networks, connecting to an access point, and maintaining a stable connection. You do not need to control these details manually; the ESP32 firmware handles them for you.

On top of the hardware, the ESP32 runs a TCP/IP network stack. This software layer understands how data should be packaged, addressed, sent, and received over a network. When your program sends data, the TCP/IP stack breaks it into packets, adds network information, and transmits it through Wi-Fi. When data is received, the stack reverses the process and delivers clean data to your program.

Step-by-step Wi-Fi working process in ESP32

	The ESP32 scans for available Wi-Fi networks

	It selects a network using the SSID and password

	Authentication and connection are established with the router

	The router assigns an IP address to the ESP32

	The ESP32 can now send and receive data over the network

ESP32 supports different Wi-Fi operation modes. In Station (STA) mode, it connects to an existing router. In Access Point (AP) mode, it creates its own Wi-Fi network that other devices can join. It can also use AP + STA mode, where both functions run at the same time.

Once connected, your program can use common network methods such as HTTP requests, web servers, MQTT messaging, or raw TCP/UDP communication. From your code’s point of view, Wi-Fi becomes a simple communication channel rather than a complex radio system.

In short, Wi-Fi in the ESP32 works by handling all wireless and networking complexity internally, allowing you to focus on building smart, connected applications instead of managing low-level communication details.

Understanding Wi-Fi Standards Supported by ESP32

To use Wi-Fi confidently with the ESP32, it helps to understand which Wi-Fi standards it supports and what those standards actually mean in practice. Don’t worry—this is much simpler than it sounds, and you don’t need deep networking knowledge to use ESP32 effectively.

The ESP32, developed by Espressif Systems, supports IEEE 802.11 b/g/n Wi-Fi standards in the 2.4 GHz band. These standards define how wireless data is transmitted, how fast it can go, and how devices communicate reliably.

IEEE 802.11b

This is one of the earliest Wi-Fi standards supported by ESP32.

	Maximum data rate: up to 11 Mbps

	Operates at: 2.4 GHz

	Longer range but slower speed

In ESP32 projects, 802.11b is mainly used for compatibility with older routers. Even though it is slow, it is stable and works well for simple IoT tasks.

IEEE 802.11g

This standard improved speed while still using the 2.4 GHz band.

	Maximum data rate: up to 54 Mbps

	Backward compatible with 802.11b

	Better balance between speed and range

Most home routers support 802.11g, and ESP32 commonly operates in this mode during normal use.

IEEE 802.11n (Wi-Fi 4)

This is the most advanced Wi-Fi standard supported by ESP32.

	Higher data rates compared to b/g

	Better signal reliability

	Improved power efficiency

	Uses 2.4 GHz (ESP32 does not support 5 GHz)

For ESP32, 802.11n is especially important because it provides faster and more reliable communication, even in crowded Wi-Fi environments.

Important limitations to understand

	
ESP32 supports only 2.4 GHz Wi-Fi, not 5 GHz

	This is not a disadvantage for IoT, because 2.4 GHz has better range and wall penetration

	Most routers today still support 2.4 GHz alongside 5 GHz

Why these standards are enough for ESP32 projects

IoT devices usually send small amounts of data, such as sensor readings, control commands, or status updates. ESP32 does not need very high data rates like video streaming devices. The supported Wi-Fi standards are more than sufficient for web servers, MQTT, cloud communication, and smart home applications.

In simple terms, ESP32 speaks the same Wi-Fi language as most home routers. This makes it easy to connect, reliable to use, and perfectly suited for connected embedded systems.

Benefits of Using Wi-Fi for IoT Development

Using Wi-Fi in IoT development brings many practical advantages, especially when working with microcontrollers like the ESP32. Wi-Fi makes devices smarter, more connected, and easier to control without adding much complexity to your project.

Easy internet connectivity

Wi-Fi allows IoT devices to connect directly to the internet through existing routers. This makes it simple to send data to cloud platforms, receive remote commands, or update device status from anywhere in the world.

No extra communication hardware needed

With Wi-Fi-enabled microcontrollers, there is no need for external GSM, RF, or Ethernet modules. This reduces circuit complexity, cost, and development time, which is very helpful for beginners and small projects.

High data speed for IoT needs

Wi-Fi offers much higher data rates compared to many other IoT communication technologies. This makes it suitable not only for sensor data but also for web dashboards, firmware updates, and real-time monitoring.

Wide availability and infrastructure

Wi-Fi networks are already available in homes, offices, and industries. Because routers and access points are common, deploying Wi-Fi-based IoT devices does not require special infrastructure.

Supports many IoT communication protocols

Wi-Fi works well with popular IoT protocols such as HTTP, HTTPS, MQTT, WebSockets, and REST APIs. This flexibility allows developers to choose the best protocol based on project requirements.

Remote monitoring and control

Wi-Fi enables real-time remote access to IoT devices. You can monitor sensor values, control appliances, or change system settings using a mobile app or web browser without being physically present.

Good range for indoor applications

In indoor environments, Wi-Fi provides sufficient range and good wall penetration. This makes it ideal for smart homes, offices, classrooms, and small industrial setups.

Easy integration with cloud services

Wi-Fi makes it straightforward to connect IoT devices to cloud platforms for data storage, analytics, alerts, and automation. This is a key requirement for modern IoT systems.

Beginner-friendly development

Wi-Fi libraries and tools are widely available and well documented. With only a few lines of code, even beginners can connect a device to a network and start building connected applications.

Overall, Wi-Fi offers a strong balance of speed, availability, ease of use, and flexibility, making it one of the most popular and practical choices for IoT development.

Basic Concepts: SSID, BSSID, and MAC Address

When working with Wi-Fi, especially in IoT and ESP32 projects, you will often hear the terms SSID, BSSID, and MAC address. These may sound technical at first, but once you understand them, Wi-Fi behavior becomes much clearer.

SSID (Service Set Identifier)

The SSID is simply the name of a Wi-Fi network. It is the name you see when your phone or laptop shows a list of available Wi-Fi networks.

	
Example: Home_WiFi, OfficeNet, ESP32_AP

	Used by devices to identify which network to connect to

	Multiple devices can connect to the same SSID

In ESP32 programming, you usually provide the SSID as a text string so the device knows which Wi-Fi network it should join.

BSSID (Basic Service Set Identifier)

The BSSID is the unique identifier of a specific access point. Technically, it is the MAC address of the Wi-Fi router or access point.

	
Written in hexadecimal format (e.g., A4:CF:12:9B:3E:01)

	Each access point has a unique BSSID

	Even if two routers use the same SSID, their BSSIDs will be different

This is important in environments where multiple routers share the same Wi-Fi name, such as offices or campuses. The device uses the BSSID to connect to a specific physical access point.

MAC Address (Media Access Control Address)

A MAC address is a unique hardware address assigned to every network-capable device.

	
Example format: 24:6F:28:AB:CD:EF

	Permanently associated with the device hardware

	Used to identify devices on a network

In Wi-Fi communication:

	Routers have MAC addresses

	ESP32 has its own MAC address

	Every phone, laptop, and IoT device has one

How these concepts relate to each other

	SSID → Name of the Wi-Fi network

	BSSID → MAC address of the access point providing that network

	MAC address → Unique identity of any network device

In simple terms, the SSID tells you which network, the BSSID tells you which router, and the MAC address tells you which device. Understanding this relationship helps you debug connections, manage networks, and build more reliable Wi-Fi-based IoT systems.

	[image:]

	
	[image:]

[image:]

Chapter 2: Wi-Fi Modes in ESP32

[image:]

Wi-Fi Station Mode

Hey there, welcome! I’m excited to help you connect your ESP32 to a Wi-Fi network in Wi-Fi Station Mode. By the end of this chapter, you'll be able to connect your ESP32 to a Wi-Fi network and begin building projects that communicate with the internet.

What Is Wi-Fi Station Mode and Why Use It?

Wi-Fi Station Mode allows your ESP32 to connect to an existing Wi-Fi network. Think of it like your phone connecting to your home Wi-Fi. Once the ESP32 is connected, it can send and receive data over the internet, control devices remotely, and upload data to cloud services.

Use Cases in Real Projects

With Wi-Fi Station Mode, you can use your ESP32 to create real-world projects like a smart home system. For example, you can use it to control lights from your phone, monitor temperature and humidity, or connect devices to the cloud for remote access.

Basic Rules

Here are some simple rules to follow:

	
Always initialize the Wi-Fi connection with WiFi.begin(). This starts the connection to the network.

	
Use WiFi.status() to check if the ESP32 is connected to Wi-Fi. This ensures the ESP32 is connected before proceeding with other tasks.

	
Double-check your Wi-Fi credentials. Ensure the SSID (network name) and password are correct.

Syntax

Here’s a simple code snippet that connects your ESP32 to a Wi-Fi network:

#include <WiFi.h>

const char* ssid = "your_SSID";

const char* password = "your_password";

void setup() {

Serial.begin(115200);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting...");

}

Serial.println("Connected!");

}

void loop() {

// Your code here

}

Syntax Explanation

Let’s break down what each part of the code does:

	
#include <WiFi.h>: This includes the Wi-Fi library, which allows the ESP32 to interact with Wi-Fi networks.

	
WiFi.begin(ssid, password): This line tells the ESP32 to begin connecting to the Wi-Fi network using the SSID and password you provided.

	
while (WiFi.status() != WL_CONNECTED): This loop checks if the ESP32 is connected to the Wi-Fi network. It keeps checking until the connection is successful.

	
delay(1000): This adds a 1-second delay between each check to avoid overwhelming the serial monitor with messages.

	
Serial.println("Connected!"): Once the ESP32 is connected to Wi-Fi, this message will print to the Serial Monitor to confirm the connection.

WiFi.status() != type

WiFi.status() returns the current connection status. Here are some statuses you can check against:

	
WL_IDLE_STATUS: The Wi-Fi driver is idle.

	
WL_NO_SSID_AVAIL: The SSID is not available.

	
WL_CONNECT_FAILED: The connection failed.

	
WL_CONNECTED: The ESP32 is connected to a Wi-Fi network.

In the code, we’re checking if the status is WL_CONNECTED. You can modify the code to check for other statuses if needed. For example, you can check for connection failure:

while (WiFi.status() != WL_CONNECTED) {

if (WiFi.status() == WL_CONNECT_FAILED) {

Serial.println("Connection failed!");

break;

}

delay(1000);

Serial.println("Connecting...");

}

Common Mistakes to Avoid

Let’s look at a few mistakes you might make and how to fix them:

	
Forgetting to include #include <WiFi.h>
Fix: Always include this library at the top of your code, or the ESP32 won’t know how to handle Wi-Fi connections.

	
Incorrect Wi-Fi credentials
Fix: Double-check your SSID and password. Even a small mistake can stop the ESP32 from connecting.

Best Practices

These practices will help you write clean and efficient code:

	
Always check the connection status using WiFi.status(). This will help ensure that the ESP32 is connected before attempting other tasks.

	
Store sensitive information securely. Don’t hard-code your Wi-Fi password directly into the code for larger projects. Use a secure method to store and retrieve sensitive data.

Safety Notes

A few quick reminders to ensure your ESP32 works correctly and stays safe:

	The GPIO pins on the ESP32 only handle 3.3V. Applying 5V to these pins could damage the board, so be careful when connecting devices to the GPIO.

	Always disconnect the ESP32 from the power source before modifying the circuit to avoid any accidental short circuits.

Try It Yourself Project: Wi-Fi Controlled LED

Now it’s time to put what we’ve learned into action! In this project, we’ll connect the ESP32 to Wi-Fi and control an LED.

Things You’ll Need (Hardware)

	ESP32 Development Board

	LED

	Resistor

	Breadboard and jumper wires

Tools & Software

	Arduino IDE (Make sure it’s installed on your computer)

Power Source

	The ESP32 will be powered through USB. If you’re using a battery, ensure it’s a stable 5V supply to avoid power fluctuations.

Circuit Connection

Here’s how to set up the circuit: Connect the LED to GPIO 13, and use a resistor to limit the current flowing through the LED.

Full Code Example

Here’s the complete code for the project. Let’s walk through it together:

#include <WiFi.h>

const char* ssid = "your_SSID";

const char* password = "your_password";

void setup() {

Serial.begin(115200);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting...");

}

Serial.println("Connected!");

pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

digitalWrite(LED_BUILTIN, HIGH); // Turn the LED on

delay(1000); // Wait for one second

digitalWrite(LED_BUILTIN, LOW); // Turn the LED off

delay(1000); // Wait for one second

}

Build & Upload the Program

Once you’ve written the code, click Upload in the Arduino IDE to send it to your ESP32.

What You’ll See (Output)

If everything works as expected, the LED will blink every second. You’ll see “Connecting...” in the Serial Monitor while the ESP32 connects to the Wi-Fi network, followed by “Connected!” once the connection is successful.

Troubleshooting Tips

If things aren’t working, here’s what to check:

	
Wi-Fi credentials: Make sure your SSID and password are correct and match your router’s settings.

	
LED wiring: If the LED isn’t blinking, verify the wiring and ensure the LED is properly connected to GPIO 13.

Try Something New

Now that the basic project is done, let’s try something new:

	Change the delay to 500ms. What happens when the LED blinks faster?

	Add more LEDs and control them independently. How many can you control at once?

Wi-Fi Access Point (AP) Mode

Welcome! In this chapter, we’re going to learn how to use the Wi-Fi Access Point (AP) Mode on your ESP32. By the end of this, you’ll be able to turn your ESP32 into its own Wi-Fi hotspot, allowing other devices to connect directly to it. This is a really exciting feature because it opens up a whole new world of projects where your ESP32 doesn’t need to rely on an existing Wi-Fi network to function.

What Is Wi-Fi Access Point Mode and Why Use It?

Wi-Fi Access Point Mode allows the ESP32 to create its own Wi-Fi network. Instead of the ESP32 connecting to an existing router, it becomes the router itself. Other devices, like your phone or laptop, can connect to this network just like they would with your home Wi-Fi. This is super useful for projects where you want to control your ESP32 directly or communicate with it without needing an external Wi-Fi network.

Use Cases in Real Projects

Let’s think of some cool ways you can use Access Point Mode. Imagine you’re building a simple security camera system. You could use the ESP32 in AP Mode to create a Wi-Fi network that you can connect to with your phone to view the camera feed. Or maybe you’re making a sensor that sends data directly to your phone, and you want a quick, direct connection without needing to rely on a home Wi-Fi network. AP Mode makes this all possible.

Basic Rules

Before we jump into the code, let’s go over some quick rules to make sure we’re on the right track:

	
Always initialize the AP with WiFi.softAP(). This tells the ESP32 to create its own network.

	
Use WiFi.softAPIP() to get the IP address of the ESP32. This allows you to connect to the ESP32 by entering its IP address in a browser or app.

	
Make sure to give your network a name (SSID) and a password. This is just like how your home Wi-Fi has an SSID and password, so only authorized devices can connect.

Syntax

Here’s the basic code to set up the ESP32 as a Wi-Fi Access Point:

#include <WiFi.h>

const char* ssid = "ESP32_Network";

const char* password = "12345678";

void setup() {

Serial.begin(115200);

WiFi.softAP(ssid, password);

Serial.println("Access Point Started");

IPAddress IP = WiFi.softAPIP();

Serial.print("ESP32 IP Address: ");

Serial.println(IP);

}

void loop() {

// Your code here

}

Syntax Explanation

Let’s walk through what’s happening in the code:

	
#include <WiFi.h>: This line brings in the necessary library for Wi-Fi functionality.

	
WiFi.softAP(ssid, password): This command sets up the ESP32 as a Wi-Fi Access Point. It will create a network with the SSID and password you specified. In this case, the SSID is ESP32_Network, and the password is 12345678.

	
IPAddress IP = WiFi.softAPIP(): This gets the IP address of the ESP32 on the network. This address is what other devices will use to connect to the ESP32.

	
Serial.println(IP): This prints the ESP32's IP address to the Serial Monitor. Once you know the IP, you can connect to the ESP32 from another device using this IP.

Common Mistakes to Avoid

It’s easy to make mistakes when working with new things, so here are a few things to keep an eye on:

	
Mistake 1: Forgetting to set up the SSID and password.
Fix: Always give your Wi-Fi network a name (SSID) and a password. Otherwise, your ESP32 won’t be able to establish a network.

	
Mistake 2: Not checking the IP address.
Fix: After calling WiFi.softAPIP(), always check the IP address printed in the Serial Monitor. This will allow you to know exactly how to connect to the ESP32.

Best Practices

Here are some habits to help you write better code and keep things smooth:

	
Use secure passwords.
It’s always a good idea to use a strong password for your Access Point network to prevent unauthorized access.

	
Check for network errors.
In a more complex project, it’s useful to add error handling to check if the ESP32 has successfully started the Access Point. If it fails, you can troubleshoot the issue.

Safety Notes

Before continuing, keep these quick safety tips in mind:

	The ESP32 GPIO pins handle 3.3V, so avoid applying 5V to them. Applying higher voltage could damage the board.

	Always disconnect your ESP32 from the power source before making changes to your circuit.

Try It Yourself Project: Simple Web Server with AP Mode

Now that we’ve set up the ESP32 in Access Point Mode, let’s build a simple project where the ESP32 acts as a web server. You can access the server from any device connected to the ESP32’s Wi-Fi network.

Things You’ll Need (Hardware)

	ESP32 Development Board

	Computer or smartphone (for connecting to the ESP32 network)

Tools & Software

	Arduino IDE

Power Source

	The ESP32 will be powered via USB.

Circuit Connection

For this project, no additional hardware is needed—just the ESP32. You’ll be connecting to its Wi-Fi network with a phone or computer.

Full Code Example

Here’s the code to set up the ESP32 as an Access Point and serve a simple web page:

#include <WiFi.h>

const char* ssid = "ESP32_Network";

const char* password = "12345678";

void setup() {

Serial.begin(115200);

WiFi.softAP(ssid, password);

Serial.println("Access Point Started");

IPAddress IP = WiFi.softAPIP();

Serial.print("ESP32 IP Address: ");

Serial.println(IP);

}

void loop() {

// You can serve a web page here or perform other actions

}

Build & Upload the Program

Once the code is ready, hit the Upload button in the Arduino IDE. The ESP32 will start in Access Point Mode.

What You’ll See (Output)

In the Serial Monitor, you’ll see something like:

Access Point Started

ESP32 IP Address: 192.168.4.1

This means the ESP32 is now hosting a Wi-Fi network with the IP address 192.168.4.1. On your phone or computer, you can connect to this network using the SSID and password you provided in the code.

Troubleshooting Tips

If things aren’t working, don’t panic! Here are a few things to check:

	
SSID and password: Make sure they match the ones you set in the code.

	
Check your IP address: The IP address printed in the Serial Monitor is what you will use to access the ESP32 network.

Try Something New

Now that the basic web server is set up, here are some ideas to try:

	
Serve a simple HTML page. Create a basic webpage that can be accessed by anyone connected to the ESP32 network.

	
Control an LED. Add a button to your webpage that turns an LED on or off when clicked.

Wi-Fi Station + Access Point (AP+STA) Mode

Welcome! In this chapter, we're going to take things up a notch by learning how to use the AP+STA mode (Access Point + Station mode) on your ESP32. This mode allows the ESP32 to act as both a client (Station) and a server (Access Point) at the same time. It’s a powerful feature because it allows you to connect to an existing Wi-Fi network while simultaneously creating your own Wi-Fi network for other devices to connect to.

What Is AP+STA Mode and Why Use It?

In AP+STA mode, your ESP32 can connect to an existing Wi-Fi network (as a Station) and also create its own Wi-Fi network (as an Access Point) that other devices can join. This is like being able to use your phone to connect to the internet while also creating a hotspot that others can connect to.

This setup is useful in projects where you want the ESP32 to both communicate with the internet (via a router) and allow other devices to communicate directly with it. For example, you might be building a system that needs to send data to the cloud while also controlling other devices locally without needing a separate Wi-Fi network.

Use Cases in Real Projects

Let’s say you’re building a smart lighting system. The ESP32 can connect to your home Wi-Fi network to fetch data, like the current time, weather, or control commands from a cloud service. At the same time, it can create its own Wi-Fi network so you can connect your phone or other devices directly to control the lights locally. This way, the ESP32 can manage both cloud-based interactions and local device control, all at once.

Basic Rules

Before we dive into the code, let’s make sure we’re all set with a few basic rules:

	
Always start by setting up the Station mode with WiFi.begin(). This tells the ESP32 to connect to an existing Wi-Fi network.

	
Create the Access Point with WiFi.softAP(). This sets up the ESP32 as a network that other devices can connect to.

	
Use WiFi.status() to check if the ESP32 is connected to Wi-Fi as a Station. You can also check for errors to ensure both connections are working smoothly.

	
Make sure your Access Point network is set up with an SSID and password. Just like your home Wi-Fi, the ESP32 needs a network name (SSID) and password.

Syntax

Here’s the basic code to set up the ESP32 as both a Station and an Access Point:

#include <WiFi.h>

const char* ssid_STA = "Your_Existing_WiFi";

const char* password_STA = "Your_WiFi_Password";

const char* ssid_AP = "ESP32_Network";

const char* password_AP = "12345678";

void setup() {

Serial.begin(115200);

// Connecting to Wi-Fi as Station

WiFi.begin(ssid_STA, password_STA);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to Wi-Fi as Station...");

}

Serial.println("Connected to Wi-Fi as Station");

// Setting up the ESP32 as an Access Point

WiFi.softAP(ssid_AP, password_AP);

Serial.println("Access Point Started");

// Print ESP32 IP address

IPAddress IP = WiFi.softAPIP();

Serial.print("ESP32 IP Address: ");

Serial.println(IP);

}

void loop() {

// Your code here

}

Syntax Explanation

Here’s a breakdown of what’s happening in the code:

	
#include <WiFi.h>
This includes the necessary library to enable Wi-Fi functionality on the ESP32.

	
WiFi.begin(ssid_STA, password_STA)
This command connects the ESP32 to your home Wi-Fi network as a Station. It will try to connect to the network with the SSID and password provided.

	
while (WiFi.status() != WL_CONNECTED)
This part of the code waits until the ESP32 has successfully connected to the Wi-Fi network. It checks the connection every second.

	
WiFi.softAP(ssid_AP, password_AP)
This turns the ESP32 into an Access Point, creating a new Wi-Fi network with the SSID ESP32_Network and the password 12345678. This allows other devices to connect to the ESP32.

	
IPAddress IP = WiFi.softAPIP()
This retrieves the IP address of the ESP32 as an Access Point. This IP will be used by devices to connect to the ESP32.

	
Serial.println(IP)
This prints the ESP32’s Access Point IP address to the Serial Monitor so you can use it to connect.

Common Mistakes to Avoid

Here are a couple of common mistakes and tips to avoid them:

	
Mistake 1: Forgetting to initialize both the Station and Access Point modes.
Fix: You need both WiFi.begin() for the Station and WiFi.softAP() for the Access Point. Make sure you set them up properly.

	
Mistake 2: Using the wrong SSID or password.
Fix: Double-check your credentials, especially for the Station mode. If the SSID or password is incorrect, the ESP32 won’t be able to connect to the network.

Best Practices

As you continue with your ESP32 projects, here are some best practices to keep in mind:

	
Check the connection status regularly.
Use WiFi.status() to confirm that the ESP32 is connected to Wi-Fi as a Station. This helps ensure your project is working as expected before moving on to other tasks.

	
Choose unique and secure SSID/password combinations.
For security, especially in public or shared spaces, make sure your Access Point network has a strong password to prevent unauthorized access.

Safety Notes

A couple of important things to remember:

	The GPIO pins on the ESP32 can only handle 3.3V. Don’t apply higher voltage (like 5V) to avoid damaging the board.

	Always disconnect the ESP32 from the power source before making any changes to the wiring or hardware.

Try It Yourself Project: Wi-Fi Station + AP Mode Web Server

Now that you understand the basics of Station + Access Point mode, let’s build a simple project where the ESP32 acts as both a Wi-Fi client and a server. We’ll set it up to host a basic web page.

Things You’ll Need (Hardware)

	ESP32 Development Board

	Computer or smartphone (to connect to the ESP32's Access Point)

Tools & Software

	Arduino IDE (Make sure it’s set up and ready to upload the code)

Power Source

	The ESP32 will be powered through USB.

Circuit Connection

For this project, no external hardware is needed—just the ESP32. You’ll connect to the ESP32’s Wi-Fi network using a phone or computer.

Full Code Example

Here’s the full code to set up the ESP32 in AP+STA mode and serve a simple web page:

#include <WiFi.h>

const char* ssid_STA = "Your_Existing_WiFi";

const char* password_STA = "Your_WiFi_Password";

const char* ssid_AP = "ESP32_Network";

const char* password_AP = "12345678";

void setup() {

Serial.begin(115200);

// Connect to Wi-Fi as Station

WiFi.begin(ssid_STA, password_STA);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to Wi-Fi...");

}

Serial.println("Connected to Wi-Fi as Station");

// Set up the ESP32 as Access Point

WiFi.softAP(ssid_AP, password_AP);

Serial.println("Access Point Started");

IPAddress IP = WiFi.softAPIP();

Serial.print("ESP32 IP Address: ");

Serial.println(IP);

}

void loop() {

// Web server code can go here to serve a simple page

}

Build & Upload the Program

Once you’ve written the code, click Upload in the Arduino IDE to transfer it to the ESP32.

What You’ll See (Output)

In the Serial Monitor, you’ll see messages like:

Connecting to Wi-Fi...

Connected to Wi-Fi as Station

Access Point Started

ESP32 IP Address: 192.168.4.1

You can now connect to ESP32_Network using the password 12345678 and access the ESP32's IP address in your web browser.

Troubleshooting Tips

If you encounter any issues, here’s what to check:

	
Wi-Fi credentials: Ensure your SSID and password are correct for both Station and Access Point.

	
Check the IP address: The IP address printed in the Serial Monitor is what you’ll use to connect to the ESP32.

Try Something New

Now that the basic web server is set up, try these:

	
Serve an HTML page that shows the status of a sensor or control an LED from your browser.

	
Control multiple devices from the webpage, like turning an LED on/off or reading sensor values in real-time.

Wi-Fi Mesh Networking

Welcome to this chapter! Today, we’re going to explore Wi-Fi Mesh Networking with your ESP32. This feature is amazing because it lets multiple ESP32 devices work together, creating a single, seamless network that can cover a much larger area than a single Wi-Fi router ever could. Let’s dive in!

What Is Wi-Fi Mesh Networking and Why Use It?

Wi-Fi Mesh Networking is like creating a web of Wi-Fi routers, but with ESP32 devices. Instead of relying on one single access point (like a home router), the devices communicate with each other, extending the range and reliability of the network. This is perfect for large projects where you need devices to be spread out over a large area, such as a smart home, industrial monitoring system, or outdoor sensor networks.

The great thing about mesh networking is that the ESP32 can automatically decide which device will act as the "gateway" to the internet or your main network. This means if one device goes down, the other devices can still communicate with each other, making the network more reliable.

Use Cases in Real Projects

Let’s say you want to deploy a smart agriculture system in a large field. Using Wi-Fi Mesh, multiple ESP32 devices can be placed at different locations, like monitoring soil moisture and temperature. These devices will communicate with each other and relay data back to the main device, which is connected to the internet. This way, you don’t have to worry about losing signal because of the distance or obstacles.

Basic Rules

Before we start setting up our mesh network, here are some important things to keep in mind:

	
Each ESP32 device in the mesh must be programmed to be either a node or a root node. The root node is the device that connects to the internet or your primary network, and the nodes are the other devices that connect to the root or other nodes.

	
Devices automatically discover each other in a mesh network. This makes it easier to scale, as new devices can join without needing to manually configure everything.

	
Make sure each device in the mesh is within range of another device. Wi-Fi signals have limits, so placing your devices too far apart will result in poor communication.

Syntax

Let’s look at a simple example of setting up a mesh network using the ESP32. We will use the ESP-MESH library for this. First, we need to include the necessary libraries:

#include <WiFi.h>

#include <esp_now.h>

#include <WiFiMesh.h>

const char* ssid = "ESP32_Mesh";

const char* password = "12345678";

void setup() {

Serial.begin(115200);

WiFi.mode(WIFI_STA);

// Start mesh network

Mesh.begin();

Serial.println("Mesh network started!");

// Connect to Wi-Fi network as root node

if (WiFi.status() == WL_CONNECTED) {

Serial.println("Connected to Wi-Fi network");

}

}

void loop() {

// Code to manage mesh network

Mesh.update();

}

Syntax Explanation

Here’s what each part of the code does:

	
#include <WiFi.h> and other libraries
These libraries allow the ESP32 to use Wi-Fi, manage communication between devices, and set up the mesh network.

	
WiFi.mode(WIFI_STA)
This sets the ESP32 to Station mode so that it can connect to an existing Wi-Fi network.

	
Mesh.begin()
This starts the mesh network. Each ESP32 device will automatically discover others in the network.

	
Mesh.update()
This keeps the mesh network active and updates the device's communication status.

Common Mistakes to Avoid

Let’s review some common mistakes and how to avoid them:

	
Mistake 1: Forgetting to call Mesh.begin()
Fix: Make sure that Mesh.begin() is called to initialize the mesh network on each ESP32 device. Without this, the devices won’t be able to communicate.

	
Mistake 2: Not checking the Wi-Fi status before starting the mesh
Fix: Always check if the ESP32 is connected to Wi-Fi, especially if you’re using it as the root node. This ensures that the mesh network has an internet connection to rely on.

Best Practices

Here are some best practices to follow while setting up a mesh network:

	
Start with the root node.
If you're connecting to an existing Wi-Fi network, start with the device that will act as the root node, which connects to the internet.

	
Use a unique SSID and password for the mesh network.
This helps avoid interference from other networks and keeps your mesh network secure.

	
Test the range of your mesh network.
Wi-Fi signals can be blocked by obstacles like walls or metal objects. Make sure your devices are within range of one another to maintain communication.

Safety Notes

Here are a couple of important things to remember:

	
Handle ESP32 devices with care: The ESP32 GPIO pins handle only 3.3V, so make sure not to apply 5V to avoid damaging the board.

	
Always power down before making changes to the wiring: Disconnect the power supply when modifying the circuit to avoid accidental shorts or damage.

Try It Yourself Project: Smart Home Wi-Fi Mesh

Let’s build a simple smart home system where you use mesh networking to control lights or sensors placed in different rooms. This project will help you practice connecting multiple ESP32 devices in a mesh network.

Things You’ll Need (Hardware)

	Multiple ESP32 Development Boards

	LED (for controlling lights)

	Resistors

	Jumper wires and breadboards

Tools & Software

	Arduino IDE (Make sure you have the ESP32 board manager installed)

Power Source

	USB power for each ESP32 board

Circuit Connection

For each ESP32, connect an LED with a resistor to control it from the mesh network. You’ll use this setup to turn the LEDs on and off from different devices in the mesh.

Full Code Example

Here’s a simple example to get started. This will set up two ESP32 devices, where one acts as the root node and the other as a node in the mesh:

#include <WiFi.h>

#include <esp_now.h>

#include <WiFiMesh.h>

const char* ssid = "ESP32_Mesh";

const char* password = "12345678";

void setup() {

Serial.begin(115200);

WiFi.mode(WIFI_STA);

// Start mesh network

Mesh.begin();

Serial.println("Mesh network started!");

// Connect to Wi-Fi network as root node

if (WiFi.status() == WL_CONNECTED) {

Serial.println("Connected to Wi-Fi network");

}

}

void loop() {

// Update mesh network

Mesh.update();

// Additional code for controlling devices and managing the mesh network

}

Build & Upload the Program

Upload the code to both ESP32 devices. The root node will connect to your Wi-Fi, and the other device will join the mesh network automatically.

What You’ll See (Output)

You’ll see messages in the Serial Monitor showing that the mesh network has been successfully set up, and you’ll be able to control devices across the network.

Troubleshooting Tips

If your mesh network isn’t working, here’s what to check:

	
Wi-Fi connection status: Ensure the root node is connected to your Wi-Fi network.

	
Device range: Make sure your devices are within range of each other. If the signal is weak, try moving them closer together.

Try Something New

Now that you have a working mesh network, try these:

	
Add more devices to the network. Can you control multiple LEDs or sensors across different ESP32s?

	
Send data between devices, like controlling a light from one ESP32 and receiving a message on another.

With mesh networking, you can extend your ESP32's reach and create more robust and reliable systems. Keep experimenting and building new projects!

Wi-Fi Soft AP Mode

In this chapter, we’re going to explore Wi-Fi Soft AP Mode with your ESP32. This mode is incredibly useful because it allows your ESP32 to create its own Wi-Fi network. Instead of connecting the ESP32 to an existing Wi-Fi network, it becomes the network itself, allowing other devices to connect directly to it. This is perfect for situations where you want to communicate with your ESP32 without relying on a router or external Wi-Fi network.

What Is Wi-Fi Soft AP Mode and Why Use It?

In Soft AP Mode, the ESP32 acts as an Access Point (AP), meaning it creates a Wi-Fi network that other devices can connect to. You can think of it like creating a personal hotspot with your ESP32. This is great for situations where you want devices to connect directly to the ESP32, whether it's for controlling something locally or sending data without the need for a traditional Wi-Fi router.

For example, you can use Soft AP Mode in a project where you want your phone or tablet to connect to the ESP32 directly, like controlling a smart device in your home. You don’t need an external Wi-Fi network at all!

Use Cases in Real Projects

Let’s imagine you’re creating a portable sensor that sends data to a mobile app. With Soft AP Mode, your ESP32 can generate a Wi-Fi network that your phone or tablet can connect to, and you can instantly retrieve the sensor data, even if you’re far from home or without a Wi-Fi router.

Or maybe you’re working on a device that needs to communicate directly with your computer without connecting to the internet. Soft AP Mode would allow the ESP32 to create its own network for communication, making your project entirely self-contained.

Basic Rules

Here are a few things to remember when using Soft AP Mode:

	
Set the SSID (network name) and password. Just like any other Wi-Fi network, your ESP32 will need a name (SSID) and a password to allow devices to connect.

	
Use WiFi.softAP() to start the Access Point. This function will turn the ESP32 into a Wi-Fi network that other devices can join.

	
Use WiFi.softAPIP() to get the ESP32’s IP address. This address can be used by other devices to communicate with the ESP32 once they connect to the network.

Syntax

Here’s a simple code snippet that sets up the ESP32 in Soft AP Mode:

#include <WiFi.h>

const char* ssid = "ESP32_Network";

const char* password = "12345678";

void setup() {

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
Masterm

ESPEZ

e W| F| Features

v Wi-Fi Modes & Networking -' "

-« Power Management Techniques

v Security & Signal Optimization

_“+ loT Development Strategies

o
Sarful Hassan

OEBPS/d2d_images/image001.jpg

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/image000.jpg

OEBPS/d2d_images/chapter_title_below.png

