

 Unity from Zero to Proficiency (Beginner)

 Patrick Felicia

 Published by Patrick Felicia, 2019.

	

Unity From Zero to proficiency (Beginner)

A step-by-step guide to coding your first game.

Patrick Felicia

Unity From Zero to Proficiency

(Beginner)

Copyright © 2025 Patrick Felicia

All rights reserved. No part of this book may be reproduced, stored in retrieval systems, or transmitted in any form or by any means, without the prior written permission of the publisher (Patrick Felicia), except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either expressed or implied. Neither the author and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

First published: December 2015

Last Update: December 2025

Published by Patrick Felicia

Credits

Author: Patrick Felicia

About the Author

Patrick Felicia is a lecturer and researcher at Waterford Institute of Technology, where he teaches and supervises undergraduate and postgraduate students. He obtained his MSc in Multimedia Technology in 2003 and PhD in Computer Science in 2009 from University College Cork, Ireland. He has published several books and articles on the use of video games for educational purposes, including the Handbook of Research on Improving Learning and Motivation through Educational Games: Multidisciplinary Approaches (published by IGI), and Digital Games in Schools: A Handbook for Teachers, published by European Schoolnet. Patrick is also the Editor-in-chief of the International Journal of Game-Based Learning (IJGBL), and the Conference Director of the Irish Symposium on Game-Based Learning, a popular conference on games and learning organized throughout Ireland.

Share Your Feedback

Once you have read this book, I would love to hear your feedback. So please click here (or access https://www.amazon.com/dp/B019L2YF4Y#customerReviews) to access the review page for the book and leave your feedback; this will help other readers, and it willl also help me to monitor and improve the book’s quality.

Download your resource pack

Want to get even more out of your learning experience?

As a thank-you for reading Unity From Zero to Proficiency (Beginner), you can access your resource pack, including:

		All the textures you need to create the environment described in the book.

		5 video tutorials to get your started fast with Unity 6 and its core features covered in the book.

		Full Unity 6 project for all the chapters covered in this book.

		Weekly updates and tips on Unity and Game Programming.

To access these FREE resources, simply visit:

👉 https://learntocreategames.com/books/

Then scroll down to the section for “Unity From Zero to Proficiency (Beginner)” and fill out the short form.

[image: Image][image: Image]

Once this is done, you will receive an email with the link to the member area, where you will find your resource pack; See you on the inside!

Download a Free PDF Copy of This Book

Thanks for purchasing this book.

So that you can read your book on any of your devices with color pictures, you can download the pdf of this version for free; along with your free PDF book, you will also gain access to discounts, newsletters, and great free and useful content in your inbox every week and access to the book’s companion course with video tutorials, extra resources and access to a community of like-minded programmers.

Please follow the next steps to receive your pdf document and all the other amazing benefits:

		Submit your proof of purchase.

		I will send you your free PDF and other benefits shortly.

		Alternatively, you can send me an email at learntocreategames@gmail.com, with your proof of purchase.

This book is dedicated to Mathis

Table of Contents

Contents

Credits

About the Author

Share Your Feedback

Download your resource pack

Download a Free PDF Copy of This Book

Table of Contents

Introduction

Preface

Content Covered by this Book

What you Need to Use this Book

Who this Book is for

Who this Book is not for

How you will Learn from this Book

Format of Each Chapter and Writing Conventions

Special Notes

How Can You Learn Best from this Book?

Feedback

Improving the Book

Supporting the Author

Chapter 1: Introduction to Programming in C#

Introduction

Statements

Comments

Variables

Arrays

Constants

Operators

Conditional statements

Switch statements

Loops

Classes

Defining a class

Accessing class members and variables

Constructors

Destructors

Static members of a class

Inheritance

Methods

Accessing methods and access modifiers

Common methods

Scope of variables

Events

Polymorphism (general concepts)

Dynamic polymorphism

Workflow to create a script

How scripts are compiled

Coding convention

A few things to remember when you create a script (checklist)

Level roundup

Summary

Quiz

Answers to the Quiz.

Checklist

Chapter 2: Creating your First Script

Quick overview of the interface

Getting started

Creating your first method

Creating your own class

Common errors and their meaning

Best practices

Variable naming

Methods

Level roundup

Summary

Quiz

Answers to the Quiz

Checklist

Challenge 1

Challenge 2

Chapter 3: Adding Interaction with C#

Resources necessary for this chapter

Creating a simple script to collect objects

Adding a scoring system

Loading a new level based on the score

Level roundup

Checklist

Quiz

Answers to the quiz

Challenge 1

Challenge 2

Chapter 4: Creating and Updating a User Interface from Your Code

Creating a timer

Collecting boxes and displaying messages accordingly

Deleting the user messages after a few seconds

Rotating objects to be collected

Collecting petrol cans in the city

Level roundup

Checklist

Quiz

Answers to the quiz

Challenge 1

Challenge 2

Chapter 5: Polishing Our Game

Creating a splash-screen for the game

Displaying the score in each scene

Displaying items collected as part of the user interface (using images)

Adding sound effects

Playing a background music

Adding a mini-map

Level roundup

Checklist

Quiz

Solutions to the Quiz

Challenge 1

Challenge 2

Chapter 6: Adding and Managing Simple Artificial Intelligence

Adding and setting-up our first NPC

Detecting collision between the NPC and the player.

Level roundup

Checklist

Quiz

Answers to the quiz

Challenge

Chapter 7: Creating a Word Guessing Game

Creating the interface for the game

Detecting and processing the user input

Choosing random words

Tracking the score and the number of attempts

Choosing words from a file

Level roundup

Checklist

Quiz

Solutions to the Quiz

Challenge 1

Challenge 2

Chapter 8: Creating an Infinite Runner

Adding movement to the character

Adding random obstacles to the scene

Displaying the score

Improving the appearance of the game

Creating the static environment

Pausing the game

Level roundup

Checklist

Quiz

Solutions to the Quiz

Challenge 1

Chapter 9: Creating a Card Guessing Game

Introduction

Setting-up the interface

Creating a game manager

Adding multiple cards automatically

Associating the correct image to each card

Shuffling the cards

Allowing the player to choose cards from each row

Checking for a match

Level Roundup

Summary

Checklist

Quiz

Answers to the Quiz

Challenge 1

Chapter 10: Creating a Puzzle Game

Introduction

Creating and moving a piece of the puzzle

Dropping the tile to a placeholder

Using multiple placeholders

Using and slicing a full image to create the puzzle pieces

Generating sprites at run-time

Level Roundup

Summary

Checklist

Quiz

Answers to the Quiz

Challenge 1

Chapter 11: Game Design Tips

Introduction

Achievements

Risks and Rewards

Structure Building

Allow the Player to Evolve

Different ways to achieve a goal

Random actions or outcomes

Resource Management

Game modes

Increasing Tension

Chapter 12: Bonus Chapter

Creating buttons with images

Using Specialized Fonts

Creating a Health bar

Creating your Own Character Controller

Creating your camera effects

Using Animations to open and close a door

Creating A CCTV Camera

Chapter 13: Frequently Asked Questions

Scripts

Interaction with assets

Using a graphical user interface

Audio

Artificial intelligence

Accessing Resources

Detecting user inputs

Thank you

Introduction

Welcome to Unity from Zero to Proficiency (Beginner)! I’m thrilled to have you on this journey to mastering Unity. As you dive into this book, you’ll gain the foundational knowledge needed to start creating your own games and interactive experiences.

This book is also offered as a well-formatted PDF, making it easy to read on any device, with better formatting than typical ePub versions. If you’re serious about mastering Unity and want to deepen your understanding through practical application, this companion book is an invaluable resource. Get your copy today and make the most of your Unity learning experience!

You can download the companion book for “Unity from Zero to Proficiency (Beginner)” using the following link (use the option to “Buy PDF from this site)”:

https://learntocreategames.com/display_book_info/?id=2&/

Preface

Learning to code and to create your first game can seem daunting; but I can guarantee you that after completing this book, you will have a solid understanding of C# concepts and you will also be able to start creating your own game with many of the core features found in 3D survival games, including collisions, menus, and navigation. You can do this!

After teaching Unity for over 4 years, I always thought it could be great to find a book that could get my students started with Unity in a few hours and that showed them how to master the core functionalities offered by this fantastic software.

Many of the books that I found were too short and did not provide enough details on the why behind the actions recommended and taken; other books were highly theoretical, and I found that they lacked practicality and that they would not get my students’ full attention. In addition, I often found that game development may be preferred by those with a programming background but that those with an Arts background, even if they wanted to get to know how to create games, often had to face the issue of learning to code for the first time.

As a result, I started to consider a format that would cover both: be approachable (even to the students with no programming background), keep students highly motivated and involved using an interesting project, cover the core functionalities available in Unity to get started on game programming, provide answers to common questions, and also provide, if need be, a considerable amount of details for some topics.

This book series entitled Unity from Zero to Proficiency does just this. In this book series, you have the opportunity to play around with Unity’s core features, and essentially those that will make it possible to create an interesting 3D game rapidly. After reading this book series, you should find it easier to use Unity and its core functionalities.

This book series assumes no prior knowledge on the part of the reader, and it will get you started on Unity so that you quickly master all the wonderful features that this software provides by going through an easy learning curve. By completing each chapter, and by following step-by-step instructions, you will progressively improve your skills, become more proficient in Unity, and create a survival game using Unity’s core features in terms of programming (C# and JavaScript), game design, and drag and drop features.

In addition to understanding and being able to master Unity’s core features, you will also create a game that includes many of the common techniques found in video games, including: level design, object creation, textures, collection detection, lights, weapon creation, character animations, particles, artificial intelligence, and menus.

Throughout this book series, you will create a game that includes both indoor and outdoor environments where the player needs to finds its way out of the former through tunnels, escalators, traps, and other challenges, avoid or eliminate enemies using weapons (i.e., gun or grenades), drive a car or pilot an aircraft.

You will learn how to create customized menus and simple user interfaces using Unity’s new UI system, and animate and give (artificial) intelligence to Non-Player Characters (NPCs) who will be able to follow your character using Mecanim and Navmesh navigation.

In addition to improving your C# skills and creating 3D games, you will also learn to create classic 2D games including platformers, infinite runners, word-games, or 2d shooters.

Finally, you will also get to export your game for the web at the different stages of the books, so that you can share it with friends and get some feedback.

Content Covered by this Book

Chapter 1, Introduction to Programming in C#, provides an introduction to C# and to core principles that will help you to get started. It explains key programming concepts such as variables, variable types, or functions.

Chapter 2, Creating your First Script, helps you to code your first script. It explains common coding mistakes and errors in Unity, and how to avoid them easily. It also goes through some common error messages for beginners, and explains what they mean and how they can be avoided easily.

Chapter 3, Adding Interaction with C#, gets you to better your scripting skills to improve your game and add more interaction. You will learn to create a scoring system, detect collisions, and to load new levels.

Chapter 4, Creating and Updating a User Interface, explains how you can create a user interface using Unity’s UI system. You will add onscreen elements such as images, or text, and update them with your scripts to display the score and other messages to the user.

Chapter 5, Polishing Our Game, explains how you can improve your game, by adding a splash-screen, displaying items collected onscreen, or adding sound effects and a mini-map.

Chapter 6, Adding and Managing Simple Artificial Intelligence, introduces you to Artificial Intelligence (AI) in Unity, and explains how you can easily and simply add and manage Non-Player Characters (NPCs) that will either follow the player, or go through a simple path that you will define.

Chapter 7, Chapter 7: Creating a Word Guessing Game , will show you how you can create a word-guessing using Unity's 2D features. You will use arrays, and read files to create a list from which a random word will be picked and that the user will have to guess. You will also learn to detect and process the user's key entries.

Chapter 8, Chapter 8: Creating an Infinite Runner, will show you how you can create some other 2D features offered by Unity to create an entertaining infinite runner where the player can control a character that needs to jump over randomly generated obstacles.

Chapter 9, Creating a Card Guessing Game, shows you how you can create a very simple yet addictive card matching game. You will learn how to shuffle, move, and match cards.

Chapter 10, Creating a Puzzle Game, explains how to create a puzzle game where the pieces are first shuffled and then need to be reassembles and placed at the correct position.

Chapter 11, Game Design Tips, provides key game design concepts to help you improve your gameplay and make your game more entertaining.

Chapter 12, Bonus Chapter, includes mini tutorials that will help improving your game; this includes: creating image buttons, a health bar, your own character controller, camera effects, or opening and closing doors.

Chapter 13, provides answers to Frequently Asked Questions (FAQs) related to the topics covered in this book (e.g., scripting, audio, interaction, AI, or user interface). It also provides links to additional exclusive video tutorials that can help you with some of your questions.

Chapter 14 summarizes the topics covered in the book and provides you with more information on the next steps.

What you Need to Use this Book

To complete the project presented in this book, you only need Unity 6 (or a more recent version) and to also ensure that your computer and its operating system comply with Unity’s requirements. Unity can be downloaded from the official website (http://www.unity3d.com/download), and before downloading, you can check that your computer is up to scratch on the following page: http://www.unity3d.com/unity/system-requirements. At the time of writing this book, the following operating systems are supported by Unity for development: Windows XP (i.e., SP2+, 7 SP1+), Windows 8, and Mac OS X 10.6+.

In terms of computer skills, all knowledge introduced in this book will assume no prior programming experience from the reader. So for now, you only need to be able to perform common computer tasks, such as downloading items, opening and saving files, be comfortable with dragging and dropping items and typing, and relatively comfortable with Unity’s interface. This being said, because the focus of this book is on scripting, and while all steps are explained step-by-step, you may need to be relatively comfortable with Unity’s interface, as well as creating and transforming objects.

So, if you would prefer to become more comfortable with Unity prior to start scripting, you can download the first book in the series called Unity From Zero to Proficiency (Foundations). This book covers most of the shortcuts and views available in Unity, as well as how to perform common tasks in Unity such as creating objects, transforming objects, importing assets, using navigation controllers, or exporting the game to the web.

Who this Book is for

If you can answer yes to all these questions, then this book is for you:

		Are you a total beginner in Unity or programming?

		Would you like to become proficient in the core functionalities offered by Unity?

		Would you like to teach students or help your child to understand how to create games, using coding?

		Would you like to start creating great 2D or 3D games?

		Although you may have had some prior exposure to Unity, would you like to delve more into Unity and understand its core functionalities in more detail?

Who this Book is not for

If you can answer yes to all these questions, then this book is not for you:

		Can you already code with C# to implement simple behaviors such as score, collision detection, or to update the user interface.

		Can you already easily code a 3D game with Unity with built-in objects, controllers, cameras, lights, and terrains?

		Are you looking for a reference book on Unity programming?

		Are you an experienced (or at least advanced) Unity user?

If you can answer yes to all four questions, you may instead look for the next books in the series. To see the content and topics covered by these books, you can check the official website (www.learntocreategames.com/books).

How you will Learn from this Book

Because all students learn differently and have different expectations of a course, this book is designed to ensure that all readers find a learning mode that suits them. Therefore, it includes the following:

		A list of the learning objectives at the start of each chapter so that readers have a snapshot of the skills that will be covered.

		Each section includes an overview of the activities covered.

		Many of the activities are step-by-step, and learners are also given the opportunity to engage in deeper learning and problem-solving skills through the challenges offered at the end of each chapter.

		Each chapter ends-up with a quiz and challenges through which you can put your skills (and knowledge acquired) into practice, and see how much you know. Challenges consist in coding, debugging, or creating new features based on the knowledge that you have acquired in the chapter.

		The book focuses on the core skills that you need. Some sections also go into more detail; however, once concepts have been explained, links are provided to additional resources, where necessary.

		The code is introduced progressively and is explained in detail.

Format of Each Chapter and Writing Conventions

Throughout this book, and to make reading and learning easier, text formatting and icons will be used to highlight parts of the information provided and to make it more readable.

The full solution for the project presented in this book is available for download on the official website (http://learntocreategames.com/books). So if you need to skip a section, you can do so; you can also download the solution for the previous chapter that you have skipped.

 Special Notes

Each chapter includes resource sections so that you can further your understanding and mastery of Unity; these include:

		A quiz for each chapter: these quizzes usually include 10 questions that test your knowledge of the topics covered throughout the chapter. The solutions are provided on the companion website.

		A checklist: it consists of between 5 and 10 key concepts and skills that you need to be comfortable with before progressing to the next chapter.

		Challenges: each chapter includes a challenge section where you are asked to combine your skills to solve a particular problem.

Author’s notes appear as described below:

Author’s suggestions appear in this box.

Code appears as described below:

int score;

string playersName = “Sam”;

Checklists that include the important points covered in the chapter appear as described below:

		

				[image: http://cdn2.hubspot.net/hub/377822/file-809787244-png/checklist.png?t=1421359715283]

				
		Item1 for check list

		Item2 for check list

		Item3 for check list

		

	

How Can You Learn Best from this Book?

		Talk to your friends about what you are doing.

We often think that we understand a topic until we have to explain it to friends and answer their questions. By explaining your different projects, what you just learned will become clearer to you.

		Do the exercises.

All chapters include exercises that will help you to learn by doing. In other words, by completing these exercises, you will be able to better understand the topic and gain practical skills (i.e., rather than just reading).

		Don’t be afraid of making mistakes.

I usually tell my students that making mistakes is part of the learning process; the more mistakes you make and the more opportunities you have for learning. At the start, you may find the errors disconcerting, or that the engine does not work as expected until you understand what went wrong.

		Export your games early.

It is always great to build and export your first game. Even if it is rather simple, it is always good to see it in a browser and to be able to share it with you friends.

		Learn in chunks.

It may be disconcerting to go through five or six chapters straight, as it may lower your motivation. Instead, give yourself enough time to learn, go at your own pace, and learn in small units (e.g., between 15 and 20 minutes per day). This will do at least two things for you: it will give your brain the time to “digest” the information that you have just learned, so that you can start fresh the following day. It will also make sure that you don’t “burn-out” and that you keep your motivation levels high.

Feedback

While I have done everything possible to produce a book of high quality and value, I always appreciate feedback from readers so that the book can be improved accordingly. If you would like to give feedback, you can email me at learntocreategames@gmail.com.

Improving the Book

Although great care was taken in checking the content of this book, I am human, and some errors could remain in the book. As a result, it would be great if you could let me know of any issue or error you may have come across in this book, so that it can be solved and the book updated accordingly. To report an error, you can email me (learntocreategames@gmail.com) with the following information:

		Name of the book.

		The page where the error was detected.

		Describe the error and also what you think the correction should be.

Once your email is received, the error will be checked, and, in the case of a valid error, it will be corrected and the book page will be updated to reflect the changes accordingly.

Supporting the Author

A lot of work has gone into this book and it is the fruit of long hours of preparation, brainstorming, and finally writing. As a result, I would ask that you do not distribute any illegal copies of this book.

This means that if a friend wants a copy of this book, s/he will have to buy it through the official channels (i.e., through Amazon, lulu.com, or the book’s official website: http://www.learntocreategames.com/books).

If some of your friends are interested in the book, you can refer them to the book’s official website (http://www.learntocreategames.com/books) where they can either buy the book, enter a monthly draw to be in for a chance of receiving a free copy of the book, or to be notified of future promotional offers.

Chapter 1: Introduction to Programming in C#

In this section we will discover C# programming principles and concepts, so that you can start programming in the next chapter. If you have already coded using C# (or a similar language), you can skip this chapter.

After completing this chapter, you will be able to:

		Understand Object-Oriented Programming (OOP) concepts when coding in C#.

		Become familiar with and understand the concepts of variables, methods, and scope.

		Understand key best practices for coding, especially in C#.

		Understand how to use conditional statements and decision-making structures.

		Understand the concept of loops.

Introduction

When coding in Unity, you are communicating with the Game Engine and asking it to perform actions. To communicate with the system, you are using a language or a set of words bound by a syntax that the computer and you know. This language consists of keywords, key phrases, and a syntax that ensures that your instructions are understood properly. In computer science, this sentence needs to be accurate, precise, unambiguous, and with a correct syntax. In other words, it needs to be exact. The syntax is a set of rules that are followed when writing code in C#. In addition to its syntax, C# programming also uses classes; so your scripts will be saved as classes.

In the next section, we will learn how to use this syntax. If you have already coded in JavaScript or other object-oriented programming languages, some of the information provided in the rest of this chapter may look familiar and this prior exposure to programming will definitely help you.

This being said, JavaScript and C#, despite some relative similarities, are quite different in many aspects (e.g., variable declaration, function declaration, etc.).

When scripting in C#, you will be using a combination of the following:

		Classes.

		Objects.

		Statements.

		Comments.

		Variables.

		Constants.

		Operators.

		Assignments.

		Data types.

		Methods.

		Decision making structures.

		Loops.

		Inheritance (more advanced).

		Polymorphism (more advanced).

		Operator overloading (more advanced).

		Interfaces.

		Name spaces.

		Events.

		Comparisons.

		Type conversions.

		Reserved words.

		Messages to the console windows.

		Declarations.

		Calls to methods.

The list may look a bit intimidating but, not to worry, we will explore these in the next sections, and you will get to know and use them smoothly using hands-on examples.

Statements

When you write a piece of C# code, you need to ask the system to execute your instructions (e.g., print information) using statements. A statement is literally an order or something you ask the system to do. For example, in the next line of code, the statement will tell Unity to print a message in the Console window:

print (“Hello Word”);

When writing statements, there are a few rules that you need to know:

		Order of statements: each statement is executed in the order it appears in the script. For example, in the next example, the code will print hello, then world; this is because the associated statements are in that particular sequence.

print (“hello”);

print (“world”);

		Statements are separated by semi-colons (i.e., semi-colon at the end of each statement).

Note that several statements can be added on the same line, as long as they are separated by a semi-colon.

		For example, the next line of code has a correct syntax.

print(“hello”); print (“world”);

		Multiple spaces are ignored for statements; however, it is good practice to add spaces around the operators such as +, -, /, or % for clarity. For example, in the next example, we say that a is equal to b. There is a space both before and after the operator =.

a = b;

		Statements to be executed together (e.g., based on the same condition) can be grouped using what is usually referred to as code blocks. In C# (as for JavaScript), code blocks are symbolized by curly brackets (e.g., { or }). So, in other words, if you needed to group several statements, we would include them all within the same set of curly brackets, as follows:

{

print (“hello stranger!”);

print (“today, we will learn about scripting”);

}

As we have seen earlier, a statement usually employs or starts with a keyword (i.e., a word that the computer understands). All these keywords have a specific purpose and the most common ones (at this stage) are used for:

		Printing a message in the Console window: the keyword is print.

		Declaring a variable: the keyword depends on the type of the variable (e.g., int for integers, string for text, bool for Boolean variables, etc.) and we will see more about these in the next sections.

		Declaring a method: the keyword depends on the type of the data returned by the method. For example, in C#, the name of a method is preceded by the keyword int when the method returns an integer, string when the method returns a string, or void when the method does not return any information.

What is called a method in C# is what used to be called a function in JavaScript. These terms (i.e., function and method) differ in at least two ways: in C# you need to specify the type of the data returned by this method, and the keyword function is not used anymore in C# for this purpose. We will see more about this topic in the next sections.

		Marking a block of instructions to be executed based on a condition: the keywords are if…else.

		Exiting a function: the keyword is return.

Comments

In C#, you can use comments to explain the code and to make it more readable. This becomes important as the size of your code increases; and it is also important if you work in a team, so that the other team members can understand your code and make amendments in the right places, if and when it is needed.

The code that is commented it is not executed. There are two ways to comment your code in C#: you can use single or multi-line comments.

In single-line comments, a double forward slash is added at the start of a line or after a statement, so that this line (or part thereof) is commented, as illustrated in the next code snippet.

//the next line prints Hello in the console window

print (“Hello”);

//the next line declares the variable name

string name;

name = “Hello”;//sets the value of the variable name

In multi-line comments, any text between /* and */ will be commented and not executed. This is also refereed as comment blocks, as illustrated in the next code snippet.

/* the next line after the comments prints hello in the console window

we then declare the variable name and assign a value to it

*/

print(“Hello”);

string name;

name = “Hello”;//sets the value of the variable name

//print (“Hello World”)

/*

string name;

name = “My Name”;

*/

In addition to providing explanations about your code, you can also use comments to prevent part of your code from being executed. This is very useful when you would like to debug your code and find where the errors or bugs might be, using a very simple method. By commenting sections of your code, and by using a process of elimination, you can usually find the issue quickly. For example, you can comment all the code and run the script, then comment half the code, and run the script. If it works, it means that the error is within the code that has been commented, and if it does not work, it means that the error is in the code that has not been commented. In the first case (if the code works), we could then just comment half of the portion of the code that has already been commented. So, by successively commenting more specific areas of our code, we can get to discover what part of the code includes the bug. This process is often called dichotomy as we successively divide a code section into two. It is usually effective to debug your code because the number of iterations (dividing part of the code in two) is more predictable and also potentially less time-consuming. For example, for 100 lines of codes, we can successively narrow down the issue to 50, 25, 12, 6, and 3 lines and therefore use 5 to 6 iterations in this case, rather than of going through the whole 100 lines of code.

Variables

A variable is a container. It includes a value that may change overtime. When using variables, we usually need to: (1) declare the variable by specifying its type, (2) assign a value to this variable, and (3) possibly combine this variable with other variables using operators. This is illustrated in the next code snippet.

int myAge;//we declare the variable

myAge = 20;// we set the variable to 20

myAge = myAge + 1; //we add 1 to the variable myAge

In the previous example, we have declared a variable myAge, its type is int (integer), we set it to 20 and we then add 1 to it.

Note that, contrary to JavaScript where the keyword var is used to declare a variable, in C# the variable is declared using its type followed by its name. As we will see later, we will also need to use what is called an access modifier in order to specify how this variable can be accessed.

Note that in the previous code we have assigned the value myAge + 1 to myAge; the = operator is an assignment operator; in other words, it is there to assign a value to a variable and is not to be understood in a strict algebraic sense (i.e., that the values or variables on both sides of the = sign are equal).

To make coding easier and leaner, in C# you can declare multiple variables of the same type in the same statement. For example, in the next code snippet, we declare three variables, v1, v2, and v3 in one statement. This is because they are all integers.

int v1,v2,v3;

int v4 = 4, v5 = 5, v6 = 6;

In the previous code, the first line is used to declare the variables v1, v2, and v3. All three variables are integers. In the second line, not only do we declare three other variables simultaneously, but we also initialize them by setting a value.

When using variables, there are a few things that we need to determine including their name, their type, and their scope:

		
Name of a variable: A variable is usually given a unique name so that it can be identified uniquely. The name of a variable is usually referred to as an identifier; it can contain letters, digits, a minus, an underscore or a dollar sign, and it usually begins with a letter. Identifiers cannot be keywords. For example, the keyword if cannot be a variable name.

		
Type of variable: variables can hold several types of data including numbers (e.g., integers, doubles, or floats), text (i.e., strings or characters), Boolean values (e.g., true or false), arrays, objects (i.e., we will see this concept later in this chapter) or GameObjects (i.e., any object included in your scene), as illustrated in the next code snippet.

string myName = “Patrick”;//the text is declared using double quotes

int currentYear = 2015;//the year needs no decimals and is declared as an integer

float width = 100.45f;//width is declared as a float (i.e., with decimals)

		
Variable declaration: a variable needs to be declared so that the system knows what you are referring to if you use it in your code. A variable needs to be declared before it can be used. At the declaration stage, the variable does not have to be assigned a value, as this can be done later, as illustrated in the next code snippet.

string myName;

myName = “My Name”;

In the previous example, we declare a variable called myName and then assign the value “My Name” to it.

		
Scope of a variable: a variable can be accessed (i.e., referred to) in specific contexts that depend on where in the script the variable was initially declared. We will look at this concept later.

		
Accessibility level: as we will see later, a C# programme consists of classes; for each of these classes, the methods and variables within can be accessed depending on accessibility levels. We will look at this principle later on (there is no need for any confusion at this stage :-)).

Common variable types include:

		
String: same as text.

		
Int: integer (1, 2, 3, etc.).

		
Boolean: true or false.

		
Float: with a decimal value (e.g., 1.2f, 3.4f, etc.).

		
Arrays: a group of variables of the same type. If this is unclear, not to worry, this concept will be explained further in this chapter.

		
GameObject: a game object (any game object in your scene).

Arrays

Sometimes arrays can be used to make your code leaner, by applying features and similar behaviors to a wide range of data.

As we will see in this section, arrays can help to declare less variables (for variables storing the same type of information) and to also access them more easily.

When creating arrays, you can create single-dimensional arrays and multidimensional arrays.

Let’s look at the simplest form of arrays: single-dimensional arrays. For this concept, we can take the analogy of a group of 10 people who all have a name. If we wanted to store this information using a string variable, we would need to declare (and set) ten different variables.

string name1;string name2; ...

While this code is perfectly fine, it would be great to store these in only one variable. For this purpose, we could use an array. An array is comparable to a list of elements that we access using an index. This index usually starts at 0 for the first element in the list.

So let’s see how we could do this with an array; first we could declare the array as follows:

string [] names;

You will probably notice the syntax dataType [] nameofTheArray. The syntax string [] means that we declare an array of string values.

Then we could initialize the array, as we would normally do with any variable:

names = new string [10];

In the previous code, we just say that our new array called names will include 10 string variables.

We can then store information in this array as described in the next code snippet.

names [0] = “Paul”;

names [1] = “Mary”;

...

names [9] = “Pat”;

In the previous code, we store the name Paul as the first element in the array (remember the index starts at 0); we store the second element (with the index 1) as Mary, as well as the last element (index is 9), Pat.

Note that for an array of size n, the index of the first element is 0 and the index of the last element is n-1. So for an array of size 10, the index for the first element is 0, and the index of the last element is 9.

If you were to use arrays of integers or floats, or any other type of data, the process would be similar.

Now, one of the cool things you can do with arrays is that you can initialize your array in one line, saving you from the headaches of writing 10 lines of code if you have 10 variables, as illustrated in the next example.

string [] names = new string [10] {“Paul”,”Mary”,”John”,”Mark”, “Eva”,”Pat”,”Sinead”,”Elma”,”Flaithri”, “Eleanor”};

This is very handy, as you will see in the next chapters, and this should definitely save you time coding.

Now that we have looked into single-dimensional arrays, let’s look at multidimensional arrays, which can also be very handy when storing information. This type of array (i.e., multidimensional array) can be compared to a building with several floors, and on each floor, several apartments. So let’s say that we would like to store the number of tenants for each apartment; we would, in this case, create variables that would store this number for each of these apartments.

The first solution would be to create variables that store the number of tenants for each of these apartments with a variable that makes reference to the floor, and the number of the apartment. For example, ap0_1 could be for the first apartment on the ground floor, ap0_2, would then be for the second apartment on the ground floor, ap1_1, would then be for the first apartment on the first floor, and ap1_2, would then be for the second apartment on the first floor. So in term of coding, we could have the following:

int ap0_1 = 0;

int ap0_2 = 0;

…

Using arrays instead we could do the following:

int [,] apArray = new int [10,10];

apArray [0,1] = 0;

apArray [0,2] = 0;

print (apArray[0,1]);

In the previous code:

		We declare our array. int [,] means an array that has two dimensions; in other words, we say that any element in this array will be defined and accessed based on two parameters: the floor level and the number of this apartment on that level.

		
We also specify a size (or maximum) for each of these parameters. The maximum number of floors (level) will be 10, and the maximum number of apartment per floor will be 10. So, for this example we can define levels, from level 0 to level 9 (that would be 10 levels), and from apartment 0 to apartment 9 (that would be 10 apartments).

		The last line of code prints (in the Console window) the value of the first element of the array.

One of the other interesting things with arrays is that, using a loop, you can write a single line of code to access all the elements of this array, and hence, write more efficient code.

Constants

So far, we have looked at variables and how you can store and access them seamlessly. The assumption then was that a value may change over time, and that this value would be stored in a variable. However, there may be times when you know that a value will remain constant. For example, you may want to define labels that refer to values that should not change over time, and in this case, you could use constants. Let me explain: let’s say that the player may have three choices in the game (e.g., referred to as 0, 1, and 2) and that you don’t really want to remember these values, or that you would like to use a way that makes it easier to refer to them. Let’s look at the following code:

int userChoice = 2;

if (userChoice == 0) print (“you have decided to restart”);

if (userChoice == 1) print (“you have decided to stop the game”);

if (userChoice == 2) print (“you have decided to pause the game”);

In the previous code:

		The variable userChoice is an integer and is set to 2.

		We then check its value and print a message accordingly.

Now, you may or may not remember that 0 corresponds to restarting the game; the same applies to the other two values. So instead, we could use constants to make it easier to remember (and use) these values. Let’s look at the equivalent code with the use of constants.

const int CHOICE_RESTART = 0;

const int CHOICE_STOP = 1;

const int CHOICE_PAUSE = 2;

int userChoice = 2;

if (userChoice == CHOICE_RESTART) print (“you have decided to restart”);

if (userChoice == CHOICE_STOP) print (“you have decided to stop the game”);

if (userChoice == CHOICE_PAUSE) print (“you have decided to pause the game”);

 In the previous code:

		We declare three constants.

		These constants are then used to check the choice made by the user.

In the next example, we use a constant to calculate a tax rate; this is a good practice as the same value will be used across the programme with no or little room for errors when it comes to using the exact same tax rate across the code.

const float VAT_RATE = 0.21f;

float priceBeforeVat = 23.0f

float priceAfterVat = priceBeforeVat * VAT_RATE;

In the previous code:

		We declare a constant float for the VAT rate.

		We declare a float variable for the item’s price before the VAT.

		We calculate the amount of tax.

It is a very good coding practice to use constants for values that don’t change across your programme. Using constants makes your code more readable; it saves work when you need to change a value in your code, and it also decreases possible occurrences of errors (e.g., for calculations). Also note that it is common practice to uppercase constants.

Operators

Once we have declared and assigned values to a variable, we can use operators to modify or combine variables. There are different types of operators including: arithmetic operators, assignment operators, comparison operators, and logical operators.

Arithmetic operators are used to perform arithmetic operations including additions, subtractions, multiplications, or divisions. Common arithmetic operators include +, -, *, /, or % (modulo).

int number1 = 1;// the variable number1 is declared

int number2 = 1;// the variable number2 is declared

int sum = number1 + number2;// adding two numbers and store them in sum

int sub = number1 - number2;// subtracting two numbers and store them in sub

Assignment operators can be used to assign a value to a variable and include =, +=, -=, *=, /= or %=.

int number1 = 1;

int number2 = 1;

number1+=1; //same as number1 = number1 + 1;

number1-=1; //same as number1 = number1 - 1;

number1*=1; //same as number1 = number1 * 1;

number1/=1; //same as number1 = number1 / 1;

number1%=1; //same as number1 = number1 % 1;

Note that the + operator, when used with strings, will concatenate strings (i.e., add them one after the other to create a new string). When used with a number and a string, the same will apply (for example “Hello”+1 will result in “Hello1”).

Comparison operators are often used for conditions to compare two values; comparison operators include ==, !=, >, <, >= and >=.

if (number1 == number2); //if number1 equals number2

if (number1 != number2); //if number1 and number2 have different values

if (number1 > number2); //if number1 is greater than number2

if (number1 >= number2); //if number1 is greater than or equal to number2

if (number1 < number2); //if number1 is less than number2

if (number1 <= number2); //if number1 is less than or equal to number2

Conditional statements

Statements can be performed based on a condition, and in this case, they are called conditional statements. The syntax is usually as follows:

If (condition) statement;

This means if the condition is verified (or true) then (and only then) the statement is executed. When we assess a condition, we test whether a declaration is true. For example, by typing if (a == b), we mean “if it is true that a equals b”. Similarly, if we type if (a>=b) we mean “if it is true that a is greater than or equal to b”

As we will see later on, we can also combine conditions. For example, we can decide to perform a statement if two (or more) conditions are true. For example, by typing if (a == b && c == 2) we mean “if a equals b and c equals 2”. In this case, using the operator && means AND, and that both conditions will need to be true. We could compare this to making a decision on whether we will go sailing tomorrow. For example, “if the weather is sunny and the wind speed is less than 5km/h then I will go sailing”. We could translate this statement as follows.

 if (weatherIsSunny == true && windSpeed < 5) IGoSailing = true;

When creating conditions, as for most natural languages, we can use the operator OR noted ||. Taking the previous example, we could translate the following sentence “if the weather is too hot or if the wind is faster than 5km/h then I will not go sailing “ as follows.

 if (weatherIsTooHot == true || windSpeed >5) IGoSailing = false;

Another example could be as follows.

if (myName == “Patrick”) print(“Hello Patrick”);

else print (“Hello Stranger”);

When we deal with combining true or false statements, we are effectively applying what is called Boolean logic. Boolean logic deals with Boolean variables that have two values 1 and 0 (or true and false). By evaluating conditions, we are effectively processing Boolean numbers and applying Boolean logic. While you don’t need to know about Boolean logic in depth, some operators for Boolean logic are important, including the ! operator. It means NOT or the opposite. This means that if a variable is true, its opposite will be false, and vice versa. For example, if we consider the variable weatherIsGood = true, the value of !weatherIsGood will be false (its opposite). So the condition if (weatherIdGood == false) could be also written if (!weatherIsGood) which would literally translate as “if the weather is NOT good”.

Switch statements

If you have understood the concept of conditional statements, then this section should be pretty much straight forward. Switch statements are a variation on the if/else statements that we have seen earlier. The idea behind switch statements is that, depending on the value of a specific variable, we will switch to a particular portion of the code and perform one or several actions. The variable considered for the switch structure is usually of type integer. Let’s look at a simple example:

OEBPS/cover.jpeg
A STEP-BY-STEP GUIDE TO CODING YOUR FIRST GAME WITH UNITY

FROM ZERO TO PROFICIENCY

PATRICK FELICIA

OEBPS/images/image.png

OEBPS/images/image.jpeg
A STEP-BY-STEP GUIDE TO CODING YOUR FIRST GAME WITH UNITY

FROM ZERO TO PROFICIENCY

PATRICK FELICIA

OEBPS/images/image2.png
Download your FREE

Resource Pack! B

Please enter your name and email address below to re-
ceive your resource pack and complete the projects in
‘your book. You wil also receive regular updates and
tutorials Games Programming and other Programming
topics..

Name
Email

You can unsubscribe anytime. For more decal,review our
Privacy Policy.

Unity

