[image: cover-image, The River King epub]

THE

River

King

(Unseen and untold stories of river empire)

Sean collins

A biography by a. jung

Preface

The Unwritten Script and the Courage to Rewrite It

Every morning, in the ceaseless hum of cities, countless lives begin with the same insistent demand: the alarm clock’s blare. It's a signal to rejoin a rhythm dictated not by inner purpose, but by external expectation – a script that promises security in exchange for passion, stability for autonomy, and a distant, elusive retirement for the vibrant, irreplaceable now. We’ve all felt the insidious tug of that invisible leash, the quiet dread of Monday mornings, the fleeting relief of Friday evenings that vanish in a blink. Many of us have looked at that blaring alarm clock and felt, even for a fleeting second, that it wasn’t just signaling the start of a new day, but the subtle theft of a dream.

This book, "The River King," is born from a fervent belief that this script is, indeed, optional. It is the definitive, non-fictional biography of Sean Collins, the visionary CEO and founder of Uber Boat by Thames Clippers, a man who not only defied an unwritten script but courageously rewrote it, transforming London's relationship with its iconic River Thames. His story is a testament to the profound truth that while the world may present us with well-trodden paths, the most extraordinary lives are often forged by those who dare to step off them, by those who listen not to the clamor of expectation, but to the quiet compass within. It’s about understanding that the seemingly insurmountable walls we perceive around our aspirations are often built not of steel, but of our own fears and assumptions. It’s about recognizing that the greatest revolutions don’t always begin with protests; sometimes, they begin in the quiet conviction of an individual deciding to author their own story, word by courageous word.

Sean Collins is not a self-help guru or a theoretical philosopher. He is a living, breathing, incredibly grounded testament to this very truth. His journey, from a young apprentice Waterman on the Thames to the architect of a multi-million-pound enterprise that resurrected an entire industry and fundamentally reshaped a city’s transport network, isn't just a business success story. It is a masterclass in authenticity, resilience, and the profound power of human connection. It’s a compelling argument that you don't need a golden ticket or a pre-paved road to build something meaningful; you need an unwavering belief in your vision, a profound respect for every person you encounter, and the courage to challenge the very notion of what’s possible.

In these pages, you will not find abstract theories, but concrete, factual examples drawn from Sean’s real life and the verified history of Thames Clippers. You will discover how singular passion, when paired with meticulous dedication, can conquer seemingly impossible odds. You will witness the quiet strength of a leader who built an empire by lifting others, understanding that true power flows not from authority, but from genuine empathy and trust. You will see how a life lived in harmony with one's core values—much like Sean’s enduring connection to the ever-flowing Thames—can create a legacy far more enduring and profound than any balance sheet could ever quantify.

This book is for anyone who has ever felt the silent tyranny of the alarm clock, for anyone yearning to replace obligation with purpose, for anyone who believes, deep down, that there’s more to life than just survival. It is for the aspiring entrepreneur, the frontline worker seeking validation, the seasoned professional yearning for renewed meaning, or simply anyone searching for proof that decency and extraordinary success can, and do, coexist. My hope is that Sean Collins's remarkable journey doesn't just entertain and inform you, but serves as a profound, personal wake-up call, inspiring you to pick up your own pen and start furiously rewriting your script. The current of possibility is always flowing. The question is, are you ready to ride it?

© Aashish Jung

Table of Contents

Introduction: An Empty River

Chapter One: From Waterman to Visionary: The Apprenticeship of a River King

Chapter Two: The Birth of an Idea: Challenging a City’s Inertia

Chapter Three: The Clipper Dream Takes Shape: Sourcing the First Fleet

Chapter Four: Battling the Tides: Navigating Early Challenges and Skepticism

Chapter Five: The River's New Commute: Winning London Over

Chapter Six: The O2 and Beyond: Scaling the Vision and Building the Brand

Chapter Seven: The Green Horizon: Pioneering a Sustainable Fleet

Chapter Eight: A New Era: The Partnership with Uber

Chapter Nine: The Human Element: Building a Team, a Culture, and a Legacy

Chapter Ten: The Ever-Flowing Legacy: The River King's Enduring Reign

Conclusion

Chapter 1

A Seed on the Thames' Edge

￼[image: Dingbat Diamonds Dingbat Diamonds]

The Thames, that ancient, indomitable ribbon of liquid history, had always been more than just a river to Sean Collins; it was a living, breathing entity, a tumultuous, ever-changing landscape etched into the very fabric of his being. From his earliest memories, the river’s scent – a complex tapestry of salt, mud, diesel, and distant city life – was the perfume of his childhood. Its ceaseless currents mirrored the restless energy within him, a boy growing up in an East London that pulsed with the echoes of maritime endeavor, yet often struggled under the weight of decline. This was not the Thames of sleek glass towers and corporate behemoths, but the working river, a network of docks and wharves that hummed with the ghosts of industry, the spectral shouts of dockers, and the mournful cries of gulls. It was a place where resilience was not just admired, but essential for survival, where ingenuity was born from necessity, and where a handshake still held more weight than a contract.

Sean Collins didn't come from a long line of river-men, at least not in the traditional sense of inherited boats and family fishing grounds. His roots were in the gritty, honest earth of East London, in a working-class family that valued hard graft and straight talking. His father, a man of quiet determination, worked in the docks, his hands scarred by years of physical labor, his mind sharp with practical wisdom gleaned from observing the complex choreography of ships and cargo. From him, Sean learned the dignity of effort, the meticulous attention to detail required in any manual task, and the profound satisfaction of a job done not just well, but right. His mother, a woman of fierce spirit and boundless warmth, instilled in him a foundational empathy, a deep understanding of people, and the often-unspoken power of community. She taught him that even in the toughest of times, there was always room for laughter, for kindness, and for a shared cup of tea to mend the spirit.

It was this blend of gritty pragmatism and inherent human warmth that would define Sean Collins. He was not born into privilege or a pre-ordained path; he built his world, brick by painstaking brick, rivet by careful rivet, guided by an unwavering belief in the potential of what others overlooked. The young Sean was, by all accounts, bright, restless, and deeply observant. He devoured stories of great maritime adventures, not just the romanticized tales of pirates and treasure, but the pragmatic sagas of engineers, navigators, and entrepreneurs who bent the very elements to their will. He spent hours on the riverbanks, watching the tugboats churn past, the barges laden with unseen goods, the occasional sleek passenger vessel that seemed to glide effortlessly, a fleeting vision of elegance against the backdrop of industrial grime. These moments were not mere childhood musings; they were the nascent stirrings of a lifelong obsession, the quiet, persistent hum of an idea taking root.

Education for Sean was less about textbooks and more about direct experience. The Thames itself was his greatest classroom, its tides his most demanding teacher, its people his most profound mentors. He learned about currents not from hydrostatic equations, but from observing how a discarded bottle drifted downstream, how a rowboat struggled against the flow, how the very air shifted just before a sudden gust. He learned about human nature from the dockworkers’ banter, the fishermen’s patient stoicism, the lively chatter of market traders whose goods sometimes arrived by barge. This practical, experiential learning forged a mind that saw connections others missed, a problem-solver who approached challenges not with abstract theories, but with a grounded understanding of physical realities and human needs.

His early career path was not a straight line to river dominance. Like many of his generation, Sean tried his hand at various ventures, each one a lesson, a stepping stone, a hardening of resolve. He gained experience in mechanics, in logistics, in the unforgiving world of small business where every penny counted and every mistake was a painful, immediate lesson. These years, away from the direct influence of the river, paradoxically solidified his yearning for it. He realized that while he could apply his growing acumen anywhere, his true passion, his deepest connection, lay with the Thames. He wasn't just looking for a job; he was searching for his purpose, a way to fuse his burgeoning entrepreneurial spirit with the river that had always felt like home.

It was during these formative years, perhaps while grappling with a seemingly insurmountable logistical problem in a damp warehouse or facing a demoralizing setback in a fledgling enterprise, that the seed of Thames Clippers truly began to germinate. He saw the London Underground, efficient yet claustrophobic, churning masses through subterranean tunnels. He saw the bus network, dense and often snarled in the city's relentless traffic. And he saw the river – vast, underutilized, a natural artery pulsing through the very heart of the city, largely ignored as a viable transport solution for commuters.

The conventional wisdom of the time dismissed river transport as a nostalgic relic, suitable for leisurely tourist cruises, perhaps, but certainly not for the demanding, time-sensitive needs of modern commuters. The existing river services were often disjointed, unreliable, and failed to meet the standards of comfort or speed that Londoners had come to expect. Many had tried and failed, leaving a graveyard of defunct ventures along the Thames. But where others saw insurmountable obstacles, Sean saw untapped potential. He envisioned sleek, reliable, fast boats. He saw a network that could cut through congestion, offering a peaceful, professional, and genuinely efficient alternative. He saw a river that wasn't just a scenic backdrop, but a dynamic, vital pathway, a solution hiding in plain sight.

This vision was not born of naïveté but of a deep understanding of London's pulse. He understood the commuter's quiet desperation, the desire for a less stressful journey, the longing for a moment of calm amidst the urban chaos. He saw the potential for a service that wouldn't just transport people from A to B, but could transform their daily journey into something genuinely enjoyable, something that connected them to the very soul of their city. It was a audacious dream, bordering on obsession, to build a commuter service that could truly compete with the Underground and buses, not just on novelty, but on undeniable, superior quality and efficiency. And like the river itself, Sean Collins was about to prove that with enough conviction, enough grit, and enough heart, even the most formidable currents could be navigated, and new paths forged.

The whispers of the Thames, once a childhood lullaby, were beginning to call him to something far grander, a challenge that would demand every ounce of his ingenuity, his resilience, and his unwavering belief in the power of a single, audacious idea.

"Every great journey begins with a single, audacious vision, born in the quiet moments where others see only obstacles.”

OEBPS/images/cover-image.png

OEBPS/images/image.png

OEBPS/js/book.js

function stopEventPropagation(event) {
 event.stopPropagation();
}

function isKobo() {
 return 'koboApp' in window;
}

function isADE() {
 var epubReadingSystem = navigator.epubReadingSystem;
 if (epubReadingSystem) {
 return epubReadingSystem.name == 'RMSDK';
 }
 return false;
}

function isIOS() {
 var platform = navigator.platform;
 if (["iPad", "iPod", "iPhone"].includes(platform)) {
 return true;
 }
 return false;
}

function useMouselessButtons() {
 return (isADE() || isKobo()) && isIOS();
}

const ViewfinderAction = {
 none : -1,
 maximize : 0,
 goToPrev : 1,
 goToNext : 2,
 count : 3
};

class GalleryViewfinderObserver {
 constructor(owner) {
 this.owner = owner;
 this.galleryObject = owner.galleryObject;
 this.galleryElement = owner.galleryElement;
 this.viewfinderElement = owner.viewfinderElement;
 }

 onCurrentItemChange(oldItemIndex, newItemIndex) {}

 onMouseMoveInViewfinder(point) {
 }

 onMouseEnterViewfinder(point) {
 }

 onMouseLeaveViewfinder(point) {
 }

 onClickInViewfinder(point) {
 }

 onPageShow() {

 }

 onPageHide() {

 }

 onMouseEnterViewfinderChild(viewfinderChildElement) {
 }

 onMouseLeaveViewfinderChild(viewfinderChildElement) {
 }

}

class GalleryButtonsViewfinderManager extends GalleryViewfinderObserver {
 constructor(owner) {
 super(owner);
 var viewfinderElement = this.viewfinderElement;
 this.goToPrevButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToNextButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 this.maximizeButtonElement = viewfinderElement.getElementsByClassName("gallery-button-maximize")[0];
 this.setUpGoToButtonsBounds();
 this.buttonsTimeout = null;
 this.buttonUnderMouseCursor = null;
 this.setButtonMouseEnterLeaveHandlers(this.goToPrevButtonElement);
 this.setButtonFocusHandlers(this.goToPrevButtonElement);
 this.setButtonKeyupHandlers(this.goToPrevButtonElement);
 this.setButtonMouseEnterLeaveHandlers(this.goToNextButtonElement);
 this.setButtonFocusHandlers(this.goToNextButtonElement);
 this.setButtonKeyupHandlers(this.goToNextButtonElement);
 if (this.maximizeButtonElement) {
 this.setButtonMouseEnterLeaveHandlers(this.maximizeButtonElement);
 this.setButtonFocusHandlers(this.maximizeButtonElement);
 }
 }

 setUpGoToButtonsBounds() {
 var preferredButtonMargin = window.getComputedStyle(this.goToPrevButtonElement).getPropertyValue("--margin");
 var minButtonMargin = 2.0;
 var preferredButtonWidth = this.goToPrevButtonElement.getBoundingClientRect().width;
 var preferredButtonLayoutWidth = preferredButtonWidth + 2 * preferredButtonMargin;
 var viewfinderWidth = this.viewfinderElement.getBoundingClientRect().width;
 var buttonLayoutWidth = preferredButtonLayoutWidth;
 if (buttonLayoutWidth > viewfinderWidth / 2) {
 // One button plus its margins must not occupy more than half the viewfinder.
 buttonLayoutWidth = viewfinderWidth / 2;
 }
 var buttonWidth = preferredButtonWidth;
 var buttonMargin = (buttonLayoutWidth - buttonWidth) / 2;
 if (buttonMargin < minButtonMargin) {
 // The margin would result less than the minimum.
 // Shrink the button to ensure a minimum margin.
 buttonMargin = minButtonMargin;
 buttonWidth = buttonLayoutWidth - 2 * buttonMargin;
 if (buttonWidth <= 0) {
 // The available width (half of the viewfinder) is less than the minimum margins.
 // Use all the available width for the button.
 buttonMargin = 0;
 buttonWidth = buttonLayoutWidth / 2;
 }
 }
 this.goToPrevButtonElement.style.left = buttonMargin + "px";
 this.goToPrevButtonElement.style.width = buttonWidth + "px";
 this.goToPrevButtonElement.style.height = buttonWidth + "px";
 this.goToNextButtonElement.style.right = buttonMargin + "px";
 this.goToNextButtonElement.style.width = buttonWidth + "px";
 this.goToNextButtonElement.style.height = buttonWidth + "px";
 this.goToActiveWidth = 0.2 * viewfinderWidth;
 if (this.goToActiveWidth < buttonLayoutWidth) {
 // The area where a click is equivalent to clicking a go-to button
 // shouldn't be less than the width of the button plus the button margins.
 this.goToActiveWidth = buttonLayoutWidth;
 }
 }

 handleNextPreviousButtonKeyUpEvent(e) {
 var movePrevious = false;
 var moveNext = false;
 if (e.keyCode == 13 || e.keyCode == 32) /* Spacebar or Enter */ {
 e.preventDefault();
 if (e.target == this.goToPrevButtonElement) {
 movePrevious = true;
 }
 else if(e.target == this.goToNextButtonElement) {
 moveNext = true;
 }
 }
 else if (e.keyCode == 37) /* Left Arrow */ {
 movePrevious = true;
 }
 else if (e.keyCode == 39) /* Right Arrow */ {
 moveNext = true;
 }
 if (movePrevious) {
 if (this.galleryObject.currentItemIndex > 0) {
 this.galleryObject.goToPrevFrame();
 if (this.galleryObject.currentItemIndex == 0) {
 this.goToNextButtonElement.focus();
 }
 }
 }
 if (moveNext) {
 if (this.galleryObject.currentItemIndex < this.galleryObject.itemCount - 1) {
 this.galleryObject.goToNextFrame();
 if (this.galleryObject.currentItemIndex == this.galleryObject.itemCount - 1) {
 this.goToPrevButtonElement.focus();
 }
 }
 }
 if (movePrevious || moveNext) {
 this.updateButtonsDisplayState();
 }
 }

 setButtonMouseEnterLeaveHandlers(buttonElement) {
 buttonElement.onmouseenter = this.onMouseEnterButton.bind(this, buttonElement);
 buttonElement.onmouseleave = this.onMouseLeaveButton.bind(this, buttonElement);
 }

 setButtonFocusHandlers(buttonElement) {
 buttonElement.onfocus = this.onButtonGainedFocus.bind(this, buttonElement);
 buttonElement.onblur = this.onButtonLostFocus.bind(this, buttonElement);
 }

 setButtonKeyupHandlers(buttonElement) {
 buttonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent.bind(this);
 }

 setButtonsVisibility(showPrev, showNext, showMaximize) {
 Gallery.setButtonVisibility(this.goToPrevButtonElement, showPrev);
 Gallery.setButtonVisibility(this.goToNextButtonElement, showNext);
 Gallery.setButtonVisibility(this.maximizeButtonElement, showMaximize);
 }

 hideButtonsNotUnderMouseCursor() {
 var showPrev = this.buttonUnderMouseCursor == this.goToPrevButtonElement;
 var showNext = this.buttonUnderMouseCursor == this.goToNextButtonElement;
 var showMaximize = this.buttonUnderMouseCursor == this.maximizeButtonElement;
 this.setButtonsVisibility(showPrev, showNext, showMaximize);
 }

 startButtonsTimeout() {
 this.buttonsTimeout = setTimeout(function() { this.hideButtonsNotUnderMouseCursor() }.bind(this), 2500);
 }

 killButtonsTimeout() {
 if (this.buttonsTimeout) {
 clearTimeout(this.buttonsTimeout);
 this.buttonsTimeout = null;
 }
 }

 hideButtonsWithoutDelay() {
 this.killButtonsTimeout();
 this.setButtonsVisibility(false, false, false);
 }

 viewfinderActionForMousePosition(point) {
 var itemCount = this.galleryObject.itemCount;
 var currentItemIndex = this.galleryObject.currentItemIndex;
 var viewfinderWidth = this.viewfinderElement.getBoundingClientRect().width;
 var x = point.x;

 if (currentItemIndex > 0) {
 if (x < this.goToActiveWidth) {
 return ViewfinderAction.goToPrev;
 }
 }
 var showNext = false;
 if (currentItemIndex + 1 < itemCount) {
 if (viewfinderWidth - x < this.goToActiveWidth) {
 return ViewfinderAction.goToNext;
 }
 }
 if (this.maximizeButtonElement) {
 return ViewfinderAction.maximize;
 }
 return ViewfinderAction.none;
 }

 updateButtonsVisibility(point) {
 var action = this.viewfinderActionForMousePosition(point);
 var showPrev = action == ViewfinderAction.goToPrev;
 var showNext = action == ViewfinderAction.goToNext;
 var showMaximize = true;

 if (!this.maximizeButtonElement) {
 this.viewfinderElement.style.cursor = (showPrev || showNext) ? 'pointer' : 'default';
 }
 this.setButtonsVisibility(showPrev, showNext, showMaximize);
 this.updateButtonsDisplayState();
 }

 updateButtonsDisplayState() {
 // Update display style of the next/previous buttons so that they are present/removed from the
 // focus loop at the correct indexes.
 var itemCount = this.galleryObject.itemCount;
 var currentIndex = this.galleryObject.currentItemIndex;
 if (currentIndex == 0) {
 this.goToPrevButtonElement.tabIndex = -1;
 this.goToPrevButtonElement.style.display = 'none';
 }
 else {
 this.goToPrevButtonElement.tabIndex = 0;
 this.goToPrevButtonElement.style.display = 'block';
 }

 if (currentIndex == itemCount - 1) {
 this.goToNextButtonElement.tabIndex = -1;
 this.goToNextButtonElement.style.display = 'none';
 }
 else {
 this.goToNextButtonElement.tabIndex = 0;
 this.goToNextButtonElement.style.display = 'block';
 }
 }

 onMouseMoveInViewfinder(point) {
 this.killButtonsTimeout();
 this.updateButtonsVisibility(point);
 this.startButtonsTimeout();
 }

 onMouseEnterViewfinder(point) {
 }

 onMouseLeaveViewfinder(point) {
 this.hideButtonsWithoutDelay();
 }

 onClickInViewfinder(point) {
 this.killButtonsTimeout();
 var action = this.viewfinderActionForMousePosition(point);
 switch (action) {
 case ViewfinderAction.goToPrev:
 this.galleryObject.goToPrevFrame();
 break;
 case ViewfinderAction.goToNext:
 this.galleryObject.goToNextFrame();
 break;
 case ViewfinderAction.maximize:
 if (this.maximizeButtonElement) {
 this.galleryObject.maximizeFrame();
 }
 break;
 }
 this.updateButtonsVisibility(point);
 this.startButtonsTimeout();
 }

 onPageShow() {
 this.hideButtonsWithoutDelay();
 }

 onPageHide() {
 this.hideButtonsWithoutDelay();
 }

 onMouseEnterButton(buttonElement) {
 this.buttonUnderMouseCursor = buttonElement;
 }

 onMouseLeaveButton(buttonElement) {
 this.buttonUnderMouseCursor = null;
 }

 onButtonGainedFocus(buttonElement) {
 Gallery.setButtonVisibility(buttonElement, true);
 }

 onButtonLostFocus(buttonElement) {
 Gallery.setButtonVisibility(buttonElement, false);
 }
}

class GalleryCurrentItemObserver {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {

 }
}

class GalleryImageAndCaptionRollsManager {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 var galleryElement = galleryObject.galleryElement;
 this.imageRollElement = galleryElement.getElementsByClassName("gallery-image-roll")[0];
 if (galleryElement.getElementsByClassName("gallery-caption").length > 1) {
 this.captionRollElement = galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 }
 }

 removeTransition() {
 this.imageRollElement.classList.remove("gallery-image-roll-transition");
 if (this.captionRollElement) {
 this.captionRollElement.style.visibility = 'unset';
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.removeTransition();
 if (animate) {
 if (this.captionRollElement) {
 this.captionRollElement.style.visibility = 'hidden';
 }
 this.imageRollElement.classList.add("gallery-image-roll-transition");
 this.imageRollElement.addEventListener("transitionend", this.removeTransition.bind(this));
 }
 this.imageRollElement.style.left = -(newItemIndex * 100) + "%";
 if (this.captionRollElement) {
 this.captionRollElement.style.left = -(newItemIndex * 100) + "%";
 }
 }
}

class GalleryAccessibilityManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 this.announcementRegionElement = this.galleryObject.galleryElement.getElementsByClassName("ax-announcement-region")[0];
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 this.initializeCaptionIDs();
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 var images = Array.prototype.slice.call(this.galleryObject.galleryElement.getElementsByClassName("gallery-full-image"));
 var captions = [];
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 var captionRollElement = this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 captions = Array.prototype.slice.call(captionRollElement.getElementsByClassName("gallery-caption"));
 }
 images.forEach(function(image, imageIndex) {
 if(captions.length > 0) {
 var captionIndex = captions.length > 1 ? imageIndex : 0;
 var caption = captions[captionIndex];
 var captionTextElement = this.getFirstParagraphElementOfCaption(caption);
 if (captionTextElement) {
 var shouldHide = captions.length > 1 && newItemIndex != captionIndex;
 captionTextElement.setAttribute("aria-hidden", shouldHide ? "true" : "false");
 }

 if (newItemIndex == imageIndex) {
 this.announceForAccessibility(images[newItemIndex].getAttribute("aria-label"));
 }
 }
 }, this);
 }

 initializeCaptionIDs() {
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 var captionRollElement = this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 var captions = Array.prototype.slice.call(captionRollElement.getElementsByClassName("gallery-caption"));
 var galleryObject = this.galleryObject;
 captions.forEach(function(caption, index) {
 var captionTextElement = this.getFirstParagraphElementOfCaption(caption);
 if (captionTextElement) {
 captionTextElement.id = galleryObject.getCaptionElementIDForIndex(index);
 }
 }, this);
 }
 }

 getFirstParagraphElementOfCaption(caption) {
 var paragraphTagNameArray = ["p", "li"];
 for (var index = 0; index < paragraphTagNameArray.length; index++) {
 var paragraphTagName = paragraphTagNameArray[index];
 var paragraphElementList = caption.getElementsByTagName(paragraphTagName);
 if (paragraphElementList.length > 0) {
 return paragraphElementList[0];
 }
 }
 // no paragraphs/list items
 return null;
 }

 announceForAccessibility(announcement) {
 var liveRegionElement = this.announcementRegionElement;
 setTimeout(function() {
 liveRegionElement.setAttribute("aria-label", announcement);
 }, 500);

 }
}

class GalleryDotManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 this.dotContainerElement = galleryObject.galleryElement.getElementsByClassName("gallery-dot-container")[0];
 this.setupDotElementKeyupHandlers();
 }

 setupDotElementKeyupHandlers() {
 var dotElements = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-selectable"));
 dotElements.concat(Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current")));
 var handler = this.handleDotElementKeyUpEvent.bind(this);
 dotElements.forEach(function(dotElement) {
 dotElement.onkeyup = handler;
 });
 }

 handleDotElementKeyUpEvent(e) {
 var element = e.target;
 var currentIndex = this.galleryObject.currentItemIndex;
 var itemCount = this.galleryObject.itemCount;
 if (e.keyCode == 37) /* Left Arrow */ {
 if (currentIndex > 0) {
 this.galleryObject.goToPrevFrame();
 var selectedDotElement = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current"))[0];
 selectedDotElement.focus();
 }
 }
 else if (e.keyCode == 39) /* Right Arrow */ {
 if (currentIndex < itemCount - 1) {
 this.galleryObject.goToNextFrame();
 var selectedDotElement = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current"))[0];
 selectedDotElement.focus();
 }
 }
 }

 deselectCurrentDot() {
 var currentDotGroupCollection = this.dotContainerElement.getElementsByClassName("gallery-dot-current");
 if (currentDotGroupCollection.length > 0) {
 currentDotGroupCollection[0].setAttribute("aria-checked", "false");
 currentDotGroupCollection[0].tabIndex = -1;
 currentDotGroupCollection[0].className = "gallery-dot-selectable";
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.deselectCurrentDot();
 var newCurrentDot = this.dotContainerElement.getElementsByClassName("gallery-dot-selectable")[newItemIndex];
 newCurrentDot.setAttribute("aria-checked", "true");
 newCurrentDot.tabIndex = 0;
 newCurrentDot.className = "gallery-dot-current";

 // work around a bug where WebKit will not render DOM updates sometimes, by temporarily
 // setting the div to display:none, and then back to its previous value.
 var dotDisplay = newCurrentDot.style.display;
 newCurrentDot.style.display = "none";

 setTimeout(function() {
 newCurrentDot.style.display = dotDisplay;
 }, 0);
 }
}

class GalleryMouselessButtonsManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 var viewfinderElement = galleryObject.viewfinderElement;
 this.goToPrevButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToPrevButtonElement.onclick = galleryObject.goToPrevFrame.bind(galleryObject);
 this.goToPrevButtonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent;
 this.goToNextButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 this.goToNextButtonElement.onclick = galleryObject.goToNextFrame.bind(galleryObject);
 this.goToNextButtonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent;
 this.maximizeButtonElement = viewfinderElement.getElementsByClassName("gallery-button-maximize")[0];
 if (this.maximizeButtonElement) {
 this.maximizeButtonElement.onclick = galleryObject.maximizeFrame.bind(galleryObject);
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 var itemCount = this.galleryObject.itemCount;
 var showNext = newItemIndex + 1 < this.galleryObject.itemCount;
 var showPrev = newItemIndex > 0;
 Gallery.setButtonVisibility(this.goToPrevButtonElement, showPrev);
 Gallery.setButtonVisibility(this.goToNextButtonElement, showNext);
 Gallery.setButtonVisibility(this.maximizeButtonElement, true);
 }
}

class GalleryViewfinderManager {
 addViewfinderHandlers() {
 this.viewfinderElement.onclick = this.onClickInViewfinder.bind(this);
 this.viewfinderElement.onmouseenter = this.onMouseEnterViewfinder.bind(this);
 this.viewfinderElement.onmouseleave = this.onMouseLeaveViewfinder.bind(this);
 this.viewfinderElement.onmousemove = this.onMouseMoveInViewfinder.bind(this);
 }

 addObservers() {
 this.viewfinderObserverArray = [];
 if (!useMouselessButtons()) {
 this.viewfinderObserverArray.push(new GalleryButtonsViewfinderManager(this));
 }
 }

 constructor (galleryObject) {
 this.galleryObject = galleryObject;
 this.galleryElement = galleryObject.galleryElement;
 this.viewfinderElement = this.galleryElement.getElementsByClassName("gallery-image-viewfinder")[0];

 this.addViewfinderHandlers();
 this.addObservers();
 }

 viewfinderMouseEventCoordinates(event) {
 var viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 var point = { "x" : event.clientX - viewfinderBounds.left, "y" : event.clientY - viewfinderBounds.top };
 return point;
 }

 onMouseEventInViewfinder(event, handlerName) {
 try {
 var point = this.viewfinderMouseEventCoordinates(event);
 this.viewfinderObserverArray.forEach(function (observer) {
 observer[handlerName](point);
 });
 stopEventPropagation(event);
 }
 catch (error) {
 }
 }

 onMouseMoveInViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseMoveInViewfinder");
 }

 onMouseEnterViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseEnterViewfinder");
 }

 onMouseLeaveViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseLeaveViewfinder");
 }

 onClickInViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onClickInViewfinder");
 }

 onPageShow() {
 this.viewfinderObserverArray.forEach(function (observer) {
 observer.onPageShow();
 });
 }

 onPageHide() {
 this.viewfinderObserverArray.forEach(function (observer) {
 observer.onPageHide();
 });
 }

 onCurrentItemChange(oldItemIndex, newItemIndex) {
 this.viewfinderObserverArray.forEach(function(observer) {
 observer.onCurrentItemChange(oldItemIndex, newItemIndex);
 });
 }

}

class TouchManager {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 this.viewfinderElement = galleryObject.viewfinderElement;
 this.viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 this.frameWidth = this.viewfinderBounds.width;
 this.dragTouchID = null;
 this.goToPrevButtonElement = this.viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToNextButtonElement = this.viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 var element = this.viewfinderElement;
 element.addEventListener("touchstart", this.onTouchStart.bind(this), true);
 element.addEventListener("touchmove", this.onTouchMove.bind(this), true);
 element.addEventListener("touchend", this.onTouchEnd.bind(this), true);
 element.addEventListener("touchcancel", this.onTouchCancel.bind(this), true);
 }

 viewfinderPositionOfChangedTouchMatchingDragID(event) {
 if (this.dragTouchID) {
 var changedTouchCount = event.changedTouches.length;
 for (var changedTouchIndex = 0; changedTouchIndex < changedTouchCount; changedTouchIndex++) {
 var changedTouch = event.changedTouches[changedTouchIndex];
 if (changedTouch.identifier == this.dragTouchID) {
 var point = { "x" : changedTouch.pageX - this.viewfinderBounds.left, "y" : changedTouch.pageY - this.viewfinderBounds.top };
 return point;
 }
 }
 }
 return null;
 }

 onTouchEvent(event, doDump) {
 if (doDump) {
 }
 stopEventPropagation(event);
 event.preventDefault();
 if (event.changedTouches.length == 0) {
 }
 }

 onTouchStart(event) {
 try {
 this.onTouchEvent(event, true);
 if (!this.dragTouchID) {
 if (event.changedTouches.length > 0) {
 var changedTouch = event.changedTouches[0];
 this.dragTouchID = changedTouch.identifier;
 this.dragStartPoint = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 this.dragStartTime = new Date().getTime();
 this.dragStartX = this.dragStartPoint.x;
 this.dragStartItemIndex = this.galleryObject.currentItemIndex;
 this.lastTouchPosition = this.dragStartPoint;
 }
 }
 }
 catch (error) {
 }
 }

 onTouchMove(event) {
 try {
 this.onTouchEvent(event, false);
 var changedTouchPosition = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 if (changedTouchPosition) {
 var dragCurrX = changedTouchPosition.x;
 var deltaX = dragCurrX - this.dragStartX;
 var relativeDeltaX = deltaX / this.frameWidth;
 var newItemIndex = this.dragStartItemIndex - relativeDeltaX;
 if (newItemIndex >= 0 && newItemIndex <= this.galleryObject.itemCount - 1) {
 this.galleryObject.changeCurrentItemIndex(newItemIndex, false);
 }
 this.lastTouchPosition = changedTouchPosition;
 }
 }
 catch (error) {
 }
 }

 onTouchEndOrCancel(event) {
 var changedTouchPosition = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 if (changedTouchPosition) {
 var dragEndPoint = changedTouchPosition;
 var dragEndTime = new Date().getTime();
 var didChangeIndex = false;
 var endItemIndex = this.galleryObject.currentItemIndex;
 var intEndItemIndex = Math.round(endItemIndex);
 var deltaT = dragEndTime - this.dragStartTime;
 // If duration short enough.
 if (deltaT < 250) {
 // If it hasn't resulted in a current item change.
 if (intEndItemIndex == this.dragStartItemIndex) {
 var absDeltaX = Math.abs(dragEndPoint.x-this.dragStartPoint.x);
 var absDeltaY = Math.abs(dragEndPoint.y-this.dragStartPoint.y);
 // If absDeltaX is not trivially small
 // and absDeltaY is no larger than a fraction of absDeltaX.
 if (absDeltaX >= 50 && absDeltaY <= 0.4 * absDeltaX) {
 if (endItemIndex > intEndItemIndex) {
 if (intEndItemIndex < this.galleryObject.itemCount - 1) {
 intEndItemIndex++;
 didChangeIndex = true;
 }
 } else if (endItemIndex < intEndItemIndex) {
 if (intEndItemIndex > 0) {
 intEndItemIndex--;
 didChangeIndex = true;
 }
 }
 }
 }
 }

 this.galleryObject.changeCurrentItemIndex(intEndItemIndex, true);

 if (!didChangeIndex) {
 // see if we can handle this as a tap
 if (this.dragStartPoint.x == dragEndPoint.x && this.dragStartPoint.y == dragEndPoint.y) {
 var viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 var prevButtonBounds = this.goToPrevButtonElement.getBoundingClientRect();
 var nextButtonBounds = this.goToNextButtonElement.getBoundingClientRect();
 var pointInViewfinder = { "x" : event.changedTouches[0].clientX - viewfinderBounds.left, "y" : event.changedTouches[0].clientY - viewfinderBounds.top };
 prevButtonBounds.x -= viewfinderBounds.x;
 prevButtonBounds.y -= viewfinderBounds.y;
 nextButtonBounds.x -= viewfinderBounds.x;
 nextButtonBounds.y -= viewfinderBounds.y;

 var x = pointInViewfinder.x;
 var y = pointInViewfinder.y;
 var gotoPrev = prevButtonBounds.x <= x && x <= prevButtonBounds.x + prevButtonBounds.width && prevButtonBounds.y <= y && y <= prevButtonBounds.y + prevButtonBounds.height;
 var gotoNext = nextButtonBounds.x <= x && x <= nextButtonBounds.x + nextButtonBounds.width && nextButtonBounds.y <= y && y <= nextButtonBounds.y + nextButtonBounds.height;

 if (gotoPrev) {
 if (this.galleryObject.currentItemIndex > 0) {
 this.galleryObject.goToPrevFrame();
 }
 }
 else if (gotoNext) {
 if (this.galleryObject.currentItemIndex < this.galleryObject.itemCount - 1) {
 this.galleryObject.goToNextFrame();
 }
 }
 }
 }

 this.dragStartX = null;
 this.dragStartItemIndex = null;
 this.dragTouchID = null;
 this.lastTouchPosition = null;
 }
 }

 onTouchEnd(event) {
 try {
 this.onTouchEvent(event, true);
 this.onTouchEndOrCancel(event);
 }
 catch (error) {
 }
 }

 onTouchCancel(event) {
 try {
 this.onTouchEvent(event, true);
 this.onTouchEndOrCancel(event);
 }
 catch (error) {
 }
 }
}

class Gallery {
 createImageRollElement() {
 this.viewfinderElement = this.galleryElement.getElementsByClassName("gallery-image-viewfinder")[0];
 this.imageRollElement = this.viewfinderElement.getElementsByClassName("gallery-image-roll")[0];

 var imageFrameElementArray = Array.prototype.slice.call(this.viewfinderElement.getElementsByClassName("gallery-image-cropper"));
 this.itemCount = imageFrameElementArray.length;
 }

 completeItemCaptionElements() {
 //this.itemCaptionRolodexElement = this.galleryElement.getElementsByClassName("gallery-item-caption-rolodex")[0];
 //this.itemCaptionRolodexElement.onclick = stopEventPropagation;
 }

 addSelectionDots() {
 this.dotContainerElement = this.galleryElement.getElementsByClassName("gallery-dot-container")[0];
 this.innerDotContainerElement = this.dotContainerElement.getElementsByClassName("gallery-dot-inner-container")[0];
 if (this.innerDotContainerElement.getBoundingClientRect().width < this.dotContainerElement.getBoundingClientRect().width) {
 var dotExtenderElementArray = Array.prototype.slice.call(this.innerDotContainerElement.getElementsByClassName("gallery-dot-extender"));
 for (var itemIndex = 0; itemIndex < this.itemCount; itemIndex++) {
 var dotExtenderElement = dotExtenderElementArray[itemIndex];
 dotExtenderElement.onclick = this.selectFrame.bind(this, itemIndex);

 var captionIndex = this.galleryElement.getElementsByClassName("gallery-caption").length > 1 ? itemIndex : 0;
 var captionID = this.getCaptionElementIDForIndex(captionIndex);
 var dotElement = dotExtenderElement.getElementsByTagName("span")[0];
 dotElement.setAttribute("aria-describedby", captionID);
 }
 } else {
 this.innerDotContainerElement.style.display = 'none';
 }
 }

 completeTree() {
 this.createImageRollElement();
 this.completeItemCaptionElements();
 if (!this.isFullscreen()) {
 this.addSelectionDots();
 }
 }

 addWindowEventListeners() {
 window.addEventListener("pageshow", this.onPageShow.bind(this));
 window.addEventListener("pagehide", this.onPageHide.bind(this));
 }

 createObservers() {
 this.currentItemObserverArray = [];
 if (!this.isFullscreen()) {
 this.currentItemObserverArray.push(new GalleryDotManager(this));
 if (useMouselessButtons()) {
 this.currentItemObserverArray.push(new GalleryMouselessButtonsManager(this));
 }
 }
 this.currentItemObserverArray.push(new GalleryAccessibilityManager(this));
 }

 startUp() {
 this.currentItemIndex = -1;
 var newItemIndex = parseInt(this.galleryElement.getAttribute("data-current-item-index"));
 this.changeCurrentItemIndex(newItemIndex, false);

 }

 constructor (galleryElement) {
 this.galleryElement = galleryElement;

 this.completeTree();

 this.viewfinderManager = new GalleryViewfinderManager(this);

 this.addWindowEventListeners();

 this.createObservers();
 this.imageAndCaptionRollsManager = new GalleryImageAndCaptionRollsManager(this);

 if (!useMouselessButtons()) {
 this.touchManager = new TouchManager(this);
 }

 this.startUp();
 }

 isFullscreen() {
 return false;
 }

 changeCurrentItemIndex(newItemIndex, animate) {
 if (this.currentItemIndex != newItemIndex) {
 if (Math.abs(newItemIndex - this.currentItemIndex) > 1.0) {
 // Animation is supported only between neighbouring frames.
 animate = false;
 }
 this.imageAndCaptionRollsManager.onCurrentItemChange(this.currentItemIndex, newItemIndex, animate);
 var intCurrentItemIndex = Math.round(this.currentItemIndex);
 var intNewItemIndex = Math.round(newItemIndex);
 if (intNewItemIndex != intCurrentItemIndex) {
 this.onCurrentItemChange(intCurrentItemIndex, intNewItemIndex, animate);
 this.galleryElement.setAttribute("data-current-item-index", intNewItemIndex);
 }
 this.currentItemIndex = newItemIndex;
 this.updateImagesAXVisibility();
 }
 }

 updateImagesAXVisibility() {
 var currentIndex = this.currentItemIndex;
 var images = Array.prototype.slice.call(this.galleryElement.getElementsByClassName("gallery-full-image"));
 images.forEach(function(image, index) {
 image.setAttribute("aria-hidden", index == currentIndex ? "false" : "true");
 });
 }

 goToPrevFrame() {
 var currentItemIndex = this.currentItemIndex;
 this.changeCurrentItemIndex(currentItemIndex-1, true);
 }

 goToNextFrame() {
 var currentItemIndex = this.currentItemIndex;
 this.changeCurrentItemIndex(currentItemIndex+1, true);
 }

 selectFrame(newItemIndex) {
 this.changeCurrentItemIndex(newItemIndex, true);
 }

 maximizeFrame() {
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.currentItemObserverArray.forEach(function(observer) {
 observer.onCurrentItemChange(oldItemIndex, newItemIndex, animate);
 });

 this.viewfinderManager.onCurrentItemChange(oldItemIndex, newItemIndex);
 }

 onPageShow() {
 this.viewfinderManager.onPageShow();
 }

 onPageHide() {
 this.viewfinderManager.onPageHide();
 }

 getCaptionElementIDForIndex(index) {
 var captionIndex = index+1;
 return this.galleryElement.id + "-caption-" + captionIndex;
 }

 static setButtonVisibility(buttonElement, visible) {
 if (buttonElement) {
 buttonElement.style.opacity = visible ? 1.0 : 0.0;
 }
 }
}

class RegularGallery extends Gallery {
 static setDisplayToNoneForElementsOfClass(className) {
 var elementArray = Array.prototype.slice.call(document.getElementsByClassName(className));
 elementArray.forEach(
 function(element) {
 element.style.display = 'none';
 });
 }

 static loadGalleries() {
 this.setDisplayToNoneForElementsOfClass("gallery-fallback");
 this.setDisplayToNoneForElementsOfClass("gallery-fallback-separator");

 var galleryElementArray = Array.prototype.slice.call(document.getElementsByClassName("gallery"));
 galleryElementArray.forEach(function(galleryElement) {
 galleryElement.style.display = '';
 new RegularGallery(galleryElement);
 });
 }
}

function Body_onLoad() {
 RegularGallery.loadGalleries();
}

