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THINKING IN SYSTEMS may sound like a distant yet appealing concept to the layman. It has a smart, technical, objective, and superior cognitive air to it, right? However, when I ask my students “What do you think ‘thinking in systems’ means?” they are usually confused and can’t truly articulate a one-sentence answer. 

I can’t blame them. Because there is no articulate, definitive answer to this question yet. Experts work hard to give a comprehensive definition to systems thinking but even those summaries that get close to perfect are missing some essential parts. The term has been defined and redefined across the decades but no one has been able to press this intangible concept into a statement that will allow it to be measured.

Thus I can’t give you a one-sentence answer either to what exactly systems thinking is, but I will provide you with a deep understanding through a multilayer analysis.

The dictionary defines a system as a group or an arrangement of things that work towards a common goal. Wikipedia says that a system is “a group of interdependent items that interact regularly to perform a task.” We can state that the grounding principle of a system therefore is something more than a collection of its parts.​[i] 

A system is composed by parts that we call elements, which are interconnected to serve a purpose or function. 

Let’s take a farm as an example. A farm is a system which has the field, workers, seeds, machinery, and irrigation as elements. The different relations between these elements show how they are interconnected. They form, or are organized, into these interconnections for their overall function: to produce wheat, for instance.

A motorbike is also a system. This is a mechanical system with a number of elements like the engine, wheels, brake, lamps, and stickers, which, interacting together, serve the function to work as a unit of transportation. 

Let’s take a look at a natural system: a plant cell. This is a biological system. A plant cell is a mixture of organelles that are interconnected to perform metabolic processes. This enables the cell to function as an entire system. 

If we take a more distant look on our three systems—the farm, the motorbike, and the plant cell—we can see that these independent systems are part of larger systems. On a small or large scale, these sub-systems affect the larger system above them, and conversely, the large system has definite influence over the smaller subsystem. 

For example, the farm belongs to a system of regional economy. Although the whey production of one farm may not have significant impact on the overall economy of a country, it matters. At the same time, economic fluctuations, price changes, and the shifting of supply and demand can have a large impact on the farm. 

The motorbike belongs to a larger system, too. For example, the system of local traffic. One motorbike doesn’t affect the larger system too much if it functions well, delivering its rider safely from A to B. However, if the motorcycle rider has an accident which causes a blockage on the road and a heavy traffic jam, it has a temporary, yet significant impact on the system. The traffic system has an even greater impact on the motorcycle driver in forms of all-time regulations, a speed limit, an age requirement, maintenance conditions, etc. 

The plant cell, while it is an individual particle, works together with other individual cells to sustain the function of the larger system, let’s say a flower. The combined effort of the particles helps the plant survive, gain nutrients, photosynthesize, and grow. 

All of the big systems mentioned above, the regional economy, the local traffic, and the flower belong to even bigger systems, and so on. No system is independent; none of them live in isolation. They are interdependent. 

Following the thought thread of system interdependence, we can say that systems thinking is “a system of thinking about systems.”​[ii] Using the three parts of systems, elements, interconnections, and function or purpose, systems thinking allows us to:


	“Understand how the behavior of a system arises from the interaction of its agents over time (i.e., dynamic complexity);

	Discover and represent feedback processes (both positive and negative) hypothesized to underlie observed patterns of system behavior;

	Identify stock and flow relationships;

	Recognize delays and understand their impact;

	Identify nonlinearities;

	Recognize and challenge the boundaries of mental (and formal) models;

	Recognize interconnections;

	Understand dynamic behavior;

	Differentiate types of flows and variables;

	Use conceptual models;

	Create simulation models;

	Test policies;

	Incorporate multiple perspectives;

	Work within a space where the boundary or scope of problem or system may be ‘fuzzy’;

	Understand diverse operational contexts of the system;

	Identify inter- and intrarelationships and dependencies;

	Understand complex system behavior; and most important of all,

	Reliably predict the impact of change to the system.”​[iii] (Ross D. Arnold, 2015)



This book focuses on identifying nonlinearities and analyzing the dynamic behavior of complex systems. I will introduce the concept of chaos, where I will show how small differences in the way things are now can bring great consequences in the way things will be in the future. We will explore the phenomena of chaotic behavior, taking a closer look at the Butterfly Effect, bifurcations, phase transitions, and fractals. For transparency and easier understanding, we will focus on systems related to science and mathematics. 

In these fields we distinguish two types of systems: linear and nonlinear. Let’s take a closer look at what they are.
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​Chapter 1: Linear Systems
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WHAT ARE LINEAR SYSTEMS? 

Linear systems obey certain rules; they are defined by their adherence to what is called the superposition principle.
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A QUICK DEFINITION of the superposition principle sounds as follows: “The net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. If input A produces response X and input B produces response Y then input (A + B) produces response (X + Y).”​[iv] 

In more simple terms, if we have two or more inputs at a given point in time, the final output will be the result of adding all the outputs.

Establishing all of the scenarios in an input-output system using infinite measurement is practically impossible. However, when the system in question qualifies as a linear system, one can use the reactions established through a base set of inputs to forecast the responses to other possible inputs. Doing this saves a lot of work and makes it possible to predict and identify the system.​[v] 

How can we identify a linear system? Well, as I said before, we need to see if the system adheres to the components of the superposition principle, namely additivity and homogeneity. Let’s see what they are.

Additivity principle

The additivity principle states that we can add the output of two systems together and the outcome of the systems combined will be the addition of each individual system’s output in isolation. 

For example, if I had two oxen that could each pull 300 lbs. of cargo on a cart in isolation, when I combine these two oxen to pull a larger cart they will each be able to pull twice as much weight: 600 lbs. In mathematical terms the additivity principle looks like this: 300+300=600.

The additivity principle therefore can be explained with the terms we used to explain the superposition principle: “The net response caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually.” 





Homogeneity principle



The homogeneity principle states that the output of a linear system is always directly proportional to the input.​[vi] In other words, if we put twice as much into the system, we’ll get twice as much out. In numbers, the homogeneity principle looks like this: 1x=2, 2x=4, 3x=6, 4x=8, etc. 

In real life terms, if you paid $40 for a wine from which you expected a certain quality, the principle states that if you paid twice as much ($80) you would get a wine that was twice as good. 
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Picture 1: Linear Systems

If we put this on a graph, we would see why a linear system is called linear: the result is always a straight line. Let’s refresh our math knowledge with a simple example.

Let’s solve a linear system by graphing. The point in which the two equations intersect will be the solution to the system. For example, let’s take these two equations:


y=2x+4

y=3x+2
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Picture 2: X-Y Axis

––––––––

[image: ]


THESE TWO LINES SEEM to intersect at 2 on the x-axis and 8 on the y-axis. Let’s see if this is true algebraically. It never hurts to double check the graphic solution. Also, when the equation is more complicated, it’s necessary to calculate the results first and then illustrate them.

y=2x+4 ⇨ y=2⋅2+4 ⇨ y=8

Let’s check it on the other equation, too.

y=3x+2 ⇨ y=3⋅2+2 ⇨ y=8

A linear system that has only one solution is called a consistent independent system, where consistent stands for the lines intersecting and independent stands for the lines being distinct.

There can be linear systems of parallel lines that have the same slope but a different y-intersect. These linear systems don’t have a solution as the lines never intersect. They are called inconsistent systems.

Linear systems where the lines have the same slope and y-intersect are called consistent dependent systems. They have infinitely many solutions as the lines coincide.​[vii]

The additivity and homogeneity principles are deeply intuitive to us. On a basic, mathematical level they could appear very simple, but they assume a lot of given facts about how the world works. 

First, let’s analyze the guiding assumptions in support of the theory of linear systems. 

The homogeneity principles (additivity and homogeneity) state that the isolated properties of a system are what matter. They disregard the way in which these properties are joined or the relation between them. How does this look in a real life example? 
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THE CASE OF THE ADDITIVITY principle

Let’s say you want to fertilize your garden and there are two fertilizers that are meant to solve your garden problem. You buy them and use both at the same time. In this case the output or result of this system will depend on whether the two fertilizers have an effect on each other. If they have no effect upon each other, it will be the properties of each fertilizer in isolation that will determine the output of the system (the quality of your garden’s soil). There would be a lack of interaction between the two elements (fertilizers) in the system, thus the linear model will be able to fully capture this event. 

However, if the fertilizers affect each other, it will be the interaction between them that will determine the system. The linear model fails in this case as it relies upon the additivity principle that connotes an additive relationship. But in this situation simple additivity is not the case. 

The basic reasoning of the additivity principle is that we can add elements together without taking into consideration how these elements interact together. Our example of fertilizers proves how frail linear systems theory is in the grand scheme of systems thinking. But before jumping to conclusions, let’s test the homogeneity principle, as well.

––––––––
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THE CASE OF THE HOMOGENEITY principle

The principle of homogeneity assumes that the scale doesn’t matter. Is that so, though, in case of real world systems? Let’s say you have a store where you import one million buttons a year to sell. Let’s assume that you are successful and you can sell all of your buttons by the end of the year. Now let’s scale up the import to two million buttons a year. If everything would be scaled in a linear fashion, the linear model could capture this. But, of course, in the real world chances are very low that all the other variables would scale according to the laws of linearity. Would your costs scale in a linear fashion? What about market saturation? If you can’t sell the two million buttons your revenue will not grow linearly either.

The key takeaway of these examples is that linear system models can’t capture feedback. They fail to consider the effect the actions of a system has on its environment. Linear system models also lack the potential to show how the environment will in turn affect the system; not only in space, but also over time. In other words, how will past decisions and actions feed back to affect the present conditions of a system. 

––––––––

[image: ]


WHY DO WE TALK ABOUT and use linear systems then?

Linear system analysis happens in a static time vacuum but there are a few reasons why we use linear systems. 

	Linear systems are intuitive. The static properties of tangible elements and events that linear systems capture are easier for us to understand and quantify as opposed to the elusive world of interactions between elements and their behavior over time. 
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