
WebAssembly 2.0 Essentials

Second Edition

Making Migrations, Cloud-Native Integration, and Production-Ready WebAssembly Applications Easier

Emrys Callahan

Preface

This book is for you if you're tired of watching JavaScript struggle with complicated calculations while your users get impatient. I wrote this second edition because WebAssembly 2.0 changes everything, and I wanted to show you exactly how to use it without the usual technical book problems. The first thing we'll do is go through the basics, like memory management and control flow, which are the most important. Then we'll move on to putting together C, C++, Rust, and Python into Wasm modules that actually work. I'll show you how to use multi-threading, profiling and optimisation techniques that I've used in real projects, not just theoretical exercises. I know a lot of you have old Wasm 1.0 code, so I've written a whole chapter about how to move it over without causing any problems.

And we'll also learn how to use WebAssembly in other ways, not just in browsers. You'll learn to work with Dapr for distributed microservices, deploy on Kubernetes, and build cloud-native applications that scale well. There is working code in every chapter that you can use right away. There is no unnecessary information, just practical techniques that solve real problems. I've figured out the tricky parts and the things that can go wrong, and I'm sharing them what actually works. By the time you finish this book, it will have taught you everything you need to build WebAssembly applications so quickly that people will be amazed.

In this book you will learn to:

● Use WebAssembly, manage memory, and control the flow of a program.

● Put together C, C++, Rust, and Python into high-performance WebAssembly modules using Emscripten.

● Build advanced multi-threaded apps using atomic operations, shared memory and thread-safe synchronization patterns.

● Migrate old Wasm 1.0 projects to version 2.0 using proven strategies.

● Combine WebAssembly with Dapr for microservices using patterns for managing data and sending messages.

● Deploy and scale Wasm workloads on Kubernetes clusters with complete control over configuration and secrets management.

● Make performance better by using systematic profiling and advanced compilation techniques for production apps.

● Take care of module imports, exports, and JavaScript interoperability.

● Use tables, memory semantics and dynamic dispatch mechanisms for complex logic.

● Manage networking, security, monitoring, and debugging for WebAssembly cloud-native deployments at scale.

Prologue

The first edition of WebAssembly Essentials was released, and I was unsure how people would react. But the response was amazing. It was so encouraging to see developers from startups to enterprise teams getting in touch. They shared how they'd built faster applications, moved critical systems and achieved performance they didn't think was possible. That feedback was really important. However, along with the success came repeated requests: "Can you show us how to move our current code to a new system?" "What about using Wasm in Kubernetes?" "How do we use modern cloud-based tools?" I listened, took notes, and realised that this second edition needed to be more than just an update because it had to deal with the real challenges you face today.

The latest version of WebAssembly has arrived and it has some really cool new features. I knew that I had to completely rewrite this book to make sure it was up to date. Now, here we are. Within this book, I will take you from the very basics of memory, control flow, and the mechanics that make Wasm work, through to compiling multiple languages, building multi-threaded applications, and optimising for real-world performance. But we won't stop there.

If you follow the steps, you'll see exactly how to move your Wasm 1.0 projects to version 2.0 without stopping your current production. I'll show you how to integrate with Dapr for distributed systems and deploy on Kubernetes with confidence. All the examples come from real work, real problems I've solved or helped others solve. There is no unnecessary information, and no complicated, theoretical ideas. It has just practical code and simple explanations that don't waste your time.

I wrote this book to help you avoid the mistakes I made when I was just starting out. It will show you how to go from being a beginner to being a WebAssembly developer who is ready to start producing things.

Let's get started and build something amazing together.— Emrys Callahan

[image:]

Copyright © 2025 by GitforGits

All rights reserved. This book is protected under copyright laws and no part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without the prior written permission of the publisher. Any unauthorized reproduction, distribution, or transmission of this work may result in civil and criminal penalties and will be dealt with in the respective jurisdiction at anywhere in India, in accordance with the applicable copyright laws.

Published by: GitforGits

Publisher: Sonal Dhandre

www.gitforgits.com

Printed in India

First Printing: October 2025

Cover Design by: Kitten Publishing

Disclaimer:

This book, including all its text, diagrams, and illustrations, is an original work developed for educational and informational purposes. The content is not affiliated with, endorsed by, or sponsored by any other company, brand, or entity referenced within. All brand names, product names, and trademarks mentioned are the property of their respective owners and are used in a descriptive, educational context only. Every effort has been made to ensure that no copyrighted or trademarked material has been copied or misused in this book. All diagrams and illustrations that are not original have been used with proper attribution and credit to their respective sources.

If we believe that any content in this book infringes upon the copyright or trademark, please contact us immediately at support@gitforgits.com. Upon notification, corrective action will be taken promptly.

Content

Preface

GitforGits

Acknowledgement

Chapter 1: Introduction to WebAssembly

Web before WebAssembly

Rise and Plateau of JavaScript

Native vs. Web

Case for WebAssembly

Genesis of WebAssembly

Milestones of WebAssembly

Breakthrough in 2015

MVP Launch in 2016

Cross-Browser in 2017

Non-Browser Runtimes in 2019-20

New Features and Languages in 2020-22

Wasm 2.0 and Ecosystem Maturity

WebAssembly Design

Predictable Performance

Built-In Isolation

Portability

WebAssembly and JavaScript

Why WebAssembly Needed?

Duo Power of WebAssembly and JavaScript

Interoperability

Today’s WebAssembly Ecosystem

Binaryen

Emscripten

WABT

Runtimes, Platforms, Frameworks and Libraries

WASM Core Concepts

Module

Imports and Exports

Memory and Linear Memory

Stack Machine and Execution Model

WAT and .wasm

Types and Validation

Tables

Host Integration

Architecture of WebAssembly

Stack Machine Model

Binary Format and Validation

Memory Model and Safety

Sandboxing and Host Interaction

Concurrency and Parallelism

Integration and Extensibility

Summary

Chapter 2: Fundamentals of WebAssembly Programming

Understanding WebAssembly Syntax

WAT Writing

Working with .wasm Format

From WAT to Running Code

Working with WebAssembly Data Types

Numeric Types

Integer Addition (i32)

Floating Point Addition (f32)

64-bit Types

Variables and Scope

Local Variables

Global Variables

Control Flow and Structured Programming

Sequential Execution and Blocks

Conditional Logic

Loops

Branching

Defining and Using Functions

Function Signatures and Parameters

Multiple Return Values

Invoking Functions from JavaScript

Efficient Memory Management

Linear Memory

Working with Data Segments

Access and Manipulation

Memory Interaction from JavaScript

Imports, Exports, and Instantiation

Exports

Imports

Instantiating Wasm Modules

Arithmetic and Logical Operations

Arithmetic Operations

Logical Operations

Composing and Testing a Simple Wasm Program

Summary

Chapter 3: WebAssembly Modules and Semantics

Advanced Table and Memory Semantics

Table Basics

Indirect Calls & Dynamic Dispatch

Linear Memory Semantics

Complex Data Structures

Storing and Reading Integers

Summing a Small Array

Using Table for Dynamic Function Calls

Event-Driven Programming and Host Integration

Integrating Wasm with JavaScript Events

WebAssembly Threads and Concurrency

Threads, Shared Memory, and Safe Parallelism

Setting up Shared Memory

Atomic Operations and Synchronization

Running Threads

Summary

Chapter 4: Bridging WebAssembly with High-Level Languages

Fundamentals of Compiling and Porting to WebAssembly

Core Toolchains

Compiling and Porting

Choose and Setup the Toolchain

Adapt Source Code

Compile Source

Validate and Iterate

Ecosystem Tools and Future Directions

Up and Running with Emscripten

Installation and Configuration

Install System Dependencies

Setup Emscripten SDK

Validate Configuration

Compiling, Running, and Optimizing C++ Program

Compile to Wasm

Run and Test

Integrating WebAssembly with JavaScript

Multi-Language Support and Wasm Bindings

Integrating Rust

Integrating Java using TeaVM

Python via Pyodide

Wasm Bindings for Robust Integration

Language Interoperability Best Practices

Summary

Chapter 5: Advanced WebAssembly Tools and Techniques

Getting Binaryen Ready

Installing Binaryen

Integrating with Emscripten Build

Implementing Optimization

Day-to-Day Wasm Engineering Best Practices

Using Optimization Levels

Measuring Effects

Summary

Chapter 6: Advanced Performance Optimization

WebAssembly Performance Fundamentals

Startup Latency

Runtime Throughput and Execution Speed

Resource Usage

Cross-Browser and Cross-Device Variability

Profiling and Benchmarking WebAssembly

Instrumentation and Tools

Using Chrome DevTools and Flame Graphs

Tracking Memory Usage and Detecting Leaks

Node.js Benchmarking and Automated Testing

Hands-On Profiling

Setting up Benchmark Environment

Running Benchmark Multiple Times

Fine-Tuning Memory

Minimizing Allocations

Avoiding Fragmentation

Tuning Linear Memory

Multithreading, Parallelism, and Concurrency

WebAssembly Threads

Shared Memory and Atomic Operations

Spawning and Managing Threads

Parallel Algorithms in Wasm

Lazy Loading, Code Splitting, and Deferred Execution

Lazy Loading Modules

Code Splitting

Deferred Execution and Staged Loading

Caching and Efficient Deployment Strategies

Service Worker and Browser Caching

HTTP/2 and CDN Optimization

Server-Side Caching and Cloud Functions

Summary

Chapter 7: Practical Migration to Wasm 2.0

Project Assessment and Migration Planning

Auditing Codebase

Identifying Migration Points and Dependencies

Test Coverage Planning and Staged Rollout

Refactoring Legacy Interfaces for Wasm 2.0

Updating Function Imports, Exports, and Glue Logic

Refactoring Memory Access and Management

Rewriting Host Bindings and Custom Metadata

Migrating to Standardized Host Bindings

Refactoring Communication Channels

Adapting Build Tools and Conversion Scripts

Auditing and Upgrading Toolchain

Updating Build Scripts and CI Pipelines

Automating Deployment Checks and Feature Gates

Integrating wasm-tools for Continuous Validation

Module Linking, Component Model, and Inter-Module Migration

Analyzing Module Structure and Interdependencies

Refactoring for Module Linking and Separation

Cross-Version Compatibility and Hybrid Serving

Designing Dual Compatibility

Role of Adapters and Polyfills

Building Robust Regression Test Suites

Migration Documentation and Knowledge Base

Keep Change Log

List Problems and Fixing Them

Simple How-To Guides

Add List of Tools

Summary

Chapter 8: Using WebAssembly with Dapr

Dapr and WebAssembly Integration

Dapr Sidecar Model

Dapr’s Building Blocks

Service Invocation

State Management

Pub/Sub Messaging

Secrets Management

Observability

Why Dapr?

Setting up Dapr

Installing Dapr

Preparing Wasm Project Directory

Configuring Dapr Sidecar

Connecting to Dapr APIs

Packaging Wasm Modules for Dapr

Compiling Wasm Module

Running Wasm Host Process

Registering Service to Dapr

Calling Wasm from Other Dapr Services

Calling Wasm Module from Go Dapr

Calling Wasm Module from Python Dapr

Writing Business Logic as Decision Engine

State Management and Pub/Sub

Introduction to Dapr's State Management

Using Dapr’s State Management

Using Dapr Pub/Sub

Running Wasm Modules in Production

Local and Staging Deployment

Deploying on Kubernetes

Prepare Container Image

Write Kubernetes Deployment Manifest

Summary

Chapter 9: Running WebAssembly Apps on Kubernetes

Packaging Wasm Apps for Kubernetes

Deploying Wasm Containers to Kubernetes

Creating Kubernetes Deployment Manifest

Exposing Wasm Service

Scaling and Rolling Updates

Managing Configuration and Secrets

Using ConfigMaps

Supplying Secrets

Handling Networking and Communication for Wasm Applications

Expose Wasm Pod inside Cluster

Wasm App Accessibility

Testing Connections

Monitoring and Debugging Wasm Workloads

Inspect Pod and Container Logs

Check Pod Health and Status

Use of Liveness and Readiness Probes

Kubernetes Dashboard Monitoring

Summary

Index

Epilogue

GitforGits

Prerequisites

This book is for programmers who want to put all their applications onto web browsers at the same speed, with the same efficiency and performance. Just knowing the basics of any programming language and how to develop web apps is enough to get through this book.

Codes Usage

Are we in need of some helpful code examples to assist us in the programming and documentation? Look no further! Our book offers a wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid us in getting the job done, but we have our permission to use the example code in the programs and documentation. However, please note that if we are reproducing a significant portion of the code, we do require we to contact us for permission.

But don't worry, using several chunks of code from this book in the program or answering a question by citing our book and quoting example code does not require permission. But if we do choose to give credit, an attribution typically includes the title, author, publisher, and ISBN. For example, "WebAssembly 2.0 Essentials, Second Edition by Emrys Callahan".

If we are unsure whether the intended use of the code examples falls under fair use or the permissions outlined above, please do not hesitate to reach out to us at support@gitforgits.com. We are happy to assist and clarify any concerns.

Chapter 1: Introduction to WebAssembly

In the first chapter, we will look at how the web has evolved and how it's been shaped by historical developments that made people want a more powerful and flexible platform. We'll explore how JavaScript has grown and where it's reached its limits, and we will discover why even the most advanced scripting methods couldn't fulfil the full potential of high-performance web apps. We will get the lowdown on how it all started and how everyone worked together to develop WebAssembly, and we will see the big moments and choices that made it a key web technology. We'll take a really close look at the main design ideas behind WebAssembly, and we will learn how it solves the performance, security and portability problems that have been troubling developers and businesses for a long time.

In this chapter, we will get to grips with the various tools and frameworks, like Binaryen, Emscripten and WABT, that make Wasm development and integration a breeze. We will get a solid understanding of the main concepts and terms, with practical examples to help us along the way. Then we will get to the nitty-gritty of WebAssembly's architecture. We will learn about the principles that make Wasm secure, efficient, and able to adapt to different platforms. By the time we reach the end of this chapter, we will be all set to start building solid, future-proof WebAssembly solutions.

Web before WebAssembly

Long before the introduction of WebAssembly, the web was primarily a medium for sharing documents and static content. In those early days, the developers worked with the basics, like the HTML for structuring pages and CSS for presentation, and with the JavaScript emerging gradually to provide interactive features. While these tools collectively helped deliver visually attractive pages and simple interactivity, they revealed significant limitations as the expectations of both users and developers grew.

The web, in its original form, was not envisioned as a platform for intensive computation, gaming, scientific modeling, or real-time collaboration. As those demands surfaced, browsers began to strain under the weight of user ambition. The developers and organizations repeatedly encountered issues around performance, scalability, portability, and cross-browser compatibility, and all of which placed a ceiling on what could be realistically achieved within traditional web confines. If we think back to the limitations of this era, we will recognize a clear mismatch between the goals of modern app experiences and the inherent design of web technologies.

Rise and Plateau of JavaScript

The introduction of JavaScript was a breakthrough. It enabled a layer of dynamic interactivity previously out of reach for the web. At first, the JavaScript allowed developers to validate forms, respond to user actions, and update page elements in real time. Over several decades, the JavaScript matured through new engines, optimizations, and powerful frameworks such as React, Angular, and Vue. Additionally, the browser vendors invested heavily in engine performance, leading to the rise of V8, SpiderMonkey, and Chakra. Each of these are driving down execution time and increasing the scope of what could run within the browser window. Despite this evolution, we and the peers eventually hit a plateau. While the JavaScript brought impressive flexibility, it was never meant for compute-heavy workloads or complex, memory-intensive operations. The language, being dynamically typed and single-threaded by nature, suffered from inherent performance bottlenecks. There are applications that require audio/video processing, machine learning, or real-time data analytics simply could not match native performance, no matter how advanced the JavaScript became.

And, with growing demands and insufficient capabilities, the industry leaned on browser plug-ins as a workaround. The Adobe Flash, Java Applets, Silverlight, and ActiveX were adopted to bring high performance and broader capabilities to browsers. These plug-ins seemed to satisfy many needs by enabling the execution of compiled code directly in the browser however, the honeymoon period was short-lived. With plug-ins came a host of new problems that we, as a developer or user, could not ignore. The proprietary dependencies created compatibility headaches, and security vulnerabilities became increasingly frequent and severe. As exploit after exploit was uncovered, the browser vendors responded by deprecating and eventually eliminating support for these plug-ins. This marked the end of an era and left many developers back at square one, searching for a secure, performant, and portable alternative.

Native vs. Web

If we were a software engineer experienced with native programming languages like C, C++, or Rust, we would notice an even sharper line drawn between what was possible natively and in the browser. The native applications benefited from nearly unrestricted access to machine resources, strong typing, and predictable performance. However, the porting of these capabilities to the web, was a serious challenge. The computationally demanding workloads were running slow, error-prone, and outright unworkable, especially given the language's loose typing and memory model. The multi-language teams attempting to reuse code or share libraries across platforms were forced to rewrite large portions from scratch or settle for subpar performance. These started undercutting both developer efficiency and business potential in the process.

While browsers grew more powerful, the native applications continued to set the pace for speed, responsiveness, and access to advanced system features. The users naturally gravitated toward experiences that felt immediate and seamless. For business owners and architects, the gap between browser-based and native applications became a roadblock to digital transformation and product evolution. Addressing this split was no trivial matter, as it required bridging the worlds of inherent web safety and portability with the kind of efficiency that only native code had previously delivered.

Case for WebAssembly

The technology of WebAssembly was envisioned as the answer to these persistent challenges and agonizing compromises. It was not designed to replace JavaScript, but to complement it. It brought near-native speed, memory safety, strong security guarantees, and true language diversity to the web platform. We are about to learn how Wasm introduces a low-level, efficient, and portable binary format that can run complex workloads, both inside browsers and beyond. The web platform took its most significant step toward concurrency, high-performance computing, and true cross-platform application universality, and all that was with the introduction of WebAssembly.

OEBPS/image/image-0-0.jpg
®
GitforGits

ASIAN PUBLISHING HOUSE

OEBPS/nav.xhtml

 Table of Contents

 		
 WebAssembly 2.0 Essentials

 		
 Chapter 1: Introduction to WebAssembly

 		
 Chapter 2: Fundamentals of WebAssembly Programming

 		
 Chapter 3: WebAssembly Modules and Semantics

 		
 Chapter 4: Bridging WebAssembly with High-Level Languages

 		
 Chapter 5: Advanced WebAssembly Tools and Techniques

 		
 Chapter 6: Advanced Performance Optimization

 		
 Chapter 7: Practical Migration to Wasm 2.0

 		
 Chapter 8: Using WebAssembly with Dapr

 		
 Chapter 9: Running WebAssembly Apps on Kubernetes

 Guide

 		
 Table of Contents

