

Modern React TypeScript Development

​A Beginner-to-Advanced Guide

Copyright © 2025 by Lex Cornell.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for brief quotations used in a book review.

This book is intended for educational purposes only. The field of software development, and React and TypeScript programming in particular, is constantly evolving, and the information contained herein may change over time. The author and publisher assume no liability for any errors, omissions, or the outcomes resulting from the use of the material provided. Readers are solely responsible for applying the concepts, code examples, and projects contained in this book. Compliance with all applicable laws, licenses, and terms of service for any software, libraries, or online platforms referenced is the responsibility of the reader.

	[image:]

	
	[image:]

[image:]

​Part 1: Foundations

​

[image:]

	[image:]

	
	[image:]

[image:]

​Chapter 1: Introduction to Modern React Development

[image:]

Welcome to your journey into modern web development. If you're reading this, you are taking a significant step toward building fast, reliable, and scalable web applications. You might be a complete beginner, curious about what it takes to create the websites and apps you use every day. Or perhaps you are a developer familiar with JavaScript who wants to level up your skills. Whatever your starting point, you are in the right place.

This book is designed to be your friendly, practical guide. We will move step-by-step, focusing on understanding not just how to write code, but why we write it a certain way. We will avoid unnecessary jargon and focus on the fundamentals that truly matter. Our goal is to build your confidence and empower you to create amazing things with React and TypeScript, two of the most powerful tools in the modern developer's toolkit.

Think of this book as a conversation. I will guide you, show you examples, and encourage you to try things on your own. There will be no confusing technical acrobatics, just clear, patient explanations. Let’s begin.

​Why React Dominates Modern Web Development

If you have spent any time exploring web development, you have likely heard of React. Created and maintained by Meta (formerly Facebook), React is not a full-fledged framework, but a JavaScript library for building user interfaces, or UIs. A UI is anything a user sees and interacts with on a screen, from buttons and forms to complex dashboards.

So, what makes React so popular? Its success boils down to a few core ideas that changed how we think about building for the web.

1. The Component-Based Architecture

Imagine building a complex structure with LEGO bricks. Instead of trying to carve the entire structure from a single, massive block of clay, you work with small, reusable bricks. You can build a small wall with a few bricks, then combine several walls to make a room, and then combine rooms to create a house.

This is exactly how React works. Everything in a React application is a component. A component is a self-contained, reusable piece of code that manages its own logic and appearance. A button is a component. A search bar is a component. A user profile card is a component. You can then combine these smaller components to create larger, more complex ones. For example, a user profile page might be made up of a profile picture component, a user name component, and a list of posts, where each post is also its own component.

This approach has several key benefits:

● Reusability: Once you build a button component, you can reuse it anywhere in your application without writing the same code again.

● Simplicity: It is much easier to think about and manage a small, isolated component than a giant, tangled web of code.

● Maintainability: If a bug appears in your search bar, you know exactly where to look: the SearchBar component. This makes finding and fixing problems much faster.

2. The Declarative Approach

Another key reason for React’s popularity is its declarative nature. This might sound complex, but the idea is quite simple.

Imagine you are giving a friend directions to your house.

● An imperative approach would be: "Leave your house, turn right, walk 200 feet, turn left at the big oak tree, walk 100 more feet, and stop at the blue door." You are giving step-by-step instructions on how to get there.

● A declarative approach would be: "My house is the blue one at 123 Main Street." You are describing the final destination, and your friend can then figure out the best way to get there.

Traditional web development often felt imperative. You had to write code to manually select an element on the page, change its text, add a style, and so on. It was a lot of step-by-step manipulation.

React is declarative. You simply tell React what you want the UI to look like based on the current data (we call this state), and React takes care of the rest. For example, you might tell React: "If the user is logged in, show them a WelcomeMessage component. If they are not, show them a LoginForm component." You do not have to write the code to manually remove the login form and add the welcome message. You just declare what the end result should be, and React handles the efficient updates to the screen. This makes your code easier to read, predict, and debug.

​The TypeScript Advantage: Type Safety and Fewer Runtime Errors

For many years, web development was powered almost exclusively by JavaScript. JavaScript is a flexible and dynamic language, which makes it easy for beginners to get started. However, this flexibility can also be a source of bugs, especially in large and complex applications.

Consider this simple JavaScript function:

// A simple function to add two numbers

function add(a, b) {

return a + b;

}

// What happens here?

console.log(add(5, 10)); // Outputs 15, as expected.

console.log(add(5, "10")); // Outputs "510", a string. This is probably a bug.

In the second example, JavaScript sees that one of the inputs is a string ("10"), so it automatically converts the number 5 to a string and concatenates them. This results in "510" instead of the expected 15. This is a common type of error in JavaScript, and you might not discover it until a user reports that your application is behaving strangely. These are called runtime errors because they happen when the code is running.

This is where TypeScript comes in. TypeScript is a superset of JavaScript, which means that any valid JavaScript code is also valid TypeScript code. However, TypeScript adds a powerful feature on top: a static type system.

Static typing allows you to define the expected "type" of data for your variables, function parameters, and function return values. Let's rewrite our add function in TypeScript:

// The same function in TypeScript

function add(a: number, b: number): number {

return a + b;

}

// This works perfectly

console.log(add(5, 10));

// This will show an error *before you even run the code*

console.log(add(5, "10"));

// Error: Argument of type 'string' is not assignable to parameter of type 'number'.

Notice the : number annotations. We are telling TypeScript that the parameters a and b must be numbers, and the function must return a number. When we try to call the function with a string, TypeScript immediately flags it as an error right in our code editor. We have caught the bug before it ever had a chance to make it into our application.

This is the core benefit of TypeScript: type safety. It acts like a protective layer for your code, helping you catch common errors early in the development process. For large applications, this is incredibly valuable. It leads to:

● Fewer Bugs: You eliminate a whole class of common errors related to incorrect data types.

● Better Code Completion: Your code editor understands your code better, providing more accurate and helpful autocompletion suggestions.

● Easier Refactoring: When you need to make changes, TypeScript helps ensure you update all the necessary parts of your code.

● Improved Teamwork: Types serve as a form of documentation. When another developer looks at your add function, they immediately know what kind of data it expects and what it returns.

Combining React's component model with TypeScript's type safety creates a robust foundation for building modern applications. React helps you organize your UI, and TypeScript helps you ensure the data flowing through it is correct.

​How This Book Is Structured for Step-by-Step Learning

This book is divided into several parts, each building on the last. We will start with the absolute basics and gradually move toward more advanced topics, with practical projects to help you apply what you have learned.

● Part 1: Foundations: We will start here, setting up your development environment and learning the essentials of modern JavaScript and TypeScript that are most relevant for React development.

● Part 2: Core React Concepts with TypeScript: This is where we will dive deep into React itself. You will learn how to create components, manage data within them using Hooks, and handle user interactions like form submissions, all with the safety of TypeScript.

● Part 3: State Management and Data Handling: We will explore how to manage data across your entire application and how to fetch information from external sources, like a server or an API.

● Part 4: Styling, Testing, and Performance: We will make your applications look great with modern styling solutions, ensure they are reliable through testing, and make them fast and efficient.

● Part 5: Real-World Projects: You will apply all your skills to build complete, practical projects from start to finish, giving you the confidence to build your own applications.

● Part 6: Next Steps for Growth: We will look ahead at advanced patterns and tools that will help you continue to grow as a developer long after you have finished the book.

Our approach is simple: learn a concept, see a practical example, and then apply it.

​Setting Up Your Development Environment

Before we can start writing code, we need to set up our workshop. This means installing a few essential tools on your computer. Don't worry, this is a one-time setup, and I will guide you through every step.

Our development environment will consist of:

	
Node.js: A runtime environment that allows us to run JavaScript outside of a web browser. It also includes npm (Node Package Manager), a tool for installing and managing project dependencies.

	
Visual Studio Code (VS Code): A free, popular, and powerful code editor.

	
Helpful VS Code Extensions: A few add-ons for VS Code that will make our development experience smoother.

Step 1: Installing Node.js

React development relies on tools that run on Node.js. It is the engine that powers our development server and helps us bundle our code for production.

● Action: Go to the official Node.js website:https://nodejs.org/.

● Instruction: You will see two versions available for download: LTS and Current. Always download the LTS version. LTS stands for Long-Term Support, which means it is the most stable and reliable version. The Current version has the latest features but may be less stable.

● Process: Download the installer for your operating system (Windows, macOS, or Linux) and run it. Follow the installation prompts, accepting the default options.

Verification Checklist:

To make sure Node.js was installed correctly, we will use the command line, also known as the terminal or console.

1. Open your terminal:

○ On Windows, search for "Command Prompt" or "PowerShell."

○ On macOS, open the "Terminal" app (you can find it in Applications > Utilities).

Type the following command and press Enter:

node -v

2. This should print a version number, like v20.11.1. The exact number is not important, as long as you see one.

Next, check that npm was also installed. Type this command and press Enter:

npm -v

3. This should also print a version number, like 10.2.4.

If both commands return a version number, your installation was successful.

Step 2: Installing Visual Studio Code

A good code editor is a developer's most essential tool. It helps you write, navigate, and debug your code. While there are many great options, we will use Visual Studio Code because it is free, feature-rich, and has excellent support for TypeScript and React.

● Action: Go to the official VS Code website:https://code.visualstudio.com/.

● Process: The website should automatically detect your operating system. Click the download button, run the installer, and follow the prompts, accepting the default options.

Step 3: Installing Recommended VS Code Extensions

Extensions are small programs you can add to VS Code to give it more functionality. They can help you format your code, catch errors, and write code faster.

	Open VS Code.

	On the left-hand side, you will see a vertical bar of icons. Click on the one that looks like a set of squares. This is the Extensions view.

	Use the search bar at the top of the Extensions view to find and install the following extensions. Just click the "Install" button for each one.

● ESLint: This is a "linter." It analyzes your code to find potential problems and enforce consistent coding styles. This is extremely helpful for catching subtle bugs.

● Prettier - Code formatter: This extension automatically formats your code to keep it clean, consistent, and readable. It handles things like indentation and spacing, so you do not have to.

● Tailwind CSS IntelliSense: We will be using a styling tool called Tailwind CSS later in the book, and this extension provides excellent autocompletion and hints for it.

These three extensions provide a great starting point for a professional development setup.

Your First React + TypeScript Project

Now that our tools are ready, let's create our very first project to confirm everything is working together. We will use a tool called Vite (pronounced "veet"). Vite is a modern build tool that provides an incredibly fast development experience.

1. Open Your Terminal: Navigate to a folder where you want to store your projects. For example, you might have a Development or Projects folder in your user directory. You can use the cd (change directory) command to navigate. For example: cd Documents/Projects.

2. Run the Create Vite Command: Once you are in your desired folder, run the following command in your terminal:

npm create vite@latest

3. Follow the Prompts: Vite will now ask you a series of questions to configure your project.

○ Project name: You can name it whatever you like. Let's use hello-react-ts for now.

○ Select a framework: Use the arrow keys to navigate down to React and press Enter.

○ Select a variant: Navigate to TypeScript and press Enter.

Vite will quickly create a new folder named hello-react-ts with a basic React and TypeScript project inside.

	
Navigate and Install Dependencies: The terminal will now show you the final steps.

● First, navigate into your new project directory:

cd hello-react-ts

● Next, install the project's dependencies. These are the libraries (like React itself) that your project needs to run. The npm install command reads the package.json file in your project and downloads everything listed there.

npm install

● This might take a minute or two, depending on your internet connection.

Open the Project in VS Code: Once the installation is complete, you can open the entire project folder in VS Code by typing the following command in your terminal:

code .

	The . is a shortcut that means "the current directory."

Start the Development Server: Now for the exciting part. VS Code should now be open with your project files visible in the left-hand explorer panel. Go back to your terminal (or you can open a new terminal directly inside VS Code by going to the "Terminal" menu and selecting "New Terminal") and run the following command:

npm run dev

	This command starts the Vite development server. After a moment, you should see a message in your terminal with a local URL, usually http://localhost:5173/.

	
View Your App: Open your web browser and navigate to that URL. You should see a webpage with the React logo and a counter button. You have successfully created and launched your first modern React and TypeScript application.

​Key Takeaways from This Chapter

● React is a JavaScript library for building user interfaces using a component-based architecture. This makes your code reusable, simple, and easy to maintain.

● React uses a declarative approach, where you describe what the UI should look like, and React handles the updates.

● TypeScript is a superset of JavaScript that adds static typing. This helps you catch errors early and write more reliable code.

● The essential tools for modern React development are Node.js (for its runtime and npm) and a code editor like VS Code.

● Vite is a modern build tool that allows you to set up a new React and TypeScript project quickly and provides a very fast development experience.

You have taken the first and most important steps. You have set up a professional development environment and confirmed that it all works by creating and running a real application. In the next chapter, we will take a closer look at the essential JavaScript and TypeScript features that you will use every day as a React developer.

	[image:]

	
	[image:]

[image:]

​Chapter 2: JavaScript & TypeScript Essentials

[image:]

Welcome back. In the last chapter, we set up our digital workshop. We installed the necessary tools, created our first project, and confirmed that everything is running smoothly. That was a crucial first step, and you should feel great about getting it done. Now, it is time to sharpen our tools.

Before we can build complex structures with React, we need to be comfortable with the materials we will be using. In our case, those materials are the core features of modern JavaScript and the powerful safety net of TypeScript. React itself is written in JavaScript, and modern React development makes extensive use of newer language features that make code cleaner, more concise, and easier to manage.

This chapter is your foundation in that language. We will not try to learn every single feature of JavaScript and TypeScript. That would be overwhelming and unnecessary. Instead, we will focus laser-like on the specific concepts that you will encounter every single day when writing React code. We will explore each one with practical examples that directly relate to how they are used in a React context.

Think of this as learning the essential knots before you go sailing. You do not need to know every knot ever invented, but mastering a few key ones will allow you to handle almost any situation you encounter. Let's get started on mastering our essential knots.

​Modern JavaScript Features for React (ES6+)

You might see the term "ES6" mentioned frequently in articles and tutorials. "ES6" stands for ECMAScript 2015, which was a massive and important update to the JavaScript language. It introduced a host of new features that fundamentally improved how we write JavaScript. Since then, JavaScript has been updated annually, so "ES6+" is often used to refer to that version and all the features added since. Modern React code is built on these features. Let's explore the most important ones.

​Arrow Functions: A Cleaner Way to Write Functions

Functions are the fundamental building blocks of any application. You use them to perform actions, calculate values, and organize your code. ES6 introduced a new, more concise syntax for writing functions called arrow functions. They are used everywhere in React.

Let’s start with a traditional function expression:

// Traditional function expression

const add = function(a, b) {

return a + b;

};

Here is the exact same function written as an arrow function:

// Arrow function

const add = (a, b) => {

return a + b;

};

As you can see, we replaced the function keyword with a "fat arrow" (=>) that sits after the parameters. This is already a bit cleaner, but the benefits do not stop there.

Implicit Return

If your function body contains only a single expression to be returned, you can make arrow functions even more concise by removing the curly braces {} and the return keyword. This is called an implicit return.

// Arrow function with implicit return

const subtract = (a, b) => a - b;

// This is equivalent to:

const subtractVerbose = (a, b) => {

return a - b;

};

This compact syntax is extremely common in React for small, single-purpose functions. If you have only one parameter, you can even omit the parentheses around it:

// Arrow function with a single parameter

const double = number => number * 2;

However, if your function needs to perform multiple steps or has more complex logic, you must use the curly braces and an explicit return statement.

const greet = (name) => {

const formattedName = name.toUpperCase();

return `HELLO, ${formattedName}!`;

};

In React, you will often define components as arrow functions.

// A simple React component as an arrow function

const WelcomeMessage = () => {

return <h1>Welcome to the application!</h1>;

};

How this Works Differently

In traditional JavaScript functions, the value of the this keyword can be tricky. It changes depending on how the function is called. This has historically been a major source of confusion and bugs.

Arrow functions behave differently. They do not have their own this context. Instead, they inherit this from their surrounding (lexical) scope. While this distinction is less critical in modern React with functional components and Hooks, it was a game-changer for older class-based components and is a key reason for their widespread adoption. For our purposes, just know that arrow functions are the standard way to define functions and components in modern React.

Practical Exercise: Converting to Arrow Functions

Let's practice. Take the following traditional functions and convert them into arrow functions. Try to use the most concise syntax possible (like implicit returns).

A function that takes a string and returns its length.

const findLength = function(str) {

return str.length;

};

	A function that takes two numbers and returns their product.
const multiply = function(a, b) {

return a * b;

};

	A function that takes a user object and returns a greeting string.
const welcomeUser = function(user) {

console.log("Preparing greeting...");

return `Welcome back, ${user.name}!`;

};

	Solutions:

	const findLength = str => str.length;

	const multiply = (a, b) => a * b;

	const welcomeUser = (user) => {

console.log("Preparing greeting...");

return `Welcome back, ${user.name}!`;

};

console.log(welcomeUser({ name: "Alex" }));

(Requires curly braces due to multiple lines).

​Destructuring: Unpacking Values with Ease

Destructuring is a convenient way to extract values from objects and arrays and place them into distinct variables. It makes your code cleaner and easier to read by reducing the need for repetitive dot or bracket notation.

Object Destructuring

This is something you will do constantly in React, especially when working with component props (data passed into a component).

Imagine you have a user object:

const user = {

id: 1,

firstName: "Alice",

email: "alice@example.com",

isAdmin: false,

};

To access these properties without destructuring, you would do this:

const id = user.id;

const firstName = user.firstName;

const email = user.email;

console.log(firstName); // Outputs "Alice"

With object destructuring, you can do it all in one line:

const { id, firstName, email } = user;

console.log(firstName); // Outputs "Alice"

We are declaring three new variables (id, firstName, and email) and initializing them with the values of the corresponding properties from the user object. The names of the variables must match the names of the properties in the object.

Renaming Variables and Setting Default Values

What if you want to assign a property to a variable with a different name? You can do that using a colon:

const { firstName: userName, email: userEmail } = user;

console.log(userName); // Outputs "Alice"

// console.log(firstName); // This would cause an error, as firstName is not defined.

You can also provide a default value for a property in case it does not exist on the object. This is useful for preventing errors when dealing with optional data.

const { firstName, isAdmin = false, location = "Unknown" } = user;

console.log(isAdmin); // Outputs false (from the object)

console.log(location); // Outputs "Unknown" (the default value)

In React, you will often use this to unpack props passed to a component:

// Instead of accessing props.title and props.author

const BookComponent = ({ title, author, year = "N/A" }) => {

return (

<div>

<h2>{title}</h2>

<p>By {author}, published in {year}</p>

</div>

);

};

Array Destructuring

You can also destructure arrays. The syntax is similar, but it uses square brackets [] and relies on the position of the elements in the array.

const userRoles = ["Admin", "Editor", "Viewer"];

const [firstRole, secondRole] = userRoles;

console.log(firstRole); // Outputs "Admin"

console.log(secondRole); // Outputs "Editor"

This pattern is fundamental to one of the most important React features: the useState Hook. When you use useState, it returns an array with exactly two elements: the current state value and a function to update it. Array destructuring is the perfect way to capture them.

// We will learn all about this later, but notice the array destructuring!

const [count, setCount] = useState(0);

Practical Exercise: Practice Destructuring

	Create an object called product with the properties: name (string), price (number), and inStock (boolean). Use object destructuring to extract name and price into variables.

	Create another object called settings with a theme property. Use destructuring to get the theme value, but provide a default value of "light".

	Create an array called coordinates with three numbers (x, y, z). Use array destructuring to get the first two values into variables named x and y.

Solutions:

	const product = { name: "Wireless Mouse", price: 25.99, inStock: true }; const { name, price } = product;

	const settings = { theme: "dark" }; const { theme = "light" } = settings;

	const coordinates = [10, 20, 30]; const [x, y] = coordinates;

​Template Literals: Smarter Strings

Template literals provide a more flexible and readable way to create strings. They are enclosed by backticks (`) instead of single or double quotes.

Their main advantage is the ability to easily embed expressions and variables directly into the string, a feature known as interpolation.

Without template literals, combining strings and variables is clumsy:

const userName = "Bob";

const itemsInCart = 3;

const message = "Hello, " + userName + "! You have " + itemsInCart + " items in your cart.";

With template literals, it becomes much cleaner:

const userName = "Bob";

const itemsInCart = 3;

const message = `Hello, ${userName}! You have ${itemsInCart} items in your cart.`;

You wrap your variables or expressions in ${...} inside the backticked string, and JavaScript automatically evaluates them and inserts the result. You can even perform calculations or call functions inside the curly braces.

const price = 19.99;

const taxRate = 0.07;

const totalMessage = `The total price is: $${(price * (1 + taxRate)).toFixed(2)}`;

Another benefit is that template literals can span multiple lines without any special characters:

const multiLineString = `This is the first line.

This is the second line.`;

This is especially handy in React when you need to construct longer strings of text or class names.

Practical Exercise: Build a String

Create three variables: itemName (string), quantity (number), and pricePerItem (number). Using a template literal, create a string that reads: You ordered [quantity] of [itemName] for a total of $[total price]. Calculate the total price inside the template literal.

Solution: const itemName = "Notebook"; const quantity = 4; const pricePerItem = 2.50; const orderSummary = You ordered ${quantity} of ${itemName} for a total of $${quantity * pricePerItem}.;

​The Spread and Rest Operators (...)

This is one of the most powerful and versatile additions to JavaScript. The three dots (...) can be used as either a spread operator or a rest operator, depending on where you use them. It sounds confusing, but the context makes it clear.

The Spread Operator: Spreading Things Out

The spread operator takes an iterable (like an array or object) and "spreads" its elements or properties out. It is commonly used to make copies and combine arrays or objects without directly modifying the original, a concept known as immutability, which is central to React.

Spreading Arrays

const primaryColors = ["red", "blue"];

const secondaryColors = ["yellow", "green"];

// Combine the two arrays into a new one

const allColors = [...primaryColors, ...secondaryColors];

// allColors is now ["red", "blue", "yellow", "green"]

// Create a copy of an array

const primaryColorsCopy = [...primaryColors];

Spreading Objects

Similarly, you can spread the properties of one object into a new one.

const userDetails = {

name: "Charlie",

age: 30,

};

const userAccount = {

id: 123,

...userDetails, // Spreads the name and age properties here

email: "charlie@example.com",

};

// userAccount is now { id: 123, name: "Charlie", age: 30, email: "charlie@example.com" }

This is the standard way to update state in React. You create a new object or array by copying the old one and then overriding the properties you want to change.

const [user, setUser] = useState({ name: "David", status: "offline" });

// To update the status, we spread the old user and add the new status

const logInUser = () => {

setUser({ ...user, status: "online" });

};

The Rest Operator: Gathering Things Up

The rest operator does the opposite. It collects multiple elements and "condenses" them into a single element.

Rest in Function Arguments

You can use it to create functions that accept an indefinite number of arguments.

const sum = (...numbers) => {

return numbers.reduce((total, num) => total + num, 0);

};

sum(1, 2); // returns 3

sum(1, 2, 3, 4); // returns 10

Here, ...numbers gathers all the arguments passed to the sum function into a single array called numbers.

Rest in Destructuring

This is a very common pattern in React for component props. You can destructure the props you care about specifically and then use the rest operator to gather all the other props into an object.

const UserProfileCard = ({ name, email, ...otherProps }) => {

// name = "Eva"

// email = "eva@example.com"

// otherProps = { id: "user-1", className: "card-container" }

return (

<div {...otherProps}> {/* We can then SPREAD the otherProps onto the div */}

<h2>{name}</h2>

<p>{email}</p>

</div>

);

};

<UserProfileCard name="Eva" email="eva@example.com" id="user-1" className="card-container" />

This allows you to create flexible components that can accept and pass along any standard HTML attributes (like id, className, style, etc.) without having to define them explicitly.

Practical Exercise: Spread and Rest

	Create two arrays, part1 and part2. Use the spread operator to create a third array, full, that contains all the elements from both.

	Create a baseConfig object. Create a userConfig object that includes all properties from baseConfig plus a new property of your own.

	Write a function that accepts an ID as its first argument and any number of "tags" as the rest of its arguments. The function should log the ID and the array of tags.

Solutions:

	const part1 = ["a", "b"]; const part2 = ["c", "d"]; const full = [...part1, ...part2];

	const baseConfig = { version: 1, retries: 3 }; const userConfig = { ...baseConfig, theme: "dark" };

	const createItem = (id, ...tags) => { console.log(Item ID: ${id}); console.log(Tags:, tags); }; createItem("abc-123", "new", "featured", "sale");

​TypeScript Fundamentals for React

We now have a solid grasp of the modern JavaScript features that power React. The next step is to add the safety and clarity of TypeScript. As we saw in Chapter 1, TypeScript's main job is to help us define the "shape" of our data, catching errors before our code ever runs.

Let's dive into the core TypeScript concepts you will use to build type-safe React applications.

​Understanding Basic Types

TypeScript extends JavaScript with syntax for declaring types. Let's start with the most basic ones.

Primitives: string, number, and boolean

These are the simplest types and correspond directly to JavaScript's primitive values.

let framework: string = "React";

let version: number = 18;

let isAwesome: boolean = true;

If you try to assign a value of the wrong type, TypeScript will immediately show an error in your editor.

let myName: string = "Frank";

myName = 33; // Error: Type 'number' is not assignable to type 'string'.

Type Inference

In many cases, you do not even need to write the type annotation yourself. If you declare a variable and initialize it on the same line, TypeScript is smart enough to infer the type.

let inferredName = "Grace"; // TypeScript infers this is a string

let inferredAge = 40; // TypeScript infers this is a number

It is good practice to rely on type inference when possible to keep your code less cluttered. You should only add explicit type annotations when you are not initializing a variable right away, or when you want to be more specific (e.g., a value could be a string or null).

Arrays

To type an array, you add [] after the type of the elements it should contain.

let skills: string[] = ["React", "TypeScript", "CSS"];

let scores: number[] = [100, 95, 98];

// Alternative syntax using generics

let alternativeSkills: Array<string> = ["React", "TypeScript", "CSS"];

The string[] syntax is more common and generally preferred.

Objects

You can define the shape of an object by describing its properties and their types.

let user: { name: string; id: number; isActive: boolean };

user = {

name: "Heidi",

id: 101,

isActive: true,

};

This is a bit verbose to write out every time, which is why we will soon learn about type aliases and interfaces to create reusable shapes.

Special Types: any, unknown, void, null, undefined

TypeScript includes a few special types for specific scenarios.

any: This is the "escape hatch." A variable of type any can be of any type. Using it effectively disables all type-checking for that variable. You should avoid any whenever possible, as it defeats the purpose of using TypeScript. It is sometimes necessary when working with legacy JavaScript libraries that do not have types.

let anything: any = "hello";

anything = 5; // No error

anything = { some: "object" }; // No error

anything.someRandomMethod(); // No error at compile time, but will crash at runtime!

unknown: This is the safer alternative to any. A variable of type unknown can also hold any value, but you cannot do anything with it until you perform a type check to narrow down its type.

let notSure: unknown = 4;

notSure = "maybe a string instead";

// let str: string = notSure; // Error! 'unknown' is not assignable to 'string'.

if (typeof notSure === "string") {

// OK, TypeScript now knows notSure is a string in this block

let str: string = notSure;

}

void: This is used to indicate that a function does not have a return value.

const logMessage = (message: string): void => {

console.log(message);

// No return statement

};

null and undefined: These represent the absence of a value, just like in JavaScript. You can use them in type annotations, often in a union type.

let loggedInUser: string | null = null;

// ...user logs in...

loggedInUser = "Ivan";

Practical Exercise: Using Basic Types

	Declare a variable projectName and explicitly type it as a string.

	Declare a variable projectVersion and let TypeScript infer its type as a number.

	Declare an array dependencies that can only hold strings.

	Create a function printProject that takes an object with name (string) and version (number) properties and returns nothing (void). Call the function with a valid object.

Solutions:

	let projectName: string = "My App";

	let projectVersion = 1.0;

	let dependencies: string[] = ["react", "typescript"];

	const printProject = (project: { name: string; version: number }): void => { console.log(`${project.name}-v${project.version}`);

};

printProject({ name: "My App", version: 1.0 });

​Shaping Data with type and interface

Writing out object shapes like { name: string; id: number } every time is repetitive and inefficient. TypeScript provides two primary ways to define reusable object shapes: type aliases and interfaces.

type Aliases

A type alias lets you create a new name for a type. While it can be used for any type, it is commonly used for object shapes.

type User = {

id: number;

name: string;

email?: string; // The `?` makes this property optional

readonly creationDate: Date; // `readonly` prevents this property from being changed

};

const user1: User = {

id: 1,

name: "Judy",

creationDate: new Date(),

};

user1.name = "Judith"; // This is okay

// user1.creationDate = new Date(); // Error: Cannot assign to 'creationDate' because it is a read-only property.

interface

An interface is another way to declare the shape of an object. The syntax is slightly different but achieves a similar result.

interface Product {

id: number;

name: string;

price: number;

inStock?: boolean;

}

const product1: Product = {

id: 101,

name: "Keyboard",

price: 49.99,

inStock: true,

};

interface vs. type: What is the Difference?

For beginners, type and interface can seem almost identical. They can both be used to describe the shape of an object, and for a long time, the choice was largely a matter of style. However, there is one key difference:

Declaration Merging: An interface can be defined multiple times, and TypeScript will merge the definitions. A type alias cannot.

// This is allowed - the declarations are merged

interface Animal {

name: string;

}

interface Animal {

age: number;

}

const myPet: Animal = { name: "Leo", age: 5 }; // Has both properties

// This is NOT allowed and will cause an error

// type Planet = { name: string; };

// type Planet = { hasRings: boolean; }; // Error: Duplicate identifier 'Planet'.

This merging capability makes interfaces useful for extending existing type definitions, especially when dealing with third-party libraries.

Extending Types

Both can be extended, but the syntax differs.

// Extending an interface

interface Employee extends User {

employeeId: string;

}

// Extending a type using intersection

type Manager = User & {

manages: Employee[];

};

Recommendation for Beginners

The debate over which to use is long-running. Here is a simple, effective rule of thumb to start with:

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
MODERN REACT
TYPESCRIPT
DEVELOPMENT

A Beginner-to-Advanced Guide

LEX CORNELL

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

